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The binomial acceptance correction procedure is studied for particle number distributions detected in high-
energy reactions in finite regions of the momentum space. We present acceptance correction formulas for scaled
variance, skewness, and kurtosis. Our considerations include various specific types of particles—positively or
negatively charged baryons and antibaryons—as well as conserved charges, namely, the net baryon number
and electric charge. A simple model with effects of exact charge conservation, namely the Bessel distribution,
is studied in some detail where effects of multiparticle correlations are present. The accuracy of the binomial
filter is studied with UrQMD model simulations of inelastic proton-proton reactions. The binomial acceptance
correction procedure works well when used inside a small region of phase space as well as for certain other types
of corrections, in particular for constructing net proton fluctuations from net baryon ones. Its performance is less
accurate when applied to obtain UrQMD fluctuations in a finite rapidity window from fluctuations in the full
4π space.
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I. INTRODUCTION

Investigation of the phase diagram of strongly interacting
matter is today one of the most important topics in nuclear
and particle physics. Transitions between different phases
of this matter are expected to reveal themselves as specific
patterns in particle number fluctuations. In particular, a critical
point (CP) should yield large deviations of the conserved
charges from their respective baselines in finite regions of the
phase space around a CP, showing universal signals in various
high-order susceptibilities [1–6]. This generally applies not
only to the hypothetical chiral QCD CP which has garnered
most attention, but also to the better established CP of the
nuclear liquid-gas transition [7,8], which entails characteristic
patterns in nucleon number fluctuations [9] as well as nuclear
fragment distributions [10].

The particle number fluctuations can be characterized by
the central moments, 〈(�N )2〉 ≡ σ 2, 〈(�N )3〉, 〈(�N )4〉, etc.,
where 〈...〉 denotes the event-by-event averaging and �N ≡
N − 〈N〉. The scaled variance ω, as well as (normalized)
skewness Sσ and kurtosis κσ 2 of particle number distribution
are defined as the following combinations of the central
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moments,

ω[N] = σ 2

〈N〉 , (1)

Sσ [N] = 〈(�N )3〉
σ 2

, (2)

κσ 2[N] = 〈(�N )4〉 − 3〈(�N )2〉2

σ 2
. (3)

These can also be expressed through the cumulants κn of the
N distribution: 〈N〉 = κ1, ω = κ2/κ1, Sσ = κ3/κ2, κσ 2 =
κ4/κ2. The quantities (1)–(3) are the well-known size-
independent (intensive) measures of particle number fluctu-
ations.

In addition to the particle number fluctuations, the suscepti-
bilities of conserved charges such as net baryon number B and
electric charge Q are of special interest. In thermodynamic
equilibrium, they are connected to the grand canonical par-
tition function and thus contain information about the QCD
equation of state. Namely, the cumulants of conserved charge
distributions are calculated as the corresponding derivatives of
the system pressure p:

κn[Qi] = V T 3 ∂n(p/T 4)

∂ (μQi/T 4)n
, (4)

where V and T are the system’s volume and temperature, Qi =
B, Q, and μB, μQ are, respectively, the baryon and electric
chemical potentials. Having generally longer equilibration
times [11,12], the fluctuations of conserved charges are also
thought to reflect properties of earlier stages of collision [5].
Studies of the higher-order fluctuation measures are motivated
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by their larger sensitivity to critical phenomena. Cumulants of
a higher order are proportional to increasing powers of the
correlation length ξ , and they are considerably more sensitive
probes to the proximity of the CP than the variance [4,13],
as was illustrated in a number of model calculations for net
baryon and/or net charge fluctuations [9,14–16]. Experimen-
tal studies of such fluctuation measures are in progress [17].
This motivates our study of acceptance effects for the higher-
order fluctuation measures.

