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Microscopic predictions for the production of neutron-rich nuclei in the reaction 176Yb + 176Yb
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Background: Production of neutron-rich nuclei is of vital importance to both understanding nuclear structure
far from stability and to informing astrophysical models of the rapid neutron capture process (r-process).
Multinucleon transfer (MNT) in heavy-ion collisions offers a possibility to produce neutron-rich nuclei far from
stability.
Purpose: The 176Yb + 176Yb reaction has been suggested as a potential candidate to explore the neutron-rich
region surrounding the principal fragments. The current study has been conducted with the goal of providing
guidance for future experiments wishing to study this (or similar) system.
Methods: Time-dependent Hartree-Fock (TDHF) and its time-dependent random-phase approximation
(TDRPA) extension are used to examine both scattering and MNT characteristics in 176Yb + 176Yb. TDRPA
calculations are performed to compute fluctuations and correlations of the neutron and proton numbers, allowing
for estimates of primary fragment production probabilities.
Results: Both scattering results from TDHF and transfer results from the TDRPA are presented for different
energies, orvientations, and impact parameters. In addition to fragment composition, scattering angles and total
kinetic energies, as well as correlations between these observables are presented.
Conclusions: 176Yb + 176Yb appears to be an interesting probe for the midmass neutron-rich region of the chart
of nuclides. The predictions of both TDHF and TDRPA are speculative, and will benefit from future experimental
results to test the validity of this approach to studying MNT in heavy, symmetric collisions.
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I. INTRODUCTION

The synthesis of neutron-rich nuclei is one of the most
exciting and challenging tasks in both experimental and the-
oretical nuclear physics. From the lightest systems to the su-
perheavy regime, knowledge about the nuclei at the extremes
of the chart of nuclides is vital to understanding physical
phenomena at multiple scales. At the foremost, neutron-rich
nuclei are at the literal and figurative center of the rapid
neutron capture process (r-process). Attempts at modeling
the r-process utilize input from nuclear models to inform
threshold energies for the reaction types that characterize this
process [1]. Thus, strong theoretical understanding of both the
static and dynamic properties of nuclei far from stability can
give vital insight into the formation of stable heavy nuclei.

The production of neutron-rich nuclei is also of interest
for studying nuclear structure, where exploring this region of
the nuclear landscape clearly probes the edges of our current
understanding of how finite nuclei form and are composed
[2]. This includes studies of neutron-rich nuclei of all masses,
ranging from oxygen [3] up to the superheavy element (SHE)
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region. SHEs are of particular note, as the formation and
static properties of said nuclei have been the focus of many
experimental [4–8] and theoretical [9–13] studies.

Over the years, many theoretical approaches to studying
neutron-rich nuclei formation have been pursued for various
reaction types. One such technique is to use models to study
neutron enrichment via multinucleon transfer (MNT) in deep-
inelastic collisions (DIC) and quasifission reactions [14–22].
While quasifission occurs at a much shorter time-scale than
fusion-fission [23,24] and is the primary reaction mechanism
that limits the formation of superheavy nuclei, the fragments
produced may still be neutron-rich.

Quasifission reactions are often studied in asymmetric
systems with, e.g., an actinide target [23,25–28]. However,
quasifission can also be present in symmetric systems. In fact,
the extreme case of quasifission in actinide-actinide collisions
has been suggested as a possible reaction mechanism to obtain
neutron-rich isotopes of high Z nuclei in particular as well
as a possible means to search for SHE [29,30]. Theoretically,
the investigation of collisions between very heavy nuclei has
a rich history with various approaches, including the din-
uclear system (DNS) model [31–38], relativistic mean-field
(RMF) and Skyrme HF studies [39], reduced density-matrix
formalism [40], Langevin equation [41–44], quantum molec-
ular dynamics (QMD) [45], and improved quantum molecu-
lar dynamics (ImQMD) [20,46–49] calculations, as well as
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time-dependent Hartree-Fock (TDHF) studies [17,19,50].
Over recent years, TDHF has proved to be a tool of choice
to investigate fragment properties produced in various reac-
tions, such as DIC [22,51], quasifission [21,28,47,52–57], and
fission [58–67]. Recent reviews [68,69] succinctly summarize
the current state of TDHF (and its extensions) as it has been
applied to various MNT reactions.

