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Topological defects at the boundary of neutron 3P2 superfluids in neutron stars
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We study surface effects of neutron 3P2 superfluids in neutron stars. 3P2 superfluids are in uniaxial nematic
(UN), D2 biaxial nematic (BN), or D4 BN phase, depending on the strength of magnetic fields from small to large.
We suppose a neutron 3P2 superfluid in a ball with a spherical boundary. Adopting a suitable boundary condition
for 3P2 condensates, we solve the Ginzburg-Landau equation to find several surface properties for the neutron
3P2 superfluid. First, the phase on the surface can be different from that of the bulk, and symmetry restoration or
breaking occurs in general on the surface. Second, the distribution of the surface energy density has an anisotropy
depending on the polar angle in the sphere, which may lead to the deformation of the geometrical shape of the
surface. Third, the order parameter manifold induced on the surface, which is described by two-dimensional
vector fields induced on the surface from the condensates, allows topological defects (vortices) on the surface,
and there must exist such defects even in the ground state thanks to the Poincaré-Hopf theorem: although the
numbers of the vortices and antivortices depend on the bulk phases, the difference between them is topologically
invariant (the Euler number χ = 2) irrespective of the bulk phases. These vortices, which are not extended to the
bulk, are called boojums in the context of liquid crystals and helium-3 superfluids. The surface properties of the
neutron 3P2 superfluid found in this paper may provide us useful information to study neutron stars.

DOI: 10.1103/PhysRevC.101.025204

I. INTRODUCTION

Neutron stars provide us extreme environments for nuclear
physics, such as high density state, rapid rotation, strong
magnetic field, strong gravitational field, and so on, leading to
the unveiling of new phases of nuclear systems (see Refs. [1,2]
for recent reviews). A variety of phases are considered to
be inside neutron stars: there can be neutron rich gas and
crusts at the surface, and there can be neutron superfluidity,
hyperon matter, π and/or K condensates, and quark matter
in the inner core. The most recent observational develop-
ments include the observations of massive neutron stars whose
masses are almost twice as large as the solar mass [3,4] and
the observation of gravitational waves from a binary neutron
star merger [5]. One of the bulk phases inside neutron stars is
neutron superfluidity, in which neutron pairs make a conden-
sate in the ground state. The neutron superfluidity is directly
related to astrophysical phenomena (see Refs. [6–8] for recent
reviews). For example, it has been discussed that the neutron
superfluidity affects relaxation time after pulsar glitches (i.e.,
sudden speed-up events of neutron-star rotation) [9],1 and
the neutron superfluidity enhances rapid cooling by neutrino
emissions from the inside of neutron stars (the modified Urca
process) [11].
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1We notice that pulsar glitch phenomena can be explained by the

unpinning of a large amount of superfluid vortices [10].

From the viewpoint of nuclear physics, it is an inter-
esting property that nuclear forces have different attractive
channels depending on the baryon number density, from low
to high density (see Ref. [12] for a recent review). In the
early stage, Migdal considered the 1S0 channel to be the
most attractive one at low density [13], though this channel
turns to out be repulsive due to the strong core repulsion at
higher densities [14]. At high density, instead, the attraction is
supplied by the 3P2 channel stemming from the LS potential,
leading to neutron 3P2 superfluidity [15–30].2 Neutron 3P2

superfluidity has important impacts on the observations of
neutron stars. One example is the rapid neutrino cooling in
neutron stars, as studied for Cassiopeia A [31–33], although
the existence of 3P2 superfluidity is still elusive. Another
example is the tolerance of the spin-triplet pairing in 3P2

superfluidity against strong magnetic fields, while the spin-
singlet pairing in the 1S0 superfluidity is easily broken due
to the Zeeman effect. The tolerance may give us a chance to
observe 3P2 superfluidity in magnetars, in which the strength
of the magnetic field reaches about 1015 G at the surface and
possibly about 1018 G in the inside.3

2We notice that the 3P0 and 3P1 channels are repulsive from the
LS potential, and hence that those channels do not contribute to the
neutron pairing. More precisely, neutron 3P2 superfluidity exists with
a small fraction of superconducting protons and normal electrons.
However, such a mixture effect can be neglected in most cases.

3In the literature, the origin of the strong magnetic fields has been
studied in terms of several mechanisms such as spin-dependent inter-
actions between two neutrons [34–37], pion domain walls [38,39],
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In the pairing in neutron 3P2 superfluidity, there are a
variety of pairing combinations of relative angular momentum
and total spin, leading to the existence of different phases
which have symmetry breaking from the U(1)B × SO(3)S ×
SO(3)L × T × P symmetry (B for the baryon number, S for
spin rotation, L for spatial rotation, T for the time-reversal
symmetry, and P for the parity symmetry) [44–52]. Examples
of the symmetry breaking pattern will be presented shortly.
As a consequence of the symmetry breaking, there appear
low-energy excitations which affect the cooling process by
neutrino emission [53–66].4 Recently, studies of neutron 3P2

superfluidity have been also devoted to understanding its
topological properties: topological superfluidity and gapless
Majorana fermions on the boundary of 3P2 superfluids [68],
a quantized vortex [47,48,50,51], a soliton on it [69], and
a half-quantized non-Abelian vortex [52]. Those states have
relevance to analogous states in condensed matter physics,
such as D-wave superconductivity [70], P-wave superfluidity
in 3He liquid [71], chiral P-wave superconductivity, e.g., in
Sr2RuO4 [72], spin-2 Bose-Einstein condensates [73], and so
on.

Neutron 3P2 superfluidity can be described by the
Bogoliubov–de-Gennes (BdG) equation as the fundamental
equation [15–18,20–30,74]. In fact, the BdG equation was
successfully applied to study phase structures and topolog-
ical properties [68]. As a special case, the BdG equation
can be reduced to the Ginzburg-Landau (GL) equation as
the low-energy bosonic effective theory near the critical
temperature [44–52,74–77]. At the weak-coupling limit in
the GL equation, the ground state is in the nematic phase,
i.e., uniaxial nematic (UN) phase or biaxial nematic (BN)
phase [46]. Each phase has different patterns of the symmetry
breaking. The UN phase has an unbroken O(2) symmetry.
The BN phase is separated furthermore into D2-BN and D4-
BN phases, which have unbroken dihedral symmetries, D2

and D4, respectively. The phase realized in the ground state
depends on the temperature and the magnetic field. The UN
phase is favored at zero magnetic field, and the BN phases
are favored at finite magnetic fields [50,68], More precisely,
the D2-BN phase is favored at weak magnetic field, while the
D4-BN phase is favored at strong magnetic field. Thus, the
D2-BN and D4-BN phases would be relevant for magnetars.
The GL equation has been also applied to study vortices
in neutron 3P2 superfluids: vortex structures of neutron 3P2

superfluidity [45,47,48] and spontaneous magnetization in the
core of the vortices [48,50,52,69].

