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Screening properties of quark-gluon plasma obtained from distribution
and correlation functions of the constituent quasiparticle model
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Based on the constituent quasiparticle model of quark-gluon plasma (QGP), the matrix elements of the density
operator and the Wigner function in the color phase space are presented in form of color path integrals over
Wiener and SU(3) group Haar measures. Monte Carlo calculations of quark and gluon momentum distributions
and spatial pair distribution functions have been carried out for the strongly coupled QGP plasma in thermal
equilibrium at zero baryon chemical potential. The Debye screening mass and the running coupling constant have
been obtained from the spatial pair distribution function and are in agreement with the available lattice QCD data.
At densities related to the average interparticle distance more than 0.4 fm the gluon bound states in the form of
glue balls have been found. Comparison with the Maxwell-Boltzmann distribution shows significant influence
of interparticle interaction on high-energy asymptotics of the momentum distribution functions, resulting in
appearance of quantum tails. The new color pair correlation function has been introduced, and related new color
screening mass has been discussed.
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I. INTRODUCTION

The color screening of heavy quarks, as it was proposed in
Ref. [1], should lead to dissociation of J/ψ bound state and
may indicate a formation of the quark-gluon plasma (QGP)
arising in heavy-ion collision experiments [2]. The idea of a
screening mass and running coupling constant allows us to un-
derstand the interaction of a particles, inserted into a medium,
intuitively. The simplest way is to consider a static quark-
antiquark probe in color plasma, wherein all medium effects
are taken into account by two-body interaction potential U (r).
In medium both the Coulomb and stringlike parts of inter-
action between the heavy quark and antiquark are modified
[3–5], and the potential U (r) is generally a complex quantity
[6–8]. An effective description would have to capture the
effects of screening and Landau damping, related to the real
and imaginary parts of the potential correspondingly. Several
approaches were proposed to treat this problem using, e.g., ef-
fective theories [9–11], spatial correlation functions, or the be-
havior of the color singlet free energies [12–15]. However, the
perturbative expansion in terms of the QCD coupling constant
g fails [16]. Therefore it is necessary to use nonperturbative
approaches to make predictions of QGP properties. Currently,
the lattice QCD simulation is the only systematic method
allowing us to extract various properties of QGP and to study
the interquark interactions and screening properties of QGP.
However, interpretation of these very complicated numerical
computations requires application of various QCD motivated,
albeit schematic, models simulating various aspects of the
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full theory and allowing for a deeper physical understanding.
Moreover, such models are needed in cases when the lattice
QCD fails, e.g., at large quark chemical potentials and out of
thermodynamic equilibrium. For temperatures higher than the
QCD transition temperature (of order 175 MeV) this issue
can be addressed by adopting the quasiparticle approaches
[17–34]. Quasiparticle models have to account such high
temperatures for the hot QCD medium effects and to describe
the influence of strong interparticle interaction. To consider
here the microphysics insights into the interquark interactions
and screening mechanism, we investigate QGP in the frame-
work of quasiparticle QGP model, which has been proved in
reproducing various aspects of QGP thermodynamics and ki-
netic properties [35–37]. The approach used in Refs. [35–37]
is based on the quasiparticle pattern and is motivated by
expectation that the main features of non-Abelian plasmas
can be understood in simple semiclassical terms without dif-
ficulties inherent to a full quantum field-theoretical analysis.
This also sets the motivation for the investigations, which
are using the continuous classical color variable interacting
with the chromodynamic field [38–41]. Quantum Monte Carlo
simulations presented in Ref. [37] were able to reproduce the
lattice equation of state even near the critical temperature and
at nonzero baryon chemical potential.

The quasiparticle model of QGP is seen to be consistent
with the lattice simulations [42–52]. As a consequence, the
very definition and numerical determination of screening mass
are obscured by the complications of the non-Abelian nature
of QCD and the strong coupling. Nevertheless, let us note
that parametrization of the real part of effective potential
U (r) can reproduce the lattice data quite well [53]. In this
paper, to identify a running coupling constant and a Debye
screening mass of quasiparticles, we are fitting the spatial
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pair distribution functions with a form, corresponding to a
screened Coulomb potential. The pair distribution functions
also allow us to identify the gluon bound states in the form
of glue balls, but only at densities related to the average
interparticle distances more than rs � 0.4 fm. (rs = 3

√
3/4πn,

n is the density of all quasiparticles). For detailed studies of
the quark, antiquark, and gluon color screenings we have also
developed the new spatial color pair correlation function with
respect to the interparticle distance and introduced related new
color screening masses as function of temperature.

The quasiparticle model, considered here, also allows us to
investigate the kinetic properties of QGP. For this purpose the
quantum color dynamics in the color phase space has been
developed in Ref. [37], moreover, the diffusion coefficient
and shear viscosity of QGP, calculated there, are in a quite
good agreement with available data. In the present paper in
the framework of color phase space Wigner approach to the
quasiparticle model we propose Monte Carlo calculations of
the quark and gluon momentum distribution functions for
strongly coupled QGP in thermal equilibrium at zero baryon
chemical potential. To do this we rewrite the Wigner function
of QGP in the form of color path integrals. To integrate over
color variables, we develop a procedure of sampling the color
quasiparticle variables in accordance with the Haar measure
of the SU(3) group with the quadratic and cubic Casimir
conditions. The developed approach self-consistently takes
into account Fermi (Bose) statistics of quarks (gluons).

The paper is organized as follows. Section II deals with
assumptions of the quasiparticle description of hot QCD. In
Secs. III and IV we discuss the path integral representation of
the matrix elements of the density operator and the Wigner
functions for canonical ensemble correspondingly. Section V
is devoted to the brief description of the Monte Carlo simu-
lations. Results of simulations of the pair distribution func-
tions are considered in Sec. VI. In Sec. VII the spatial pair
distribution functions, the Debye screening mass and the
running coupling constant are discussed. In Sec. VIII the new
color pair correlation functions are presented and the related
color screening mass is discussed. Section IX deals with the
quantum tails of QGP momentum distribution functions.