Of course, the baryon number and electric charge are
globally conserved in high-energy collisions, meaning that
these quantities do not fluctuate in the full phase space
provided that the events under consideration have the same
number of participants. Baryon number and electric charge
of the entire system are conserved event-by-event. Therefore,
actual fluctuations of conserved charges can only be seen by
considering finite acceptance regions. The optimal choice of
acceptance for comparing the measurements with predictions
of equilibrium thermodynamics in the grand-canonical en-
semble is not trivial. If acceptance is too small, the trivial
Poisson-like fluctuations dominate [3]. The acceptance should
be large enough compared to correlation lengths relevant for
various physics processes, in particular, those related to the
QCD CP [18].

A crucial question is connecting the quantities (1), (2), and
(3) measured in finite regions of the momentum space with
predictions of various physical models. In the present paper
acceptance effects are modeled by the binomial distribution.
Namely, the binomial acceptance corrections (BAC) assume
that each particle of the ith type is accepted by detector with
a fixed probability xi. This probability 0 � xi = 〈ni〉/〈Ni〉 � 1
equals the ratio of the mean value 〈ni〉 of accepted particles
to that of 〈Ni〉 of all particles of the ith type. The main
assumption of the binomial acceptance is that the probability
xi is the same for all particles of a given type and independent
of any properties of a specific event. This assumption allows
one to relate the cumulants within a finite acceptance to
their values in the larger, encompassing phase space. We
will use the method of characteristic functions which was
used previously for similar purposes in Ref. [19]. The present
formalism does recreate the prior results on the BAC [19–21],
as one would expect. Our main focus here is on a number of
special cases for which the present formalism is found to be
most suitable. We will consider both the fluctuations of the
specific particle species and also that of globally conserved
charges such as baryon number or electric charge. We an-
alyze the performance of the binomial filter for acceptance
corrections in the momentum space as well for constructing
net proton fluctuations from net baryon ones. For that we
use ultrarelativistic quantum molecular dynamics (UrQMD)
model [22,23] simulations of inelastic p + p interactions.

The paper is organized as follows. In Sec. II we present the
formulas of the BAC which connect the fluctuations measures
in the finite x acceptances with the corresponding quantities in
the full phase space. Section III presents the typical multiplic-
ity distributions in grand-canonical and canonical statistical
mechanics of relativistic particles. In Sec. IV the BAC per-
formance is confronted with the UrQMD model simulations.
Summary in Sec. V closes the article.

II. BINOMIAL ACCEPTANCE CORRECTIONS

Let the P(N ) function denote a normalized probability
distribution for observing N particles of a given type in the
full phase space. The BAC for particle number fluctuations
assume that the probability p(n, x) to observe n particles
detected in the finite x region of the phase space is given as

p(n, x) =
∞∑

N=n

N!

n!(N − n)!
xn(1 − x)N−n P(N )

≡
∞∑

N=n

B(N, n; x) P(N ). (5)

A. BAC for the particle number fluctuation

First, we consider the BAC (5) applied to particles of a
given type. The characteristic function of the P(N ) distribu-
tion is defined as

FN (k) = 〈eikN 〉 =
∞∑

N=0

eikN P(N ) = exp

[ ∞∑
l=1

κl [N]
(ik)l

l!

]
,

(6)

where κl [N] is the lth cumulant of the distribution P(N ).
The corresponding characteristic function for the number of
accepted particles reads

fn(k|x) =
∞∑

n=0

eikn p(n|x) =
∞∑

N=0

P(N )
n0∑

n=0

eiknB(N, n|x)

=
∞∑

N=0

P(N )(1 − x + xeik )N =
∞∑

N=0

P(N )eφ[k|x]N

= FN (−iφ[k|x]), (7)

where φ[k|x] ≡ ln(1 − x + xeik ) is the cumulant generating
function of binomial distribution and FN is given by Eq. (6).
We checked that such procedure is correct for discrete random
variables.

The acceptance parameter 0 � x � 1 has a simple meaning
x = 〈n〉/〈N〉, i.e., it equals to the ratio of the average multi-
plicities of the accepted and all particles. At x → 1 one finds
fn(k|x) ∼= FN (k|x), i.e., p(n|x) ∼= P(n).

fn(k|x)
x→0� 1 − x〈N〉(1 − eik )

x→0� exp[x〈N〉(eik − 1)], (8)

which is a characteristic function of the Poisson distribution
with a mean equal to x〈N〉.

