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We calculate the �-nucleon scattering phase shifts and mixing angles by applying time-ordered perturbation
theory to the manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory. Scattering
amplitudes are obtained by solving the corresponding coupled-channel integral equations that have a milder
ultraviolet behavior compared to their nonrelativistic analogs. This allows us to consider the removed cutoff
limit in our leading-order calculations also in the 3P0 and 3P1 partial waves. We find that, in the framework we
are using, at least some part of the higher-order contributions to the baryon-baryon potential in these channels
needs to be treated nonperturbatively, and we demonstrate how this can be achieved in a way consistent with
quantum field theoretical renormalization for the leading contact interactions. We compare our results with the
ones of the nonrelativistic approach and lattice QCD phase shifts obtained for non-physical pion masses.

DOI: 10.1103/PhysRevC.101.034001

I. INTRODUCTION

Nuclear systems with nonvanishing strangeness play an
important role in the study of nuclear, particle, and astro-
physics. Hyperon-nucleon (Y N) interactions are crucial for
understanding hypernuclear binding. Experiments investigat-
ing the Y N , hyperon-hyperon (YY ), and cascade-nucleon
(�N) interactions are carried out at various laboratories such
as CERN, DA�NE, GSI, JLab, J-PARC, KEK, MAMI, RHIC
and will also be performed at the future FAIR facility. For re-
views on the subject of hypernuclear physics see Refs. [1–4].

Lattice QCD is another valuable source of information on
Y N and YY interactions [5–17]. While some lattice simula-
tions are approaching the physical values of the light quark
masses, most of the available lattice QCD calculations still
correspond to unphysically large values and, therefore, require
extrapolations to their physical values.

Chiral effective field theory (ChEFT) is a natural frame-
work for analyzing low-energy properties of (hyper)nuclei and
performing chiral extrapolations. Chiral perturbation theory
for systems involving two and more nucleons was initiated
in Refs. [18,19]. In that formulation, power counting rules are
applied to the effective potentials, and the scattering amplitude
is then obtained by solving the Lippmann-Schwinger (LS) or
Schrödinger equations. Reviews of ChEFT in the few-body
sector can be found in Refs. [20–24].

Chiral EFT for baryon-baryon (BB) interactions in the
strange sector was formulated in Refs. [25–38] using the
nonrelativistic framework. In these studies, the standard Wein-
berg power counting for nucleon-nucleon (NN) interactions
is extended to the nonzero strangeness sectors of the baryon-
baryon interaction. Ultraviolet divergences of the LS equation
have been taken care of by applying finite-cutoff regulariza-
tion using exponential cutoffs in the range of 500–700 MeV.

For nucleon-nucleon scattering, a modified Weinberg ap-
proach with an improved ultraviolet behavior was proposed

in Ref. [39]. This novel framework uses time-ordered per-
turbation theory (TOPT) applied to the manifestly Lorentz-
invariant effective Lagrangian and leads to the Kadyshevsky
equation for the scattering amplitude [40]. It has been ex-
plored in the nonstrange sector [41–43] and also with a
different treatment of Dirac spinors and using an alternative
power counting [44]. First applications of a similar formalism
to baryon-baryon systems with nonzero strangeness can be
found in Refs. [45–49].1

Recently, we have worked out in details the diagrammatic
rules of TOPT for particles with nonzero spin and for in-
teractions involving time derivatives [51]. In this paper, we
apply the resulting framework to the strangeness S = −1
sector of baryon-baryon scattering and focus, in particular, on
�-nucleon and �-nucleon scatterings.

Our paper is organized as follows: in Sec. II we specify
the effective Lagrangian required for our calculations. In
Sec. III, we consider the system of integral equations for
baryon-baryon scattering and present the �-nucleon and �-
nucleon scattering phase shifts. Next, in Sec. IV, we discuss
the renormalization of the scattering amplitudes with the next-
to-leading order (NLO) contact interaction potentials treated
nonperturbatively. The results of our work are summarized in
Sec. V.

