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The possibility of the 14C cluster being a basic building block of medium-mass nuclei is discussed. Although α

cluster structures have been widely discussed in the light N ≈ Z mass region, the neutron-to-proton ratio deviates
from unity in the nuclei near β-stability line and in neutron-rich nuclei. Thus, more neutron-rich objects with
N > Z could become the building blocks of cluster structures in such nuclei. The 14C nucleus is strongly bound
and can be regarded as such a candidate. In addition, the path to the lowest shell-model configuration at short
relative distances is closed for the 14C + 14C structure, contrary to the case of the 12C + 12C structure; this allows
an appreciable separation distance between the 14C clusters. The recent development of the antisymmetrized
quasicluster model (AQCM) allows us to utilize a j j-coupling shell-model wave function for each cluster in a
simplified way. The AQCM results for the 14C + 14C structure in 28Mg are compared with the ones of cranked
relativistic mean field (CRMF) calculations. Although theoretical frameworks of these two models are quite
different, they give similar results for the nucleonic densities and rotational properties of the structure under
investigation. The existence of a linear chain three- 14C cluster structure in 42Ar has also been predicted in
AQCM. These results confirm the role of the 14C cluster as a possible building block of cluster structures in
medium-mass nuclei.
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I. INTRODUCTION

The α cluster structures have been extensively studied
over the years [1,2]. Since the binding energy per nucleon
is extremely large in 4He, it can be a building block of
the nuclear systems, called an α cluster. Also, the relative
interaction between α clusters is weak, which is another
condition for the appearance of cluster structures. For exam-
ple, 8Be is not bound but its ground state has a developed
α + α cluster structure. The candidates for α cluster states
have been widely discussed in other light 4N (N is integer
here) nuclei [3]. This is illustrated by a few examples below.
The second 0+ state of 12C at Ex = 7.65 MeV, located just
above the threshold energy to the decay into three α’s, has a
developed three-α cluster structure and plays a crucial role in
the formation of 12C in stars [4]. In 16O, the first excited state
at Ex = 6.05 MeV, located very close to the threshold of the
decay into 12C and 4He, can be interpreted as a 12C + 4He
cluster state. It has been known as the mysterious 0+ state; the
reproduction of this state based on the standard picture (shell-
model approaches) is still a big challenge. Various cluster
structures have been proposed also in 20Ne, 24Mg, 44Ti, etc.
[1–3].

The description of such cluster structures has been at-
tempted in simple cluster models. However, it is well known
that noncentral nuclear interactions are very important in
nuclear systems and their effects cannot be taken into account
in simple α cluster models. With increasing mass number,
the symmetry of the j j-coupling shell model dominates the

nuclear structure, and subclosure configurations of j shells,
f7/2, g9/2, and h11/2, become important, corresponding to the
magic numbers of 28, 50, and 126 [5]. Indeed the observation
of these magic numbers is the evidence that the spin-orbit in-
teraction strongly contributes in the medium- and heavy-mass
regions, and this interaction is known to play a substantial role
in breaking the α clusters [6].

Therefore, it is natural to think about a different object as a
cluster in the study of medium-mass nuclei. Here one should
also consider that neutron-to-proton ratio of stable nuclei
deviates from unity with increasing mass number. Thus, there
is the possibility that a more neutron-rich object could be a
building block of cluster structures. In this study, we discuss
the possibility that the 14C nucleus could be a cluster. This
can be justified by the following arguments.

First of all, 14C is strongly bound. This is because the
proton number 6 corresponds to the subclosure of the p3/2

subshell of the j j-coupling shell model, and the neutron
number 8 is the magic number corresponding to the closure
of the p shell. Although 14C has two valence neutrons, the
lowest threshold to emit particles is the neutron threshold at
Ex = 8.18 MeV, which is a high enough value. In addition,
because of strong shell effects, there is no excited state below
Ex = 6 MeV just like in 16O. The β decay of free 14C
is very slow, reflecting the stability of this nucleus. Thus,
14C is a famous nucleus used for age determination [7].
The second argument is the following: although the single
14C nucleus is β-unstable, the line connecting the origin
of the nuclear landscape and the point of 6 protons and 8
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neutrons (corresponding to 14C) on the nuclear chart, which
has N/Z ≈ 1.3, extrapolates into β-stability line above Z ≈
40. The third argument is that it is well known that 14C is
emitted from some of heavy nuclei (such as 221–224,226Ra,
223,225Ac, and 221Fr; see Ref. [8]) in the process called cluster
decay [9]. In reality, there is much more experimental data
for the 14C emission as compared with the emission of 12C
in medium- and heavy-mass nuclei, and neutron richness of
14C can be important for that. These experimental data also
strongly suggest that 14C can be a building block of cluster
structures in heavy nuclei. The fourth argument is that the
candidates for the 14C cluster structures have already been
discussed in the oxygen isotopes [10–13]. The first excited
state of 16O is known as mysterious state, the interpretation of
which involves the 12C +α cluster structure [14]. In a similar
fashion, the interpretation of some of the states in the 18O
and 19O nuclei is based on possible 14C +α cluster structure
[10–13]. Finally, contrary to the case of the 12C + 12C cluster
structure, the path to the lowest shell-model configuration
is closed at short relative distances in the 14C + 14C cluster
structure. This factor leads to appreciable distance between
the 14C clusters and it is a subject of the present study.