In this work, we present a study of the 176Yb + 176Yb
system using TDHF and the time-dependent random phase
approximation (TDRPA) [70–77] extension that considers the
effect of one-body fluctuations around the TDHF trajectory.
As discussed before, microscopic approaches such as TDHF
and its extensions are commonly used in heavy-ion collision
studies in different regions of the nuclear chart, positioning
TDHF and TDRPA as tools of choice for the current in-
vestigation. Symmetric 176Yb reactions were chosen because
they are considered as a potential candidate to explore the
neutron-rich region around the mass region A ∼ 170–180 of
the nuclear chart. The energies studied here correspond to
beam energies of 7.5 and 10 MeV per nucleon. Calculations
at 10 MeV/A have been performed to investigate the energy
dependence of the results. The main results are discussed
for the lower energy of 7.5 MeV/A, which is accessible with
cyclotron beam facilities, such as, e.g., NSCL (US), Texas
A&M, GANIL (France), and the superheavy element fac-
tory at Dubna. Specifically, an experimental investigation of
this reaction are being considered in Dubna by Oganessian
et al. and the work presented here was undertaken at their
suggestion [78]. The base theory (TDHF) and the primary
extension (TDRPA) are briefly described in Sec. II. Results
for both scattering characteristics and transfer characteristics
are discussed in Secs. III A and III B, respectively. A summary
and outlook are then presented in Sec. IV.

II. FORMALISM: TDHF AND TDRPA

The TDHF theory provides a microscopic approach
with which one may investigate a wide range of phenom-
ena observed in low energy nuclear physics [68,69,79,80].
Specifically, TDHF provides a dynamic quantum many-
body description of nuclear reactions in the vicinity of the
Coulomb barrier, such as fusion [81–96] and transfer reactions
[16,51,69,76,97–102].

The TDHF equations for the single-particle wave
functions,

h({φμ}) φλ(r, t ) = ih̄
∂

∂t
φλ(r, t ) (λ = 1, . . . , A) , (1)

can be derived from a variational principle. The principal
approximation in TDHF is that the many-body wave func-
tion �(t ) is assumed to be a single time-dependent Slater
determinant at all times. It describes the time-evolution of the
single-particle wave functions in a mean-field corresponding
to the dominant reaction channel. During the past decade it has
become numerically feasible to perform TDHF calculations
on a three-dimensional (3D) Cartesian grid without any sym-
metry restrictions and with much more accurate numerical
methods [99,103–105].

The main limitation in the TDHF theory when studying
features like particle transfer, however, is that it is optimized
for the prediction of expectation values of one-body ob-
servables [106] and will under-predict fluctuations of those
observables [107]. This is due to the fact that the fluctuation
of one-body operators (such as the particle number operator)
includes the expectation value of the square of a one-body
operator,

σXX =
√

〈X̂ 2〉 − 〈X̂ 〉2 , (2)

that is outside the variational space of TDHF [106].
To obtain such quantities one needs to go beyond standard

TDHF and consider the fluctuations around the TDHF mean-
field trajectory using techniques like the stochastic mean-
field theory (SMF) [108,109] or TDRPA [71]. Both of these
approaches have been used to investigate MNT and fragment
production [72–77,110–114].

Methods based on solving the Langevin equation on a
potential energy surface, or those based on assuming a din-
uclear system (DNS), are usually numerically much faster
than fully microscopic approaches. Nevertheless, the increase
of computational power and more efficient algorithms have
enabled the use of microscopic codes to investigate MNT
mechanisms even in the heaviest systems. Moreover, the
main theoretical advantage of SMF and TDRPA methods in
studying MNT is that they do not rely on empirical parameters
and do not impose spatial restrictions on the single-particle
wave functions.

