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Unblocking of stellar electron capture for neutron-rich N = 50 nuclei at finite temperature
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We have calculated electron-capture rates for neutron-rich N = 50 nuclei ( 78Ni, 82Ge, 86Kr, 88Sr) within the
thermal quasiparticle random-phase approximation approach at temperatures T = 0, corresponding to capture on
the ground state, and at T = 10 GK (0.86 MeV), which is a typical temperature at which the N = 50 nuclei are
abundant during a supernova collapse. In agreement with recent experiments, we find no Gamow-Teller (GT+)
strength at low excitation energies, E < 7 MeV, caused by Pauli blocking induced by the N = 50 shell gap.
At the astrophysically relevant temperatures, this Pauli blocking of the GT+ strength is overcome by thermal
excitations across the Z = 40 proton and N = 50 neutron shell gaps, leading to a sizable GT contribution to the
electron capture. At the high densities, at which the N = 50 nuclei are important for stellar electron capture,
forbidden transitions contribute noticeably to the capture rate. Our results indicate that the neutron-rich N = 50
nuclei do not serve as an obstacle of electron capture during supernova collapse.
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I. INTRODUCTION

Electron captures on nuclei play an essential role during
the collapse of a massive star leading to a type-II or core-
collapse supernova [1–4]. It reduces the electron-to-baryon
ratio Ye and hence the pressure which the relativistic degen-
erate electron gas can stem against the gravitational collapse.
As the neutrinos produced by the capture process can leave
the star, carrying away energy, it is also an effective cooling
mechanism, resulting in the fact that heavy nuclei survive
during the collapse [1]. The temperature in the collapsing
core is sufficiently high that nuclei exist in nuclear statistical
equilibrium (NSE) [5]. However, due to the decrease of Ye

by continuous electron capture, the abundance distribution
of nuclei is shifted to more neutron-rich and heavier nuclei
during the collapse.

Due to the electron energies involved, electron captures
are dominated by allowed Gamow-Teller (GT+) transitions
(in which a proton is changed to a neutron) at the early
stage of the collapse. However, forbidden transitions become
increasingly important with growing electron energies and
contribute significantly to the capture rates in the later collapse
phases [6,7]. For core densities, ρ � 1010 g cm−3 and the
respective temperatures the core composition of nuclei is
given by p f shell nuclei in the iron-nickel mass region. For
these nuclei, electron capture rates can be calculated on the
basis of large-scale shell-model diagonalization calculations
[8–10]. The calculations reproduce the GT+ distributions
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experimentally determined by charge-exchange reactions
[11,12] quite well [13–15]. These rates are significantly
smaller than the pioneering rates by Fuller et al. [16], resulting
in a slower deleptonization in the early collapse phase [17,18].

As noted by Fuller [19], the continuous shift of the NSE
abundance distribution to heavier and more neutron-rich nu-
clei can lead to a potential blocking of the GT+ strength, once
nuclei with proton numbers Z < 40 and neutron numbers
N > 40 dominate the core composition. For such nuclei,
GT+ transitions are completely Pauli blocked within the
simple independent-particle model. Based on this observation,
Bruenn derived stellar capture rates which predicted vanishing
capture rates for nuclei with N > 38 [20]. These capture rates
have been the standard in supernova simulations for many
years and led to the conclusion that electron capture proceeds
on free protons in the advanced collapse phases (see, e.g.,
Ref. [2]). Cooperstein and Wambach pointed out that the Pauli
blocking might be overcome by thermal excitations, but which
would only happen at core densities in excess of 1011 g cm−3

[6]. However, the N = 40 shell closure is overcome by cross-
shell correlations which move neutrons and protons into the
g9/2 orbital and hence open up GT+ transitions. Experimen-
tally this is observed for 76Se (Z = 34, N = 42) which has
a nonvanishing GT+ strength distribution (required for the
double-beta decay of 76Ge [12,21]), made possible by a siz-
able neutron-hole structure in the p f shell as determined from
transfer reactions [22]. The experimental GT+ distribution is
well described by shell-model diagonalization studies [23]
confirming that cross-shell correlations require multiparticle-
multihole correlations [24,25]. For stellar electron-capture
rates, these correlations have been considered within a hybrid
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model, in which nuclear partial occupation numbers have
been calculated within the shell-model Monte Carlo approach
[26,27], which allows us to determine thermally averaged
nuclear properties at finite temperatures considering corre-
lations in unprecedentedly large model spaces (here the full
p f -gds shells). The partial occupation numbers served as
input to a random-phase approximation (RPA) calculation
of the stellar electron-capture rates [28]. Incorporated into
supernova simulations these rates had noticeable effects on the
supernova dynamics [4,29] and showed that electron capture
is dominated by nuclei during the entire collapse.

