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Resonant and scattering states in the α + α system from the nonlocalized cluster model
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The nonlocalized cluster model provides a new perspective on nuclear cluster effects and has been applied
successfully to study cluster structures in various bound states and quasibound states (i.e., long-lived resonant
states). In this work, we extend the application scope of the nonlocalized cluster model further to resonant
and scattering states. Following the R-matrix theory, the configuration space is divided into the interior and
exterior regions by a large channel radius such that the nuclear forces and the antisymmetrization effects become
negligible between clusters in the exterior region. In the interior region, the picture of nonlocalized clustering
is realized mathematically by adopting the Brink-Tohsaki-Horiuchi-Schuck-Röpke wave functions as the bases
to construct the interior wave functions. The Bloch-Schrödinger equation is used to match the interior wave
functions continuously with the asymptotic boundary conditions of the resonant and scattering states at the
channel radius, which leads eventually to solutions of the problem. As a first test of the formalism, the low-lying
resonant states of 8Be and the phase shifts of the α + α elastic scattering are studied. The numerical results agree
well with the experimental data, which shows the validity of the theoretical framework.

DOI: 10.1103/PhysRevC.101.034311

I. INTRODUCTION

Cluster structures are important for nuclear many-body
problems and have been studied intensively by both experi-
mentalists and theorists. The nonlocalized cluster model is a
new microscopic framework in nuclear cluster physics based
on the picture of nonlocalized clustering [1–5]. It originates
from the studies of α condensates by Tohsaki, Horiuchi,
Schuck, and Röpke (THSR) in 2001 [6] and gets crystallized
in the microscopic studies of 20Ne in 2012–2013 [7–9]. In
the traditional picture of localized clustering, the clusters
are thought to be localized at fixed positions. Contrarily, in
the picture of the nonlocalized clustering, the clusters could
move freely in some nuclear containers. The nonlocalized
cluster model has been applied to study nuclear structures
of bound states and quasibound states (i.e., long-lived reso-
nant states) in various light nuclei and hypernuclei, including
6He [10], 8Be [11,12], 9Be [13], 10Be [14], 11Be [15], 9B [16],
10B [17], 10C [17], 12C [6,12,18–22], 16O [6,12,18,21,23],
20Ne [7,8,24], 9

�Be [25], and 13
�C [26]. The theoretical results

agree well with the experimental data and the microscopic
calculations based on the resonating group method (RGM)
and the generator coordinate method (GCM), revealing the
robustness of the new picture.

In this work, we generalize the nonlocalized cluster model
from bound and quasibound states to resonant and scattering
states. Following the R-matrix theory [27–34], the configu-
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ration space is divided into the interior and exterior regions.
The channel radius separating these two regions has to be
chosen properly such that in the exterior region the nuclear
forces and the antisymmetrization effects become negligible
between different clusters and only the long-range Coulomb
force survives. The Bloch-Schrödinger equation is adopted to
match the interior wave functions continuously at the channel
radius with the asymptotic boundary conditions of resonant
and scattering states, which eventually leads to solutions of
the problem.

In the interior region, the Brink-THSR wave func-
tions [8,9], which combine features of the Brink wave func-
tions [35] and the THSR wave functions [6], are adopted as
bases to construct the interior wave functions. The Brink wave
functions are the canonical mathematical realizations of the
localized clustering and assume the clusters to be localized at
fixed generator coordinates. The THSR wave functions are,
on the other hand, the canonical mathematical realizations of
the nonlocalized clustering. For each THSR wave function,
nuclear containers are introduced at the origin as extra ingredi-
ents to constrain the motion of clusters. Unlike the Brink wave
functions, the clusters are assumed to be delocalized from
any fixed positions and could move freely inside the nuclear
containers. The Brink-THSR wave functions lie somewhere
between the Brink and THSR wave functions. Compared with
the THSR wave functions, the Brink-THSR wave functions
have nuclear containers at different generator coordinates.
The clusters then move nonlocally inside these nuclear con-
tainers, which again contradicts the localized motion of the
clusters in the Brink wave function. Therefore, the Brink-
THSR wave functions could be regarded as another
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FIG. 1. (a) The α + α system given by the Brink wave function,
with two α clusters localized at the fixed positions −T/2 and +T/2.
(b) The α + α system given by the Brink-THSR wave function,
with two α clusters moving nonlocally inside the nuclear containers
(dashed curves) fixed at −T/2 and +T/2.

mathematical realizations of the nonlocalized clustering. Due
to their rich hybrid structures, the Brink-THSR wave func-
tions are shown previously to be crucial in describing the
negative-parity states of 20Ne in the nonlocalized cluster
model, which cannot be handled properly by starting from
the THSR wave function directly [8,9]. In other words, the
Brink-THSR wave functions play the role of the “midwife”
in establishing the new picture of nonlocalized clustering.
Given these achievements, it is important to pursue further
applications of the Brink-THSR wave functions.

In the exterior region, the short-range nuclear forces be-
tween the clusters become negligible. So does the antisym-
metrization effect between different clusters. These simpli-
fications help determine the functional forms of the exterior
wave functions. As to be shown later, for the resonant states
the relative components of the exterior wave functions are
given by the outgoing Coulomb-Hankel functions, while for
the scattering states the relative components of the exterior
wave functions are given by combinations of the incoming
and outgoing Coulomb-Hankel functions, with the relative
coefficients given by the S-matrix elements.