In this article, the appearance of 14C cluster structures
is investigated within the framework of two theoretical ap-
proaches. One of them is the antisymmetrized quasicluster
model (AQCM) [15] and another is covariant density func-
tional theory (CDFT) [16]. The details of these two ap-
proaches are discussed and their applicabilities to the study of
clusters states are exemplified in Secs. II and III, respectively.
By definition, the cluster states appear in the cluster models
and AQCM is one of their representatives. However, to prove
the possibility of the existence of such a state, it is important
to show the possibility of its appearance also in a more
general framework capable of including both shell-model and
cluster states simultaneously. The CDFT framework is used
here as such an alternative. Note that at present relativistic
(covariant) and nonrelativistic DFT approaches are the only
approaches capable of describing physical phenomena across
the whole nuclear chart. The clustering is not assumed in the
DFT approaches. However, the appearance of cluster states in
the DFT approaches, which are similar in properties to those
obtained in cluster models, gives an additional confidence in
the possibility of the existence of such exotic states.

There are also additional factors which call for a compara-
tive and complementary study based on two different theoret-
ical frameworks. First, both types of approaches still rely on
some phenomenological input. As a result, it is important to
outline the possible range of predictions. Second, extremely
limited spectroscopic experimental data on clusterization in
the A > 20 nuclei does not allow discriminating existing
differences in the predictions of the properties of cluster states
obtained with cluster and DFT type models (see Ref. [17]). As
a consequence, it is difficult to give quantifiable preference for
the predictions of one or another model.

This paper is organized as follows. The 14C + 14C cluster
structure of 28Mg is investigated by the AQCM and cranked
relativistic mean field (CRMF) approaches in Secs. II and III,
respectively. In Sec. IV, the possibility of the linear chain
configuration of three 14C clusters in 42Ar is studied for the

first time. The structure of the 14C nucleus and of the ground
state of 28Mg are discussed within AQCM in Secs. V and VI,
respectively. The conclusions are presented in Sec. VII.

II. THE 14C + 14C CLUSTER STRUCTURE IN 28Mg
WITHIN THE ANTISYMMETRIZED

QUASICLUSTER MODEL

We start our analysis from the consideration of the 14C
cluster structures in 28Mg within the framework of the an-
tisymmetrized quasicluster model. The protons of 14C corre-
spond to the subclosure of p3/2 in the j j-coupling shell model.
The j j-coupling shell-model wave functions can be easily
prepared starting from the cluster model. Indeed, the AQCM
proposed in Refs. [15,18–27] allows smooth transformation
of the α cluster model wave functions to the j j-coupling
shell-model ones and the incorporation of the effects of the
spin-orbit interaction. A reliable nucleon-nucleon interaction,
which includes both the cluster and shell features in light-
and medium-mass nuclei, is inevitably needed. The Tohsaki
interaction, which has finite range three-body terms [15,27–
29], is employed here. Although this is a phenomenological
interaction, it provides a reasonable size and binding energy
for the α cluster and reproduces α + α scattering phase shifts.
In addition, it describes the saturation properties of nuclear
matter rather well.