In this work we follow a similar approach as in
Refs. [76,77] to obtain particle number fluctuations and dis-
tributions about the outgoing fragments. The foundation of
the method is to consider an alternate variational principle
for generating the mean-field theory. In particular, the Balian-
Vénéroni (BV) variational principle provides a powerful tech-
nique that optimizes the evaluation of expectation values for
arbitrary operators [106]. When the operator chosen is a
one-body operator, the method produces the TDHF equations
exactly, suggesting that TDHF is the mean-field theory that is
best suited for the calculation of one-body expectation values.
However, as mentioned above, the calculation of fluctuations
and correlations involves the square of a one-body operator.
For TDHF alone, Eq. (2) results in the following expression
for two generic operators X̂ and Ŷ :

σ 2
XY (t f ) = Tr{Y ρ(t f )X [I − ρ(t f )]} , (3)

where I is the identity matrix and t f is the final time. By utiliz-
ing the BV variational principle and extending the variational
space to optimize for the expectation value of exponentials
of one-body operators of the type exp(εâ†â), one obtains
an estimate of fluctuations and correlations in the limit of
small ε [71]

σ 2
XY (t f ) = lim

ε→0

Tr{[ρ(ti ) − ρX (ti, ε)][ρ(ti ) − ρY (ti, ε)]}
2ε2

(4)

which now depends on the one-body density matrices at
the initial time ti. Equation (4) also contains the den-
sity matrices ρX,Y (ti, ε) which have been transformed at t f
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according to ρX (t f , ε) = exp(iεX )ρX (t f ) exp(−iεX ) and
evolved back to ti.

The procedure to compute Eq. (4) involves first transform-
ing the states after the collision as

φ̃X
α (r, t f ) = exp[−iεNX 
V (r)]φα (r, t f ), (5)

where X stands for neutron (N), proton (Z), or total nucleon
number (A). The operator NX ensures that the transformation
acts only on nucleons with the correct isospin with NA = 1,
NZ = 1−τ3

2 , and NN = 1+τ3
2 . The operator 
V (r̂) is a step

function that is either 1 or 0 depending on whether r is
within a volume of space, V , delimiting the fragment of
interest. Finally, ε is a small number that is varied to achieve
convergence.

These transformed states are then propagated backwards in
time from the final time t f to the initial time ti. The trace in
Eq. (4) can then be calculated, obtaining

σXY =
√

lim
ε→0

η00 + ηXY − η0X − η0Y

2ε2
(6)

with ηXY describing the overlap between the states at time
t = ti,

ηXY =
∑
αβ

∣∣〈φX
α (ti )

∣∣φY
β (ti )

〉∣∣2
. (7)

In the case of X,Y = 0, this refers to states obtained with
ε = 0 in Eq. (5). In principle, one should recover exactly
the initial state as the evolution is unitary. However, using
states that have been evolved forward and then backward in
time with ε = 0 minimizes systematic errors from numerical
inaccuracies [73,75].

The SLy4d parametrization of the Skyrme functional is
used [115] and all calculations were performed in a numer-
ical box with 66 × 66 points in the reaction plane, and 36
points along the axis perpendicular to the reaction plane. The
grid spacing used was a standard 1.0 fm which provides an
excellent numerical representation of spatial quantities using
the basis spline collocation method [116]. For the TDRPA
calculations, each initial orientation, energy, and impact pa-
rameter resulted in three additional TDHF evolutions (one
for each X ) for the time reversed evolution at one value of
ε = 2 × 10−3 in addition to occasionally scanning ε to ensure
convergence of Eq. (6). In total, 200 full TDHF evolutions
were required for the results presented in this work with
each taking on the order of 10-55 h of wall time due to the
large, three-dimensional box size chosen. This corresponds to
roughly 250 d of computation time split among multiple nodes
for the 176Yb HF ground state configuration with a prolate
deformation.