As a proof of concept, in this work we use the above theo-
retical formalism to study the resonant and scattering states in

the α + α system. The α + α system has rich physical proper-
ties and is crucial for understanding many important nuclear
reactions in astrophysics. Both the low-lying resonances of
8Be and the phase shifts of the α + α elastic scattering have
been measured [36–43], making it an ideal playground to
develop and validate our method. Various aspects of the α + α

system have been studied theoretically by many authors using
the RGM [44,45], the GCM [46–49], the quantum Monte
Carlo method [50–52], the THSR wave function [11,12],
the cluster effective field theory [53,54], the complex-scaled
cluster model [55–58], the lattice effective field theory [59],
the configuration interaction technique [60,61], the δ-shell
potential method [62], etc. Also, the experience on studying
the α + α system would help extend our method further
to the α + α + α system, which could contain more exotic
structures such as gaslike α condensates [6], linear-chain
structures [18], etc.

The rest parts of this article are organized as follows: In
Sec. II, we present the theoretical framework of our study,
introducing briefly the nonlocalized cluster model in Sec. II A
and the Bloch-Schrödinger equation in Sec. II B. The inter-
action model and the relevant matrix elements are given in
Sec. II C. In Sec. III, we present the numerical results on the
low-lying resonances of 8Be and the phase shifts of the α + α

elastic scattering given by the nonlocalized cluster model and
compare them with the experimental data. Section IV ends
this article with additional remarks and conclusions.

II. FORMALISM

A. Brink-THSR wave function

We first present the theoretical formalism of the nonlocal-
ized cluster model. It is adopted to describe the interior region
of the α + α system, where the antisymmetrization effect and
nuclear interactions cannot be ignored safely and have to be
handled exactly. The Brink-THSR wave functions are taken
as the bases to construct the interior wave functions, with the
expressions in the intrinsic frame given as follows:

�(β, T) = N

∫
d3R exp

(
− R2

2β2

)
�B(R + T), (1)

�B(R + T) = 1√
2

1√
8!

det
{
ϕ0s(r1 − R/2 − T/2)χσ1τ1 · · · ϕ0s(r4 − R/2 − T/2)χσ4τ4

×ϕ0s(r5 + R/2 + T/2)χσ5τ5 · · · ϕ0s(r8 + R/2 + T/2)χσ8τ8

}
, (2)

ϕ0s(r±R/2±T/2) = (πb2)−3/4 exp

[
− (r ± R/2 ± T/2)2

2b2

]
. (3)

Here ϕ0s(r) and χστ are the spatial and spin-isospin wave functions of a single nucleon. �B(R + T) is the Brink wave function
with R + T being the generator coordinate and can be interpreted intuitively as two α clusters at the fixed positions −(R + T)/2
and +(R + T)/2. The factor 1/

√
2 in Eq. (2) accounts for the indistinguishability of the two α clusters. In the Brink-THSR wave

function, the weight function for the generator coordinate R is taken to be the Gaussian function with the width parameter given
by β. For the real β, the Brink-THSR wave function could be interpreted intuitively as two α clusters moving nonlocally inside
two nuclear containers located at the fixed positions −T/2 and +T/2, with the container sizes determined by β. A pictorial
illustration of both the Brink wave function �B(T) and the Brink-THSR wave function �(β, T) could be found in Fig. 1. The
overall normalization constant in Eq. (1) is chosen to be N = 1/(2πβ2)3/2. Thanks to the analytic solvability of the Gaussian
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integration, Eq. (1) could be further simplified:

�(β, T) = �c.m.(Xc.m.) × �̂(β, T), (4)

�c.m.(Xc.m.) =
(

8

πb2

)3/4

exp

(
−4X2

c.m.

b2

)
, (5)

�̂(β, T) = 1√
140

A12[(ρ, β, T)φ̂(α1)φ̂(α2)], (6)

(ρ, β, T) =
(

2

π

)3/4 b3/2

(b2 + 2β2)3/2
exp

[
− (ρ − T)2

b2 + 2β2

]
, (7)

where ρ = X1 − X2 is the relative coordinate and Xc.m. = 1
2 (X1 + X2) is the center-of-mass (c.m.) coordinate of the α + α sys-

tem, with Xi = 1
4

∑4i
j=4i−3 r j (i = 1, 2) being the center-of-mass coordinate of the ith α cluster and φ̂(αi) is the antisymmetrized

and normalized internal wave function of the ith α cluster and is connected to the Brink wave function by

1√
4!

det

{
ϕ0s(r4i−3 + (−1)i[R/2 + T/2)]χσ4i−3τ4i−3 · · · ϕ0s(r4i + (−1)i[R/2 + T/2)]χσ4iτ4i

}
=

(
4

πb2

)3/4

exp

{
− 2

b2
[Xi+(−1)i(R/2 + T/2)]

}
φ̂(αi). (8)

The intercluster antisymmetrization operator A12 in Eq. (6) is defined as

A12 = 1 −
∑
i ∈ α1
j ∈ α2

Pi j + · · · , (9)

where Pi j exchanges the ith nucleon in α1 with the jth nucleon in α2, etc. The Brink-THSR wave function has the merit to have
the center-of-mass motion be easily separated out and captured by the normalized wave function �c.m.(Xc.m.) in Eqs. (4) and (5).