In AQCM, each single-particle wave function is described
by a Gaussian,

φ =
(

2ν

π

) 3
4

exp[−ν(r − ζ)2]χ, (1)

where the Gaussian center parameter ζ shows the expectation
value of the position of the particle, and χ is the spin-isospin
wave function. The size parameter ν is set to 0.17 fm−2 for
28Mg (two 14C) and 42Ar (three 14C). This is the parameter
which determines the Gaussian width of the single-particle
wave function. It is known that the value of ν ≈ 0.25 fm−2

gives the observed radius of 4He, and, in addition, the em-
ployed interaction is designed to give the optimal energy of
the α cluster with this value. However, it is also known that the
optimal size parameter changes with increasing mass number.
Note that such a situation is common in the shell-model
analyses and that ν of AQCM is directly related to h̄ω of
the shell model. Since the saturation density of the medium-
and heavy-mass nuclear systems differs significantly from the
central density of the 4He nucleus (see Fig. 2.4 in Ref. [30]),
the ν value should be mass dependent and chosen properly.
The main focus of the present article is the 28Mg nucleus; thus
we use ν = 0.17 fm−2 which provides a reasonable central
density for this nucleus.

The Slater determinant in the conventional Brink model
[1] is constructed from these single-particle wave functions
by antisymmetrizing them. Here, four single-particle wave
functions with different spin and isospin sharing a common
Gaussian center parameter ζ correspond to an α cluster. In
the conventional cluster models, there is no spin-orbit effect
for the α clusters. Thus, they are changed into quasiclusters
based on AQCM [15,18–26]. According to AQCM, when the
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original position of one of the particles (the value of Gaussian
center parameter) is R, the Gaussian center parameter of this
nucleon is transformed by adding the imaginary part as

ζ = R + i	espin × R, (2)

where espin is a unit vector for the intrinsic-spin orientation of
this nucleon. It has been shown that the lowest configurations
of the j j-coupling shell model can be achieved by 	 = 1 and
R → 0 for all the nucleons [23].

For the description of 14C, at first, dinucleon clusters
are prepared; in each dinucleon cluster, two nucleons with
opposite spin and same isospin are sharing common Gaus-
sian center parameters. Four dinucleon clusters with a tetra-
hedron configuration (the distance between two dineutron
clusters is parametrized as R) and small relative distances
(R → 0) correspond to the closure of the p shell, which
is introduced for the neutron part. In the calculations, R
is set to 0.1 fm. For the proton part, three diproton clus-
ters with equilateral triangular configuration and small dis-
tance between them are introduced, and the imaginary parts
of the Gaussian center parameters are given as 	 = 1 in
Eq. (2), which correspond to the subclosure of the p3/2

shell [15,22].
For the analysis based on AQCM, the Hamiltonian con-

sists of kinetic energy and potential energy terms, and the
potential energy has central, spin-orbit, and Coulomb parts.
For the central part, the Tohsaki interaction [28] is adopted,
which has finite range three-body nucleon-nucleon interac-
tion terms in addition to two-body terms. This interaction is
designed to reproduce both saturation properties and scatter-
ing phase shifts of two α clusters. For the spin-orbit part,
the spin-orbit term of the G3RS interaction [31], which
is a realistic interaction originally developed to reproduce
the nucleon-nucleon scattering phase shifts, is adopted. The
combination of these two has been investigated in detail
in Refs. [26,27].

We start the discussion with the comparison of the
12C + 12C and 14C + 14C systems. The energy curves of the
0+ states of these two systems are shown in Fig. 1. It is con-
firmed that in the case of the 12C + 12C system (dotted line),
the optimal distance is rather small, around 2 fm. According
to the j j-coupling shell model, the small distance limit of two
12C corresponds to the lowest configuration of 24Mg. This
means that the path going to the ground state after fusion is
opened for the 12C + 12C system. This situation is different
in the case of 14C + 14C system (solid line). The small
distance limit of two 14C does not correspond to the lowest
j j-coupling shell-model wave function of 28Mg. As a result,
the minimum energy appears around the relative distance of
approximately 3.5 fm. This result suggests the possibility that
14C clusters keep the relative distance, which is much larger
than in the case of the 12C + 12C system, and form a cluster
structure. The dashed line is for the energy of the 16O + 16O
system, and again the path going to the ground state is closed.
In this case, in addition to this closed path effect, the large
Coulomb repulsion acts in favor of the appearance of well
developed cluster structure (the optimal relative distance of
which is around 5 fm). The 16O + 16O structure of 32S has
been discussed for years [32], but it has been known that the
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FIG. 1. The 0+ energy curves of 12C + 12C ( 24Mg, dotted line)
and 14C + 14C ( 28Mg, solid line). The dashed curve corresponds to
the 0+ energy curve of 16O + 16O ( 32S).

16O + 16O cluster component corresponds to highly excited
states above the Coulomb barrier [33]. The possibility of the
existence of highly excited superdeformed bands in 32S based
on the 16O + 16O structure has also been discussed in density
functional theories [34–36]. In the case of 14C + 14C system,
the state appears around the threshold because of smaller
Coulomb repulsion.