It should be noted that the GL equation is an expansion
series for small magnitude of the order parameter near the
critical temperature. For terms up to fourth order for the
order parameter, the UN, D2-BN, and D4-BN phases are
degenerate, and hence the ground state cannot be determined

spin polarizations in the quark-matter core [40–42], and so on.
However, this problem remains still hard to deal with. It may be
significant that the recent many-body calculation indicates a negative
result for the generation of strong magnetic fields [43].

4It should be noted that the cooling process is related not only to
low-energy excitations but also to quantum vortices [67].

uniquely.5 Such degeneracy is resolved in the sixth order,
where one of the BN, D2-BN, and D4-BN phases is realized
in the ground state according to the temperature and the
magnetic field. However, the sixth-order term cannot fully
support the stability of the ground state. The next-to-leading
order terms of the magnetic field were investigated for strong
magnetic fields [75]. Recently, it was shown that the stability
of the ground state is guaranteed at the eighth order of the
condensate [76]. Interestingly, there exists a first-order phase
transition at low temperature and weak magnetic field. The
existence of first-order phase transitions is consistent with the
result from the BdG equation [68].

So far many studies of neutron 3P2 superfluidity have
been devoted to the bulk properties (except for Majorana
fermions on the surface [68]). In neutron stars, however, the
neutron 3P2 superfluid interfaces with the other phases, such
as a neutron 1S0 phase and nuclear crusts near the surface.
Thus, it is an important question to ask how properties of
the neutron 3P2 superfluid change at the boundary. As an
analogous situation, there have been several studies of surface
effects of liquid crystals [79] and 3He superfluids [80–84] (see
also Refs. [71,85] and the references therein), and applications
of the geometrical structure of 3He liquid were developed:
droplets [86], slabs [87], pore geometry [88], and so on.
In neutron stars, the neutron 3P2 superfluid will necessarily
interface with neutron 1S0 superfluidity at low density. As the
most simple situation, however, we suppose that neutron 3P2

superfluid interfaces with other phases at a sharp boundary at
the surface of the neutron star. We notice that the phase with
which the neutron 3P2 superfluid interfaces is not necessarily
vacuum, but is possibly another phase such as the normal
phase of neutron gas, the neutron 1S0 superfluid phase, and
so on. In spite of the simple situation, we will elucidate
that neutron 3P2 superfluidity exhibits nontrivial properties
of symmetry breaking and topology at the surface. We first
find that the phase structure on the surface can be different
from that in the bulk, and therefore symmetry restoration or
breaking can occur in the vicinity of or on the surface. We also
find that the distribution of the surface energy density has an
anisotropy depending on the polar angle in the sphere. Thus,
this may lead to the deformation of the geometrical shape of
the surface. Also, the order parameter manifold (OPM) in-
duced on the surface, which is described by two-dimensional
vector fields induced on the surface from the condensates,
allows topological defects (vortices) on the surface. We show
that there must exist such defects even in the ground state due
to the Poincaré-Hopf theorem: The numbers of the vortices
and antivortices depend on the bulk phases, but the difference
between them is topologically invariant (the Euler number
χ = 2) irrespective to the bulk phases. We point out that these
vortices are not extended to the bulk since the first homotopy
group is trivial for the OPM in the bulk while it is nontrivial
for the OPM reduced on the boundary. Such defects are called

5At fourth order, an SO(5) symmetry happens to exist as an ex-
tended symmetry in the potential term, which is absent in the original
Hamiltonian. In this case, the spontaneous breaking eventually leads
to a quasi-Nambu-Goldstone mode [78].
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boojums, which were named after Lewis Carroll’s poem about
imaginary monsters, in the context of liquid crystals [79]
and helium-3 superfluids [71,85]. The surface properties of
the neutron 3P2 superfluids that we find in this paper will
hopefully provide us useful information about neutron stars.

This paper is organized as follows. In Sec. II, we summa-
rize the GL equation up to the eighth order. On the surface, we
introduce the boundary condition for condensates of neutron
3P2 superfluids. In Sec. III, we perform numerical analy-
ses by solving the GL equations with a spherical boundary
condition. After summarizing the symmetry breaking in the
bulk space, we show results of new patterns of the symmetry
breaking near the surface. Furthermore, we show anisotropic
distributions of the surface energy density on the neutron star,
and present the emergence of topological defects (vortices or
boojums) on the surface. The final section is devoted to our
conclusion and perspectives. In Appendix A, we show explicit
forms of the Euler-Lagrange equation from the GL equation.
In Appendix B, we briefly summarize the symmetries of neu-
tron 3P2 superfluidity. In Appendix C, we show the numerical
results of the profile functions in the condensate.

II. FORMALISM

A. Ginzburg-Landau equation

The condensate of the neutron 3P2 superfluidity can be
expressed by a symmetric and traceless three-by-three tensor
A as an order parameter of the symmetry breaking. The
components of A are denoted by Aab with the indices a =
1, 2, 3 for the spin indices and b = 1, 2, 3 for the space
indices. The Ginzburg-Landau (GL) equation can be obtained
by integrating out the neutron degrees of freedom and by
adopting the loop expansion for the small coupling strength in

the 3P2 interaction for two neutrons [44–52,75,76]. The GL
equation is valid in the region in which the temperature T is
close to the critical temperature Tc0: |1 − T/Tc0| � 1, where
Tc0 is determined at zero magnetic field. The concrete form of
the GL free energy reads

f [A] = f0 + fgrad[A] + f (0)
8 [A] + f (�4)

2 [A] + f (�2)
4 [A]

+O(BmAn)m+n�7, (1)

as an expansion in terms of the condensate A and the magnetic
field B. Each term is explained as follows. The first term f0 is
the sum of the free part and the spin-magnetic coupling term,

f0 = −T
∫

d3 p
(2π )3

ln((1 + e−ξ−
p /T )(1 + e−ξ+

p /T )), (2)

with ξ±
p = ξp ± |μn||B| and ξp = p2/(2m) − μ for the neu-

tron three-dimensional momentum p, the neutron mass m, and
the neutron chemical potential μ. The bare magnetic moment
of a neutron is μn = −(γn/2)σ with the gyromagnetic ratio
γn = 1.2 × 10−13 MeV/T (in natural units, h̄ = c = 1) and
the Pauli matrices for the neutron spin σ. The following
terms include the condensate A: f (0)

8 [A] consists of the terms
including the field A up to the eighth order with no magnetic
field, f (�4)

2 [A] consists of the terms including the field A up
to the second order with the magnetic field up to |B|4, and
f (�2)
4 [A] consists of the terms including the field A up to the

fourth order with the magnetic field up to |B|2. We show their
explicit forms,

fgrad[A]=K (0)(∇iA
ba∗∇iA

ab + ∇iA
ia∗∇ jA

a j + ∇iA
ja∗∇ jA

ai ),

(3)

for the gradient term (summed over the repeated indices) and

f (0)
8 [A] = α(0)(trA∗A) + β (0)((tr A∗A)2 − (tr A∗2A2))