The proton and neutron numbers correlations and fluctua-
tions computed with TDRPA are used to estimate probabilities
for the formation of a given nuclide using Gaussian bivariate
normal distributions of the form

P (n, z) = P (0, 0) exp

[
− 1

1 − ρ2

(
n2

σ 2
NN

+ z2

σ 2
ZZ

− 2ρnz

σNNσZZ

)]
,

(8)

where n and z are the number of transferred neutrons and
protons, respectively. The correlations between N and Z are
quantified by the parameter

ρ = sign(σNZ )
σ 2

NZ

σNNσZZ
= 〈nz〉√

〈n2〉〈z2〉
. (9)

In principle, n and z could be very large and lead to unphysical
predictions with fragments having, e.g., a negative number
of protons and neutrons, or more nucleons than available. In
practice, such spurious results could only happen for the most
violent collisions where the fluctuations are large. To avoid
such spurious effects, the probabilities are shifted so that P is
zero when one fragment has all (or more) protons or neutrons.
The resulting distribution is then normalized.

Although the 176Yb nuclide is in a region where shape
coexistence is often found [117–121], TDHF calculations
can only be performed with one well-defined deformation
(and orientation) of each collision partners in the entrance
channel. In our calculations, the ground state is found to
have a prolate deformation with β2 � 0.33 in its HF ground
state. A higher energy oblate solution is also found with a
difference of around 5 MeV in total binding energy. A set
of calculations were also performed for the oblate solution,
though the overall transfer behavior was found to be similar
for both deformations despite the oblate one resulting in
slightly lower fluctuations. In the following, we thus only
show results for the prolate ground state.

This deformation allows for possible choices of the orien-
tation of the nuclei. Extreme orientations are called “side”
(“tip”) when the deformation axis is initially perpendicular
(parallel) to the collision axis. Although various intermediate
orientations could be considered [56], we limit our study
to tip-tip and side-side orientations where the initial orien-
tations of both nuclei are identical. In addition to saving
computational time, this restriction is necessary to ensure
fully symmetric collisions and to avoid unphysical results in
TDRPA [77].

Figure 1 shows the nucleus-nucleus potentials computed
using the frozen Hartree-Fock (FHF) [85,122] and density-
constrained frozen Hartree-Fock (DCFHF) [123] methods,
respectively, neglecting and including the Pauli exclusion
principle between the nucleons of different nuclei. Due to
Pauli repulsion in DCFHF, the inner pocket potential is very
shallow in the side-side configuration, and disappears in the
tip-tip one. In this work, the effect of the orientation is studied
by comparing tip-tip and side-side configurations at a center
of mass energy Ec.m. = 660 MeV. In addition, calculations are
also performed at Ec.m. = 880 MeV for both orientations to
investigate the role of the energy on the reaction outcome.

III. RESULTS

In this section we present the results of TDHF and TDRPA
studies of 176Yb + 176Yb reactions at different center of mass
energies and initial orientations for a range of impact param-
eters. Both scattering features and particle number fluctuation
derived quantities were calculated and are shown below.
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FIG. 1. Static nuclear potentials for 176Yb + 176Yb in the side-
side [blue (dark) lines] and tip-tip [cyan (light) lines] orientations
from FHF and DCFHF.

A. Scattering characteristics

The following section presents scattering results from the
standard TDHF calculations of 176Yb + 176Yb collisions. The
TDRPA extension to TDHF is not needed for these results,
though this means the points can only be interpreted as the
most likely outcome for each initial condition.

Scattering angles for the 176Yb + 176Yb system for both
orientations are presented in Fig. 2. A similar deviation from
Rutherford scattering is observed at impact parameters b � 8
fm for both orientations. These deviations are due to nuclear
deflection and partial orbiting of the system. Note that no
fusion is observed. The relatively flat shape of the curve
around 50–60 ◦ at 660 MeV and 20–40 ◦ at 880 MeV implies
a large number of events in these particular angular ranges.