II. EFFECTIVE LAGRANGIAN

The starting point of our analysis is the manifestly Lorentz-
invariant effective Lagrangian of baryon chiral perturbation
theory consisting of the purely mesonic, single-baryon, and
two-baryon parts,

Leff = Lφ + LφB + LBB. (1)

1For an application of the modified Weinberg approach to hadronic
molecules see Ref. [50].
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From the purely mesonic sector, we only need the lowest-
order Lagrangian [52]

L(2)
φ = F 2

0

4
Tr{uμuμ + χ+}, (2)

where

uμ = iu†∂μUu†, u2 = U = exp(
√

2iφ/F0),

χ± = u†χu† ± uχ†u, χ = 2B0s, (3)

and φ is the irreducible octet representation of SU(3) f for the
Goldstone bosons,

φ =

⎛
⎜⎝

π0√
2

+ η√
6

π+ K+

π− −π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6

⎞
⎟⎠. (4)

Here F0 stands for the meson decay constant in the chiral limit
while s is the external scalar source that gives rise to the quark
(and Goldstone-boson) masses. For the purposes of the current
work we switch off all other external sources and consider the
isospin-symmetric case of mu = md �= ms. The constant B0 in
Eq. (3) is related to the quark condensate.

The leading-order (LO) Lagrangian of the single-baryon
sector is given by

L(1)
φB = Tr{B̄(iγμDμ − m)B} + D/F

2
Tr{B̄γμγ5[uμ, B]±}, (5)

where B is the irreducible octet representation of SU(3) f

involving baryon fields,

B =

⎛
⎜⎝

�0√
2

+ �√
6

�+ p

�− −�0√
2

+ �√
6

n

�− �0 − 2�√
6

⎞
⎟⎠, (6)

D and F are coupling constants corresponding to [· · · ]+ and
[· · · ]−, respectively, and DμB = ∂μB + [[u†, ∂μu], B] is the
covariant derivative.

The effective baryon-baryon Lagrangian contributing to
the LO BB potential consists of the following terms [27]:

LBB = C1
i Tr{B̄αB̄β (�iB)β (�iB)α}

+C2
i Tr{B̄α (�iB)αB̄β (�iB)β}

+C3
i Tr{B̄α (�iB)α}Tr{B̄β (�iB)β}, (7)

where C1
i , C2

i , and C3
i are the coupling constants, α and β are

the Dirac spinor indices, and

�1 = 1, �2 = γ μ, �3 = σμν, �4 = γ μγ5. (8)

Notice that the �5 = γ5 term starts contributing at NLO.

III. INTEGRAL EQUATIONS FOR
BARYON-BARYON SCATTERING

The off-shell baryon-baryon scattering amplitude T satis-
fies the integral equation, which can symbolically be written
as [51]

T = V + V G T, (9)

where V is the effective potential and G is the two-baryon
Green function. To obtain the scattering amplitudes of pro-
cesses with strangeness S = −1 in the isospin limit, Eq. (9) is
understood as a 2 × 2 matrix equation, where

T =
(

T�N,�N T�N,�N

T�N,�N T�N,�N

)
,

V =
(

V�N,�N V�N,�N

V�N,�N V�N,�N

)
, (10)

G =
(

G�N 0
0 G�N

)
,

and the two-body Green functions read

GIJ (E ) = 1

ω(pI , mI )ω(pJ , mJ )

mI mJ

E−ω(pI , mI )−ω(pJ , mJ )+iε
,

(11)

with mI and ω(pI , mI ) = ( �pI
2 + m2

I )1/2 being the mass and
the energy of the Ith baryon with four-momentum pI . In the
partial wave basis, Eq. (9) leads to the following coupled-
channel equations with the partial wave projected potentials
V IJ,KL

l ′l,s′s, j (E ; p′, p):

T IJ,KL
l ′l,s′s, j (E ; p′, p) = V IJ,KL

l ′l,s′s, j (E ; p′, p)