+ γ (0)(−3(tr A∗A)(tr A2)(tr A∗2) + 4(tr A∗A)3 + 6(tr A∗A)(tr A∗2A2) + 12(tr A∗A)(tr A∗AA∗A)

− 6(tr A∗2)(tr A∗A3) − 6(tr A2)(tr A∗3A) − 12(tr A∗3A3) + 12(tr A∗2A2A∗A) + 8(tr A∗AA∗AA∗A))

+ δ(0)((tr A∗2)2(tr A2)2 + 2(tr A∗2)2(tr A4) − 8(tr A∗2)(tr A∗AA∗A)(tr A2) − 8(tr A∗2)(tr A∗A)2(tr A2)

− 32(tr A∗2)(tr A∗A)(tr A∗A3) − 32(tr A∗2)(tr A∗AA∗A3) − 16(tr A∗2)(tr A∗A2A∗A2)

+ 2(tr A∗4)(tr A2)2 + 4(tr A∗4)(tr A4) − 32(tr A∗3A)(tr A∗A)(tr A2)

− 64(tr A∗3A)(tr A∗A3) − 32(tr A∗3AA∗A)(tr A2) − 64(tr A∗3A2A∗A2) − 64(tr A∗3A3)(tr A∗A)

− 64(tr A∗2AA∗2A3) − 64(tr A∗2AA∗A2)(tr A∗A) + 16(tr A∗2A2)2 + 32(tr A∗2A2)(tr A∗A)2

+ 32(tr A∗2A2)(tr A∗AA∗A) + 64(tr A∗2A2A∗2A2) − 16(tr A∗2AA∗2A)(tr A2) + 8(tr A∗A)4

+ 48(tr A∗A)2(tr A∗AA∗A) + 192(tr A∗A)(tr A∗AA∗2A2) + 64(tr A∗A)(tr A∗AA∗AA∗A)

− 128(tr A∗AA∗3A3) + 64(tr A∗AA∗2AA∗A2) + 24(tr A∗AA∗A)2 + 128(tr A∗AA∗AA∗2A2)

+ 48(tr A∗AA∗AA∗AA∗A)), (4)

f (�4)
2 [A] = β (2)Bt A∗AB + β (4)|B|2Bt A∗AB, (5)

f (�2)
4 [A] = γ (2)(−2 |B|2(tr A2)(tr A∗2) − 4 |B|2(tr A∗A)2 + 4 |B|2(tr A∗AA∗A) + 8 |B|2(tr A∗2A2)

+ Bt A2B(tr A∗2) − 8 Bt A∗AB(tr A∗A) + Bt A∗2B(tr A2) + 2 Bt AA∗2AB

+ 2 Bt A∗A2A∗B − 8 Bt A∗AA∗AB − 8 Bt A∗2A2B), (6)
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for the potential and interaction terms.6 The trace (tr) is taken
over the spin and space indices of A. The coefficients are given
by

K (0) = 7 ζ (3)N (0)p4
F

240m2(πTc0)2
,

α(0) = N (0)p2
F

3

T − Tc0

Tc0
,

β (0) = 7 ζ (3)N (0)p4
F

60 (πTc0)2
,

γ (0) = −31 ζ (5)N (0)p6
F

13440 (πTc0)4
,

δ(0) = 127 ζ (7)N (0)p8
F

387072 (πTc0)6
,

β (2) = 7 ζ (3)N (0)p2
F γ 2

n

48(1 + F a
0 )2(πTc0)2

,

β (4) = − 31 ζ (5)N (0)p2
F γ 4

n

768(1 + F a
0 )4(πTc0)4

,

γ (2) = 31 ζ (5)N (0)p4
F γ 2

n

3840(1 + F a
0 )2(πTc0)4

. (7)

We denote N (0) = m pF /(2π2) for the state-number density
at the Fermi surface and |μ∗

n| = (γn/2)/(1 + F a
0 ) for the mag-

nitude of the magnetic momentum of a neutron modified by
the Landau parameter F a

0 . Notice that μ∗
n is different from the

bare magnetic moment of the neutron μn. It may be worth-
while to remember that the interaction between the neutron
and the magnetic field (B) supplies the energy splitting by the
interaction Hamiltonian −μ∗

n · B. We notice that the Landau
parameter stems from the Hartree-Fock approximation, which
is not taken into account explicitly in the present mean-field
approximation. In the expressions in Eq. (7), ζ (n) is the zeta
function. In the present study, we will focus on the energy
difference between the state with the superfluid state (A �= 0)
and the normal state (A = 0). Thus, we do not consider
explicitly the contribution from f0 in Eq. (2), and hence we
will neglect f0 in the following discussion.

B. Boundary condition on the surface

We consider the boundary of a neutron 3P2 superfluid
and introduce the normal vector perpendicular to the surface:
n = (n1, n2, n3) with n1 = sin θ cos ϕ, n2 = sin θ sin ϕ, and
n3 = cos θ as shown in Fig. 1. We assume that the geomet-
rical shape of the surface can be locally approximated by
a tangent plane, where the curvature can be neglected. This
simplification should be justified when the curvature radius is
sufficiently larger than the coherence length of the neutron 3P2

superfluidity. We introduce the d axis from the surface toward
the center of the neutron star (Fig. 1). Then, the condensate A

6In the present paper, we separate the derivative term and the
nonderivative term for later convenience. This convention is different
from the previous works by the present authors.

d
bulk x1

x2

x3

(θ,ϕ )=(π /2, 0)

(θ,ϕ )=(π /2,π /2)

(θ,ϕ )=(0, 0)

n

magnetic field B

surface

d=0

d

n

FIG. 1. The plane on the surface for the normal vector n =
(n1, n2, n3) with n1 = sin θ cos ϕ, n1 = sin θ sin ϕ, and n3 = cos θ

is presented for a neutron star. d is the distance from the surface
position toward the center of the neutron star. The direction of the
magnetic field is along the x2 axis.

is a 3 × 3 matrix whose components are functions of d (� 0):

A(d; n) =
⎛
⎝

−F1(d; n) G3(d; n) G2(d; n)
G3(d; n) −F2(d; n) G1(d; n)
G2(d; n) G1(d; n) F1(d; n) + F2(d; n)

⎞
⎠.