The TKE of the outgoing fragments is plotted in Fig. 3 as
a function of the impact parameter b for side-side collisions at
the two center of mass energies. Although dissipation occurs
at different impact parameter ranges (b < 10 fm at Ec.m. =
660 MeV and b < 12 fm at Ec.m. = 880 MeV), both curves
exhibit similar behavior. In particular, the TKEs saturate at
roughly the same energy (≈350–400 MeV) indicating full
damping of the initial TKE for the most central collisions.

Among the mechanisms responsible for energy dissipation,
nucleon transfer is expected to play an important role. Of
course, in symmetric collisions the average number of nucle-
ons in the fragments does not change. Nevertheless, multin-
ucleon transfer is possible thanks to fluctuations, leading to
finite widths in the fragment particle number distributions.
These fluctuations are explored in the following section.

B. Transfer characteristics

This section focuses on the results obtained by extending
TDHF to recover particle number fluctuations and correlations
with the TDRPA.

Particle number fluctuations (σZZ and σNN ) and correla-
tions (σNZ ) calculated from Eq. (6) are shown in Fig. 4 as a
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FIG. 2. Scattering angles for 176Yb + 176Yb collisions at center
of mass energies (a) Ec.m. = 660 MeV and (b) Ec.m. = 880 MeV
in the side-side (circles) and tip-tip (squares) orientations. The dot-
ted (dashed) line plots the Rutherford scattering angle for Ec.m. =
660 MeV (880 MeV).

function of impact parameters for different initial conditions.
The fluctuations are greater in general at the smaller impact
parameters, though they do not converge to a single value.
Similar variations in fluctuations were already observed in
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FIG. 3. Total kinetic energies of the outgoing fragments in
176Yb + 176Yb collisions at center of mass energies Ec.m. =
660 MeV (blue circles) and Ec.m. = 880 MeV (red squares) in the
side-side orientation.
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FIG. 4. TDRPA predictions of correlations σNZ (a) and fluctua-
tions σNN (b) and σZZ (c) for 176Yb + 176Yb collisions for four initial
configurations over a range of impact parameters.

earlier TDRPA studies of deep inelastic collisions in lighter
systems [76,77]. Particularly large values are sometimes ob-
tained, such as at 660 MeV in tip-tip central (b = 0) collisions,
indicating approximately flat distributions around the TDHF
average.

The three quantities, σNZ , σNN , and σZZ exhibit very similar
behaviors and are roughly proportional to each other. The
neutron fluctuations are larger than the proton ones due to
the larger number of neutrons involved. The fact that corre-
lations and fluctuations behave similarly is due to the fact
that the collisions are fully damped. Indeed, for less violent
collisions such as quasi-elastic reactions, the correlations σNZ

are much smaller than fluctuations [76]. In fact, the presence
of positive correlations σNZ > 0 in deep inelastic collisions is
a manifestation of the symmetry energy which favors a flow
of protons and neutrons in the same direction, thus hindering
the production of N/Z asymmetric fragments.

Fragment mass-angle distributions (MADs) are a stan-
dard tool used experimentally to interpret the dynamics of
heavy-ion collisions [23,28,53,124–130]. Although TDHF
has been used to help interpret theoretically these distributions
[28,53,55,131], these earlier calculations only incorporate
fluctuations coming from the distribution of initial conditions
(e.g., different orientations). Here, we go beyond the mean-

Mass Angle Distributions
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FIG. 5. Mass angle distributions for 176Yb + 176Yb collisions
at (a) Ec.m. = 660 MeV in the side-side orientation, (b) Ec.m. =
660 MeV in the tip-tip orientation, (c) Ec.m. = 880 MeV in the side-
side orientation, and (d) Ec.m. = 880 MeV in the tip-tip orientation.
The color bar represents cross sections in mb per bin of mass ratio
and degree.

field prediction by including the fragment mass fluctuations
from TDRPA. Note that we only include mass fluctuations,
not fluctuations in scattering angle which are still determined
solely by TDHF. Calculating quantum fluctuations of scat-
tering angles is beyond the scope of this work, although
they might be necessary for a more detailed comparison with
experimental MADs.