To describe physical states with the definite angular momentum and parity, we consider further the partial-wave expansion of
the Brink-THSR wave function

�(β, T) = �c.m.(Xc.m.) × 4π
∑
LM

�̂L(β, T )YLM (�ρ )Y ∗
LM (�T ), (10)

�̂L(β, T ) = 1√
140

A12L(ρ, β, T )φ̂(α1)φ̂(α2), (11)

L(ρ, β, T ) =
(

2

π

)3/4 b3/2

(b2 + 2β2)3/2
exp

(
− ρ2 + T 2

b2 + 2β2

)
iL

(
2ρT

b2 + 2β2

)
. (12)

Here iL(x) = √
π
2x IL+1/2(x), with IL+1/2(x) being the modified Bessel function of the first kind. Then the radial component of the

interior wave function �̂ int
L (E ) at the reaction energy E (in the center-of-mass frame) could be given by

�̂ int
L (E ) =

∫
dT fL(T, E )�̂L(β, T ) =

∑
n

f̃L(Tn, E )�̂L(β, Tn), (13)

with fL(T, E ) being the weight function and { f̃L(Tn, E )} being the corresponding discretized representation.

B. Bloch-Schrödinger equation

Following the R-matrix theory, the channel radius a separates the interior and exterior regions and is chosen to be so large
that the short-range nuclear interaction and the antisymmetrization could be safely neglected between the two α clusters in the
exterior region. Therefore, in the exterior region the Hamiltonian becomes

HL → H ext
L ≡ Hα1 + Hα2 + Tρ + Z2

αe2

ρ
, (14)

Tρ = h̄2

2μ

[
− 1

ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
+ L(L + 1)

ρ2

]
, (15)
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with Hα1 and Hα2 being the intrinsic Hamiltonian of the two α clusters. The radial component of the exterior wave function takes
the following form for the resonant and scattering states, respectively:

�̂ext
L (E ) = 1√

35
gext

L (ρ)φ̂(α1)φ̂(α2), (16)

gext
L (ρ) =

{
H(+)

L (η, kρ)/ρ for resonant states

[H(−)
L (η, kρ) − SL(E )H(+)

L (η, kρ)]/ρ for scattering states
, (17)

where H(∓)
L (η, kρ) are the incoming/outgoing Coulomb-Hankel functions, with k =

√
2μE
h̄ being the wave number, η =

Z2
αe2

h̄

√
μ

2E being the Coulomb-Sommerfeld parameter and μ being the two-body reduced mass. SL(E ) is the so-called

S-matrix element and is related to the phase shift δL(E ) by SL(E ) = exp[2iδL(E )]. The exterior wave function for the
resonant state in Eq. (17) needs some remarks. In this work, we follow Siegert and define the resonant states in the
framework of non-Hermitian quantum mechanics as eigenstates with purely outgoing asymptotes [63]. The eigenval-
ues of the resonant states are given by complex numbers E = E − i/2, with E being the energy and  being the
decay width.

Given the interior and exterior wave functions in Eqs. (13) and (16), the coefficients { f̃L(Tn, E )} can be determined by solving
the Bloch-Schrödinger equation [64]

[HL + L(B) − E ]� int
L = L(B)�ext

L . (18)

The Bloch operator L(B) gives an elegant implementation of the continuity condition at the channel radius and is given explicitly
by

L(B) = 35
h̄2

2μa
δ(ρ − a)

(
d

dρ
ρ − B

)
. (19)

Here the parameter B could take arbitrary values. The prefactor 35 = 8!
2×4!4! is the number of equivalent definitions of the relative

coordinate ρ. Substituting Eq. (13) into Eq. (18), we have∑
n′

[C(B, E )]nn′ f̃L(Tn′ , E ) = 〈�̂L(β, Tn)|L(B)
∣∣�̂ext

L (E )
〉
, (20)

[C(B, E )]nn′ = [�̂L(β, Tn)|HL + L(B) − E |�̂L(β, Tn′ )]. (21)

The round brackets “( )” in Eq. (21) refer to the interior matrix element, which is evaluated within the interior region only. For
the resonant states, we take

B = B∗ ≡ ka
H(+)′

L (η, ka)

H(+)
L (η, ka)

, (22)

such that the right-hand side of Eq. (20) vanishes. Here H(∓)′
L (η, ka) is the derivative of H(∓)

L (η, ka) with respect to ka. The
energy spectrum of the resonant states could then be obtained by solving the following generalized eigenvalue problem:∑

n′
[�̂L(β, Tn)|HL + L(B∗)|�̂L(β, Tn′ )] f̃L(Tn′ , E ) = E

∑
n′

(�̂L(β, Tn)|�̂L(β, Tn′ )) f̃L(Tn′ , E ). (23)

Noticeably, the parameter B∗ depends implicitly on the energy E through the definition of the wave number k. Therefore, Eq. (23)
has to be solved in a self-consistent manner, i.e., one starts with some well-guessed values of E and iterates until the numerical
results converge. For the scattering states, we take B = 0 for simplicity. With the matrix elements {[C(0, E )]nn′ }, the R- and
S-matrix elements are given by

RL = h̄2a

2μ

∑
nn′

L(a, β, Tn)[C(0, E )]−1
nn′L(a, β, Tn′ ), (24)

SL = H(−)
L (η, ka) − kaH(−)′

L (η, ka)RL

H(+)
L (η, ka) − kaH(+)′

L (η, ka)RL

. (25)

The phase shifts could be obtained from its definition. With the S-matrix element given in Eq. (25), the interior wave function
� int

L could be obtained by solving the linear equations given by Eq. (20).
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C. Interaction model and interior matrix elements

The microscopic Hamiltonian for the α + α system is given by

H = T − Tc.m. + VN + VC, (26)

T − Tc.m. = −
8∑

i=1

h̄2

2m

(
∂

∂ri

)2

+ h̄2

16m

(
∂

∂Xc.m.