II. ASSUMPTIONS OF THE MODEL

The basic assumptions of the considered quasiparticle
model are similar to those in Refs. [37,41,54].

(i) Masses of quasiparticles m are of order or higher than
the mean kinetic energy per particle; this assumption
is based on the analysis of QCD lattice data [55–57].

(ii) We consider the model with quarks of three flavors;
for simplicity, we assume the masses of u, d , and
s quarks to be equal; as for gluon quasiparticles,
we allow their masses to differ from that of quarks
(heavier).

(iii) The interparticle interaction is dominated by color-
electric Coulomb potential; color-magnetic effects are
neglected as subleading ones.

(iv) Since the color charges are large, the color operators
are replaced by their average values, i.e., by Wong’s

classical color vectors [eight-dimensional (8D) in
SU(3)] with the quadratic and cubic Casimir condi-
tions [58].

Applicability of this approach has been discussed
in Refs. [38,41] in detail. Our approach differs from
Refs. [38,41] by a quantum treatment to quasiparticles in-
stead of the classical one. This model requires the following
quantities as functions of temperature T and quark chemical
potential μq:

(i) quasiparticle masses mq for quarks and mg for gluons;
(ii) the coupling constant g2, or αs = g2/4π .
It would be ideal if the input quantities are deduced from

lattice QCD data or from other appropriate models. However,
this task is still quite ambiguous presently, so in the present
simulations we take only a possible set of parameters (mg and
mq) given by the HTL perturbative approach [59]:

m2
g({μq}, T ) = 1

12

⎛
⎝(2Nc + Nf )T 2+ 3

π2

∑
q=u,d,s

μ2
q

⎞
⎠

× g2({μq}, T � TC ) (1)

m2
q({μq}, T ) = Ng

16Nc

(
T 2 + μ2

q

π2

)
g2({μq}, T � TC ), (2)

where Nf is the number of quark flavors which can be
excited, Nc = 3 for SU(3) group, and g2 is square of the
QCD running coupling constant, generally depending on
T and all μq. All masses depend on combinations of

zg = (T 2 + 3
π2(2Nc+Nf )

∑
q=u,d,s μ2

q)
1/2

and zq = (T 2 + μ2
q

π2 )
1/2

rather than on two independent variables T and μq. It is
also reasonable to assume that g2 is a function of this single
variable zg, because g2 is related to the whole system rather
than one specific quark flavor. Then we can use “one-loop
analytic coupling constant” [60–62]:

αs(Q
2) = 4π

11 − (2/3)Nf

[
1

ln
(
Q2/�2

QCD

) + �2
QCD

�2
QCD − Q2

]
,

where Q is the momentum transfer, �QCD = 206 MeV is the
QCD scale, Nf = 3 is the number of flavors and Q is replaced
by 2πzg.

We consider a multicomponent QGP consisting of Ñ color
quasiparticles: Ng gluons, Nq quarks, and Nq antiquarks. The
Hamiltonian of this system is Ĥ = K̂ + ÛC with the kinetic
and color Coulomb interaction parts:

K̂ =
∑

i

√
p̂2

i + m2
i (T, μi ),

ÛC = 1

2

∑
i �= j

g2(T, μi )(Qi · Qj )

4π |xi − x j | . (3)

Here i and j run over all quark and gluon quasiparticles,
μi are their chemical potentials, i, j = 1, . . . , Ñ, Ñ = Nq +
Nq + Ng, Nq = Nu + Nd + Ns and Nq = Nu + Nd + Ns are to-
tal numbers of quarks and antiquarks of all flavors (u, d, s),
3D vectors xi are quasiparticle dimensionless spatial coor-
dinates, g2(T, μi )/4π is coupling constant, the Qi denotes
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the Wong’s quasiparticle color variable [8D-vector in the
group SU (3)], (Qi · Qj ) denotes the scalar product of color
vectors. Nonrelativistic approximation for potential energy is
used, while for kinetic energy we still keep the relativistic
form, since the temperature is not negligible in comparison
with quasiparticle masses. The equation of eigenvalues of
this Hamiltonian is usually called spinless Salpeter equation.
The grand canonical ensemble with given temperature, net
quark number (μq), strange (μs) chemical potentials, and
fixed volume V is completely described by grand partition
function:

Z (μq, μs, β,V )

=
∑
{N}

exp{μq(Nq − Nq)/T } exp{μs(Ns − Ns)/T }
Nu! Nd ! Ns! Nq! Nd ! Ns! Ng!

× Z ({N},V, β ), (4)

where {N} = {Nu, Nd , Ns, Nu, Nd Ns, Ng}. In Eq. (4) we explic-
itly wrote sum over different quark flavors (u,d,s). The sum
over quark degrees of freedom is understood in the same way
below. Usual choice of the strange chemical potential is μs =
−μq (nonstrange matter), such that the total factor in front
of (Ns − Ns) is zero, β = 1/T is the reciprocal temperature.
Therefore, we omit μs from the list of variables below.

The partition function in canonical ensemble Z ({N},V, β )
and related thermodynamic properties of many particle

system are defined by diagonal matrix elements of the density
operator ρ̂ = exp(−βĤ ):

Z ({N},V, β ) =
∑
σ,σ́

∫
dx dx́ dμQ dμQ́ δσ,σ́ δ(x − x́)

× δ(Q − Q́)〈x, Q, σ |e−βĤ (Q)|x́, Q́, σ́ 〉
=
∑

σ

∫
dx dμQ ρ(x, Q, σ ), (5)

where x, σ, Q denote the multidimensional vectors, related
to spatial, spin, and color degrees of freedom of N quasipar-
ticles with related flavor indexes, respectively. The summa-
tion over σ , spatial (dx ≡ d3x1 . . . d3xN ) and color (dμQ ≡
dμQ1 . . . dμQN ) integrations run over all individual degrees
of freedom of the quasiparticles, while dμQi denotes integra-
tion over SU(3) group Haar measure [35,38].