One can see that the 14C + 14C configuration does not
have the path to the ground state configuration of 28Mg by
calculating the principal quantum number n of the harmonic
oscillator. The expectation values of the proton and neutron
n for the 0+ state of the 14C + 14C configuration ( 28Mg) are
shown in Fig. 2 as a function of relative distance. The proton
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FIG. 2. The expectation value of the principal quantum number
n of the harmonic oscillator for the 0+ state of the 14C + 14C
configuration in 28Mg as a function of relative distance. The solid
(red) line is for the neutrons, whereas the dashed line (blue) is for the
protons.
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n value converges to 14 at small distance between the two
14C clusters. This is the lowest principal quantum number
for 12 protons. Thus, the path to the lowest shell-model
configuration (two protons are in the lowest s shell, six protons
in the p shell, and four protons in the sd shell) is open for
the proton subsystem. As compared with proton subsystem,
there are four additional neutrons in the neutron subsystem
of 28Mg. As a consequence, the lowest principal quantum
number increases to 22 because four additional neutrons are
located in the sd shell (4 × 2 = 8). However, the solid line in
Fig. 2 converges to 24 at small distance between the two 14C
clusters. This means that the 14C + 14C configuration in 28Mg
is located at two h̄ω excitation energy with respect of the
lowest shell-model configuration in this nucleus. This feature
appears also in the CRMF calculations (see next section).
Note that a situation similar to that discussed above exists also
in the proton and neutron subsystems of the 12C + 12C cluster
structure of 24Mg.

III. THE 28Mg NUCLEUS WITHIN THE CRANKING
RELATIVISTIC MEAN FIELD APPROACH

An alternative way to look at clustering in nuclei is through
the prism of density functional theories (DFTs). Both rel-
ativistic and nonrelativistic DFTs have been applied to the
investigation of this phenomenon in nuclei (see Refs. [36,37]
and references quoted therein). The advantage of the DFT
framework is the fact that it does not assume the existence
of cluster structures; the formation of cluster structures pro-
ceeds from microscopic single-nucleon degrees of freedom
via many-body correlations [37–40]. As a result, the DFT
framework allows the simultaneous treatment of cluster and
mean-field-type states.

The covariant (relativistic) DFT (CDFT) framework is
employed in the present article. In the CDFT approach the
nucleus is described as a system of pointlike nucleons, which
are Dirac spinors, coupled to mesons and to the photons (see
Ref. [16]). The nucleons interact by the exchange of several
mesons, namely, a scalar meson σ and three vector particles:
ω, ρ, and the photon. The CDFT approach provides a reason-
ably accurate global description of the ground states’ prop-
erties [41]; in particular, their experimental charge radii, sen-
sitive to the density distributions of occupied single-particle
orbitals, are described with precision better than 0.5% [42].
Also experimentally observed superdeformed (SD) structures,
characterized by highly elongated shapes, are described with
high accuracy across the nuclear chart starting from the SD
band in 40Ca [43] and ending in extensive regions of superde-
formation with A ≈ 150 [44] and A ≈ 190 [45]. Different
aspects of clusterization at low spins have been studied in the
CDFT framework in Refs. [37,39,46–50]. The clusterization
effects have also been studied in rotating nuclei. For example,
“rod-shaped” structures built of three and four α clusters have
been investigated within the cranked relativistic mean field
theory (CRMF) (which is the version of CDFT for rotating
nuclei; see Ref. [16]) in 12C [51] and 16O [52], respectively.
The clusterization features in some configurations of rotating
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FIG. 3. Excitation energies of calculated CRMF configurations
in 28Mg relative to a rotating liquid drop reference AI (I + 1), with
the inertia parameter A = 0.062. The inset shows the moments of
inertia of the 14C + 14C cluster structure as a function of the spin.

higher mass nuclei have been investigated in the CRMF
approach in Refs. [36,40].1

This is a reason why the cranked relativistic mean field
(CRMF) approach is also used in the present paper for the
study of clusterization in 28Mg. The CRMF calculations are
performed with the NL3* covariant energy density functional
(CEDF) [56].