+
∑

l ′′,s′′,P,Q

∫ ∞

0

dk k2

2π2
V IJ,PQ

l ′l ′′,s′s′′, j (E ; p′, k)

× GPQ(E ) T PQ,KL
l ′′l,s′′s, j (E ; k, p), (12)

where IJ , KL, and PQ label the initial, final and intermediate
particles, respectively, and p ≡ | �p |, p′ ≡ | �p ′|, and k ≡ |�k |.
The indices l, l ′′, l ′ and s, s′′, s′ stand for their orbital an-
gular momenta and spins, respectively, while j denotes the
total angular momentum of the BB states. Compared to the
corresponding Lippmann-Schwinger equation for the same
potential, Eq. (12) with the Green functions of Eq. (11) has
a milder UV behavior. Therefore, its solutions show less
sensitivity to the variation of the cutoff parameter [51].

We organize the BB potential by applying the standard
Weinberg power counting to two-baryon irreducible TOPT
diagrams. The LO potential consists of the short-range contact
interaction part V IJ,KL

LO,C and the one-meson exchange (OME)
contribution [51]:

V IJ,KL
LO,MP

= − fIKP fJLP IIJ,KL

2 ω(q, MP )

[
1

ω(q, MP ) + ω(pK , mK ) + ω(pJ , mJ ) − E − i ε

+ 1

ω(q, MP ) + ω(pL, mL ) + ω(pI , mI ) − E − i ε

]
(mI + mK )(mJ + mL )√

mI mJmK mL

× (mK �σ1 · �pI − mI �σ1 · �pK )(mL �σ2 · �pJ − mJ �σ2 · �pL )√
ω(pI , mI ) + mI

√
ω(pJ , mJ ) + mJ

√
ω(pK , mK ) + mK

√
ω(pL, mL ) + mL

, (13)
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TABLE I. The fitted LECs of the 1S0 and 3S1 partial waves in the
�N-�N scattering. The momentum cutoff is taken as � = 20 GeV.

C
1S0
�N,�N (104 GeV−2) −0.0186 C

3S1
�N,�N (104 GeV−2) −0.0124

C
1S0
�N,�N (104 GeV−2) 0.00361 C

3S1
�N,�N (104 GeV−2) −0.00499

C
1S0
�N,�N (104 GeV−2) −0.00849 C

3S1
�N,�N (104 GeV−2) −0.0129

where q = pI − pK = pL − pJ is the four-momentum trans-
fer. The isospin factors IIJ,KL and the values of fIKP can be
found in Refs. [26,29].

It is straightforward to obtain from the Lagrangian of
Eq. (7) the expressions for the contact interactions, which
we include at LO according to Ref. [51]. They are identical
to those of the nonrelativistic approach and can be found in
Refs. [25,27,44,45,48].

Due to the SU(3) flavor symmetry assumed in Ref. [25],
there are two low-energy constants (LECs) in the contact
terms of 1S0 and 3S1 partial waves for the �N-�N cou-
pled channels, respectively. However, as argued in Ref. [53],
the SU(3) symmetry is always broken by the one-meson-
exchange potential in calculations using the actual meson
and baryon masses. Therefore, we have to introduce an extra
contact term in each of the 1S0 and 3S1 partial waves in
order to be able to carry out renormalization. Specifically, we
consider the contact interactions of the following form:

V
1S0

LO,C =
(

C
1S0
�N,�N C

1S0
�N, �N

C
1S0
�N, �N C

1S0
�N, �N

)
,

V
3S1

LO,C =
(

C
3S1
�N,�N C

3S1
�N, �N

C
3S1
�N, �N C

3S1
�N, �N

)
. (14)

To determine these LECs we fit them to the low-energy
phase shifts quoted in Ref. [53], where nonrelativistic chiral
EFT potentials up to NLO were employed to describe the
scattering observables. The values of LECs are listed in
Table I.