III. PATH INTEGRAL REPRESENTATION OF
THE DENSITY MATRIX

The exact matrix elements of density operator ρ = e−βĤ of
interacting quantum system can be constructed using a path
integral approach [63,64], based on operator identity e−βĤ =
e−εĤ · e−εĤ . . . e−εĤ , where the right-hand side contains M
identical factors with ε = β/M, allowing us to rewrite the
integral in Eq. (5) as follows:

∑
σ

∫
dxdμQ ρ(x, Q, σ ) =

∑
σ

∫
dxdμQ

∫
dx(1)dμQ(1) . . . dx(M−1)dμQ(M−1) ρ (1) · ρ (2) . . . ρ (M−1)

∑
Pq

∑
Pq

×
∑

Pg

(−1)κPq +κPq

∑
σ ′

S (σ, Pqqgσ
′)δσ ′,σ

∫
dx(M )dμQ(M )δ

(
x−Pqqgx(M ))δ(Q−PqqgQ(M ))ρ (M ), (6)

where x ≡ x(0), Q ≡ Q(0), spin gives rise to the spin part
of the density matrix (S) with exchange effects accounted
for by the permutation operators Pq, Pq, and Pg acting on
the quasiparticle indexes of quarks, antiquarks and gluons in
x(M ), Q(M ) and the spin projections σ ′, Pqqg = PqPqPg.

The sum runs over all permutations with parity κPq and κPq ,
while

ρ (m) ≡ ρ
(
x(m−1), Q(m−1); x(m), Q(m); {N}; ε)

= 〈
x(m−1)

∣∣e−εĤ
∣∣x(m)

〉
δ
(
Q(m−1) − Q(m)

)
(7)

is the off-diagonal element of the density matrix. Since
the color charge is treated classically, we keep only di-
agonal terms [δ(Q(m−1) − Q(m) )] in color degrees of free-
dom. Here each quasiparticle is presented by set of co-
ordinates {x(0)

i , . . . , x(M−1)
i }, called beads, in units of λa =√

2πε/ma, a = q, q, g, h̄ = kB = c = 1) and a 8D color vec-
tor Q(0)

i in the SU (3) group. Thus, all beads of each quasi-
particle are characterized by the same spin projection, flavor,
and color charge. Notice that masses and coupling constant

g2(T, μi )/4π in each ρ (m) are the same as those for the
original quasiparticles, i.e., these are still defined by the actual
temperature T . Details of analytical calculation of matrix
elements ρ (m) are presented in Refs. [35–37].

The main advantage of this approach is that it allows
us to use perturbation theory to obtain approximation for
density matrices ρ (m), which is applicable due to smallness of
artificially introduced factor 1/(M ). Each factor ρ (m) should
be calculated with the accuracy of order of 1/Mθ with θ > 1,
because in this case the error of the whole product in the limit
M → ∞ tends to zero.

IV. WIGNER FUNCTION FOR CANONICAL ENSEMBLE

Now we are going to obtain a new path integral rep-
resentation of Wigner functions in the color phase space,
which allows us numerical simulations of strongly coupled
quantum systems of particles in canonical ensemble [63–68].
The Wigner function of many-particle system in canonical
ensemble can be defined as a Fourier transform [69,70] of
the matrix element of the density operator [35,36] in the
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coordinate representation:

W (p, x, Q) =
∑
σ,σ́

∫
dξ dμQ́ δσ,σ́ δ(Q − Q́) exp(i〈ξ |p〉)〈x + ξ/2, Q, σ |e−βĤ (Q)|x − ξ/2, Q́, σ́ 〉

= C(M )

Z ({N},V, β )

∑
σ

∑
PqPqPg

(−1)κPq +κPq S (σ, Pqqgσ
′)
∣∣
σ ′=σ

∫
dμQ(M )δ

(
Q − PqqgQ(M ))

×
∫

dξ

∫
dq(1) . . . dq(M−1) dμQ exp

{
−π

〈ξ |Pqqg + E |ξ 〉
2M

+ i〈ξ |p〉 − π
|Pqqgx − x|2

M

−
M−1∑
m=0

[
π
∣∣q(m) − q(m+1)

∣∣2 + εU

(
(Pqqgx − x)

m

M
+ x + q(m) − (M − m)ξ

2M
+ mPqqgξ

2M

)]}
, (8)

where C(M ) = M6Ñ (M−1)/2 is constant and q(M ) = q(0). Details of analytical calculation of the matrix elements of density
operator are presented in Refs. [35–37]. Here the interaction energy U is the sum of the two-particle color quantum Kelbg
potentials. The antisymmetrization for quarks and symmetrization for gluons takes into account quantum statistics. Here we
have replaced variables of integration x(m) for any given permutation PqPqPg by relation

x(m) = (Pqqgx − x)
m

M
+ x + q(m) − (M − m)ξ

2M
+ mPqqgξ

2M
. (9)

In Eq. (8) E is the unit matrix, while the matrix presenting permutation PqPqPg is equal to unit matrix with appropriately
transposed columns. In Eq. (8) E is the unit matrix, while the permutation matrix PqPqPg is obtained from E by appropriate
transposition of columns. To avoid the problems with definition of the relativistic Wigner function, discussed in Refs. [40,71–73],
we use here the nonrelativistic limit for kinetic energy operator (3).

The expression for the Wigner function (8) is inconvenient for Monte Carlo simulations since it does not contain explicit result
of integration over ξ , even for free particles with U (x) ≡ 0. In general, this integral can not be calculated analytically. Exceptions
are linear and quadratic functions U (x), known as the linear and harmonic potentials, correspondingly. To perform the integration
over ξ analytically and obtain an explicit expression for Wigner function, let us take the approximation for potential U (x), given
by the Taylor expansion up to the first or second order in ξ , strongly restricted by exponentially decaying factor with quadratic
form of ξ in (8). These approximations were tested by calculations of thermodynamic values and ground-state wave functions
for quantum particle in 1D and 3D potential field [65,66]; they give practically exact results even for potentials, which differ
from linear or harmonic ones significantly.