Figure 3 shows calculated energies of the lowest configu-
rations in 28Mg. The configurations are labeled by shorthand
[p, n] labels where p (n) is the number of occupied N = 3
proton (neutron) intruder orbitals (here N is the principal
quantum number). The ground state band [0,0] has no such
orbitals occupied and it has quadrupole deformation of β2 =
0.34 at spin I = 0. As discussed in Ref. [36], such a normal
deformed band has limited angular momentum content and
it terminates in a purely single-particle state at I = 8. Sub-
sequent particle-hole excitations lead to rotational bands with
structure [0, 1], [0, 2], [1, 2], [2, 2], . . . , which have larger an-
gular momentum content (see Fig. 3) and larger deformation.
Neutron densities of selected states of these rotational bands
are shown in Fig. 4.

Of particular interest is the [0,2] configuration and espe-
cially its relative properties with respect of the ground state
[0,0] configuration. This is because the transition from the

1The clusterization effects in some configurations of rotating nuclei
have also been investigated in nonrelativistic DFTs based on Skyrme
functionals. For example, “rod-shaped” structures built on multiple
α clusters have been studied in cranked Skyrme HF approaches in
even-even N = Z nuclei from 12C up to 32S in Refs. [53–55]. In
addition, the investigation of other types of clusterization in heavier
nuclei was carried out in this framework in Ref. [35]. The similarity
of many results obtained in the relativistic and nonrelativistic DFTs
to those obtained in cluster type models clearly indicates the appli-
cability of the DFT approaches to the description of clusterization
phenomena.
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FIG. 4. Neutron density distributions of the configurations of
interest. Panels (a), (b), and (d) show the densities of the [0,2] and
[1,2] configurations obtained in the CRMF calculations, while panel
(c) shows the densities of the 14C + 14C structure obtained in the
AQCM calculations. The density color map starts at ρ = 0.005 fm−3

and shows the densities in fm−3.

[0,0] configuration to the [0,2] configuration involves the exci-
tation of two neutrons between two major shells with principal
quantum numbers N = 2 and N = 3, while the protons are
not affected by this type of excitations. This is equivalent to
the situation in the AQCM calculations (see Sec. II) in which
the 14C + 14C cluster structure in 28Mg is located at two
h̄ω excitation energy (generated in neutron subsystem) with
respect to the lowest shell-model configuration. The density
distribution of the [0,2] configuration at spin I = 0 [Fig. 4(a)]
corresponds to the 14C + 14C cluster structure and it is similar
(especially in high-density region) to the one obtained in
the AQCM calculations [Fig. 4(c)]. In both calculations, the
14C + 14C distance is approximately equal to 4 fm.

Note that the attribution of the [0,2] configuration to the
14C + 14C cluster structure is based not only on the above
mentioned arguments but also on relative properties of clus-
ter structures in the 28Mg, 28Si, and 32S nuclei (see the
discussion in the end of this section) related to the impact
of the occupation of specific single-particle orbitals on the
clusterization phenomomen (see Refs. [40,50]). In addition,
one can define respective CRMF configuration by excluding
the configurations which do not satisfy required conditions.
For example, the [0,1] and [1,2] configurations have negative
parity and represent the groups of four rotational bands with
either nonexistent or small signature splittings. Two of these
bands in the group have odd spins. These features indicate the
active role of two particles located in different single-particle
orbitals and they are inconsistent with the 14C + 14C cluster
structure. Only the [0,0], [0,2], and [2,2] configurations are
represented by a single band of positive parity and even
spins. However, the lowest energy [0,0] configuration does

not have sufficient deformation to form a cluster structure.
The highly excited [2,2] configuration involves the excitation
(with respect of the [0,0] configuration) of two neutrons and
two protons between two major shells with principal quantum
numbers N = 2 and N = 3. Thus, it is not consistent with the
AQCM results.

Note that 14C + 14C cluster structure behaves differently
as a function of the spin in the CRMF and AQCM calcula-
tions. This is illustrated in the inset of Fig. 3 which shows
the moments of inertia of the 14C + 14C cluster structure
as a function of the spin. In the CRMF calculations, the
moment of inertia is gradually decreasing with spin. This is
due to two factors: the decrease of quadrupole deformation
and washing out of clusterization with increasing spin which
is generally observed in DFTs calculations (see Refs. [36,40]).
The comparison of the densities at spins I = 0 and 16 illus-
trates the latter feature [see Figs. 4(a) and 4(b)]. In contrast,
the moments of inertia are somewhat smaller in the AQCM
calculations and they stay almost constant up to I = 8. Note
that in AQCM it is assumed that cluster structure persists even
at highest calculated spins. In light of the distinct predictions
of these two models, the experimental observation of the
superdeformed band built on the 14C + 14C structure would
be extremely useful for clarification of existing differences
in the description of clusterization in the DFT and cluster-
originating models.