Sullivan et al. [30,31] have pointed out that the N = 50
shell gap at the neutron g9/2 shell closure could act as a
severe obstacle for stellar electron capture, in particular for
nuclei with proton number Z < 40 because they are frequently
encountered at core densities before neutrino trapping (at a
few 1011 g cm−3). The argument is based on the observation
that Pauli unblocking by neutron holes in the p f shell is
strongly hindered by the gap, and that proton excitations into
the g9/2 orbital would mainly lead to GT+ transitions into
the neutron g7/2 orbital residing at modest excitation energies
in the daughter and hence will not noticeably contribute to
the electron-capture rate. Sullivan and collaborators supported
their argument by studies with parametrized stellar electron-
capture rates which indicated the N = 50 nuclei as an obstacle
to the supernova dynamics [30,31]. Motivated by these stud-
ies, Zegers et al. measured the GT+ strength distribution in
two relevant nuclei, 86Kr (Z = 36, N = 50) [32] and 88Sr
(Z = 38, N = 50) [33]. Both distributions indeed show no
GT+ strength at low energies. These authors then used the
experimental GT+ distributions for the nuclear ground states
to determine stellar electron-capture rates. Such a procedure
would be valid if the Brink-Axel hypothesis holds, i.e., the
GT+ distribution on all excited states is the same as for the
ground state.

As we show in the following, this assumption is inap-
propriate. At first, in the stellar core the capture occurs at
finite temperatures of about T = 1 MeV. Adopting the simple
Fermi gas ansatz, this temperature translates into excitation
energies (E∗ ≈ AT 2/8) of about 10 MeV, which is larger than
the shell gaps at N = 50 and Z = 40. Hence, the capture
occurs on a thermal nuclear ensemble which includes excited
states with proton particles in the g9/2 orbital and neutron
holes in the p f and g9/2 orbitals. These correlations unblock
GT+ transitions at low energies or can even lead to nuclear
deexcitation where nuclear excitation energy is transferred
to the leptons. We note that a sizable unblocking of the
GT+ strength by correlations and thermal excitations was
found in the hybrid SMMC/RPA calculations, exemplified
for 89Br in Ref. [28], and for 76−80Ge, 78Ni based on the
thermal quasiparticle random-phase approximation (TQRPA)
approach [34,35]. These studies also showed that forbidden
transitions, which are not hindered by the shell gap, contribute
sizably to the stellar capture rates at the conditions which are
relevant for N = 50 nuclei.

In this paper we extend the TQRPA study of Dzhioev
and collaborators to a chain of N = 50 nuclei, including the
two nuclei ( 86Kr and 88Sr) for which experimental GT+
distributions have been measured for the ground states. The

TQRPA consistently describes thermal properties of nuclei at
finite temperatures considering 2p-2h correlations induced by
pairing and a residual interaction. In the limit of vanishing
temperatures, it reduces to the QRPA model. Our focus is here
on the aspect how the correlations unblock the GT+ strength
at finite temperature and which consequences this unblocking
has on the stellar electron-capture rate. We also calculate the
forbidden contributions to the rate. Our main result is that
the capture rate for N = 50 nuclei at the finite temperatures,
which are relevant in a supernova collapse, is much larger than
estimated on the basis of the GT+ ground-state distributions.

We should mention several papers where different finite-
temperature RPA models based on Skyrme and relativistic
energy density functionals have been used to calculate stellar
electron-capture (EC) rates [36–38]. The TQRPA approach
differs from those of Refs. [36–38] primarily by thermody-
namically consistent consideration of thermal effects. It was
shown in Ref. [39] that exoergic transitions from thermally ex-
cited states appear within the TQRPA and for EC on 56Fe they
remove the reaction threshold and enhance the low-energy
cross section. In contrast, no such transitions appear within
the finite-temperature RPA models. As a result, calculations
in Refs. [36–38] predict that EC cross sections drop rapidly to
zero as the electron energy falls below some threshold value.

Our paper is organized as follows: In the next section we
give a brief outline of the TQRPA method which we have
used in our calculations. A comprehensive description of the
thermal QRPA approach is given in Refs. [34,35]. In Sec. III
we discuss the results of our calculations. In Sec. IV we
provide the concluding remarks.

II. ELECTRON CAPTURE IN THE THERMAL
QUASIPARTICLE RANDOM-PHASE

APPROXIMATION APPROACH

Due to the high temperature in the interior of massive
stars, there is a finite probability of occupation of nuclear
excited states in the stellar environment. We account for this
by defining a thermal-averaged cross section for capture of an
electron with energy εe on a particular nucleus

σ (εe, T ) =
∑

i f

pi(T )σi f (εe). (1)

Here, pi(T ) is the Boltzmann population factor for a parent
state i at temperature T , and σi f (εe) is the cross section for
capture of an electron from the state i to a state f in the daugh-
ter nucleus. Then, the stellar electron-capture rate λ(T ) at
finite temperature is obtained by folding the thermal-averaged
cross section σ (εe, T ) with the distribution of electrons,

λ(T ) = 1

π2h̄3

∫ ∞

mec2
σ (εe, T )p2

e f (εe)dεe, (2)

where pe = (ε2
e − m2

ec4)1/2/c is the momentum of the incom-
ing electron. Under conditions encountered in the collapsing
core of a supernova, electrons obey a Fermi-Dirac distribution
f (εe) with temperature T and electron chemical potential μe

which depend on the baryon density ρ and the electron-to-
baryon ratio Ye.
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The nuclei of interest in this study are expected to con-
tribute to the stellar electron-capture rates for temperatures
T ≈ 0.5–1.5 MeV. At such high temperatures an explicit
state-by-state evaluation of the sums in Eq. (1) is impossible
with current nuclear models. As was shown in Ref. [35],
within a statistical description, the thermal-averaged cross
section can be expressed through the temperature-dependent
spectral functions for the various momentum-dependent mul-
tipole operators derived in Refs. [40,41].