(8)

For precision, we should include n for the variables, be-
cause A should depend on the choice of the surface with
the normal vector n. In the following equations, however, we
will sometimes omit n for shorter notation: A(d ) = A(d; n),
Fα (d ) = Fα (d; n), and Gβ (d ) = Gβ (d; n) with α = 1, 2 and
β = 1, 2, 3. With the above setup, we rewrite the gradient
terms in (3) as

fgrad[A] = K (0)

4
((2 − sin2 θ sin2 ϕ)(∇d F1)2

+ (2 − sin2 θ cos2 ϕ)(∇d F2)2

+ (1 + 2 cos2 θ )(∇d F1)(∇d F2)

+ 2 cos θ sin θ sin ϕ(∇d F1)(∇d G1)

+ 2 cos θ sin θ cos ϕ(∇d F2)(∇d G2)

− 2 sin2 θ cos ϕ sin ϕ(∇d F1 + ∇d F2)(∇d G3)

+ (2 − sin2 θ cos2 ϕ)(∇d G1)2

+ (2 − sin2 θ sin2 ϕ)(∇d G2)2+(1 + sin2 θ )(∇dG3)2

+ 2 sin2 θ cos ϕ sin ϕ(∇d G1)(∇d G2)

+ 2 cos θ sin θ (cos ϕ∇d G1 + sin ϕ∇d G2)∇d G3),

(9)

with ∇d = ∂/∂d . We emphasize that n is assumed to be a
constant vector and hence the derivatives with respect to θ

and ϕ are not included in Eq. (9). With the above-mentioned
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coordinate setting, we obtain the Euler-Lagrange (EL) equa-
tions for A,

−∇d
δ f [A]

δ(∇d Fα )
+ δ f [A]

δFα

= 0, (10)

−∇d
δ f [A]

δ(∇dGβ )
+ δ f [A]

δGβ

= 0. (11)

The concrete expressions of the left-hand sides are presented
in detail in Appendix A. We impose the boundary conditions
at d = 0 and d → ∞ for the EL equations. On the surface (at
d = 0), we adopt the condition that A(0) satisfies

nt A(0)n ≡
∑

i, j=1,2,3

niAi j (0)n j = 0 (12)

as the boundary condition. This is consistent with the condi-
tion presented by Ambegaokar, de Gennes, and Rainer [80].7

At the center of the 3P2 condensate (at d → ∞), on the other
hand, we require that the state approaches the bulk state,
and hence that the condensate values should satisfy F1(d ) →
F bulk

1 , F2(d ) → F bulk
2 , G1(d ) → Gbulk

1 = 0, G2(d ) → Gbulk
2 =

0, and G3(d ) → Gbulk
3 = 0, where F bulk

α (α = 1, 2) and Gbulk
β

(β = 1, 2, 3) are the values in the ground state in the bulk.

C. Dimensionless form

For the convenience of the analysis, we introduce the
dimensionless quantities Ã, fα (α = 1, 2), gβ (β = 1, 2, 3), b,
and x defined by

Ã ≡ pF

Tc0
A, fα ≡ pF

Tc0
Fα, gβ ≡ pF

Tc0
Gβ,

b ≡ γn

(1 + F a
0 )Tc0

B, x ≡ mTc0

pF
d, (13)

instead of A, Fα , Gβ , B, and d . Notice that Ã = Ã(x), fα =
fα (x), and gβ = gβ (x) are regarded as functions of the di-
mensionless distance x. With these new variables, we obtain
the dimensionless form of the GL free energy, f̃ [Ã], which
is given from f [A] by replacing A, Fα , Gβ , B, and d with
Ã, fα , gβ , b, and x as well as by replacing the dimensionful
coefficients K0, α(0), β (0), γ (0), δ(0), β (2), β (4), and γ (2) with
the dimensionless ones

K̃ (0) = 7 ζ (3)

240 π2
,

α̃(0) = 1

3

(
t − 1

)
,

β̃ (0) = 7 ζ (3)

60 π2
,

7In Ref. [80], the authors considered the surface with n = (0, 0, 1)
and concluded that, among the components in the matrix Ai j (d )
(i, j = 1, 2, 3), A11(d ) and A22(d ) are symmetric functions for trans-
forming d to −d , hence they can continue to have finite values at the
surface, while A33(d ) is an antisymmetric function for transforming
d to −d , and hence it should vanish at the surface. This property is
reflected in Eq. (12) for arbitrary n.

γ̃ (0) = − 31 ζ (5)

13440 π4
,

δ̃(0) = 127 ζ (7)

387072 π6
,

β̃ (2) = 7 ζ (3)

48 π2
,

β̃ (4) = −31 ζ (5)

768 π4
,

γ̃ (2) = 31 ζ (5)

3840 π4
. (14)

with the normalized temperature t = T/Tc0. f [A] and f̃ [Ã] are
related by

f [A] = N (0)T 2
c0 f̃ [Ã]. (15)

The boundary condition at x = 0 (i.e., d = 0) is expressed by
nt Ã(0)n = 0.

III. NUMERICAL RESULTS

In the numerical calculation, we use the following pa-
rameter settings: the critical temperature Tc0 = 0.2 MeV, the
neutron number density n = 0.17 fm−3 (the Fermi momentum
pF = 338 MeV), and the Landau parameter F a

0 = −0.75. The
value of F a

0 is that of 3He liquid at low temperature. We
consider without loss of generality that the magnetic field is
applied along the x2 axis: B = (0, B, 0) or b = (0, b, 0). This
direction is chosen to minimize the total energy when the
matrix A (Ã) is expressed in the conventional form, as will
be shown in Eq. (17).

A. Phase diagram in bulk space

Before investigating the surface effect, in this subsection,
we analyze the phase diagram in the ground (uniform) state
in the bulk space (d → ∞), by neglecting the gradient term
in the GL free energy (1). In the bulk space, we can express
conventionally the order parameter Ã as a constant matrix in
diagonal form:

Ãbulk =

⎛
⎜⎝

− f bulk
1 0 0

0 − f bulk
2 0

0 0 f bulk
1 + f bulk

2

⎞
⎟⎠, (16)

where f bulk
α (α = 1, 2) are values in the bulk space and the

off-diagonal components are zero: gbulk
β = 0 (β = 1, 2, 3).

Without loss of generality, as a convention, we may restrict
the range of the values of f bulk

1 and f bulk
2 to satisfy | f bulk

1 | �
| f bulk

2 | � | f bulk
1 + f bulk

2 |, i.e., f bulk
2 � f bulk

1 and f bulk
2 � 0. In

the literature, Ãbulk is often expressed as

Ãbulk = Ã0

⎛
⎝r 0 0

0 −1 − r 0
0 0 1

⎞
⎠, (17)

with the magnitude Ã0 � 0 and the internal parameter −1 �
r � −1/2. Both expressions are related through f bulk

1 = Ã0r
and f bulk

1 + f bulk
2 = Ã0.