As it was shown in Ref. [74] for electromagnetic plasma, the main contribution to Fermi repulsion in (8) comes from the pair
permutations at moderate plasma degeneracy, when temperature is about Fermi energy. This is the physical reason to take into
account only pair permutations and neglect the others. In this approximation the Wigner function can be presented in the next
form:

W (p, x, Q) ≈ C(M )

Z ({N},V, β )

∫
dq(1) . . . dq(M−1)

× exp

{
−

M−1∑
m=0

[
π
∣∣q(m) − q(m+1)

∣∣2 + εU
(
x + q(m)

)]}
exp

{
M

4π

∣∣∣∣ip + ε

2

M−1∑
m=0

(M − 2m)

M

∂U
(
x + q(m)

)
∂x

∣∣∣∣
2
}

×
∑
σq

⎧⎨
⎩1 −

Nq∑
l<t

δσl,qσt,qδ fl,q ft,qδ((Ql,q − Qt,q)) exp

(
−2π

|xl,q − xt,q|2
M

)
δ

(
( p̃l,q − p̃t,q )

√
M

2π

)⎫⎬
⎭

×
∑
σq

⎧⎨
⎩1 −

N̄q∑
l<t

δσl,qσt,qδ fl,q ft,qδ((Ql,q − Qt,q)) exp

(
−2π

|xl,q − xt,q|2
M

)
δ

(
( p̃l,q − p̃t,q )

√
M

2π

)⎫⎬
⎭

×
∑
σg

⎧⎨
⎩1 +

Ng∑
l<t

δ((Ql,g − Qt,g)) exp

(
−2π

|xl,g − xt,g|2
M

)
δ

(
( p̃l,g − p̃t,g)

√
M

2π

)⎫⎬
⎭, (10)

where

p̃t,a = pt,a + ε

2

M−1∑
m=0

∂U
(
x + q(m)

)
∂xt,a

.

025202-4



SCREENING PROPERTIES OF QUARK-GLUON PLASMA … PHYSICAL REVIEW C 101, 025202 (2020)

Here δ fi, f j are the Kronecker symbols, depending on flavor indexes fi of quasiparticles and taking values u, d , and s. For
simplicity, we write here the expression, corresponding only to the linear terms in the Taylor expansion of color potentials.

To avoid difficulties arising at Monte Carlo simulations due to presence of the δ function in expression (10), and to regularize
integration over momenta, the positive Husimi distributions, being a coarse-grained Wigner function, can be used with a Gaussian
smoothing for small phase space cells of parameters �2

x and �2
p [70]. The final expression for Wigner function can be written in

the form:

W H (p, x, Q) ≈ C(M )

Z ({N},V, β )

∫
dq(1) . . . dq(M−1) exp

{
−

M−1∑
m=0

[
π
∣∣q(m) − q(m+1)

∣∣2 + εU
(
x + q(m)

)]}

× exp

{
M

4π

∣∣∣∣ip + ε

2

M−1∑
m=0

(M − 2m)

M

∂U
(
x + q(m)

)
∂x

∣∣∣∣
2
}

×
∑

σ

exp

⎛
⎝−β

Nq∑
l<t

v
q
lt

⎞
⎠ exp

⎛
⎝−β

N̄q∑
l<t

v
q
lt

⎞
⎠ exp

⎛
⎝−β

Ng∑
l<t

v
g
lt

⎞
⎠, (11)

where the final expression for the phase space pair pseudopotentials, accounting for quantum statistical effects, looks like:

va
lt =−kT ln

⎧⎪⎨
⎪⎩1−δσl,aσt,aδ fl,a ft,a exp

(
−|Ql,a − Qt,a)|2

2�̃2
Q

)
exp

⎛
⎜⎝−

2π |xl,a − xt,a|2
(
1 − �̃2

a,x/λ
2
a

1+�̃2
a,x/λ

2
a

)
λ2

a

⎞
⎟⎠ exp

(
−|( p̃l,a − p̃t,a)|2λ2

a

(2π h̄)2
(
�̃2

p

/
λ2

a

)
)⎫⎪⎬
⎪⎭,

v
g
lt = −kT ln

⎧⎪⎨
⎪⎩1 + exp

(
−|Ql,g − Qt,g)|2

2�̃2
Q

)
exp

⎛
⎜⎝−

2π |xl,g − xt,g|2
(
1 − �̃2

g,x/λ
2
g

1+�̃2
g,x/λ

2
g

)
λ2

g

⎞
⎟⎠ exp

(
−|( p̃l,g − g̃t,g)|2λ2

g

(2π h̄)2
(
�̃2

p

/
λ2

g

)
)⎫⎪⎬
⎪⎭. (12)

Here a = q, q, �2
a,x = 2

(π2−2) and z = 1/
√

2. To extent the
region of applicability of obtained phase space pair pseudopo-
tential, �̃2

p and �̃2
Q can be considered as fit functions with

values much smaller than unity. Our test calculations [74]
have shown that the best fit for �̃2

p can be written in the form
�̃2

p/λ
2
a = 0.00505 + 0.056nλ3

a, while �̃2
a,x and �̃2

Q were of
order 0.1.

The pseudopotentials v
q
lt in the phase space allow us to

avoid the famous fermionic sign problem and to realize the
Pauli blocking for quarks/antiquarks with the same spin,
flavor, and color. The pseudopotentials v

g
lt provides Bose

statistics for gluons. Note also that the expression (11) ex-
plicitly contains the term, related to the classical Maxwell
distribution, modified by terms accounting for influence of
interaction on the momentum distribution function.

An average value of arbitrary quantum operator Â can
be written as Weyl symbol A(p, x, Q), averaged over the
color phase space with the Wigner function W (p, x, Q) or
W H (p, x, Q):

〈Â〉 =
∫

dμQ
d pdx

(2π )6Ñ
A(p, x, Q)W H (p, x, Q), (13)

where the Weyl symbol of operator Â is

A(p, x, Q) =
∫

dξe−i〈ξ |p〉/h̄〈x − ξ/2|Â(Q)|x + ξ/2〉. (14)

Weyl symbols of common operators such as
p̂, x̂, p̂2, x̂2, Ĥ, Ĥ2, etc. can be easily calculated directly
from the definition (14).