The resulting MADs for 176Yb + 176Yb reactions are
shown in Fig. 5. The mass ratio MR is defined as the ratio
of the fragment mass over the total mass of the system.
The distributions of mass ratios are determined assuming
Gaussian distributions with standard deviation σMR = σAA/A,
limited and normalized to the physical region 0 � MR � 1
(see Sec. II). There is then an MR distribution per initial
condition (defined by Ec.m., b, and the orientations), but only a
single scattering angle θc.m.. To obtain a continuous represen-
tation of the scattering angle, θc.m. is discretized into bins of
�θ = 1 degree and interpolated between the values obtained
by TDHF.

The figures are symmetric about 90◦ as both outgoing
fragments are identically the same and will then travel out-
wards at complimentary angles. Specific orientations such as
side-side and tip-tip will not be accessible in an experimen-
tal setting of course. Interestingly, when investigating initial
energy dependence of the MAD [compare panels (a) and (c),
(b) and (d) in Fig. 5], it can be seen that different outgoing
angles are preferred depending on the incoming center of mass
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FIG. 6. Mass energy distributions for 176Yb + 176Yb collisions
at (a) Ec.m. = 660 MeV in the side-side orientation, (b) Ec.m. =
660 MeV in the tip-tip orientation, (c) Ec.m. = 880 MeV in the side-
side orientation, and (d) Ec.m. = 880 MeV in the tip-tip orientation.
The color bar represents cross sections in mb per bin of mass ratio
and MeV.

energy with back (and forward) scattering events being more
prevalent in the higher energy regime.

This agrees well with what is seen in Fig. 2, where many
impact parameters result in scattering angles around 50–60
degrees at Ec.m. = 660 MeV and around 20–40 degrees at
880 MeV. This is the case for both tip-tip and side-side
orientations, though the tip-tip results tend further towards the
intermediate angles than side-side at the same energy.

While the predictive capability of this method needs to be
compared with experimental results and tested, this suggests
a strong energy dependence and that detection of fragment
production will greatly benefit from large angle detectors. The
energy dependence seen in the MAD is not intuitive, and may
prove to be useful for informing experimental setups.

Useful information can also be obtained from the corre-
lations between fragment mass and kinetic energy [27,133–
136]. Figure 6 presents mass energy distributions (MED) that
detail the predicted TKE of outgoing fragments. It should be
noted here that, while the theory provides particle number
fluctuations, the values for TKE are single points (as in the
case of θc.m.) as predicted by TDHF alone. That is, widths
of the TKE distributions are currently unknown with the
method used here. This would make for an excellent extension
to the theory, bringing it more in line with what can be
experimentally observed.

The MEDs exhibit a continuous broadening of the mass
distribution with increasing energy dissipation. The saturation

FIG. 7. Primary fragments production cross sections for
176Yb + 176Yb collisions at Ec.m. = 660 MeV in the side-side
orientation overlaid onto the chart of nuclides. The innermost
contour corresponds to a cross section of 1 mb, with subsequent
contours drawn every 0.2 mb. Finally, we also plot a boundary
contour drawn at the microbarn level. Chart from [132].

of TKE lies around 350–400 MeV for side-side collisions (see
also Fig. 3) and around 250–300 MeV for tip-tip. This differ-
ence between orientations is interesting as it indicates a larger
kinetic energy dissipation with less compact configurations.
A possible explanation is that the nuclei overlap at a larger
distance in the tip-tip configuration, thus producing energy
dissipation earlier in the collision process than in the side-side
orientation.

In general, the MEDs show peaks around the elastic and
fully damped regions which results from the large range of
impact parameters contributing to both mechanisms.