)2

, (27)

VN = 1

2

8∑
i 
= j

Ng∑
k=1

Vk exp[−(ri j/ak )2]
(
wk − mkPσ

i j P
τ
i j + bkPσ

i j − hkPτ
i j

)
, (28)

VC = 1

2

8∑
i 
= j

e2

ri j

(
1

2
+ tiz

)(
1

2
+ t jz

)
, (29)

where Ng is the number of the Gaussian form factors used in the effective nucleon-nucleon central interaction, Pσ
i j and Pτ

i j are
the spin and isospin exchange operators, and the isospin z component equals tz = +1/2 for the proton and tz = −1/2 for the
neutron.

The interior matrix elements could be calculated by subtracting the exterior contributions from the whole-space matrix
elements. Explicitly, we have

(�̂L(β, Tn)|�̂L(β, Tn′ )) = 〈�̂L(β, Tn)|�̂L(β, Tn′ )〉 −
∫ ∞

a
dρ ρ2 L(ρ, β, Tn)L(ρ, β, Tn′ ), (30)

(�̂L(β, Tn)|HL|�̂L(β, Tn′ )) = 〈�̂L(β, Tn)|HL|�̂L(β, Tn′ )〉 −
∫ ∞

a
dρ ρ2 L(ρ, β, Tn)H ext

L L(ρ, β, Tn′ ), (31)

(�̂L(β, Tn)|L(B)|�̂L(β, Tn′ )) = h̄2a

2μ
L(a, β, Tn)

[
L(a, β, Tn′ ) + a

d

da
L(a, β, Tn′ )

]
− h̄2a

2μ
B L(a, β, Tn)L(a, β, Tn′ ), (32)

(
�̂L(β, Tn)|L(B)|�̂ext

L (E )
) = h̄2a

2μ
L(a, β, Tn)

[
gext

L (a) + a
d

da
gext

L (a)

]
− h̄2a

2μ
B L(a, β, Tn)gext

L (a). (33)

The whole-space matrix elements in Eqs. (30) and (31) could be evaluated by using

〈�̂L(β, T )|�̂L(β, T ′)〉 = 1

8π

∫ π

0
〈�(β, T)|�(β, T′)〉 PL(cos θ ) sin θ dθ, (34)

〈�̂L(β, T )|HL|�̂L(β, T ′)〉 = 1

8π

∫ π

0
〈�(β, T)|H |�(β, T′)〉 PL(cos θ ) sin θ dθ. (35)

Here we take the generator coordinate T to be along the z axis
and T′ to be in the xz plane, with θ being the relative angle.

III. RESULTS

In this section, we present the numerical results of our
work. For the physical constants, we take the reduced Planck
constant times the speed of light h̄c = 197.327 MeV fm,
the average nucleon mass mN = 938.918 MeV, and the fine
structure constant α = 1/137.036. For the effective nucleon-
nucleon interaction, we take the Minnesota force [45], with
the admixture parameter u taken to be u = 0.94687 [65].
The energy of the free α particle is found to be Eα =
−24.2834 MeV, with the oscillator parameter being b =
1.36 fm. The 2α threshold energy is then given by Eth =
2Eα = −48.5668 MeV.

A. Brink wave function versus Brink-THSR wave function

First, we study the low-lying states of the α + α system
with a single Brink wave function and a single Brink-THSR

wave function in the bound-state approximation. The total
energy is given by

EL(β, T ) = 〈�̂L(β, T )|HL|�̂L(β, T )〉
〈�̂L(β, T )|�̂L(β, T )〉 . (36)

Experimentally, 8Be is found to have three low-lying resonant
states, i.e., the 0+ state as the ground state with a resonant
energy Eexp

0+ = 0.0918 MeV above the 2α disintegration
threshold and a tiny decay width 

exp
0+ = 5.57 eV, the 2+ state

as the first excitation state with a resonant energy Eexp
2+ = 3.12

MeV and a large decay width 
exp
2+ = 1.513 MeV, and the 4+

state as the second excitation state with a resonant energy
Eexp

4+ = 11.44 MeV and a large decay width 
exp
4+ ≈ 3.5

MeV [41] (see also Table IV). The numerical results could
be found in Figs. 2 and 3. In Fig. 2, the energy curves of
the 0+ (red solid line), 2+ (blue dashed line), and 4+ (green
dotted line) states of the α + α system are plotted, with the
parameter β being chosen representatively to be β = 0 fm,
1 fm, 2 fm, 3 fm. For β = 0 fm, the Brink-THSR wave
function is reduced to the Brink wave function, with the
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FIG. 2. The energy curves for the 0+, 2+, and 4+ states of 8Be given by a single Brink-THSR wave function, with the parameter β being
0, 1, 2, and 3 fm. For β = 0 fm, the Brink-THSR wave function is reduced to the Brink wave function.