Note that in the CRMF calculations the [0,2] configuration,
representing the 14C + 14C cluster structure, plays a role of
a basic building block of more elongated cluster structures
with the [1,2] configurations, which are created by means
of particle-hole excitations. At spin zero, the total (proton
+ neutron) quadrupole deformations of the [0,2] and [1,2]
configurations are 0.81 and 0.89, respectively. The density of
the [1,2] configuration is shown in Fig. 4(d). The differences
in the density distributions of the [0,2] and [1,2] configu-
rations are due to proton particle-hole excitation from the
3/2[211] orbital into the 1/2[330] one. These orbitals have
different spatial distributions of the single-particle density
(see Refs. [40,50] for details) and thus such a particle-hole
excitation moves density from the middle part of the nu-
cleus to the polar region leading to a more elongated shape
[compare Fig. 4(d) with Fig. 4(a)]. Note that there are two
[1,2] configurations which are signature degenerate up to
I ≈ 10 because of the degeneracies of the 3/2[211] (r = ±i)
orbitals. Subsequent particle-hole excitations, leading to the
[2,2] configuration with quadrupole deformations of 1.13 at
spin zero, partially suppress 14C + 14C cluster structure and
form an ellipsoidal-like density distribution.

To shed additional light on these predictions and their
differences it is important to compare cluster and mean field
model predictions in neighboring nuclei. Fortunately, there
are two nuclei, namely, 32S and 28Si, for which such extens-
ive comparisons are possible. The most interesting is the
case of superdeformed states in the 28Si nucleus for which
some experimental data are available [57]. Based on the
comparison of experimental and calculated moments of inertia
presented in Ref. [58], the observed 4+ and 6+ superde-
formed states in this nucleus are most likely associated with
the [2,2] configuration. The calculated kinematic moment of
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inertia of this configuration is J (1) ≈ 6.68 h̄2/MeV, which is
nearly constant for large spin range, is only slightly above
the experimental one (J (1) ≈ 6 h̄2/MeV [57]). The density
distribution of the [2,2] configuration clearly shows the clus-
terization into two equal segments (see Fig. 2c in Ref. [58]).
The [2,2] configuration in 28Si is closely connected with the
[0,2] configuration in 28Mg; it is built from the latter one
by an addition of two protons (into the 1/2[330] orbital)
and removal of two neutrons (from the 3/2[211] orbital) (see
Fig. 2 in Ref. [40] for a representative single-particle Routhian
diagram). Thus, the [2,2] configuration in 28Si can be con-
sidered as the (14C +π − ν) ⊗ (14C +π − ν) cluster structure.
Note that there are large similarities between the predictions
of the properties of oblate, prolate, and superdeformed bands
obtained in the CRMF calculations [58] and those within
the antisymmetrized molecular dynamics (AMD) model of
Ref. [59]. In particular, the CRMF and AMD results for
excitations energies and moments of inertia of superdeformed
band in this nucleus are close to each other and they are not
far away from experimental data of Ref. [57]. The calculated
density distributions of the configurations assigned to this
band are similar in shape in these two approaches; however,
the CRMF calculations predict larger degree of clusterization
as compared with the AMD ones (compare Fig. 2c in Ref. [58]
with Fig. 2(c) in Ref. [59]).

Another interesting case is the superdeformed rotational
band in 32S which has been the subject of many studies in the
cluster and mean field approaches. The wave function of this
superdeformed band contains a significant admixture of the
molecular 16O + 16O structure [33,35] but its weight depends
on the model. For example, its weight is 57% in deformed-
basis AMD calculations of Ref. [33] but it is smaller (≈30%)
in the calculations of Ref. [35]. In the CRMF calculations, it
has the [2,2] configuration (see Ref. [36]) which is built from
the [2,2] configuration of 28Si by an addition of two protons
and two neutrons into nonintruder 1/2[211] orbitals (see the
right panel of Fig. 2 in Ref. [40] for a single-particle Routhian
diagram). Note that there are large similarities between single-
particle spectra of superdeformed configurations obtained in
the CRMF and AMD+GCM calculations (compare the right
panel of Fig. 2 of Ref. [40] with Figs. 3 and 4 of Ref. [60]).
The density distribution of the [2,2] configuration is presented
in Fig. 5. One can see that it is built from two clusters sep-
arated by approximately 3.5 fm. Note that this clusterization
becomes more pronounced at low spin. A peculiar feature of
each cluster is the depression of the density in its central re-
gion which allows attributing each of them to a somewhat de-
formed 16O nucleus. This is because such a depression is also
present in the ground state of the spherical 16O nucleus both
in experiment and in theory (see experimental data in Fig. 3
of Ref. [61] and the results of the CDFT calculations in Fig. 1
of Ref. [62]). All these features suggest significant admixture
of the molecular 16O + 16O structure to the wave function of
the [2,2] configuration obtained in the CRMF calculations.