V. MONTE CARLO SIMULATIONS OF QGP
DISTRIBUTION FUNCTIONS

The basic idea of the Monte Carlo simulations of QGP is to
construct a Markovian chain of different quasiparticle states
in the color configuration space or in the color phase space
[37]. The computational procedure comprises two stages. At
the first stage a dominant, i.e., maximal, {N} term in the
sum of Eq. (4) is determined by calculations in the grand
canonical ensemble. This term is indeed the dominant one
in thermodynamic limit of the box volume (V → ∞). In
grand canonical ensemble, the quasiparticle numbers in the
simulation box are varied, i.e., the sequential states of the
Markovian chain can differ from each other by numbers of
quarks, antiquarks, or gluons. Transitions between these states
are the first type of Markovian elementary step. In the second
type of elementary step, the coordinates of randomly chosen
quasiparticle are changed. The color variables are changed
according to the SU(3) group Haar measure [35,37,38,75–
77] in the third type of the Markovian elementary step. For
simplicity, numbers of spins up and down are fixed and equal
to each other for quarks (antiquarks). The Markovian chain is
generated until complete convergence of calculated values is
achieved. This allows one to determine the average numbers
of quarks, antiquarks, and gluons in the box volume at fixed
temperature. Here, only the densities of each type of particle,
i.e., average number of particles to box volume ratio, have
physical sense. Usually, after several 106 elementary steps,
the average numbers of quasiparticles of each type become
stable, and, for example, at zero baryon chemical potential, the
average number of quarks is practically equal to the average

025202-5



V. FILINOV, A. LARKIN, AND V. FORTOV PHYSICAL REVIEW C 101, 025202 (2020)

(a)

(b)

(c)

FIG. 1. (a) The quark and gluon densities versus temperature at
baryon chemical potential equal to zero. (b) Equation of state of QGP
for different baryon chemical potentials. (c) Pressure for μ > 0 in
excess of the pressure at μ = 0. The Monte Carlo (PIMC) results
(symbols) are compared to lattice data (lines) of Refs. [49,50].

number of antiquarks. This equality can be considered as
an inherent test of self-consistency of the calculations. In
this way, the dependence of quasiparticle density on baryon
chemical potential is calculated in grand canonical ensemble
according to (4).

At the second stage the fixed numbers of quarks, anti-
quarks, and gluons have to be chosen equal to the obtained
average values at the first stage, and calculations were carried
out in the canonical ensemble. Wherein the second and the
third types of the elementary Markovian step described above
are used. To generate the Markovian chain for integration in
the color phase space [see (13)], it is necessary to sample
the momentum of some quasiparticle as the new Markovian
elementary step [74].

For reader convenience, Fig. 1 shows the results of the
Monte Carlo calculations (PIMC) for averaged over spin and

flavor variables, obtained in Refs. [35,36] within quasiparticle
approach, discussed above. The top plot shows dependences
of quark and gluon densities on temperature at zero baryon
chemical potential (nq = nq). For different chemical poten-
tials the central and bottom plots present the equations of
state and the pressure difference compared to the limit of zero
chemical potential. As it follows from Fig. 1, for chemical
potentials μ/Tc = 133/175 < 1 our approach agrees quite
well with lattice QCD data based on a Taylor expansion
around μ = 0. In this paper we calculate the spatial and
momentum distribution functions of QGP quasiparticles in
canonical ensemble, using the quark, antiquark, and gluon
densities discussed above.

VI. PAIR DISTRIBUTION FUNCTIONS

To understand physical properties of QGP, let us start
from consideration of spatial arrangement of quasiparticles by
discussing the pair distribution functions (PDF) gab(r), which
are obtained by integration of the Wigner functions over all
variables except coordinates of two quasiparticles of the types
a and b:

gab(|R1 − R2|)NaNb

V 2

= 1

Z

∑
σ

∑
i, j,i �= j

δai,a δb j ,b

∫
d pdrdμQδ(R1 − ri )

× δ(R2 − r j ) W H (p, x, Q), (15)

where a(ai ) and b(b j ) can take values q, q, or g. Functions
gab(r) give probability density to find a pair of quasiparticles
of types a and b at the distance r between them as the PDFs
depending only on the difference between coordinates due
to translational invariance of the system. In a noninteracting
classical system gab(r) ≡ 1, whereas interactions and quantum
effects result in a redistribution of the particles. Results for
PDFs at temperature T/Tc = 2 and T/Tc = 4 and different
average interparticle distances rs [rs = 3

√
3/(4πn), n is the

density of all quasiparticles] are shown on Fig. 2. The PDFs of
identical particles are presented by lines 1, 2, 4, and 7 on the
top plot of Fig. 2, while other lines show PDFs of the quasi-
particles of different types. All PDFs reveal a similar behavior.
At the distances r/a0 � 0.5 all PDFs tends to unity (i.e.,
the ideal gas limit), while near zero PDFs are monotonously
growing. This behavior of the PDFs at small distances is
manifestation of effective pair attraction of quarks, antiquarks,
and gluons. This attraction suggests that the color vectors of
nearest-neighbor quasiparticles of any type are antiparallel.
QGP lowers its total energy by minimizing the color Coulomb
interaction energy via a spontaneous antiferromagnetic or col-
orless ordering of color vectors. This may result in clustering
of quarks, antiquarks and gluons and, possible, appearance of
bound states. Such low-distance behavior is also observed in
a nonideal dense astrophysical electron-ion plasma and in a
nonideal electron-hole plasmas in semiconductors [37].

We can also notice fundamental difference between
quark and gluon PDFs (antiquark PDFs are identical to the
quark PDFs). The short-distance attraction is stronger
for gluon-gluon and gluon-(anti)quark pairs than for
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FIG. 2. (a) The pair distribution functions gab(r) of the quark
and gluon quasiparticles at temperatures T = 4Tc at baryon chemical
potential equal to zero (a,b = quark, antiquark, or gluon, a0 = 1.16
fm). Lines 1–6: rs = 0.6 fm; 7: rs = 0.4 fm. (b) Product r2gab(r).
Lines for T = 4Tc: 1,2: rs = 0.6 fm; 3: rs = 0.5 fm; 4: rs = 0.4 fm.
Line 5: T = 2Tc, rs = 0.6 fm.