two α clusters being fixed at two endpoints of a “dumbbell.”
The local minima could be found for all the 0+, 2+, and 4+
states, with their energies (corresponding T values) given
by −45.6397 MeV (3.30 fm), −42.1630 MeV (3.15 fm),
and −33.2870 MeV (2.51 fm), respectively. At the first
sight, the results given by a single Brink wave function
look good. The obtained excitation energies for the 2+
and 4+ states are E2+ = 3.4767 MeV and E4+ = 12.3527
MeV, lying close to the experimental values. However, a
careful examination of these results reveals the following
shortcomings. The 2+ and 4+ states are found to sit in the
local minima protected by the Coulomb barriers. Usually,
this leads to the expectation that the 2+ and 4+ states are
long-lived resonant states with small decay widths. This
conflicts with the experimental data, which show that these
decay widths are actually quite large. Also, the ground state is
found to have a resonant energy of 2.9271 MeV above the
2α disintegration threshold, which is significantly larger than
the experimental value of 0.0918 MeV. These shortcomings
provide us with important motivations to use the single
Brink-THSR wave function with the nonzero β parameter
to improve the results. For β = 1 fm, the local minimum of
the 4+ state disappears. The local minima (the corresponding
T values) for the 0+ and 2+ states persist and are found
to be −47.2982 MeV (3.30 fm) and −43.8908 MeV (3.15
fm). For β = 2 fm, the local minima of both the 2+ and 4+
states disappear, and the local minimum (the corresponding
T value) of the 0+ state is found to be −48.0482 MeV (2.81
fm). For β = 3 fm, the local minimum (the corresponding
T value) of the 0+ state is found to be −48.1635 MeV (0
fm). One can see that, as the parameter β grows from zero,
the local minimum of the 0+ state persists and is protected

by the Coulomb barrier all along. On the contrary, the local
minima of the 2+ and 4+ states disappear successively. These
facts suggest that, the 0+ state is truly a long-lived resonant
state, while the 2+ and 4+ states are not. These are consistent
with the experimental data. Also, the energy of the 0+ state
decreases continuously as β increases from 0 to 3 fm. The
resonant energy at β = 3 fm is found to be E0+ = 0.4033
MeV, closer to the experimental value. In Fig. 3, the energy
surfaces of the 0+, 2+, and 4+ states of the α + α system are
plotted, giving us another opportunity to better understand
the situation. For the 0+ state, a local minimum is found
at (β, T ) = (3 fm, 0 fm), with the corresponding energy
being −48.1635 MeV, and the Brink-THSR wave function
is reduced to the THSR wave function. The 2+ and 4+
states display different features, and no local minima are
found on the T -β plane. This is consistent with the fact that
these two states have large decay widths and the bound-state
approximation works less well. The absence of local minima
for the 2+ and 4+ states is also found by Ref. [11], where the
deformed THSR wave function is used in the calculations.
Therefore, the local minima given by the single Brink wave
function are actually unstable in the β direction, and the α + α

system could reduce its energy further by allowing the α

clusters to move freely around the endpoints. For the 0+ state,
the two nuclear containers at the endpoints coalesce to form
a big nuclear container. For the 2+ and 4+ states, the nuclear
containers grow up endlessly with no obstructions from the
Coulomb barriers and the α clusters move apart to the infinity
in the end. Last, we would like to mention that, under the
antisymmetrization, the functional spaces of the THSR wave
function �̂L(β, 0 fm) and the Brink-THSR wave function
�̂L(β, T → 0 fm) are different. The former describes
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FIG. 3. The energy surfaces for the 0+, 2+, and 4+ states of 8Be given by a single Brink-THSR wave function. The contour labels are
the corresponding energies for the α + α system in the unit of MeV. (a) The black cross denotes the local minimum of the energy surface at
(β, T ) = (3 fm, 0 fm).

only the spherical 0+ states, while the latter describes
not only the spherical 0+ state but also the nonspherical
2+ and 4+ states with nonzero spins. Indeed, in the limit
of T → 0 fm, although 〈�̂L(β, T )|HL|�̂L(β, T )〉 and
〈�̂L(β, T )|�̂L(β, T )〉 become zero for L � 2, their quotient
EL(β, T ) = 〈�̂L(β, T )|HL|�̂L(β, T )〉 / 〈�̂L(β, T )|�̂L(β, T )〉
is finite and corresponds to the physical observable.

In this subsection, we compare the energy spectrum of
the α + α system given by a single Brink wave function
with that given by a single Brink-THSR wave function in the
bound-state approximation. It is found that, the Brink-THSR
wave function generally gives better theoretical results both
qualitatively and quantitatively, identifying correctly the non-
quasi-stability of the 2+ and 4+ states and the quasistability
of the 0+ ground state. Very recently, Refs. [66–68] suggest

the existence of many exotic quasistable α-cluster structures,
such as the fullerene-shaped α-cluster structure and the long
α chains. In these studies, a single Brink wave function
is adopted to model the system. It would be interesting to
redo the analysis with the Brink-THSR wave function, which
frees the α clusters from their fixed positions and brings
another opportunity to better understand these exotic α-cluster
structures.