According to the values of f bulk
1 and f bulk

2 , the order param-
eter Ãbulk expresses different phases with various symmetries,
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TABLE I. The classification of nematic phases (a table taken
from Ref. [50]). We show the range of r, phases, unbroken symme-
tries H , and order parameter manifolds M 	 G/H .

r Phase H M 	 G/H

−1/2 UN O(2) U(1) × [SO(3)/O(2)]
−1 < r < −1/2 D2-BN D2 U(1) × [SO(3)/D2]
−1 D4-BN D4 [U(1) × SO(3)]/D4

as summarized in Table I and in Appendix B. When f bulk
1 =

f bulk
2 (r = −1/2), there is an O(2) symmetry around the x3

axis, and this phase is called the uniaxial-nematic (UN) phase.
When f bulk

1 < f bulk
2 (−1 � r < −1/2), the continuous sym-

metry is lost, and there remains only the discrete (dihedral)
symmetry, whose phase is called the biaxial-nematic (BN)
phase. The BN phase is furthermore classified into the case
with −1 < r < −1/2 and the case with r = −1. The former
(−1 < r < −1/2) has D2 symmetry and is called the D2-BN
phase, while the latter (r = −1) has D4 symmetry and is
called the D4-BN phase. The ground state is determined to
minimize the GL free energy density (1) with respect to the
variations of f bulk

1 and f bulk
2 (or Ã0 and r).8

We show the obtained phase diagram in Fig. 2. We observe
that there exist the UN phase at zero magnetic field (b = 0),
the D2-BN phase at weak magnetic field, and the D4-BN
phase at strong magnetic field. Their phase boundaries are
the second-order phase transition, except for the first-order
phase transition at low temperature (t ≈ 0.772) indicated by
the green line in Fig. 2. Such a first-order phase transition
was found recently when the eighth-order term (δ0 term) was
included in the GL equation [76].9 It is worthwhile to mention
that the existence of the first-order phase transition in the GL
equation qualitatively agrees with the result from the analysis
using the BdG equation [68].

In the following subsections, we will consider the surface
effects on the neutron 3P2 superfluidity. We suppose three
cases as the typical phases for the bulk space at x → ∞ (i.e.,
d → ∞). We choose the temperature t = 0.9 and change the
values of the magnetic field for each phase. We show the
numerical parameter used for the magnetic field strength (b)
and the values of f bulk

1 , f bulk
2 , and r for each bulk phase:

(i) UN phase: b = 0; ( f bulk
1 , f bulk

2 ) = (0.64, 0.64) and
r = −1/2.

(ii) D2-BN phase: b = 0.15; ( f bulk
1 , f bulk

2 ) = (0.92, 0.32)
and r = −0.74.

(iii) D4-BN phase: b = 0.2; ( f bulk
1 , f bulk

2 ) = (1.12, 0) and
r = −1.

8It maybe significant that, for the terms up to and including O(A4)
at zero magnetic field in the GL free energy density (1), there
happens to appear degeneracy for the UN phase, the D2-BN phase,
and the D4-BN phase. In this situation, there is the SO(5) symmetry
which is absent in the original Lagrangian, and the spontaneous
breaking of the symmetry eventually leads to the existence of a
quasi-Nambu-Goldstone mode [78].

9The eighth-order term is important also to give stability in the
ground state.

FIG. 2. The phase diagram of the neutron 3P2 superfluidity in the
bulk space. The value of r is plotted as a function of the normalized
temperature (t) and the normalized magnetic field (b). The magnetic
field is applied in the direction of the x2 axis. The typical locations
of each phase displayed at t = 0.9: (i) the UN phase at b = 0 (the
circle), (ii) the D2-BN phase at b = 0.15 (the square), and (iii) the
D4-BN phase at b = 0.2 (the triangle). The green line around t ≈
0.772 indicates the first-order phase transition.

We have considered that the strength of the magnetic field
can reach maximally B ≈ 1015 G (1011 T) at the surface of
magnetars.10 From Eq. (13), we obtain b = 0.24 for B = 1015

G. We denote these three cases (i), (ii), and (iii) by a circle,
square, and triangle, respectively, in the phase diagram in
Fig. 2.

B. Symmetry near the surface

For the situations (i), (iii), and (iii) in the previous sub-
section, we solve the EL equations (10) and (11) with the
boundary conditions, i.e., nt Ã(0)n = 0 at x = 0 from Eq. (12)
and Ã(x) → Ãbulk in the bulk space (x → ∞). We plot the
obtained profile functions f1(x), f2(x), g1(x), g2(x), and g3(x)
for several choices of the surface direction n = (n1, n2, n3)
(θ and ϕ) in Figs. 6, 7, and 8 in Appendix C. We observe
that the profile functions approach constant values in the bulk
space as the boundary condition at x → ∞, while they change
drastically in the region x <∼ 1 near the surface. We notice
that the typical value of the healing distance from the surface
is expressed by r ≈ ξ (i.e., x ≈ 1) with ξ = pF /(mTc0) 	
360 fm for pF = 338 MeV and Tc0 = 0.2 MeV. The changes
of the profile functions induce the symmetry breaking near the
surface. This can be seen directly by transforming Ã(x) into
diagonal form with some appropriate unitary matrix U (x) at
each position x:

Ã(x) → U (x)Ã(x)U (x)−1 = Ã0(x)

⎛
⎝

r(x) 0 0
0 −1 − r(x) 0
0 0 1

⎞
⎠,

(18)

10Notice the unit conversion 1 T = 104 G for the strength of a
magnetic field.
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UN bulk x1
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D2 -BN surface

(a) bulk UN phase
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FIG. 3. The special points on the surface, i.e., the UN points and the D4-BN points, are shown for several bulk phases: (i) the bulk UN
phase, (ii) the bulk D2-BN phase, and (iii) the bulk D4-BN phase. See the text for more explanation.

with Ã0(x) � 0 and −1 � r(x) � −1/2. Notice that Ã0 and
r are functions of the position x, as they have been constant
values in the bulk space [cf. Eq. (17)]. We plot r(x) in
Figs. 9, 10, and 11 in Appendix C for the bulk conditions (i),
(ii), and (iii). We confirm that r(x) is dependent on x, and that
there exist various phases, i.e., the UN phase [r(x) = −1/2],
the D2-BN phase [−1 < r(x) < −1/2], and the D4-BN phase
[r(x) = −1], that are different from those in the bulk.

The symmetry restoration or breaking near the surface can
be understood in a reasonable way. First of all, we notice
that the boundary condition at the surface, nt Ã(0)n = 0 in
Eq. (12), does not allow the general transformation of spin
and space for Ã(0), because n is a fixed vector in space.
Thus, the symmetry cannot be generally maintained from the
bulk to the surface, and it should exhibit variation near the
surface. However, there are some exceptional cases in which
the symmetry is maintained from the bulk to the surface:
n = (0, 0, 1) (θ = 0 and ϕ = 0) with the bulk UN phase and
n = (0,±1, 0) (θ = π/2 and ϕ = π/2, 3π/2) with the bulk
D4-BN phase. In both cases, the profile functions are constant
at any x, and hence the symmetry is kept invariant, as shown
in Figs. 6 and 8 as well as in Figs. 9 and 11. In order to
understand this invariance, we remember that the UN phase
possesses the O(2) symmetry around the x3 axis, and the
D4-BN phase has the D4 symmetry around the x2 axis. In the
former case, we find that the boundary condition nt Ã(0)n = 0
with n = (0, 0, 1) holds for any transformation of Ã(0) under
the U(1) symmetry. In the latter case, we also find that the
boundary condition nt Ã(0)n = 0 with n = (0, 1, 0) holds for
any transformation of Ã(0) under the D4 symmetry.