The cumulants of the p(n, x) probability distribution are
calculated as

κl [n|x] =
(

d

d (ik)

)l

ln[ fn(k|x)]|k=0. (9)

The scaled variance, skewness, and kurtosis for the distri-
bution (5) of the accepted particles are then presented as
follows:

ωx[n] ≡ κ2[n|x]

κ1[n|x]
= 1 − x + xω[N], (10)
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Sσx[n] = κ3[n|x]

κ2[n|x]
= ω[N]

ωx[n]
{x2Sσ [N] + 3x(1 − x)}

+ 1 − x

ωx[n]
(1 − 2x), (11)

κσ 2
x [n] = κ4[n|x]

κ2[n|x]
= ω[N]

ωx[n]
{x3κσ 2[N]

+ 6x2(1 − x)Sσ [N] + x(1 − x)(7 − 11x)}
+ 1 − x

ωx[n]
(1 − 6x(1 − x)), (12)

where

ω[N] = κ2[N]

κ1[N]
, Sσ [N] = κ3[N]

κ2[N]
, κσ 2[N] = κ4[N]

κ2[N]
.

(13)

Equation (10) was previously obtained in Refs. [24,25]. At
x → 1 in Eqs. (10)–(12), one evidently finds ωx[n] ∼= ω[N],
Sσx[n] ∼= Sσ [N], and κσ 2

x [n] ∼= κσ 2[N], i.e., the BAC fluctu-
ation measures approach those in the full phase space. In the
opposite limit, x → 0, the cumulant ratios are Poissonian, i.e.,
ωx[n] ∼= Sσx[n] ∼= κσ 2

x [n] ∼= 1.
Equations (10)–(12) can be reversed to express the fluctua-

tions in full phase space in terms of fluctuations within a given
binomial acceptance x:

ω[N] = 1 − 1 − ωx[n]

x
, (14)

Sσ [N] = ω[n]

x2ω[N]
Sσ [n] − 1 − x

x2ω[N]
(1 − 2x + 3xω[N]),

(15)

κσ 2[N] = ω[n]

x3ω[N]
κσ 2[n] − 1 − x

x3ω[N]
{1 − 6(1 − x)x

+ (7 − 11x + 6xSσ [N])xω[N]}. (16)

It should be noted, however, that these “inverse” relations are
to be used with care. By definition, both ω[N] and ωx[n]
are non-negative quantities. Equation (10) guaranties that
ωx[n] � 0 at 0 � x � 1 for any non-negative value of ω[N].
For the reverse relation (14), however, this is not guaranteed:
The values of 0 � ωx[n] < 1 − x are transformed by Eq. (14)
to a meaningless negative value of ω[N]. Similar arguments
can be applied to higher order cumulants.

Let us consider two particular examples of the P(N ) distri-
bution. A first example is a Poisson distribution,

P(N ) = exp(−〈N〉)
〈N〉N

N!
. (17)

This distribution may correspond, e.g., to an equilibrium
system of noninteracting Maxwell-Boltzmann particles in the
grand canonical ensemble. One finds

ω[N] = Sσ [N] = κσ 2[N] = 1 (18)

for the fluctuations in the full phase space whereas Eqs. (10)–
(12) give

ωx[n] = Sσx[n] = κσ 2
x [n] = 1 (19)

for fluctuations within acceptance. The BAC quantities (19)
are independent of the x-acceptance parameter and equal to
the fluctuation measures (18) in the full phase space. This
last property of the BAC procedure is a unique feature of the
Poisson distribution (17).

As our second example we assume that the number of
particles in the full phase space is fixed, i.e.,

P(N ) = δ(N − N0). (20)

Such a scenario is approximately valid for the number of
baryons in p + p and nucleus-nucleus reactions at small
and intermediate collision energies where the production of
baryon-antibaryon pairs is negligible.

One finds

ω[N] = 0, Sσ [N] = −1, κσ 2[N] = 1. (21)

Equations (10)–(12) then correspond to the binomial proba-
bility distribution B(n, N, x), giving

ωx[n] = 1− x, Sσx[n] = 1− 2x, κσ 2
x [n] = 1− 6x(1− x).