IV. LINEAR CHAIN STRUCTURE 14C + 14C + 14C IN 42Ar

Next, we consider the case of linear chain structure of three
14C clusters ( 14C + 14C + 14C) in 42Ar. The energy curves

 [2,2]
I=12 32S
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FIG. 5. Neutron density distributions of the [2,2] configuration
in 32S obtained in the CRMF calculations at spin I = 12.

for such a structure are shown in Fig. 6 as a function of
the 14C + 14C distance. The AQCM solutions for the states
with angular momentum ranging from I = 0 up to I = 8 are
shown in this figure. Similar to the case of cluster 14C + 14C
structure in 28Mg, the minima of the energy curves are ob-
tained around the threshold energy with the relative distance
of the 14C clusters being approximately equal to ≈4 fm.
The moment of inertia of the calculated rotational band is
15.59 MeV−1. We propose investigating the stability of the
linear chain state against the bending motion. Even if it is
not stable against the bending motion at spin zero, there is
a possibility that it becomes stabilized when large angular
momentum is given to the system. This is because it is well
known that rotation can stabilize elongated shapes owing to
the centrifugal force [52–54].

2 543
−20
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20
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)

FIG. 6. The energy curves for the linear chain of three 14C
clusters (42Ar) measured from the three- 14C threshold as a function
of the 14C- 14C distance. The angular momentum is changed from 0
to 8.
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FIG. 7. The R-	 dependence of the 0+ energy of 14C for the case
of ν = 0.22 fm−2.

V. THE STRUCTURE OF 14C IN THE AQCM APPROACH

In this section we discuss 14C itself. In this article we
introduced the shell-model limit of 14C as a cluster, but
we can also discuss this nucleus from the viewpoint of the
competition between the components of the α cluster models
[6]. In this case the 14C nucleus is described as three quasi
α clusters with two valence neutrons. The contribution of
the spin-orbit interaction vanishes in the α cluster models,
but the mixing of the shell-model components [especially the
(p3/2)6 configuration for the protons of 14C] can be included
by transforming α clusters to quasiclusters. For this purpose,
we choose smaller Gaussian wave packets (larger ν parameter
ν = 0.22 fm−2) which gives smaller size of the free 4He
nucleus. This choice also leads to a more compact size of
the 14C nucleus. However, we allow finite distance between
the α clusters and superpose different Slater determinants
by means of generator coordinate method (GCM). After the
GCM calculations, this choice of ν = 0.22 fm−2 turns out
to be optimal. The resultant radius of 14C after the GCM
calculations (2.51 fm) is almost the same as in the previous
case (2.55 fm) of the shell-model limit (R = 0.1 fm, 	 = 1,
and ν = 0.17 fm−2).

Three α clusters with an equilateral triangular shape char-
acterized by relative distance of R form the basis states of the
GCM calculations. These states also depend on the 	 param-
eter which introduces the spin-orbit contribution according to
Ref. [22] and describes the breaking of the α clusters. Two
valence neutrons form a dineutron cluster and eight neutrons
form a tetrahedron shape of four dineutron clusters. Figure 7
shows the R-	 dependence of each GCM basis state projected
onto 0+. Because of the size parameter ν which gives a
compact 4He, the optimal distance between quasi α clusters
becomes a nonzero value. As a result, the combination of
R = 2.5 fm and 	 = 0.12 gives the lowest energy of −99.6
MeV. With increasing R value, the 	 dependence of the
0+ energy becomes more pronounced. The optimal 	 value
of 0.12 at R = 2.5 fm looks rather close to zero, but the
contribution of the spin-orbit interaction to the total energy

42010−3

10−2

10−1

100

|F
(q

)|

q (fm−1) 

14C

FIG. 8. The elastic form factor for the proton part of the ground
state of 14C. The size parameter ν is 0.22 fm−2 and Slater deter-
minants with various R and 	 values are superposed based on the
GCM.