C. Primary fragments production

Using the correlations and fluctuations shown in Fig. 4, a
map of probabilities can be made in the N-Z plane assuming
a modified Gaussian bivariate normal distribution [see Sec. II
and Eq. (8)]. This choice of using a Gaussian is the primary
assumption when calculating probabilities and related quanti-
ties and may not accurately describe the true distribution far
from the center.

These probability distributions at multiple impact parame-
ters can then be integrated over to produce a map of primary
fragment production cross sections which is presented in
Fig. 7 overlaid atop a section of the chart of nuclides in the
region surrounding 176Yb [132]. As the probability distribu-
tions for each impact parameter will be centered around the
176Yb (Z = 70, N = 106) nuclide, the resulting cross sections
are also symmetric about 176Yb. The inclusion of correlations
between protons and neutrons via σNZ more or less aligns
the distribution parallel to the valley of stability due to the
symmetry energy.

Subsequent decay of the fragments would inevitably bring
the final products closer to the valley of stability. Here, our
focus is on primary fragment productions and the prediction
of evaporation residue cross-sections are beyond the scope of
this work. In fact, experimental measurements of mass-angle
distributions using time of flight techniques are for primary
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fragments as they assume two-body kinematics [137]. To
estimate the evaporation residue cross sections would require
to first compute the excitation energy of the fragments and
then predict their decay with a statistical model [51,138].

One way to minimize evaporation is to consider less violent
collisions. In terms of primary fragment productions, 660 and
880 MeV center of mass energies are quite similar (this can be
seen by the relatively similar particle number fluctuations in
Fig. 4). However, the higher energy will lead to more neutron
evaporation and thus to less exotic evaporation residues. Use
of relatively neutron-rich 176Yb nuclei in symmetric colli-
sions may then allow for this reaction to act as a probe of
the neutron-rich region surrounding the principal outgoing
fragment.

IV. SUMMARY AND DISCUSSION

Multiple TDHF and TDRPA calculations have been per-
formed for the 176Yb + 176Yb system with various initial
orientations, energies, and impact parameters. Standard
TDHF allows for the classification of general scattering char-
acteristics, while the TDRPA technique extends the approach
to include correlations and fluctuations of particle numbers of
the reaction fragments. This extension provides a theoretical
framework that more closely resembles what will be seen in
experimental investigations of this (and similar) systems.

In examining figures such as the mass-angle distributions
in Fig. 5, information regarding the angular distribution of
fragments can be gleaned and suggest large acceptance de-
tectors to maximize measurement capability. Mass-energy
distributions shown in Fig. 6 are also useful to investigate,
e.g., the interplay between dissipation and fluctuations. In
both cases, however, fluctuations of θc.m. and of TKE are not
predicted in the present study. The latter would require new
implementations of the TDRPA to these observables, or the
use of alternative approaches such as the stochastic mean-

field theory [64] or an extension of the Langevin equation
[139]. Both methods have been recently used to investigate
kinetic energy distributions in fission fragments. In order to
benchmark our theoretical methods as applied to symmetric
heavy nuclei, all predictions presented in this study would
greatly benefit from experimental verification.

The methods used here provide a very powerful tool for
investigating symmetric systems, though an important caveat
should be discussed regarding the interpretation of these re-
sults. TDRPA produces only correlations and fluctuations, not
the actual distributions themselves, which are then taken to
be of a Gaussian nature. This assumption may break down
when far from the center of the distribution or if the shape
at the center itself is too flat and deviates sufficiently from a
Gaussian behavior. It is then extremely important to compare
with observations made in experimental studies such that we
may better understand how to interpret the results coming
from these methods.

Regardless, the 176Yb + 176Yb system presents itself as a
viable candidate for studies of MNT processes and production
of neutron rich nuclei in the region around A ≈ 176. The
map of possible primary fragments loosely painted in Fig. 7
presents an exciting range of previously inaccessible nuclei,
with the above caveat applying the further one goes from the
center of the distribution. Another caveat is that the predicted
distribution is for primary fragments only and that statistical
decay should be included in order to predict fragment pro-
duced after evaporation, e.g., following [22,51,138].
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