B. Phase shifts of the α + α elastic scattering

Before carrying out the calculations, we should choose the
values of all the auxiliary parameters, including the channel
radius a that separates the interior and exterior regions, the
discretized generator coordinates {Tn} that locate the two
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FIG. 4. The phase shifts for the α + α elastic scattering in the
S, D, and G waves against the total energy of the α + α system
in the center-of-mass frame. The parameter β takes the values of
0, 0.5, and 1 fm. The channel radius is given by a = 7.0 fm. The
numerical results are close to each other for these three cases, and the
corresponding plots cannot be distinguished clearly. The data points
are experimental data taken from Ref. [39].

nuclear containers at different positions, and the parameter β

that determines the size of the nuclear containers. Practically,
different values of the auxiliary parameters give slightly dif-
ferent numerical results due to the limited model space and
the finite working precision. The channel radius a should be
chosen large enough but cannot be overlarge. The nuclear
interactions and the antisymmetrization effect between two
α clusters should be safely neglected in the exterior region,
while the exponentially decaying Brink-THSR bases do not
become too small at the channel radius to be superposed
within the finite copies to match the oscillating exterior wave
functions. In this subsection, we choose the channel radius
a ∼ 7.0 fm. The generator coordinates {Tn} in Eq. (13) should
also be chosen with care. If they are numerically close to
each other, then the adjacent Hamiltonian and overlap ma-
trix elements could be numerically close, which may cause
problems in solving the generalized eigenvalue problem. Also,
{Tn} cannot be chosen to be overlarge, since this will result in
almost vanishing matrix elements that may cause troubles for
the generalized eigenvalue solver as well. As a benchmark, we
take {Tn} from 0.8 fm to 8 fm in steps of 0.8 fm. The parameter
β takes three different values β = 0, 0.5, and 1 fm.

The numerical results for the phase shifts could be found
in Fig. 4 with the channel radius a = 7.0 fm. The theoretical
results given by these three β values turn out to be numerically
close to each other, and cannot be distinguished clearly in
Fig. 4. The experimental data are taken from Ref. [39] and
plotted as data points. It is straightforward to see that the
theoretical results agree well with the experimental data.
In Table I, some representative values of the phase shifts
given by β = 0, 0.5, and 1 fm are shown explicitly. For
β = 0 fm, the Brink-THSR wave function is reduced to the
Brink wave function, and our method corresponds to the
GCM + the R-matrix theory (a.k.a. the microscopic R-matrix
theory in Refs. [31–33,47,48]) and thus is mathematically
equivalent to the RGM. From Table I one can see that, the
results given by β = 0.5 and 1 fm are numerically consis-
tent with those given by β = 0 fm (i.e., GCM/RGM). To

TABLE I. The β dependence of the phase shifts with different
reaction energies and partial waves. The phase shifts are given in
the unit of degree. In this table, we take a = 7.0 fm and {Tn} =
{0.8 fm, 1.6 fm, . . . , 7.2 fm, 8.0 fm}. The case of β = 0 fm corre-
sponds to the GCM and thus is equivalent to the RGM.

E (MeV) β = 0 fm (GCM/RGM) β = 0.5 fm β = 1 fm

S-wave elastic scattering with l = 0
1 146.0603 146.1205 146.1788
5 48.3671 48.3464 48.3171
10 −4.8431 −4.5708 −4.3510
15 −36.8503 −36.7729 −36.7085

D-wave elastic scattering with l = 2
1 0.6000 0.6187 0.6379
5 112.8403 112.9675 113.1474
10 95.9473 96.0567 96.1221
15 78.9347 79.1715 79.3553

G-wave elastic scattering with l = 4
1 0.0005 0.0007 0.0015
5 1.3944 1.5326 1.9335
10 27.6251 27.6609 27.7600
15 119.7914 119.8328 119.4784

check the consistency of our formalism, we also study the
channel-radius dependence of the phase shifts. Some repre-
sentative results are given in Table II with the parameters
β = 1 fm and {Tn} = {0.8 fm, 1.6 fm, . . . , 7.2 fm, 8.0 fm}.
In the case of (a, l ) = (8.0 fm, 4), we adopt {Tn} =
{0.8 fm, 1.6 fm, . . . , 7.2 fm, 8.0 fm, 8.8 fm} to make the re-
sults convergent. For different channel radii at a =
7.0, 8.0, 9.0 fm, the partial-wave phase shifts at the same

TABLE II. The channel-radius dependence of the phase shifts
with different reaction energies and partial waves. The phase
shifts are given in the unit of degree. In this table, we
take β = 1 fm and {Tn} = {0.8 fm, 1.6 fm, . . . , 7.2 fm, 8.0 fm}, ex-
cept the case of (a, l ) = (8.0 fm, 4), where we adopt {Tn} =
{0.8 fm, 1.6 fm, . . . , 7.2 fm, 8.0 fm, 8.8 fm} to converge the results.