is equal to −3.0 MeV. This is not a negligible quantity and
thus the breaking of the α clusters has a certain effect. After
superposing the Slater determinants with different R and 	

values based on the GCM, the ground 0+ state energy is
obtained at −100.4 MeV. This corresponds to −19.2 MeV
from the 3α + 2n threshold which compares rather well with
experimental value of −20.4 MeV. After the GCM calcu-
lations, the contribution of the spin-orbit interaction to the
total energy is equal to −3.7 MeV for the ground state. The
root mean square (rms) matter radius of the ground state is
obtained at 2.51 fm,

The elastic form factor for the proton part is shown in
Fig. 8. Note that there are no experimental data for the
form factor of 14C. However, the calculated results could be
compared with other theoretical results for the form factor
of 12C (this nucleus has the same proton number as 14C)
presented in Refs. [3,63].

VI. THE STRUCTURE OF 28Mg IN THE AQCM APPROACH

The 14C + 14C configuration of 28Mg, which does not
have the path to the ground state configuration, has been
discussed in Sec. II. The ground state configuration can
also be independently prepared based on AQCM employing
a treatment similar to that presented in Ref. [23]. In this
reference the ground state configuration of 28Si (subclosure
configuration of d5/2 orbits of the j j-coupling shell model) is
described starting from the Brink-type α cluster model.

For the ground state of 28Mg, we introduce the 16O
core, which is described with the tetrahedron configuration
of four α clusters with small relative distances (0.1 fm); this
corresponds to the closed configuration of the p shell. First,
we introduce three α clusters with the equilateral triangu-
lar configuration. Next, they are changed into quasiclusters
by introducing the imaginary parts for the Gaussian center
parameters as in AQCM. Six neutrons in three quasiclusters
are transformed into the subclosure configuration of d5/2 of
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FIG. 9. The expectation value of the principal quantum number
n of the harmonic oscillator for the 0+ state of 28Mg with the ground
state configuration considered as a function of the relative distance
between the quasiclusters around 16O. Solid red and blue dashed
lines are for neutrons and protons, respectively.

the j j-coupling shell model. The remaining two neutrons are
put in the center of the system; thus, they are automatically
excited to the s orbits of the sd shell. The number of protons
outside 16O is four, so we fill them into two of three quasi-
clusters introduced for neutrons.

The expectation value of the principal quantum number n
of the harmonic oscillator for the 0+ state of 28Mg is shown
in Fig. 9. Here, the ground state configuration is considered as
a function of the relative distance between the quasiclusters
around 16O. The comparison with the case of 14C + 14C
configuration shown in Fig. 2 reveals that the n value for
the protons is the same (14), but its value for the neutrons is
reduced from 24 to 22. The latter is the lowest possible value
for 16 neutrons. Unfortunately, the ground state configuration
is bound only by 8.75 MeV from the 14C- 14C threshold within

the present nucleon-nucleon interaction, compared with the
experimental value of 21.06 MeV with the size parameter
fixed to ν = 0.17 fm−2; thus the deviation from the limit of
the lowest shell-model configuration would be needed.

VII. CONCLUSIONS

In conclusion, the possibility that 14C can be a building
block of cluster structures in medium-mass nuclei has been
investigated for the first time. On going from light to heavier
nuclei, the beta-stability line gradually evolves from N ∼ Z to
N ∼ 1.3Z . This suggests that the nuclei with similar neutron-
to-proton ratios can be the building blocks of cluster structures
in medium-mass nuclei. The 14C nucleus is such a candidate
since it has N/Z = 1.33. It is strongly bound and reveals itself
as a cluster in the 14C emission from actinides. Moreover, the
path to the lowest shell-model configuration at short relative
distances is closed in the 14C + 14C structure, which allows
a distance between the clusters approximately equal to 4 fm.
Despite underlying differences in theoretical assumptions, the
AQCM and CRMF calculations predict the existence of such a
cluster structure in 28Mg. It is more pronounced in the AQCM
calculations where it survives up to high spin. In contrast, the
rotation leads to washing out of clusterization at spin I = 16
in the CRMF calculations. In addition, the possible existence
of a linear chain 14C + 14C + 14C cluster structure in 42Ar
has been investigated within the framework of the AQCM
approach. These results strongly point to an important role of
14C as a building block of cluster structures in medium-mass
nuclei.
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(London) 487, 341 (2012).
[38] J. Maruhn, N. Loebl, N. Itagaki, and M. Kimura, Nucl. Phys. A

833, 1 (2010).
[39] J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. C
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