(22)

B. BAC for conserved charge fluctuations

In this subsection, we consider the BAC for fluctuations
of conserved charges. We use notations N+, N− and n+,
n−, for positively and negatively charged particles in the
full space and in the x-acceptance region, respectively. Here
conserved charge may correspond to any integer conserved
number carried by hadrons, for instance, the electric charge
or baryon number. Without loss of generality, we focus here
on the net electric charge. The nonzero values of electric
charge and baryon number of final state hadrons detected in
high-energy collisions are ±1. Therefore, the net charge Q
is straightforwardly connected to the number of positively
and negatively charged particles: Q = N+ − N− = const in
the full space and q = n+ − n− within the acceptance.

The distribution function of N+ and N− can be presented in
the following general form:

P (N+, N−) = δ(N+ − N− − Q)P(Nch ), (23)

where Nch ≡ N+ + N−. The BAC are introduced as

p(n+, n−|x+, x−)

=
∞∑

N+,N−=0

P (N+, N−)B(N+, n+|x+)B(N−, n−|x−), (24)

where the binomial distributions are defined in Eq. (5). The
parameter x+ is defined as a ratio of the mean number of
accepted (measured) positively charged particles to the mean
number of all produced positively charged particles in a given
sample of the collision events, x+ = 〈n+〉/〈N+〉. Similarly,
x− = 〈n−〉/〈N−〉. In the BAC procedure these quantities co-
incide with the probabilities for a randomly chosen positively
(negatively) charged particle to end up within the detector
acceptance. The characteristic function for the distribution of
net charge q = n+ − n− in the acceptance can be calculated
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as follows:

fq(k|x+, x−) ≡
∞∑

n+,n−=0

eik(n+−n− ) p(n+, n−|x+, x−)

= (1 − x+ + x+eik )Q/2 (1 − x− + x−e−ik )−Q/2

× FNch [−i�(k|x+, x−)]. (25)

Here

�(k|x+, x−) ≡ 1
2 [ln(1 − x+ + x+eik ) + ln(1 − x− + x−e−ik )]

(26)

and FNch is the characteristic function of the full space charged
multiplicity distribution P(Nch ),

FNch (k) ≡
∞∑

Nch=Q

P(Nch)eikNch = exp

[ ∞∑
l=1

κl [Nch]
(ik)l

l!

]
.

(27)

The lth BAC cumulant of the net charge q fluctuations
reads

κl [q|x+, x−] =
(

d

d (ik)

)l

ln[ fq(k|x+, x−)]|k=0. (28)

The leading four cumulants read

κ1[q] = 〈q〉 = x+〈N+〉 − x−〈N−〉, (29)

κ2[q] = ξ+
2 〈N+〉 + ξ−

2 〈N−〉 +
(

�x

2

)2

κ2[Nch], (30)

κ3[q] = ξ+
3 〈N+〉 − ξ−

3 〈N−〉 − 3

4
�x[ξ−

2 + ξ+
2 ]κ2[Nch]c

−
(

�x

2

)3

κ3[Nch], (31)

κ4[q] = ξ+
4 〈N+〉 + ξ−

4 〈N−〉 + 3

4
[ξ+

2 + ξ−
2 ]2κ2[Nch]

+�x[ξ−
3 − ξ+

3 ]κ2[Nch]

+ 3

(
�x

2

)2

[ξ+
2 + ξ−

2 ]κ3[Nch] +
(
�x

2

)4

κ4[Nch]. (32)

Here 〈N+〉 = (〈Nch〉 + Q)/2, 〈N−〉 = (〈Nch〉 − Q)/2, �x =
x− − x+, and

ξ±
1 = x±, ξ±

2 = x±(1 − x±),

ξ±
3 = ξ±

2 (1 − 2x±), ξ±
4 = ξ±

2 (1 − 6ξ±
2 ). (33)