E (MeV) a = 7.0 fm a = 8.0 fm a = 9.0 fm

S-wave elastic scattering with l = 0
1 146.1788 146.2826 146.1025
5 48.3171 48.3982 48.3248
10 −4.3510 −4.0317 −4.0909
15 −36.7085 −36.5629 −36.7323

D-wave elastic scattering with l = 2
1 0.6379 0.6893 0.5671
5 113.1474 113.1185 113.0804
10 96.1221 96.7556 96.5777
15 79.3553 79.2905 79.0443

G-wave elastic scattering with l = 4
1 0.0015 0.0022 0.0013
5 1.9335 1.9498 1.9254
10 27.7600 27.9296 27.8978
15 119.4784 119.6904 120.0626
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FIG. 5. dδ/dE (in the unit of radian/MeV) of the α + α elastic
scattering in the D and G waves against the total energy of the α + α

system in the center-of-mass frame.

reaction energies agree with each other numerically within
few percents. This is good enough for our current purposes.

Given the numerical results on the phase shifts, one could
determine the resonant energies and decay widths of the 2+
and 4+ states in the framework of the Hermitian quantum
mechanics. The energy dependence of the phase shift is given
by

dδ

dE
≈ 2

4(E − Eres)2 + 2
, (37)

in the Breit-Wigner approximation (see, e.g., Refs. [63,69])
and is plotted in Fig. 5 for the D and G waves. Different from
Fig. 4, the phase shifts here are in the unit of radian rather
than degree. The resonant energy Eres is given by the local
maximum of dδ/dE , while the decay width is given by

 ≈ 2

/
dδ

dE

∣∣∣∣
E=Eres

. (38)

The numerical results are listed in Table IV. Unlike the 2+ and
4+ states, it is not easy to extract accurate information on the
0+ state due to its small resonant energy and tiny decay width.

C. Low-lying resonant states of 8Be

Section III A shows that the realistic asymptotic forms
of the resonant states play a significant role in studying
the 2+ and 4+ states, which have large decay widths and
cannot be treated consistently in the bound-state approxima-
tion. In Sec. III B, the resonant energies and decay widths
are obtained from the phase-shift data for the 2+ and 4+
states. In this subsection, we use the formalism developed
in Sec. II to calculate the energy spectrum of 8Be self-
consistently from Eq. (23), without referring to the α + α

elastic scattering process. Some representative iteration pro-
cesses could be found in Table III, where we take β = 1 fm,
a = 7.0 fm. The generator coordinates are given by {Tn} =
{0.1 fm, 1.5 fm, . . . , 7.1 fm, 8.5 fm} for the 0+ state, {Tn} =
{0.1 fm, 1.667 fm, . . . , 6.333 fm, 7.5 fm} for the 2+ state, and
{Tn} = {0.1 fm, 2.2 fm, . . . , 6.4 fm, 8.5 fm} for the 4+ state.
Typically, after iterations for 12–20 times, the complex en-
ergies get convergent to required precisions. We also try
other parameter sets for the auxiliary parameters (a, β, {Tn}).
The complex energies are numerically close to each other
but the idealized exact agreement cannot be achieved due
to the limited model space and finite working precision. In
the bound-state calculations, the parameter set giving the
lowest energy would be favored by the variational principle.
For the resonant-state calculations, no such selection rules
are available. There are indeed the complex analog of the
variational principle in literature, but it is a stationary principle
and cannot be used to put any upper or lower bound on
the resonant energy and the decay width [63]. Therefore,
instead of sticking to a particular parameter set, we have done
the calculations using many of them. The resonant energies
and decay widths are all plotted in Fig. 6. The spread of
the numerical results provides a preliminary estimation of
the numerical uncertainties of our calculations. The final
results for the resonant energies and decay widths are listed
in Table IV, along with their numerical uncertainties. Good
agreement is achieved between the theoretical results and the
experimental data. Moreover, we calculate the resonant en-
ergy of the 0+ state by using the standard GCM in the bound-
state approximation. Thanks to its narrow decay width, the

TABLE III. Iteration solutions of the Bloch-Schrödinger equation for the low-lying resonant states of 8Be. The complex ener-
gies are given in the unit of MeV. In this table, we take β = 1 fm, a = 7.0 fm. The generator coordinates are given by {Tn} =
{0.1 fm, 1.5 fm, . . . , 7.1 fm, 8.5 fm} for the 0+ state, {Tn} = {0.1 fm, 1.667 fm, . . . , 6.333 fm, 7.5 fm} for the 2+ state, and {Tn} =
{0.1 fm, 2.2 fm, . . . , 6.4 fm, 8.5 fm} for the 4+ state.

Iterations L = 0 L = 2 L = 4

1 0.1 3 20–2.5i
2 0.09622–8.1197 × 10−6i 2.9692–0.5601i 11.6042–1.1359i
3 0.09700–4.1253 × 10−6i 2.8748–0.6641i 11.3162–2.2401i
· · · · · · · · · · · ·
12 0.09687–5.0984 × 10−6i 2.8190–0.6636i 11.8490–2.2588i
13 0.09687–5.0984 × 10−6i 2.8190–0.6636i 11.8460–2.2579i
14 · · · · · · 11.8459–2.2599i
· · · · · · · · · · · ·
20 · · · · · · 11.8466–2.2594i
21 · · · · · · 11.8466–2.2594i
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TABLE IV. Resonant energies and decay widths for the low-lying resonances of 8Be. The experimental data are taken from Ref. [41].
The theoretical values I are given by the phase-shift calculations. The theoretical values II are given by the self-consistent Bloch-Schrödinger
equations.