Although our calculations also consider forbidden transi-
tions, we will give special emphasis to the GT+ contribution
for the nuclear structure reasons outlined above. Neglecting
momentum transfer, the thermal-averaged cross section for
GT operators reduces to

σGT(εe, T ) = G2
FV 2

ud

2π h̄4c3ve
F (Z, εe)

×
∫ Ee

−∞
(εe − E )2SGT(E , T )dE , (3)

where SGT(E , T ) is the temperature-dependent strength func-
tion for the Gamow-Teller operator

SGT(E , T ) =
∑

i f

pi(T )
|〈 f ‖gAσ t+‖i〉|2

2Ji + 1
δ(E − Ei f ). (4)

In the above equations GF is the weak-interaction coupling
constant, gA = −1.27 is the axial-vector coupling constant,
and Vud is the up-down element in the Cabibbo-Kobayashi-
Maskawa quark mixing matrix. The Fermi function F (Z, εe)
corrects the cross section for the distortion of the electron
wave function by the Coulomb field of the nucleus [8] and ve

is the electron velocity. The transition energy between initial
and final states is given by Ei f = Q + E f − Ei, where Ei and
E f are the excitation energies of the parent and daughter nu-
clei, and Q = M f − Mi is the ground-state reaction threshold.
At T �= 0, due to transitions from thermally excited states, the
strength function SGT(E , T ) is defined for both E > Q and
E < Q domains.

To compute the temperature-dependent spectral functions
we apply the TQRPA framework [34,35,39,42,43], which is
a technique based on the proton-neutron QRPA extended to
finite temperature by the thermofield dynamics formalism
(TFD) [44,45]. The TFD doubles the degrees of freedom of
the quantum system by introducing a fictitious tilde Hamil-
tonian H̃ and uses an extended Hilbert space of the direct
product of the Hilbert spaces of the physical and fictitious
systems. The central concept in TFD is the thermal vacuum
|0(T )〉, a pure state in the extended Hilbert space, which corre-
sponds to the thermal equilibrium, a mixed state in the original
Hilbert space of the system. The time-translation operator in
the extended Hilbert space is a so-called thermal Hamiltonian
H = H − H̃ . The temperature-dependent strength function is
expressed by the transition matrix elements from the thermal
vacuum to eigenstates of the thermal Hamiltonian (H|Qi〉 =
ωi|Qi〉):

SA(E , T ) =
∑

i

|〈Qi|Â|0(T )〉|2δ(E − ωi − δnp). (5)

Here δnp = 	λnp + 	Mnp, and 	λnp = λn − λp is the differ-
ence between neutron and proton chemical potentials in the
nucleus, and 	Mnp = 1.293 MeV is the neutron-proton mass
splitting. Note that eigenvalues of the thermal Hamiltonian,
ωi, take both positive and negative values. The latter con-
tribute to the strength function only at T �= 0.

Within the TQRPA, the thermal Hamiltonian is diagonal-
ized in terms of thermal phonon operators, which are con-
structed as a linear superposition of the creation and annihila-
tion operators for proton-neutron thermal quasiparticle pairs:
β†

pβ
†
n , β†

pβ̃
†
n , β̃†

pβ
†
n , β̃†

pβ̃
†
n , and their Hermitian conjugates.

Correspondingly thermal quasiparticles are connected with
Bogoliubov quasiparticles by the so-called thermal Bogoli-
ubov transformation which mixes nontilde and tilde opera-
tors. It can be shown [34] that the creation of a negative-
energy thermal tilde quasiparticle corresponds to annihilation
of a thermally excited Bogoliubov quasiparticle. Because of
single-particle transitions involving annihilation of thermally
excited Bogoliubov quasiparticles, the phonon spectrum at
finite temperature contains states at negative and low energies
which do not exist at zero temperature and which correspond
to thermally unblocked transitions of excited nuclear states.
In the zero-temperature limit, the thermal phonons reduce to
the QRPA ones constructed of Bogoliubov quasiparticle pairs
α†

pα
†
n and αpαn.

To analyze unblocking effects for EC in neutron-rich nuclei
with N = 50, we perform Skyrme-TQRPA calculations in
78Ni, 82Ge, 86Kr, and 88Sr. To explore the possible varia-
tions among parametrizations, we have chosen two different
Skyrme parametrizations with sufficiently different proper-
ties, SkM∗ [46] and SkO′ [47]. We solve Skyrme-Hartree-
Fock equations assuming spherical symmetry and neglecting
thermal effects on the mean field. To take into account pairing
correlations between like particles we employ the BCS pairing
interaction. The pairing strength parameters are fixed to re-
produce the odd-even mass difference. Due to magic neutron
number N = 50, there is no neutron pairing. Moreover, there
is no proton pairing in 78Ni and 88Sr, while proton pairing
gaps in 82Ge and 86Kr at T = 0 are 	p = 1.22 and 1.28 MeV,
respectively. For very neutron-rich nuclei considered in the
present work the difference between the neutron and proton
chemical potentials is large enough to disregard isoscalar
proton-neutron pairing in the mean field.