Our results for the baryon-baryon scattering phase shifts
in strangeness S = −1 sector with isospin 1/2 are plotted in
Figs. 1 and 2.2 The obtained phase shifts for partial waves
without contact interactions at LO are similar to those of
the nonrelativistic approach except for the 3P0 partial wave
in the �N channel and the 3P1 partial wave in the �N
and �N channels, which strongly deviate from the phase
shifts of Ref. [53]. The phase shifts and mixing angles for
the 3S1 - 3D1 coupled channels are consistent with the NLO
results of Ref. [53]. The observed large differences between
our LO results and the phase shifts in the 1S0, 3P0, and 3P1

channels as well as the large NLO corrections in these partial
waves found in Ref. [53] suggest that certain contributions to
the potential beyond LO in these channels need to be treated
nonperturbatively. In the next section, we will show how

2In all figures in this paper, plab is defined as the momentum of the
incoming � particle in the laboratory system with the nucleon at rest.

TABLE II. The scattering lengths and effective ranges in the
�N scattering for the 1S0 and 3S1 partial waves. The nonrelativistic
results from LO and NLO studies are also listed.

Rel.-LO,
� = 20 GeV

NR-LO [25],
� = 0.6 GeV

NR-NLO [53],
� = 0.6 GeV

a1S0
(fm) −2.94 −1.91 −2.91

r1S0
(fm) −1.44 1.40 2.78

a3S1
(fm) −1.41 −1.23 −1.41

r3S1
(fm) 1.61 2.13 2.53

the contributions of the P-wave contact interactions can be
resumed nonperturbatively in the way compatible with EFT.
As for the 1S0 partial wave, a more involved treatment similar
to that of Ref. [43] in the nonstrange sector is needed. This
case will be treated in a separate publication.

We also calculated the scattering lengths and the effective
range parameters of the �N scattering for the 1S0 and 3S1

partial waves. Our results, given in Table II, agree reasonably
well with those of the nonrelativistic approach except for the
effective range of the 1S0 partial wave, which has different
sign, as is already visible from the corresponding phase shifts
shown in Fig. 1.

Since we employ here an explicitly renormalizable for-
malism, there is no implicit quark-mass dependence of the
renormalized LECs; see Ref. [41] for more details. This
allows us to calculate the phase shifts of various processes
for unphysical values of the quark masses and to confront
them with the results of lattice QCD calculations. The 1S0 and
3S1 phase shifts of the �N scattering for various values of
the pion mass are shown in Fig. 3 together with the results
of the NPLQCD [13] and HAL QCD Collaborations [5].
Note that the values of masses of pseudoscalar mesons and
octet baryons are taken from the LHPC [54] and PACS-CS
[55] Collaborations, which are tabulated in Table III, because
NPLQCD and HAL QCD employ the lattice configuartions of
LHPC and PACS-CS, respectively. For 1S0 partial wave, our
results for large values of the pion mass are in good agreement
with those found by the HAL QCD Collaboration,3 and the
ones for the 3S1 partial wave agree, within errors, with the
prediction of the NPLQCD Collaboration.

IV. NONPERTURBATIVE INCLUSION OF
HIGHER-ORDER CONTACT INTERACTION

POTENTIALS IN P WAVES

As already pointed out above, our results indicate that at
least some parts of subleading contrubutions to the potential
will have to be treated nonperturbatively. This then raises the
question of whether the scattering amplitude can still be renor-
malized, and the infinite-cutoff limit can be taken. Fortunately,
at least for the case of nonperturbatively treated short-range
interactions, the renormalization program can still be carried

3Notice, however, that the applicability of chiral EFT for such large
values of the pion mass is rather questionable.
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FIG. 1. Phase shifts of �N scattering. Red lines represent our LO results with the cutoff � = 20 GeV, green dashed lines and blue
dot-dashed lines denote the nonrelativistic results (obtained with � = 0.6 GeV) at LO [25] and NLO [53], respectively.

out, as will be demonstrated below. We start by considering
the case of the 3P0 partial waves and treat nonperturbatively
the potential