(anti)quark-(anti)quark ones because of the corresponding
difference in values of quadratic Casimir invariants q̆2 [37],
which determine the maximal values of the effective color
charge scalar products (Qi · Qj) in color Kelbg (Coulomb)
potentials: for gluon-gluon pairs |(Qg · Qg)|max = 24, for
gluon-(anti)quark pairs |(Qg · Qq)|max = |(Qg · Qq)|max ≈ 10,
and for (anti)quark-(anti)quark pairs |(Qq · Qq)|max =
|(Qq · Qq)|max = |(Qq · Qq)|max = 4.

The short-distance correlation implies formation of the
gluon-gluon clusters, which are uniformly distributed in space
[see ggg(r) at large distance]. In case of the gluon-gluon
clusters we can even talk about gg-bound states (i.e., glue
balls) due to the following well-known statements of quantum
mechanics for two particles. The gluon-gluon PDFs can be
formed either by correlated scattering states or by bound states
of quasiparticles, depending on the relative fractions of these
states. However, strictly speaking, there is no clear subdivision
into bound and free components in plasma media due to
mutual overlap of the quasiparticle clouds. In addition, there
is not any rigorous criterion for a bound state at high densities
due to the strong affection of the surrounding plasma.

Nevertheless, a rough estimate of existence and even frac-
tion of quasiparticle bound states [78] can be obtained by
the following reasonings. The product r2gab(r) has sense of
probability to find a pair of quasiparticles at the distance r
between them. On the other hand, the corresponding quantum
mechanical probability is the product of r2 and two-particle

Slater sum

�ab = 8π3/2λ3
ab

∑
α

|�α (r)|2 exp(−βEα ) = �d
ab + �c

ab,

(16)

where Eα and �α (r) are the energy (without center of mass
energy) and the wave function of a quasiparticle pair cor-
respondingly. �ab is, in essence, the diagonal part of the
corresponding density matrix. In Eq. (16) the summation runs
over all possible states α with contributions from the discrete
(�d

ab) and continuous (�c
ab) parts of the spectrum.

At the temperatures smaller than the binding energy and
at distances smaller than or of the order of several bound
state radii the main contribution to the Slater sum comes
from bound states and the product r2�d

ab is sharply peaked
at distances around the Bohr radius [78]. Similarly, in QGP
the product r2ggg(r) forms distinct maximum, which can be
interpreted as evidence of bound states of gg pairs or clusters.
Sharp peak on the right plot of Fig. 2 at small distances
indicates existence of the bound states; it demonstrates the fast
decreasing fraction of the glue balls with increasing density at
temperatures T = 4Tc. One can notice that at density related
to rs = 0.6 fm fraction of bound states almost is not changed
while temperature decreases from T = 4Tc to T = 2Tc.

VII. DEBYE SCREENING MASS AND RUNNING
COUPLING CONSTANT

When studying the system by numerical methods, it is
interesting to know how the free energy depends on the
interparticle distance. The free energy surface along the se-
lected coordinate is called the potential of mean force (PMF)
[79–81]. PMF can be obtained through Monte Carlo or molec-
ular dynamics simulations, which examine how the energy
of the system varies with a specific parameter. For example,
it can examine how the energy of the system changes as
function of the distance between two given particles. This
energy change w(2)(r) is an average work required to bring
two particles from infinite distance to the distance r. The
potential of mean force w(2)(r) is usually applied in the
Boltzmann inversion method as a first guess for the effective
pair interaction potential that ought to reproduce the correct
pair distribution function [79]. For low density of particles
the virial expansion in terms of bare potential Uab(r, T ) gives
w(2)(r) = Uab(r, T ) = −T ln gab(r, T ) [37]. In general case
the PMF of a system with Ñ particles is the potential that
gives the average force over all the configurations of all the
n + 1, . . . , Ñ particles acting on a particle j at any fixed
configuration keeping fixed a set of particles 1, . . . , n [see
Eq. (5)] [80,81]:

−∇ jw
(n)
(
x(n)
) =

∑
σ

∫
d pdx(Ñ−n) dμQ ∇ jW H (p, x, Q)∑

σ

∫
d pdx(Ñ ) dμQ W H (p, x, Q)

,

j = 1, . . . , n (17)

Above expression −∇ jw
(n) is the averaged force, i.e., mean

force on particle j and w(n) is the so-called potential of
mean force. According to the Ref. [82] the pair distribution
functions can be expressed through the potential of mean
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force w(2):

g(r) = exp
[−w(2)(r)/T

]
. (18)

As it follows from the left plot of Fig. 2, the logarithm of
PDF, describing the PMF, can be approximated by a linear
functions at distances smaller than the half of average inter
quasiparticle distance with good accuracy. Thus the PMFs are
almost linear functions of the interparticle distances, which
are formed by the contributions of the color Coulomb poten-
tials (strictly speaking color Kelbg pseudopotentials). Below
we will see that at large distances all PDFs [except ggg(r)]
can be described by exponentially screening Yukawa-type
effective potential, similarly with electromagnetic plasma.

In lattice QCD calculations [14] the effective Debye mass
and running coupling constant at temperatures above Tc have
been estimated from the appropriate fit range for free energies
w

(2)
M (r, T ) by the screened Coulomb potential:

w
(2)
M (r, T )/T = VM (r, T )

= C(M )
αeff (T, M )

r
exp[−mD(T, M )r], (19)

where αeff (T, M ), mD(T, M ), and C(M ) are the running cou-
pling constant, the Debye screening mass and the Casimir
factors for related color channel M, respectively [C(1) =
− 4

3 ,C(8) = 1
6 ,C(6) = 1

3 ,C(3) = − 2
3 ].