At T �= 0 the pairing gap and the chemical potentials
λn,p are found from finite-temperature BCS equations [34].
The numerical solution of these equations yields vanishing
pairing correlations above a critical temperature Tcr ≈ 0.5	

[48,49]. In the TQRPA calculations, we use the Landau-
Migdal force as the residual particle-hole interaction with the
parameters derived from the Skyrme interaction [50,51]. We
neglect the proton-neutron pairing in the residual interaction.
It is well known that the low-lying GT strength responsible
for beta decay [52] and double-beta decay [53] is sensitive
to the isoscalar proton-neutron pairing interaction. However,
the nuclei we consider dominate the nuclear composition of
the collapsing core at high enough temperatures (T > Tcr),
when particle-particle correlations vanish and the residual
proton-neutron pairing interaction does not affect the strength
distributions.
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FIG. 1. Strength distributions of GT+ transitions in 78Ni, 82Ge,
86Kr, and 88Sr at T = 0 and T = 10 GK (0.86 MeV). The dashed
vertical lines indicate the ground-state thresholds Q = Mf − Mi:
Q( 78Ni) = 20.7 MeV, Q( 82Ge) = 13.0 MeV, Q( 86Kr) = 8.1 MeV,
and Q( 88Sr) = 5.8 MeV [54]. A and B label specific GT+ transitions:
A ≡ f p

7/2 → f n
5/2, B ≡ gp

9/2 → gn
7/2. The notations A × 10 and B × 10

mean that the respective peaks are scaled by a factor of 10 for
demonstration purposes.

III. RESULTS AND DISCUSSION

In this section we report about TQRPA calculations for
neutron-rich N = 50 nuclei performed at temperatures T = 0
and at T = 10 GK (0.86 MeV), which is a typical temperature
at which these nuclei are abundant in collapsing supernova
cores. Our main attention is laid upon the GT+ response and
its unblocking at finite temperatures, which is particularly
important for the electron-capture rates on these nuclei under
supernova conditions. Finally we supplement the GT part of
the electron-capture rate by the contributions of the other
multipoles.

Figure 1 shows our GT+ response at T = 0 calculated
with the Skyrme interaction SKM∗. The results obtained
with SkO′ are qualitatively similar. As GT+ transitions are

completely blocked for nuclei with Z < 40 and N > 50, the
calculated transitions are due to nuclear correlations induced
by the Skyrme and the pairing forces. In our calculations
the main unblocking mechanism in the ground states is due
to the excitations of protons into the g9/2 orbital, enabling
GT+ transitions into the g7/2 neutron orbitals. However, these
transitions reside at relatively modest excitation energies, re-
sulting in the fact that there is no GT strength at low excitation
energies for the ground-state distribution. This observation is
in agreement with the measured GT+ strengths for 86Kr and
88Sr, which both find no strength at low energies E < 7 MeV
[32,33]. We note that the correlations across the Z = 40 and
N = 50 shell gaps open up other possible GT+ transitions;
for example, between f7/2 proton and f5/2 neutron orbitals.
But these transitions are small compared with gp

9/2 → gn
7/2

and reside at slightly higher excitation energies. We note that
the gp

9/2 → gn
9/2 transition, which corresponds to rather small

excitation energies and would be important for electron cap-
ture, requires the excitations of protons and neutrons across
the shell gaps and hence is doubly suppressed in our model.
Hence we do not find any relevant strength for this transition.

The ground-state (T = 0) GT+ strength for the gp
9/2 →

gn
7/2 transition (and for the other transitions) is noticeably

larger for 82Ge and 86Kr than for 78Ni and 88Sr. This is
related to the fact that proton pairing is absent in the latter
two nuclei and nonvanishing GT+ strength in 78Ni and 88Sr
appears only at relatively high energies due to the admixture
of 2h̄ω correlations. For 82Ge and 86Kr, configuration mixing
is induced by the pairing interaction which mixes 0p0h and
2p2h configurations. For 82Ge and 86Kr, our BCS-SkM∗

calculations predict the occupation numbers 〈n〉 = 0.2 and 0.4
protons in the gp

9/2 orbital, respectively, thus making possible
the gp

9/2 → gn
7/2 transition. The larger occupation number

for 86Kr reflects itself in the larger strength of the gp
9/2 →

gn
7/2 transition, as seen in Fig. 1. At T = 0, this transition

corresponds to the excitation of the α
†
gp

9/2
α

†
gn

7/2
configuration

above the ground state. The respective transition strength is
proportional to the BCS amplitude v2

gp
9/2

, while the transition

energy is determined the sum of quasiparticle energies εgn
7/2

+
εgp

9/2
+ δnp.