V (p′
1, p′

2; p1, p2) = VC (p′
1, p′

2; p1, p2) + V IJ,KL
LO,MP

, (15)

where V IJ,KL
LO,MP

stands for the OME projected onto the 3P0

partial wave and the contact interaction potential is given

by

VC = ξ (p′
1, p′

2) Cξ (p1, p2),

C =
(

C�N,�N C�N, �N

C�N, �N C�N, �N

)
, (16)

ξ (p1, p2) =
(

p1 0
0 p2

)
.
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FIG. 2. Phase shifts of �N scattering; same description of curves as in Fig. 1.
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FIG. 3. 1S0 and 3S1 phase shifts of the �N scattering for various values of the pion mass.

Using the results of Ref. [56], we write the solution to the
system of integral equations for the potential of Eq. (15)
in a form which allows one to carry out the subtractive
renormalization. We start by writing the integral equations
(12) symbolically as

T = V + V G T, (17)

and rewrite it in the form [43]

T = TM + (1 + TM G) TC (1 + G TM ), (18)

where the amplitude TM satisfies the equation

TM = VLO,MP + VLO,MP G TM . (19)

For the contact interaction potential of Eq. (16) the amplitude
TC is given as

TC (p′
1, p′

2; p1, p2) = ξ (p′
1, p′

2)X ξ (p1, p2), (20)

where

X = [C−1 − ξ G ξ − ξ G TMG ξ ]−1. (21)

Thus, the final expression for the amplitude T has the form

T = TM + (1 + TM G) ξ X ξ (1 + G TM ). (22)

Analogously to Refs. [43,51] we apply the subtrac-
tive [Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) type]
renormalization; i.e., we subtract all divergences in all loop
diagrams and regard the coupling constants as renormalized
(i.e., cutoff-independent but renormalization scheme depen-
dent) finite quantities; see, e.g., Ref. [57] for details of the
BPHZ renormalization. Subtractive renormalization of the
amplitude in Eq. (22) corresponds to the inclusion of contri-
butions of an infinite number of counter terms generated by an
infinite number of bare parameters of the effective Lagrangian
[58].

To apply subtractive renormalization to Eq. (22) we no-
tice that the amplitude TM and expressions �̄(p′

1, p′
2) = (1 +

TM G) ξ and �(p1, p2) = ξ (1 + G TM ) are finite. Therefore
we need to apply subtractions only to the quantity X . While
the ξ G TMG ξ term in Eq. (21) contains only the over-
all logarithmic divergences, the term ξ G ξ is quadratically

TABLE III. Masses of the pseudoscalar mesons and octet baryons obtained by the LHPC [54] and PACS-CS [55] Collaborations. The first
error is the statistical uncertainty and the second is determined by the lattice spacing.

Mπ (MeV) MK (MeV) mN (MeV) m� (MeV) m� (MeV)

LHPC
355.9 602.9 1157.8(6.4)(23.1) 1280.2(4.8)(25.6) 1350.2(4.8)(27.0)
495.1 645.2 1288.2(6.4)(25.8) 1369.3(4.8)(27.4) 1409.1(6.4)(28.2)
596.7 685.6 1394.8(6.4)(27.9) 1440.9(8.0)(28.8) 1463.1(9.5)(29.2)

PACS-CS
569.7 713.2 1411.1(12.2)(21.8) 1503.8(9.8)(23.2) 1531.2(11.1)(23.6)
701.4 789.0 1583.0(4.8)(24.4) 1643.9(5.0)(25.4) 1654.5(4.4)(25.5)
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FIG. 4. 3P0 phase shifts of �N and �N scatterings with the
subtractive renormalization.

divergent and, therefore, requires two additional BPHZ sub-
tractions.