From Figs. 6, 7, and 8 and Figs. 9, 10, and 11, we
notice that the D2-BN phase [−1 < r(0) < −1/2] is real-
ized at most points on the surface. However, there are spe-
cial points, (θ, ϕ) = (0, 0), (π/2, 0), (π/2, π/2), (π/2, π ),
(π/2, 3π/2), and (π, 0), where either of the UN phase
[r(0) = −1/2] or the D4-BN phase [r(0) = −1] is realized.
We call those points the UN points or the D4-BN points, and
they appear differently for each bulk phase:

(i) UN phase: the UN points at (θ, ϕ) = (0, 0),
(π, 0) and the D4-BN points at (θ, ϕ) = (π/2, 0),
(π/2, π/2), (π/2, π ), (π/2, 3π/2),

(ii) D2-BN phase: the D4-BN points at (θ, ϕ) =
(0, 0), (π/2, 0), (π/2, π/2), (π/2, π ), (π/2, 3π/2),
(π, 0),

(iii) D4-BN phase: the D4-BN points at (θ, ϕ) =
(0, 0), (π/2, 0), (π/2, π/2), (π/2, π ), (π/2, 3π/2),
(π, 0),

as displayed graphically in Fig. 3. We notice that the UN
points appear only for the bulk UN phase, and not for the bulk
D2-BN phase or the bulk D4-BN phase.

C. Energy density and topological defects on the surface

We consider the surface energy density, which is defined
by the energy density per unit area on the surface. The
surface energy stems from the gradient term and the difference
between the potential value near the surface and the potential
value in the bulk space. With the solutions of fα (x) (α = 1, 2)
and gβ (x) (β = 1, 2, 3) from the EL equations (10) and (11),
we obtain the surface energy density, expressed as

σ (n) =
∫ ∞

0
� f (d; n)dd = p2

F Tc0

2π2
σ̃ (n), (19)

for � f (d; n) = f (d; n) − fbulk with the GL free energy den-
sity fbulk in the bulk space (d → ∞). In the preceding equa-
tion, for convenience, we have defined the dimensionless
surface energy density by

σ̃ (n) =
∫ ∞

0
� f̃ (x; n)dx, (20)

for � f̃ (x; n) = f̃ (x; n) − f̃bulk with the dimensionless GL
free energy density f̃bulk in the bulk space (x → ∞).11

In Eq. (19), the value of the coefficient is given by
p2

F Tc0/(2π2) 	 27 keV/fm2 for pF = 338 MeV and Tc0 =
0.2 MeV. We show the numerical results of the distributions
of the surface energy density σ̃ (n) on the plane spanned by θ

and ϕ in the top row in Fig. 4. For the bulk D4-BN phase, for
example, the minimum surface energy density [σ (n) = 0] is
realized at the point n = (0,±1, 0) (θ = π/2 and ϕ = π/2,

11Here we recover n to emphasize that the surface energy density
depends on the direction of the normal vector.
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FIG. 4. Top row: The plots of the dimensionless surface energy density on the surface of the matter in different magnetic fields (b) at the
temperature t = 0.9. The region of ϕ is extended to cover 0 � ϕ < 2π . The first, second, and third columns are for (i) b = 0 (the UN phase),
(ii) b = 0.15 (the D2-BN phase), and (iii) b = 0.2 (the D4-BN phase). Bottom row: We plot Ãn on the θ -ϕ plane. Notice that ϕ = 0 is identical
to ϕ = 2π . The red-filled and blue-filled circles indicate topological defects with changes +1 and −1, respectively (cf. Fig. 5). There are
distributed positive and negative charges (χ±): +10 and −8 in the UN phase, +12 and −10 in the D2-BN phase, and +8 and −6 in the D4-BN
phase.

3π/2). Notice that zero density is reasonable because there
is no change in fα (x) (α = 1, 2) and gβ (x) (β = 1, 2, 3), as
discussed in the previous section. In this situation, because
the magnetic field is applied along the x2 axis, it is expected
that the shape of the surface of the neutron star should be
deformed to be an oblate spheroid with the short axis being
aligned along the x2 axis when the surface shape can be
changed to be in balance with the Fermi pressure and the
gravity. In Fig. 4, we observe that the geometrical distribution
of the surface energy density on the sphere obeys the dihedral
symmetries as a subgroup of the spherical symmetry: the D4

symmetry for the bulk UN phase, the D2 symmetry for the
bulk D2-BN phase, and the D4 symmetry for the D4-BN phase,
as summarized in Table II.

We estimate the averaged values of the surface energy
density. For this purpose, we define the averaged values of

TABLE II. The averaged (dimensionless) surface energy density
σav (σ̃av) for the bulk phases (the UN phase, the D2-BN phase, and
the D4-BN phase). Esurf = 4πR2σav is the surface energy in total
for a neutron star with the radius R = 10 km. The energy unit
conversion 1 keV ≈ 2.0 × 10−9 erg is used. The last row indicates
the geometrical symmetries for the spatial distribution of the energy
density on the surface.

Bulk phase UN D2-BN D4-BN

σ̃av 0.0095 0.0099 0.0085
σav (keV/fm2) 0.26 0.27 0.23
Esurf (erg) 6.5 × 1029 6.8 × 1029 5.8 × 1029

Geometrical sym. D4 D2 D4

σ (n) over θ and ϕ by σav ≡ [p2
F Tc0/(2π2)]σ̃av and

σ̃av ≡ 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dϕ σ̃ (n). (21)

From the values shown in Table II, they are almost close to
σav ≈ 0.2 keV/fm2 for each bulk phase. Among them, the
minimum surface energy is provided by the bulk D4-BN
phase. With the values of σav, we obtain the surface energy
in total, Esurf = 4πR2σav, for a neutron star with the radius R.
Numerically, we obtain Esurf ≈ 6 × 1029 erg for R = 10 km.
The values of Esurf for each bulk phase are summarized in
Table II.

The directions of the condensate A at the surface have
unique topological properties. In order to see this, we define
the vector An(θ, ϕ) ≡ A(0)n with the normal vector n at the
surface [A(0) is a 3 × 3 matrix].

There are two remarks: First, we remember that the d vec-
tor is defined by Ap̂ with p̂ = p/|p| for the three-dimensional
momentum p. Because the axis direction perpendicular to the
surface is considered to be a one-dimensional system, we
reasonably regard p̂ = n, and hence conclude that An(θ, ϕ)
[Ãn(θ, ϕ)] is the same as the d vector at the surface.