At finite temperature the thermally averaged GT+ strength
is arising from an ensemble of excited nuclear states, where
the centroid and the width of the ensemble increases with
growing temperature. At the temperature of about T =
1 MeV, at which the neutron-rich N = 50 nuclei are expected
to contribute to the stellar electron-capture rate, the structure
of these states involves a larger occupation of particle orbitals
above those occupied in the ground state, leaving at the time
holes in orbitals occupied at T = 0. This mechanism ther-
mally unblocks GT+ transitions; for example, the gp

9/2 → gn
7/2

and f p
7/2 → f n

5/2 transitions, which in our TQRPA formalism
are accompanied by annihilation of thermally excited particle
and hole states. The resulting configurations above the thermal
vacuum are β̃

†
gp

9/2
β

†
gn

7/2
, β

†
f p
7/2

β̃
†
f n
5/2

, while the transition strengths

are proportional to y2
gp

9/2
(1 − y2

gn
7/2

), (1 − y2
f p
7/2

)y2
f n
5/2

. Here y2
j =

[1 + exp(−ε j/T )]−1 is the thermal occupation factor for a
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single-particle state j. Within the TFD approach this factor
stems from the thermal Bogoliubov transformation. We stress
that the energies of the thermally unblocked transitions are
εgn

7/2
− εgp

9/2
+ δnp, ε f p

7/2
− ε f n

5/2
+ δnp, which differs from the

respective transition energies at T = 0 by the minus signs
which correspond to annihilation of thermally excited states.
Our calculated finite-temperature GT+ strengths are shown
in Fig. 1 together with the ground-state distributions for
comparison. For all considered nuclei, thermally unblocked
GT+ transitions are located below the ground-state threshold
Q, including the strength due to the dominant gp

9/2 → gn
7/2 and

f p
7/2 → f n

5/2 transitions. This appearance of low-lying strength
will have important consequences for the stellar electron-
capture rates at finite temperatures. Moreover, for 86Kr and
88Sr we observe some thermally unblocked GT+ strengths
even at negative energies, which correspond to transitions
from thermally excited states in the parent nucleus that are
at higher energies than the final states in the daughter nucleus.
Due to negative-energy transitions, nuclear excitation energy
is transferred to the outgoing neutrinos.

Except for 78Ni, the largest GT+ strength resides in
peaks which correspond mainly to gp

9/2 → gn
7/2 transitions. Its

strength increases from 82Ge to 88Sr, related to the number
of protons in the p f shell available for thermal excitations
into the g9/2 orbital. We also note that pairing correlations
vanish with temperature and are already strongly diminished
at T = 10 GK. As a consequence the noticeable peaks seen in
the ground-state GT+ distributions for 82Ge and 86Kr are sup-
pressed in the TQRPA calculation at T = 10 GK. Referring to
Fig. 1, at T = 10 GK the total GT+ strength in 82Ge and 86Kr
appears to be somewhat smaller than that at T = 0. The origin
of nonmonotonic temperature dependence of the total GT+
strength in neutron-rich nuclei is discussed in Ref. [34]. In
particular it is shown that the total strength reaches a minimum
value in the vicinity of the critical temperature T ≈ 0.5	, i.e.,
when pairing correlations vanish, but thermal effects are not
yet sufficiently strong to occupy the 1g9/2 proton orbit and
unblock the 1 f5/2 neutron orbit. Note however, that the Ikeda
sum rule is fulfilled within the TQRPA [43].

Figure 1 reveals that the strength of thermally unblocked
f p
7/2 → f n

5/2 transitions depends rather noticeably on the
Skyrme parametrization but varies only moderately among
the different nuclei. In contrast, the peak related to the ther-
mally unblocked gp

9/2 → gn
7/2 transition increases by almost

three orders of magnitude between 78Ni and 88Sr, but it is
rather insensitive to the choice of the Skyrme parametrization.
To gain insight into this observation we plot in Fig. 2 the
single-particle energies Ej for the particle (gp

9/2, gn
7/2) and

hole ( f p
7/2, f n

5/2) orbitals relative to the chemical potentials
λn,p at T = 10 GK, as calculated for the two Skyrme in-
teractions. Note that for T > Tcr the quasiparticle energy is
given by ε j = |Ej − λ|. Hence |Ej − λ| determines the occu-
pation probabilities y2

j of the hole (particle) orbitals. For T =
10 GK, the proton orbital f p

7/2 remains almost occupied (i.e.,
1 − y2

f p
7/2

≈ 1) and the strength of the f p
7/2 → f n

5/2 transition

mainly depends on the number of thermally excited vacancies
in the neutron orbital f n

5/2. Figure 2 shows that the Skyrme

FIG. 2. Neutron ( f5/2, g7/2) and proton ( f7/2, g9/2) single-particle
energies Ej relative to the chemical potentials λn,p for T = 10 GK.
The respective quasiparticle energies are given by ε j = |Ej − λ|.