After carrying out the subtractions, the final expression of
the amplitude reads

T (p′
1, p′

2; p1, p2)

= TM (p′
1, p′

2; p1, p2) + �̄(p′
1, p′

2)

× 1

C−1
R − (ξ G ξ )R − (ξ G TMG ξ − α)

�(p1, p2), (23)

where the counter term matrix α subtracts the overall diver-
gences of ξ G TMG ξ . The subtracted expression of (ξ G ξ )R is
given by

(ξ G ξ )R =
(

I�N 0
0 I�N

)
, (24)

where the integrals IIJ , subtracted at E = E0 < mI + mJ , are
given by

IIJ =
∫

dk k2

2π2

× k2(E0 − E )3mI mJ√
m2

i + k2
√

m2
J + k2

(
E0 −

√
m2

I + k2 −
√

m2
J + k2

)3

× 1(
E −

√
m2

I + k2 −
√

m2
J + k2 − iε

) . (25)

The imaginary part of this integral has the form

Im(IIJ ) = −mI mJ
[
m4

I − 2m2
I

(
E2 + m2

J

) + (
E2 − m2

J

)
2
]

3/2

16πE4
.

(26)

In practice, we fix the bare constant matrix 1/C = 1/CR +
α as a function of the cutoff numerically in such a way that
it cancels the divergent part of ξ G TMG ξ , and the resulting
cutoff-independent coupled-channel scattering amplitudes de-
scribe the phase shifts for a fixed value of the energy. The
three renormalized LECs are fixed by the low-energy 3P0

phase shifts of the �N and �N scatterings and the inelasticity
parameters of Ref. [53]. The results are shown in Fig. 4. The
description of the �N 3P0 phase shifts is satisfactory while
the results of �N 3P0 phase shifts are similar to the ones of
the OME potential.

We also extended the renormalization procedure to the
1P1 - 3P1 coupled channels. We treat nonperturbatively three
contact interactions for the coupled particle channels in the
3P1 partial wave and fix the corresponding renormalized LECs
via the description of the low-energy 3P1 phase shifts of
Ref. [53]. As seen from the results in Fig. 5, a rather good
description of 3P1 partial wave phase shifts is achieved. One
should also notice that there is small effect on the 1P1 partial
wave phase shifts.

V. SUMMARY

In this paper we calculated the �-nucleon scattering am-
plitude of the strangeness S = −1 sector in the framework
of manifestly Lorentz-invariant formulation of SU(3) baryon
chiral perturbation theory by applying time-ordered perturba-
tion theory [51].

For the case of baryon-baryon scattering, the relative im-
portance of time-ordered diagrams can be determined us-
ing the Weinberg’s power counting rules [18,19]. To sum
up the relevant contributions it is convenient to define the
effective potential as a sum of all two-baryon irreducible
contributions to the scattering amplitude within TOPT. The
scattering amplitudes are obtained as solutions of a system
of the coupled-channel integral equations with the poten-
tials at the corresponding order. These equations represent a
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FIG. 5. 3P1 phase shifts of �N and �N scatterings with the subtractive renormalization.
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coupled-channel generalization of the Kadyshevsky equation
[40] and feature a milder ultraviolet behavior as compared to
their nonrelativistic analogs. By solving the integral equations
for the LO amplitudes and including corrections perturba-
tively one can remove cutof dependence from the physical am-
plitudes. Also for higher-order contact interactions included
nonperturbatively one can remove all divergences by per-
forming BPHZ type subtractions. This corresponds to taking
into account an infinite number of counterterms of higher
orders.

The large discrepancy between the results of our LO cal-
culations and the phase shifts from Ref. [53] suggest that
certain contributions to the BB potential beyond LO must be
treated nonperturbatively in the 3P0 and the 3P1 partial waves.
Thus, we have extended our calculations to include the NLO
short-range interactions in these partial waves and carried out
subtractive renormalization in a way consistent with EFT. The
resulting phase shifts are found to be in a good agreement
with the corresponding ones from the nonrelativistic approach

of Ref. [53]. We also studied the quark mass dependence of
the 1S0 and 3S1 phase shifts and compared the resulting LO
predictions with the available results from the lattice QCD
simulations.
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