Second, we also comment that, more precisely, the vector
field An parametrizes an order parameter space reduced at the
boundary. Namely, at the boundary, the order parameter space
is reduced due to the boundary condition to its submanifold,

Mred 	 S1 × S1

Z2
, (22)

where two S1’s denote the U(1) phase and the spatial ro-
tation around n, and Z2 = {1,−1} is introduced to remove
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FIG. 5. The charges of the defects (vortices) on the two-
dimensional plane are presented. The red-filled circle (first row)
indicates +1 charge and the blue-filled circle (second row) indicates
−1 charge. See also the bottom row in Fig. 4.

identical two points; a simultaneous transformation of a π

phase rotation and a π spatial rotation around n does not
change the order parameters and should be removed. Since
we restrict A to be real-valued, An(θ, ϕ) is a real vector
parametrizing one S1, and An(θ, ϕ) is a two-dimensional
vector on the plane orthogonal to the normal vector n because
n·An(θ, ϕ) = 0 is induced from the boundary condition (12).
This two-dimensional vector can be expressed by An(θ, ϕ) =
(Tc0/pF )Ãn(θ, ϕ) with

Ãn(θ, ϕ) = Ãθ (θ, ϕ) nθ + Ãϕ (θ, ϕ) nϕ, (23)

for nθ and nϕ defined by nθ ≡ ∂n/∂θ and nϕ ≡ ∂n/∂ϕ,
respectively. Notice that nθ and nϕ are the unit vectors per-
pendicular to each other and also to n, i.e., n·nθ = n·nϕ =
nθ ·nϕ = 0. We show a plot of Ãn = (Ãθ , Ãϕ ) on the plane
spanned by θ and ϕ (0 � θ < π and 0 � ϕ < 2π ) in the
bottom row in Fig. 4. Interestingly, we observe that there exist
topological defects (vortices) on the plane. Each defect has
a positive or negative charge ±1. The charges of the defects
are defined according to the circulating directions of the
vector fields as shown in Fig. 5. We denote the total positive
(negative) charge by χ+ (χ−). In Table III, we summarize
the values of χ+ and χ− for each bulk phase: χ+ = 10 and
χ− = −8 for the bulk UN phase, χ+ = 12 and χ− = −10
for the bulk D2-BN phase, and χ+ = 8 and χ− = −6 for the
bulk D4-BN phase. We define χ = χ+ + χ− to denote the sum
of χ+ and χ− which is the difference between the numbers
of the defects with a charge +1 and −1. Importantly, we
find that χ = 2 is realized uniquely for all the different bulk

TABLE III. The positive and negative charges χ± for the vortices
on the plane for the bulk phases (the UN phase, the D2-BN phase,
and the D4-BN phase). We define χ = χ+ + χ− to indicate the sum
of the positive charges and the negative charges in total. See also the
bottom row in Fig. 4.

Bulk phase UN D2-BN D4-BN

Positive charge (χ+) 10 12 8
Negative charge (χ−) −8 −10 −6
Total charge (χ ) 2 2 2

phases. This is an inevitable consequence of a topological
property of two-dimensional vector fields on a sphere, i.e.,
the Poincaré-Hopf (hairy ball, no-wind) theorem. We consider
a vector field v with isolated zeros on a two-dimensional
manifold M. Then, the Poincaré-Hopf theorem requires the
relation ∑

i

indexxi (v) = χ (M), (24)

where indexxi (v) is the index (±1 charges) of v at the position
xi of isolated zeros on M, �i indicates a sum over all the
isolated zeros (i), and χ (M) is the Euler characteristic of
M. χ (M) = 2 if M is a sphere S2 relevant for us. For
example, for the bulk UN phase, we have

∑
i indexxi (An) =

8 + (−6) = 2, which is indeed identical to χ = 2. This rela-
tion is checked for the bulk D2-BN phase and for the bulk
D4-BN phase. Therefore, we understand that χ = 2 should
hold for any bulk phases. On the other hand, χ+ and χ− can
vary according to the symmetries in the bulk phases. In order
for χ = 2 to hold, creations or annihilations should happen
for a pair of vortices with charges ±1. From Table III, we see
that two pairs of vortices are created from the bulk UN phase
to the bulk D2-BN phase, and that four pairs of vortices are
annihilated from the bulk D2-BN phase to the bulk D4-BN
phase.

The final comment is that vortices induced on a boundary
are called boojums in the context of liquid crystals [79]
and the 3He superfluids [71,85]. It is interesting that these
boojums do not extend to the bulk since closed paths winding
around Mred become trivial loops in the full order parameter
space M, where Mred ⊂ M. We notice that there recently
appeared a study on the surface vortices for spinor Bose-
Einstein condensates (BECs) with spin-orbital-angular mo-
mentum coupling [89]. The presented results indicate that
there are interesting common properties, such as the symmetry
on surface, the distribution of topological defects, and so on,
as we have discussed in our study. Thus, it would be valu-
able to investigate further similarities as well as differences
between the neutron 3P2 superfluids and spinor BECs.

IV. CONCLUSION AND PERSPECTIVES

We have studied surface effects of neutron 3P2 superfluid-
ity in the UN, D2-BN, and D4-BN phases in neutron stars.
We have supposed the situation in which the neutron 3P2

superfluid exists in a large ball with a spherical boundary, and
introduced a boundary condition suitable for the condensate at
the sphere’s surface. Solving the GL equation with the bound-
ary condition, we have found several interesting properties of
the surface effects of the neutron 3P2 superfluid. First, we have
shown that the symmetry in the bulk space can be restored
or broken to other symmetries at the surface. Second, the
distribution of the surface energy density on the sphere has
an anisotropy depending on the polar angle. This will lead to
the geometrical deformation of the surface of the neutron 3P2

superfluidity from the spherical shape to an oblate spheroid.
Third, we have investigated the two-dimensional vector field
defined from the condensate at the surface, and have shown
that there must exist topological defects (vortices) with the
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charges ±1 on the sphere. It should be emphasized that those
defects appear in the ground state but not as an excited state.
While the number of the defects (vortices) is dependent on
the symmetries in the bulk phases, i.e., the UN, D2-BN, and
D4-BN phases, the difference between the numbers of the
defects with a charge +1 and charge −1 remains topologically
invariant (χ = 2) thanks to the Poincaré-Hopf theorem. These
vortices are called boojums in the context of liquid crystals
and 3He superfluids.

In the present study, we have considered the simplest
situation for the boundary condition for neutron 3P2 super-
fluidity. In a more realistic situation, however, the neutron 3P2

superfluid can interface with a neutron 1S0 superfluid as well
as with nuclear crusts composed of a lattice of neutron-rich
nuclei. Deeper inside in neutron stars, a connection of the
neutron 3P2 phase to other exotic phases such as hyperon
matter, quark matter, and so on should be interesting. One of
the important questions to ask is how the topological objects
are connected between those phases. When a neutron star ro-
tates, Abelian quantum vortices in the hadron matter and non-
Abelian quantum vortices (color magnetic flux tubes) [90–92]
in the quark matter can be connected through colorful boo-
jums (endpoints of vortices) [93–96] (see Ref. [97] for a
review of non-Abelian quantum vortices). These boojums are
different from those studied in this paper. Although we have

limited ourselves to the BN, D2-BN, and D4-BN phases for
the neutron 3P2 superfluid, it will be also important to study
the possibilities of cyclic and ferromagnetic phases [70,73].
The former phase can lead to one-third quantized non-Abelian
vortices [98] forming a network in collision [99], while the
latter phase could be relevant to inner structures of magnetars.
In terms of the topological matter, the cyclic and ferromag-
netic phases have gapless Weyl fermions in the bulk (Weyl
semimetals) [68,100]. The above mentioned subjects should
be studied carefully in the future.
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APPENDIX A: EULER-LAGRANGE EQUATIONS