interaction SkO′ predicts a larger quasiparticle energy ε f n
5/2

=
|E f n

5/2
− λn| than the SkM∗ interaction. However, E f n

5/2
− λn

does not change significantly with increasing proton number.
As a consequence, the occupation factors y2

f n
5/2

obtained with

the SkM∗ force are larger than those calculated with the SkO′

Skyrme interaction, but they do not vary much between the
different nuclei. For the gp

9/2 → gn
7/2 transition, the thermally

unblocked strength is mainly determined by the occupation
of the gp

9/2 orbital. Referring to Fig. 2, the quasiparticle
energy εgp

9/2
= Egp

9/2
− λp reduces by a factor of four between

78Ni and 88Sr. This reduction increases the occupation factor
y2

gp
9/2

and hence the transition strength by almost three orders

of magnitude. Both Skyrme parametrizations predict rather
similar values for Egp

9/2
− λp.

The thermal unblocking of GT+ transitions in the neutron-
rich N = 50 nuclei reflects itself strongly in the GT contri-
butions to the electron-capture cross sections. In Fig. 3 we
plot thermal-averaged electron-capture cross sections at T =
10 GK and at T = 20 GK as a function of the incident electron
energy εe in comparison with the ground-state (T = 0) results.
In our calculations of the cross sections (and rates) we account
for the quenching of the GT strength by the reduction of
the axial-vector coupling constant gA. In the context of shell-
model calculations that really test individual GT transitions
the quenching factor has been determined to be 0.74 for
p f -shell nuclei [55,56]. With the same quenching factor, as
shown in Ref. [34], the experimental GT+ strength in p f -shell
nuclei can be reproduced by the QRPA calculations. For all
nuclei and for both interactions we observe a similar overall
evolution of the cross sections with increasing temperature,
reflecting the temperature dependence of the GT+ strength
distributions as discussed above. For all nuclei, the ground-
state GT+ distributions have no strength at low energies,
representing a threshold for electron captures. Hence the T =
0 cross sections vanish at small electron energies. Once the
capture threshold is overcome, the cross sections increase with
electron energies, where the energy dependence is mainly
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FIG. 3. Electron-capture cross sections for 78Ni, 82Ge, 86Kr, and
88Sr at T = 0, 10, 20 GK. The blue (light gray) and brown (dark
gray) curves represent results obtained with the SkM∗ and SkO′

interactions, respectively. Like in Fig. 1, the dashed vertical lines
indicate the ground-state thresholds Q = Mf − Mi.

dictated by phase space. With increasing temperatures, GT+
strength is shifted towards lower energies (see Fig. 1), re-
ducing the gap which has to be overcome or even removing
it completely if strength is shifted to negative energies due
to downscattering transitions (see discussion above). For the
nuclei studied here, a gap exists in 78Ni, even at T = 20 GK.
For the other nuclei, the gap has vanished at this temperature
as the reaction threshold completely disappears due to the
contribution of GT+ strength at negative energies.

The detailed energy dependence of the GT+ strength is de-
cisive at low electron energies, but becomes less relevant with
increasing energy, where, however, the total strength matters
[7]. In the two cases with proton pairing ( 82Ge, 86Kr) there is
noticeable strength at moderate energies in our model calcu-
lations for T = 0 and the total strength is somewhat larger for
the ground-state distribution than at T = 10 GK (see our dis-
cussion above). As a consequence the capture cross sections
at high electron energies is slightly larger than at T = 10 GK.
This phenomenon does not occur for 78Ni and 88Sr, where no
proton pairing effects exist to create cross-shell correlations
and hence the total ground-state strength is small. Relatedly,
the increase of the cross sections with temperature is largest
for these two nuclei. We also note that the differences in cross
sections for the various nuclei become smaller with increasing
electron energies, as had already been observed and explained
in Refs. [7,34]. At the finite temperatures we have studied
here, the cross sections at high energies increase with number
of protons as the promotion of protons in the g9/2 orbital
is the main unblocking mechanism. Comparing the results
obtained with the SkM∗ and SkO′ forces we conclude that the
most essential differences in the cross sections exist in more
neutron-rich nuclei at low temperatures and they reflect the
differences in the GT+ strength distributions discussed above.

Figure 4 shows electron-capture rates for 78Ni, 82Ge,
86Kr, and 88Sr at temperature 10 GK and for densities of

FIG. 4. Electron-capture rates calculated at T = 10 GK (0.86
MeV) as a function of density. The upper axis indicates the cor-
responding electron chemical potentials μe. The blue (light gray)
and brown (dark gray) lines are based on the Skyrme-TQRPA
calculations with the SkM∗ and SkO′ interactions, respectively. The
total rates (full lines) include the contribution of allowed (0+, 1+)
and first-forbidden (0−, 1−, 2−) transitions. The dashed-dotted lines
(labeled 1+) represent the unblocked GT+ contributions to the rates.
The rates, indicated by dashed lines, have been calculated from
the ground-state GT+ distribution. The shaded bands represent the
results based on the experimental GT+ data [32,33]. The labeled lines
represent the rates calculated according to the parametrization (6).

relevance for the collapse phase of core-collapse supernova.1

Our rates are obtained by integrating the thermal-averaged
cross sections following Eq. (2). In our rate calculations we
have considered spectral functions for the allowed (0+, 1+)
and first-forbidden (0−, 1−, 2−) momentum-dependent mul-
tipole operators derived in Refs. [40,41]. To demonstrate the
relevance of thermal unblocking and of multipoles other than
Gamow-Teller, the figure also exhibits EC rates calculated
from the ground-state and finite-temperature GT+ distribu-
tions. For comparison we also show the capture rates for
86Kr and 88Sr derived from the experimental Gamow-Teller
data [32,33]. The shaded bands are due to the experimental
uncertainty in the GT+ strength.