As seen from Eqs. (29)–(32), the BAC net charge cumulants
are calculated in terms of the cumulants of the P(Nch ) distribu-
tion of charged multiplicity in the full phase space. In the case
of equal acceptance parameters, x+ = x− ≡ x, the cumulant
ratios are simplified to

ωx[q] ≡ κ2[q]

κ1[q]
= 〈Nch〉

Q
(1 − x), (34)

Sσx[q] ≡ κ3[q]

κ2[q]
= Q

〈Nch〉 (1 − 2x), (35)

κσ 2
x [q] ≡ κ4[q]

κ2[q]
= 1 + 3x(1 − x) (ω[Nch] − 2). (36)

We will use UrQMD simulations further on to analyze to what
extent the assumption x+ = x− holds in realistic situations.

The above results can be straightforwardly generalized for
the case of net baryon number fluctuations. This is achieved
through the following substitutions in Eqs. (34) and (36): q →
b, Q → B, Nch → NB + NB. For sufficiently small collision
energies in p + p and nucleus-nucleus reactions one has NB 	
NB, meaning that the number of baryons NB is approximately
equal to the net baryon number B. Therefore, (NB + NB)/B ∼=
1, ω[NB + NB] ∼= ω[NB] ∼= 0 and Eqs. (34) and (36) reduce to
Eq. (22).

It should be noted that the scaled variance (34) and the
skewness (35) exhibit a special behavior for the case of
e+ + e− and/or p + p reactions. In these reactions all globally
conserved charges are equal to zero, and thus ωx[q] ≡ ∞
and Sσx[q] ≡ 0. On the other hand, the kurtosis (36) attains
nontrivial values for all types of reactions.

The net charge skewness Sσx[q] (35) and kurtosis κσ 2
x [q]

(36) depend, respectively, linearly and quadratically on the ac-
ceptance parameter x. These dependencies are shown in Fig. 1
for different values of 〈Nch〉/Q and ω[Nch]. The ratio Q/Nch

determines the slope of the x dependence of the skewness.
Sσx[q] equals zero at x = 0.5 for arbitrary values of Q and
Nch. The parabolic x dependence of kurtosis κσ 2

x is determined
by the value of ω[Nch] only. κσ 2

x (36) equals unity at x = 0
and x = 1 whereas the vertex of the parabolic dependence is
located at x = 1/2. These properties are independent of the
ω[Nch] value. The value of ω[Nch] does define the concavity
of the parabola: It is convex for ω[Nch] < 2, concave for
ω[Nch] > 2, and reduces to a horizontal line κσ 2

x = 1 for
ω[Nch] = 2 [see Fig. 1(b)].

We note that the data on p + p reactions suggest that
ω[Nch] is an increasing function of the collision energy with
its values smaller than 2 at small collision energies and larger
than 2 at large collision energies [26]. Assuming Q = 2, the
values of 〈Nch〉 and ω[Nch] presented in Fig. 1 correspond
approximately to the p + p data at

√
s ∼= 2 GeV, 10 GeV,

20 GeV, and 100 GeV (see, e.g., Ref. [27]). Similar arguments
can be applied to baryon number fluctuations. Note, however,
that the fluctuations of NB + NB are essentially smaller than
those of N+ + N−, i.e., ω[NB + NB] 	 ω[Nch]. At the SPS
and RHIC energies considered in this paper, one expects
ω[NB + NB] � 1.

For two statistically correlated types of particles the cumu-
lant generating function reads

ln[F (k+, k−)] =
∞∑

n,m=1

κn,m[N+, N−]

n!m!
(ik+)n(ik−)m ⇒ (37)

ln[ fq(k|x+, x−)] =
∞∑

n,m=1

κn,m[N+, N−]

n!m!
φ[k|x+]nφ[−k|x−]m,

(38)

as follows from Eq. (7). Here κn,m[N+, N−] are joint cu-
mulants of P(N+, N−). They obtain nonzero values if any
correlation between positively and negatively charged particle
is present.