The PIMC simulations allow also to estimate the De-
bye screening masses mab

D (T ) and running coupling constant
αeff (T, M ) for the quasiparticle pairs free from forming bound
states (see above). According to the Eqs. (18) and (19) we
have:

− ln (gab(r)) = w
(2)
ab (r, T )/T = Vab(r, T )

= α̃ab
eff (T )

r
exp

[− mab
D (T )r

]
, (20)

where α̃ab
eff (T ) = 〈C(M )〉αab

eff (T ) with the averaged Casimir
factors 〈C(M )〉 ≈ [C(1) + C(8) + C(6) + C(3)]/4. The De-
bye screening masses mab

D (T ) and running coupling constant
α̃ab

eff (T ) can be estimated from the long distance behavior
of the gab(r), approximated accordingly to (20) with the
Debye potential Vab(r, T ) (see top plots of Figs. 2 and 3).
Disagreement with Debye approximation has place only at
short interparticle distances, where the main contribution to
gab(r) is given by the interaction with the nearest-neighbor
quasiparticle.

The Debye screening masses and running coupling con-
stant, obtained by PIMC and lattice QCD calculations [14]
correspondingly, are presented on the central and bottom plots
of Fig. 3. Vertical line shows the scatter region of the Debye
masses for color channel M = 1, 8, 6, 3 at T/Tc = 1, while
at other temperatures these regions are approximately of the
twice size of the scatters presenting data [14]. Comparison of
these results shows quite good agreement between PIMC and
lattice QCD results. Note that the Debye screening masses,
obtained from PIMC, are closer to ones obtained by Wilson
quark action than ones, obtained from improved staggered
quark action. Of course, existing disagreements should be

(a)

(b)

(c)

FIG. 3. (a) The pair quasiparticle quark-antiquark distribution
function at temperature T = 3Tc and rs = 0.4 fm (baryon chemical
potential equal to zero, a0 = 1.16 fm). Line 1: PIMC results; 2:
Debye approximation. (b) The PIMC and lattice QCD [14] Debye
screening masses. PIMC scatters: 1: quark-quark; 2: antiquark-
antiquark; 3: quark-antiquark; 4: quark-gluon; 5: antiquark-gluon.
Lattice QCD scatters 6: Wilson quark action; 7: staggered quark
action. (c) The running coupling constant. The same notation with
the central plot. The PIMC statistical errors are of order sizs of the of
the related scatters.

further investigated by more detailed PIMC simulations and
as well as at smaller lattice spacing.

VIII. PAIR COLOR CORRELATION FUNCTIONS

Independent estimations of screening parameters can be
carried out from pair color correlation functions. To introduce
the pair color correlation functions, let us consider the proba-
bility of an elementary configuration for Ñ particles given by
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(a) (b) (c)

FIG. 4. (a) The PIMC quark-quark and (b) quark/gluon-gluon color pair correlation functions for strongly coupled QGP. Line 1: quark-
quark; 2: antiquark-antiquark; 3: quark-antiquark; 4: quark-gluon; 5: antiquark-gluon; 6: gluon-gluon. Temperature T = 3Tc, rs = 0.4 fm and
baryon chemical potential equal to zero (a0 = 1.16 fm). (c) Comparison color screening parameter mCl/T from the color pair correlation
functions and Debye screening mass [14]. Scatters 1: quark-quark; 2: antiquark-antiquark; 3: quark-antiquark; 4: quark-gluon; 5: antiquark-
gluon. Lattice QCD [14]: 6: Wilson quark action; 7: staggered quark action.

the Eq. (5):

P[Ñ](x, Q) =
∑

σ

∫
d pW H (p, x, Q)∑

σ

∫
d pdx dμQ W H (p, x, Q)

. (21)

The total number of particles is huge, so that P[Ñ] in itself is
not very useful. However, one can also obtain the probabil-
ity of reduced configuration, where the degrees of freedom
of n (n < Ñ) particles x1Q1, . . . , xnQn are fixed, with no
constraints on the remaining Ñ − n indices. To do this, one
has to integrate (21) over the remaining degrees of freedom.
Let us consider the probability for quasiparticles to have
positions in the color configuration space x1, Q1, . . . , xnq , Qnq

by expression:

P[n](x[n], Q[nq])
=
∑

σ

∫
d pdx(n+1) . . . dxÑ

∫
dx dμQ W H (p, σ )∑

σ

∫
d pdx dμQ W H (p, x, Q)

. (22)

Generally speaking, the thermodynamic functions Mn in
canonical ensemble can be presented as integrals of the next
form:

〈Mn〉 =
∑

σ

∫
d pdx dμQ Mn(x, Q) W H (p, x, σ )∑
σ

∫
d pdx dμQ W H (p, x, Q)

,

where Mn(x, Q) =
∑

1�i1<i2<···<in�N

f
(
xi1 , Qi1 ; . . . ; xin , Qin

)
.

(23)

Thus, for example, for nq quasiparticles the number of
terms in Eq. (23) is equal to Nq!/(Nq − nq )!nq!:

〈Mn〉 = Nq!

(Nq − nq)!nq!

×
∫

dx1 dμQ1 . . . dxnq dμQnq

× f
(
x1, Q1; . . . ; xnq , Qnq

)
P[n]
(
x[nq], Q[nq]

)
. (24)

Let us introduce the dimensionless color correlation functions
by the next equations:

Nnq

V nq
g[nq](x[nq], Q[nq]) = Nq!

(Nq − nq)!nq!
P[nq](x[nq], Q[nq]). (25)

For example, pair quark-quark color correlation function can
be defined through scalar product of 8D color Wong vectors:

M̃2(r, x, Q) =
∑

1�i1<i2�N

δ
(
r − ∣∣x1i1

− xi2

∣∣)(Qi1 · Qi1

)
. (26)

Thus, the averaged over canonical ensemble pair color corre-
lation function looks like:

(Qa · Qb)av (r) = N2
q

V 2

∫
dx1,adx2,bdμQ1,adμQ2,b

× δ(r − |x1,a − x2,b|)(Q1,a · Q2,b)gab

× (x1,a, Q1,a; x2,b, Q2,b), (27)

where a, b correspond to quarks and g[2](x[2], Q[2] ) is the
pair color distribution function of the system. Definition of
color pair distribution functions for quasiparticles of different
types (a and b correspond to quark, antiquark, or gluon) is the
similar. These functions are negative due to contribution of
quasiparticle attraction and can be approximated by decaying
negative exponents:

(Qa · Qb)av(r) ≈ − exp
[− mab

Cl (T )r
]
. (28)

The logarithms of module of the pair color distribution func-
tion are shown on the left and central plots of Fig. 4. Thus, ac-
cording to its definition, the color screening mass mab

Cl (T ) can
be estimated from the slope of this logarithm, approximated
by straight line at distances less than the average interparticle
distance rs = 0.4 fm.