We present the concrete expressions of the left-hand sides in the EL equations (10) and (11):

−∇d
δ f

δ(∇d F1)
+ δ f

δF1
= −K (0)

4

(
2(2 − sin2 θ sin2 ϕ)∇2
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d G1
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d G3
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3
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2 G2
2F 2

1

+ 180F2G2
1G2

2F 2
1 + 114F 3
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1G2G3F1 + 48F 3
2 G1G2G3F1 + 8F 7
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)
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2G3F1 + 48F2G3
1G2G3F1

+ 48F 3
2 G1G2G3F1 + 16F 7

2 + 16F2G6
1 + 22F2G6

2 + 22F2G6
3 − 12G1G2G5
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) + β (2)
(
2F2b2
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)
+β (4)
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)(
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, (A2)
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−∇d
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δ(∇d G1)
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δG1

= −K (0)
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2 cos θ sin θ sin ϕ∇2
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2 − sin2 θ cos2 ϕ

)∇2
d G1 + 2 sin2 θ cos ϕ sin ϕ∇2
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)
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FIG. 6. The plots of the profile functions f1(x), f2(x), g1(x), g2(x), g3(x) for the bulk condition (i) ( f bulk
1 , f bulk

2 ) = (0.64, 0.64) at t = 0.9
and b = 0 (the bulk UN phase).
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FIG. 7. The plots of the profile functions f1(x), f2(x), g1(x), g2(x), g3(x) for the bulk condition (ii) ( f bulk
1 , f bulk

2 ) = (0.92, 0.32) at t = 0.9
and b = 0.15 (the bulk D2-BN phase).
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FIG. 8. The plots of the profile functions f1(x), f2(x), g1(x), g2(x), g3(x) for the bulk condition (iii) ( f bulk
1 , f bulk

2 ) = (1.12, 0) at t = 0.9
and b = 0.2 (the bulk D4-BN phase).

APPENDIX B: SYMMETRIES

We summarize the properties of the symmetries of the
order parameter A in Eq. (17). First of all, we remember that
A possesses the symmetry

A(x) → eiαO(θ, n)A(x̃)Ot (θ ′, n′) (B1)

in the Lagrangian, where eiα ∈ U(1) and O(θ, n), O(θ ′, n′) ∈
SO(3) with n (n′) the rotation axis and θ (θ ′) the rotation
angle around n (n′). Here, O(θ, n) is the rotation in the spin
space and O(θ ′, n′) is the rotation in the real space. x̃ is
the vector rotated by O(θ ′, n′) from x. The symmetries (B1)
are spontaneously broken to subgroups when the state is in
the nematic phase as presented in Eq. (17). Instead, there

exist the O(2), D2, and D4 symmetries, and the corresponding
phases are called the UN (r = −1/2), D2-BN (−1 < r <

−1/2), and D4-BN (r = −1) phases, respectively. We will
give the concrete forms of those symmetries in the following.

1. UN phase (r = −1/2)

For r = −1/2, the order parameter A(x) is written as

AUN(x) = A0

⎛
⎝

−1/2 0 0
0 −1/2 0
0 0 1

⎞
⎠. (B2)

This is invariant under the rotation around the x3 axis
AUN(x) → O(θ )AUN(x′)Ot (θ ) with eiα = 1 (α = 0), where
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FIG. 9. The plots of r(x) for the bulk condition (i) ( f bulk
1 , f bulk

2 ) = (0.64, 0.64) at t = 0.9 and b = 0 (the bulk UN phase).

O(θ ) ∈ O(2) is the rotation operator

O(θ ) =
⎛
⎝

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞
⎠, (B3)

with the rotation angle θ (0 � θ < 2π ). This is the uniaxial
nematic (UN) phase. The rotation in the spin space and the
rotation in the real space are locked to each other, O(θ, n) =
O(θ ′, n′) with n = n′ and θ = θ ′. The locking also occurs for
the BN phase.

2. D2-BN phase (−1 < r < −1/2)

For −1 < r < −1/2, the order parameter A(x) is written
as

AD2BN(x) = A0

⎛
⎜⎝

r 0 0

0 −1 − r 0

0 0 1

⎞
⎟⎠. (B4)

This is invariant under the D2 symmetry. The generators of the
D2 group are given by

{O} = {13, I1, I2, I3}, (B5)

with eiα = 1 (α = 0), 13 is a unit matrix, and I1, I2, and I3 are
defined by

13 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, I1 =

⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠,

I2 =
⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠, I3 =

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠. (B6)

Ii (i = 1, 2, 3) indicates a π rotation around the ith axis. We
confirm easily that AD2BN(x) is invariant under the transfor-
mation AD2BN(x) → OAD2BN(x′)Ot (O ∈ D2). This phase is
called the D2-biaxial nematic (D2-BN) phase.
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FIG. 10. The plots of r(x) for the bulk condition (ii) ( f bulk
1 , f bulk

2 ) = (0.92, 0.32) at t = 0.9 and b = 0.15 (the bulk D2-BN phase).

3. D4-BN phase (r = −1)

For r = −1/2, the order parameter A is written as

AD4BN = A0

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠. (B7)

This is invariant under the D4 symmetry. The generators of the
D4 group are given by

{eiα, O} = {(1, 13), (−1, R2), (1, I2), (−1, I2R2),

(1, I1), (1, I3), (−1, I1R2), (−1, I3R2)}, (B8)

where 13 and Ii (i = 1, 2, 3) have been defined in the D2

group, and R2 is newly defined by

R2 =
⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠. (B9)

R2 indicates the π/2 rotation around the second axis (x2

axis). It should be noted that the phase {eiα} = {1,−1} ∈
Z2 (α = 0, π ) is locked with the spin rotation and the
spatial rotation. We confirm easily that AD4BN is invari-
ant under the transformation AD4BN(x) → eiαOAD4BN(x′)Ot

[(eiα, O) ∈ D4]. This is the D4-biaxial nematic (D4-BN)
phase.

APPENDIX C: NUMERICAL RESULTS FOR
THE PROFILE FUNCTIONS

From Sec. III B, we summarize the numerical results for
fα (x) (α = 1, 2, 3), gβ (x) (β = 1, 2, 3) in Figs. 6, 7, and 8
and r(x) in Figs. 9, 10, and 11 for the UN, D2-BN, and D4-BN
phases in the bulk.
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FIG. 11. The plots of r(x) for the bulk condition (iii) ( f bulk
1 , f bulk

2 ) = (1.12, 0) at t = 0.9 and b = 0.2 (the bulk D4-BN phase).
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