1For example, the core temperatures are in the range 10–14 GK
for densities ρYe between 2.4 × 1010 g and 2.3 × 1011 g cm−3 for a
15M� star due to Table 1 in Ref. [7].
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TABLE I. Relative contribution, λ f f
EC/λEC, of first forbidden tran-

sitions to the electron-capture rates at T = 10 GK and selected
densities ρYe (in g cm−3). The results are obtained with the SkM∗

(SkO′) Skyrme interaction.

log10(ρYe) = 9 10 11 12

78Ni 0.04(0.17) 0.14(0.44) 0.66(0.97) 0.91(0.93)
82Ge 0.07(0.20) 0.37(0.51) 0.82(0.94) 0.92(0.93)
86Kr 0.09(0.09) 0.27(0.25) 0.71(0.75) 0.90(0.91)
88Sr 0.08(0.06) 0.18(0.16) 0.60(0.59) 0.87(0.86)

We note that the EC rates for 86Kr and 88Sr derived from
the ground-state QRPA calculations are consistent with the
one derived from the experimental data. However, the rates
obtained at finite temperatures (T = 10 GK) are significantly
larger than those obtained from the ground-state distributions
stressing the importance of thermal unblocking effects in
our calculation. This holds at all densities, but it is most
pronounced at low densities where smaller electron energies
have relatively more weight. The contribution from the GT+
strength dominates the rates at lower densities (again due
to the smaller electron energies involved). The contributions
from forbidden multipoles becomes increasingly relevant with
growing densities. At densities in excess of a few 1010 g cm−3

they dominate the rates (see also Table I). As the forbidden
transitions are rather insensitive to the differences in single-
particle energies obtained for the two Skyrme parametriza-
tions and to thermal effects [35], the rates are also very similar
for the two Skyrme interactions at the high densities.

Thus, the main result from Fig. 4 is that the derivation of
stellar capture rates for the neutron-rich N = 50 nuclei on
the basis of the ground state GT+ distributions is unjustified.
During the stellar collapse, such nuclei are quite abundant
at densities of order 1011 g cm−3. As can be read off from
Fig. 4, thermal unblocking and the contributions from
forbidden multipoles enhance the capture rates by an order of
magnitude or more.

In Refs. [7,28,57] a hybrid model has been introduced and
used to derive stellar electron-capture rates at densities in
access of 1010 g cm−3. In the first step the shell-model Monte
Carlo (SMMC) method [26] is used to calculate partial oc-
cupation numbers at finite temperatures, taking multinucleon
correlations into account by a residual interaction acting in
large model spaces. In the second step, these partial occu-
pation numbers serve as input into the calculation of stellar
capture rates using an RPA approach. The studies within the
hybrid model show that multinucleon correlations induced by
the residual interaction and by thermal excitation are strong
enough to overcome the shell gaps at finite temperature and
to unblock the GT+ strength. Figure 1 of Ref. [28] shows
electron-capture rates derived within the hybrid model for
selected nuclei, including 89Br (Z = 35 and N = 54). The fig-
ure clearly indicates that, within the hybrid model, shell gaps,
including the one at N = 50, are overcome at astrophysical
conditions (temperatures) present during collapse at densities
in access of 1011 g cm−3 (corresponding to electron chemical
potentials μe > 15 MeV [7]).

Reference [34] has performed detailed comparisons be-
tween electron-capture rates calculated for the germanium
isotopes 76,78,80Ge within the hybrid model and the present
TQRPA approach. As can be seen in Fig. 9 of Ref. [34] there
are noticeable differences between the two approaches for the
conditions at low densities where details of the GT+ strength
distribution, induced by the different treatment of cross-shell
correlations, still matter. For the reasons explained above and
in Ref. [7], these differences decrease with increasing density
and temperature. We also note that the capture rate decreases
with increasing neutron number in the germanium isotopes.
This is mainly due to the increasing Q value, which has
to be overcome by the capture process, and the increasing
number of neutrons partially blocking transitions into the
neutron g9/2 orbital. If we take the rates obtained at T =
10 GK (0.86 MeV) from Fig. 9 of Ref. [34], our present
capture rate for 82Ge obtained for ρYe = 1011 g cm−3 (λec ≈
103 s−1) agrees nicely with the trend of the rates for 76,78,80Ge
calculated with the TQRPA and the hybrid model.