Analysis of Fig. 4 confirms exponential decay of color
pair correlation functions and allows us to calculate the color
screening masses in strongly coupled QGP, which turn out to
be of order the Debye screening mass, obtained in PIMC and
lattice QCD [14] calculations. Scatter of the values mab

Cl (T )
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for different types of quasiparticles is also connected with
different values of the related Casimir factors.

IX. QUANTUM TAILS IN MOMENTUM
DISTRIBUTION FUNCTIONS

The momentum distribution function wa(|p|) can be ob-
tained by integration of Wigner function over all quasiparticle
coordinates and momenta except the momentum of some
quasiparticle of type a:

Wa(pa) =
∫

dx d p dμQ δ(pa − p)W H (p, x, Q), (29)

where a = q, q, g. From physical point of view the momen-
tum distribution function wa(|p|) gives probability density for
quasiparticle to have the momentum p.

Nonideal classical systems of particles are described
by Maxwell distribution (MD) (proportional to
exp[−(pλa)2/4π h̄2]) even when coupling is strong, due to
the commutativity of the kinetic and potential energies. Ideal
quantum systems of particles, due to the quantum statistics,
are described by Fermi or Bose momentum distribution
functions. Interparticle interaction may be able to cause
formation of the bound states of two-particle or many-particle
clusters and, hence, influence on the momentum distribution
function. Moreover, interaction of not-bounded quantum
particle with its surroundings may restrict the available
volume of configuration space for the particle and, due to the
uncertainty principle, can also influence on the momentum
distribution function [83–89]. Thus, all these physical factors
can modify the momentum distribution function, making it
non-Maxwellial at high momenta.

One of the main objectives of this paper is to study the
influence of strong interaction between quasiparticles on the
color quasiparticle momentum distribution functions in QGP.
It has been shown in Refs. [83–89], that in fully ionized
electromagnetic plasma the momentum distribution function
at high momenta can be described by the sum of the MD and
the product of const./p8 and the Maxwell distributions with
effective temperature that exceeds the temperature of medium
(short notation P8) [89].

The results of PIMC calculations of quark and gluon mo-
mentum distribution functions are shown in Fig. 5. Figure 5
shows also two related dependencies: Maxwell distributions
(lines 1 and 4) and analytical high momentum asymptotic (P8)
(lines 4 and 6). Here the constant and the effective temperature
in P8 have been considered as adjustable parameters, set to
fit PIMC momentum distribution functions at high momenta.
As it follows from the analysis of Fig. 5, the dependences P8
can reliably fit the PIMC distributions at high momenta and
confirm appearance of quantum tails.

Trends in behavior of momentum distribution functions,
when temperature increases, can be understood from com-
parison of results for temperatures T/Tc = 1 and T/Tc = 3,
while rs = 0.4 is fixed (see plots of Fig. 5). The basic physical
reason of difference between behaviors of momentum distri-
bution functions of quarks and gluons is that the quadratic
Casimir value for gluons, responsible for interparticle inter-
action, is significantly larger than the one for quarks.

(a)

(b)

(c)

FIG. 5. The averaged over color, flavor, and spin variables mo-
mentum distribution functions wa(|p|) (a = q, g) for quarks and
gluons of the strongly coupled QGP plasma at rs = 0.4 fm.
(a) Temperature T/Tc = 1. Line 1(4): the Maxwell distribution for
quarks(gluons); 2(5): the PIMC results for for quarks(gluons); 3(6):
the high momentum asymptotics (P8) [89]. (b) Temperature T/Tc =
2. The same notation with left plot. (c) Temperature T/Tc = 3.
The same notation with central plot. The momentum distribution
functions for quarks and antiquarks practically coincide with each
other, here λ is the thermal wave length and h̄ is the Plank’s con-
stant. All momentum distribution functions are normalized to unity.
Oscillations of the PIMC distribution functions designate statistical
errors.

X. CONCLUSION

Thermodynamic and kinetic properties are important for
theoretical description of equilibrium states of quark-gluon
plasma and need to be considered within unified appropriate
model. In the framework of considered constituent quasiparti-
cle model of quark-gluon plasma (QGP) the matrix elements
of density operator and the Wigner function in the color
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phase space are presented in form of color path integrals with
Wiener and SU(3) group Haar measures. The obtained explicit
expression of the Wigner function resembles the Maxwell-
Boltzmann distribution on momentum variables, but with
quantum corrections. This approximation contains also os-
cillatory multiplier describing quantum interference between
coordinates and momenta.

Monte Carlo calculations of quark and gluon densities,
momentum, and spatial pair distribution functions for strongly
coupled QGP in thermal equilibrium at zero baryon chemical
potential have been carried out. The Debye screening mass
and running coupling constant have been obtained from the
spatial pair distribution function; the results are in agreement
with available lattice data. Gluon bound states in form of glue
balls has been found at temperatures of order T = 3Tc and
densities corresponding to the average interparticle distance
rs � 0.4 fm.

Comparison with classical Maxwell-Boltzmann distribu-
tion shows the significant influence of interparticle interaction

on high-energy asymptotics of the momentum distribution
functions, resulting in appearance of quantum tails. New pair
color correlation function, color distribution functions and
color screening mass have been developed and discussed.
Quantum effects have proven to be of primary importance in
these simulations, showing a valuable understanding of the
internal structure of QGP.

Our analysis is still too simplified and incomplete. It is still
confined only to the case of zero baryon chemical potential.
The input data of the model also requires refinement. Work on
these problems is in progress.
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