Experimental values Theoretical values I Theoretical values II

L E (MeV)  (MeV) E (MeV)  (MeV) E (MeV)  (MeV)

0 0.0918 5.57×10−6 – – 0.0965 ± 0.0005 (9.8 ± 0.4) × 10−6

2 3.12 1.513 2.82 1.46 2.83 ± 0.01 1.33 ± 0.01
4 11.44 3.5 11.73 4.44 11.8 ± 0.3 4.4 ± 0.3

bound-state approximation should be applicable. With {Tn} =
{0.1 fm, 0.845 fm, . . . , 14.255 fm, 15 fm}, the resonant en-
ergy is E0+ = 0.1034 MeV, quite close to the value given
in Table IV. This could be viewed as another check of the
correctness of our calculations. In Sec. III A, the single THSR
wave function with β = 3 fm is favored energetically by
minimizing the total energy in Eq. (36). References [11,12]
show that, in the bound-state approximation the GCM wave
function could be well approximated by the single THSR
wave function. Given the closeness of the resonant energy
from our method and the GCM and the narrowness of the
decay width of the 0+ state, it is reasonable to believe that the
real part of the interior wave function from our method shares
the same characteristics. We do an explicit calculation by tak-
ing β = 0 fm for simplicity, where our method is reduced to
the GCM + the R-matrix theory. We take a = 7 fm and {Tn} =
{0.1 fm, 0.9778 fm, . . . , 7.1222 fm, 8 fm}. The resonant en-
ergy is given by E0+ = 0.0963 MeV, while the decay width
is given by 0+ = 9.6 eV. It is found that the squared overlap
between the interior wave function and the single THSR wave

function with β = 3 fm is about 0.99, which means that the
interior wave function of the 0+ resonant state is indeed well
described by a single THSR wave function, even after taking
the realistic boundary condition into consideration.

IV. CONCLUSIONS

Recent years witness the proposal and the development
of the nonlocalized cluster model. It provides a new under-
standing of the nuclear cluster effects based on the picture
of nonlocalized clustering and has been applied to study
structural properties of cluster states in various light nuclear
systems. In this work, the nonlocalized cluster model is gen-
eralized from bound and quasibound states to resonant and
scattering states, with the α + α system taken as an example
to test the formalism. Following the R-matrix theory, the full
configuration space is divided into the interior and exterior
regions by a channel radius, which has to be chosen properly
to make the nuclear interactions and the antisymmetrization
effects vanish between different clusters in the exterior region.
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FIG. 6. Resonant energies and decay widths for the low-lying resonances of 8Be from different sets of auxiliary parameters. The data
points are the theoretical results. The pink rectangles are the minimal axis-aligned rectangles containing all the data points.
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In the interior region, the Brink-THSR wave functions, the
hybrid trial wave functions that combine features of both
the Brink and THSR wave functions, are adopted to realize
mathematically the picture of nonlocalized clustering. They
are superposed to give the full interior wave functions. The
Bloch-Schrödinger equation is adopted to match the interior
wave functions with the exterior ones given by either the
purely outgoing Coulomb-Hankel functions for the resonant
states or some combinations of the incoming and outgoing
Coulomb-Hankel functions for the scattering states. The sin-
gle Brink-THSR wave function is adopted to study the low-
lying states of 8Be. Compared with the single Brink wave
function, the Brink-THSR wave function correctly identifies
the non-quasi-stability of the 2+ and 4+ states and gives the
better result on the resonant energy for the 0+ state. The phase
shifts of the α + α elastic scattering and the properties of the
low-lying resonances of 8Be are studied by solving the Bloch-
Schrödinger equations with different exterior wave functions.
The phase shifts are found to agree well with the experimental
data. The Bloch-Schrödinger equations for the resonant states
are solved self-consistently, and the theoretical values are
consistent with those given by the phase-shift calculations, as
well as the experimental data.

The study here could be generalized in several directions.
First, it is physically important to continue improving the
microscopic studies on the α + α elastic scattering. Although
the phase shifts given by the present work look good, the
description of the 2α disintegration threshold needs to be
improved. It is shown in Refs. [70,71] that, the exact binding
energy of 4He given by the Minnesota force should be around
30 MeV. Therefore, the exact 2α disintegration threshold
should be around −60 MeV, which is much smaller than the
value of −48.5668 MeV given by the cluster model. One
possible way to improve this situations could be combining
our theoretical framework with the antisymmetrized molecu-
lar dynamics [72,73] + real-time evolution method [74,75].
The work in this direction is currently under preparation and
may be discussed in future publications. It is also interesting

to extend the analysis here to heavier nuclei such as 12C, 16O,
and 20Ne. It is particularly interesting to study the resonant
and reaction properties of the Hoyle and high-lying Hoyle-like
states [1–6,76–80] with explicit treatments of the asymptotic
boundary conditions. Recently, Refs. [81–84] suggest that
α-cluster structures could be important in understanding some
fusion reactions of light nuclei. A combination of our for-
malism with an imaginary optical potential may also allow
microscopic studies of these processes [85]. Extending the
analysis to the up-right corner of the nuclide chart could be
another working direction, where the medium-mass and heavy
nuclei such as 104Te and 212Po are known to have rich cluster
structures [86–90]. Recently, inspired by the nonlocalized
cluster model, the quartetting wave function approach and the
quartet model [91–97] are proposed to study α clustering in
heavy nuclei such as 212Po. It is tempted to study the nuclear
reactions of medium-mass and heavy nuclei in a similar
approach [98–100].
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