In Ref. [28] a rather simple parametrization for the capture
rate has been derived by fit to individual electron-capture rates
available at that time (about 200 nuclei in the mass range
A = 45–110. The purpose of the study presented in Ref. [28]
was to demonstrate that the N = 40 shell gap does not block
the GT+ strength in neutron-rich nuclei and that electron
capture during the later phase of the collapse proceeds on
nuclei and not on free protons, as had been hypothesized
earlier in the investigation of Ref. [28]. For this goal, the pool
of about 200 nuclei, for which individual rates at their relevant
astrophysical conditions have been evaluated and used in the
supernova simulation, was sufficient. As the fit formula was
rendered too simple, further individual capture rates have been
derived in Ref. [7] based on a hierarchical structure approach
suitable to the large set of nuclei considered. Each nucleus is
described by a model which is thought to be accurate enough
at the astrophysical conditions at which the nuclei contribute
to the overall capture rate. The respective rate table derived
by Juodagalvis and collaborators is being used in modern
supernova simulation codes (see, e.g., Refs. [58,59]).

Unfortunately the rate table of Ref. [7] does not exist
for individual nuclei, but rather for an ensemble of nuclei
distributed in nuclear statistical equilibrium. Hence authors
have recently returned to the fit formula of Ref. [28] to
explore sensitivity of supernova simulations to certain input
parameters [60–62]. As this formula has been derived to a
pool of nuclei which does not include neutron-rich nuclei at
the N = 50 shell gap, a comparison to the present TQRPA
rates for such nuclei is quite instructive. The simple formula
is based on the single-state approximation and reads [28]

λ = B ln 2

K

(
T

mec2

)5

[F4(η) − 2χF3(η) + χ2F2(η)]. (6)

Here K = 6146 s, Fk (η) are the Fermi integrals of rank k
and degeneracy η, χ = −(Q + 	E )/T ,2 and η = χ + μe/T .

2Note that, in our definition, Q = Mf − Mi, while in Ref. [28] the
Q value is defined with opposite sign.
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The fit parameters B = 4.6 and 	E = E f − Ei = 2.5 MeV
represent effective values for the transition strength and the
energy difference between the final and initial excited states,
respectively. The pool of nuclei to which the fit has been
performed included p f shell nuclei and some heavier nuclei
with A < 100. For the p f shell nuclei, which dominate the
captures at lower densities ρ < 1010 g cm−3, the rates only
include Gamow-Teller transitions taken from diagonalization
shell-model calculations [8], while the heavier nuclei, which
are relevant at densities above 1010 g cm−3 also include for-
bidden contributions.

In Fig. 4 we compare our TQRPA results to the fit formula.
We observe that at the densities ρYe ≈ 1011 g cm−3 where the
neutron-rich N = 50 nuclei are relevant, the fit reproduces our
TQRPA capture rates quite well. This again shows that at these
late-collapse conditions the capture rates are rather insensitive
to details of the nuclear response. This is not true at lower
densities. For example at ρYe = 1010 g cm−3 the fit underes-
timates the TQRPA capture rates by an order of magnitude.
The insufficiency of the fit under such conditions had already
been discussed before (see, e.g., Ref. [60]). However, at these
low densities the fit formula should not be used because the
rates are still sensitive to details of the strength distributions,
in particular to nuclei with rather large Q values like the
neutron-rich N = 50 nuclei. But importantly, these nuclei are
quite unabundant at these low-density conditions and hence
do not contribute to the overall capture rates.

IV. CONCLUSION

We have studied the electron-capture rates on neutron-rich
N = 50 nuclei at conditions of temperatures and densities
relevant for collapse supernovae. Our calculations have been
motivated by the suggestion that the N = 50 shell gap could
serve as an obstacle for electron captures in supernovae
[32,33] blocking GT+ transitions. In fact, experimental GT+

distributions obtained for the N = 50 nuclei 86Kr and 88Sr
do not show any strength at low energies. Our T = 0 QRPA
calculations, performed for these two nuclei and 78Ni and
82Ge, reproduce this observation, not showing strength at low
energies E < 7 MeV in any of these nuclei, in agreement
with Pauli blocking of the GT+ strength for N = 50 nuclei.
However, our finite-temperature TQRPA calculations also
show that this blocking is overcome at finite temperatures due
to thermal excitations, enabling transitions from proton f7/2

and g9/2 orbitals into neutron f5/2 and g7/2 orbitals, respec-
tively. Both noticeably unblock the GT+ strength at supernova
conditions where these nuclei are abundant. Our calculations
also indicate that, at the corresponding relatively-high-density
conditions, forbidden transitions contribute significantly to the
capture rates. The unblocking of the GT+ strength at finite
temperatures and the sizable forbidden contributions imply
that the derivation of stellar electron-capture rates for the
neutron-rich N = 50 nuclei on the basis of the GT+ ground-
state distribution, as presented in Ref. [33], is inappropri-
ate. Our results also indicate that the neutron-rich N = 50
nuclei do not act as obstacles for electron captures in the
later collapse phase. Our results at the relevant astrophysical
conditions are in good agreement with those obtained in the
hybrid model proposed in Ref. [28] which is the basis of the
electron-capture rate tables [7] presently in use in supernova
simulations.
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