Then by taking respective derivatives the cumulants of
the charge distribution can be obtained [see Eq. (28)], which
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FIG. 1. The skewness (35) (a) and kurtosis (36) (b) as functions of the acceptance parameter x at different values of 〈Nch〉/Q and ω[Nch].

makes them linear functions of κn,m[N+, N−]. Note that
Eq. (38) does not include factorial moments [19].

We note that the binomial filter is also often used to correct
for the detection efficiency [19,21,28], i.e., for the fact that the
measurable particles within the acceptance are not detected
with a 100% probability. The detection efficiency typically
is dependent on the number of measured particles and their
momenta. Therefore, the simple binomial filter may not be
sufficient and more involved local and multiplicity-dependent
efficiency corrections have been considered instead [29,30].
As published experimental data are typically corrected for the
detection efficiency, we do not consider efficiency corrections
in the present work.

III. (GRAND-)CANONICAL STATISTICAL MECHANICS

In this section, we analyze a couple of common full space
multiplicity distributions in statistical mechanics. We consider
grand-canonical and canonical distributions of relativistic par-
ticles, which represents two useful baselines in the context of
heavy-ion collisions.

The grand-canonical multiplicity distribution of noninter-
acting Maxwell-Boltzmann particles in equilibrium is given
by a Poisson distribution. In a relativistic case studied here,
the joint probability distribution of the numbers of particles
N+ and antiparticles N− is given by a product of two Poisson
distributions:

PGCE(N+, N−) ∼ zN+
+

N+!

zN−
−

N−!
. (39)

Here the quantities z+ and z− are defined as

z± = exp
(
± μQ

T

) gV

2π2

∫ ∞

0
k2dk exp

[
−

√
k2 + m2

T

]

≡ exp
(
± μQ

T

)
z, (40)

where V , μQ, and T are, respectively, the system volume,
charge chemical potential, and temperature. g and m are the
particle degeneracy factor and mass. The chemical potential
regulates the mean net number of particles and antiparti-

cles, 〈Q〉 = 〈N+〉 − 〈N−〉. A generalization to a system with
multiple particle species carrying a conserved charge Q is
achieved by simply adding contributions of these extra species
to Eq. (40).

One finds ω[N+] = ω[N−] = ω[Nch] = 1. These fluctua-
tion measures are shown by the horizontal dashed line in
Fig. 2(a). The charge distribution PSk(Q) corresponds then to
the so-called Skellam distribution [31]. The cumulants kn[Q]
for the Skellam distribution PSk(Q) can be easily found as

kn[Q] = z+ + (−1)nz−. (41)

This gives

Sσ [Q] = z+ − z−
z+ + z−

=
[

1 +
(

2z

〈Q〉
)2

]−1/2

, κσ 2[Q] = 1.

(42)

The skewness Sσ [Q] of the Skellam distribution, given by
Eq. (42), is shown in Fig. 2(b) by the dashed line for
〈Q〉 = 2. For x− = x+ ≡ x one finds κn[q] = xκn[Q] for cu-
mulants κn[q] evaluated in an x acceptance. This implies
km[q]/kn[q] = km[Q]/kn[Q], meaning that all intensive fluc-
tuation measures calculated via the BAC for an arbitrary fixed
x < 1 are equal to their values in the full phase space (x = 1).

The canonical ensemble entails global charge conservation
in all microscopic states of a statistical system. The scaled
variances for fluctuations of N+, N−, and Nch in an ideal
classical gas within the canonical ensemble were considered
in Refs. [24,32], while similar questions related to baryon
number conservation were discussed in Ref. [33]. The particle
number distribution P (N+, N−) corresponds to a two-Poisson
distribution with a fixed difference:

PCE (N+, N−) ∼ zN+

N+!

zN−

N−!
δ(N+ − N− − Q), (43)

where the parameter z is defined in Eq. (40) and is pro-
portional to the volume of the statistical system. It follows
from Eq. (43) that numbers N± and Nch = N+ + N− are both
described by various forms of the Bessel distribution [34].
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FIG. 2. The scaled variances ω[Ni] (with i = +, −, ch) (a), skewness Sσ [Q] and kurtosis κσ 2[Q] (b), Sσ [Ni] (c), κσ 2[Ni] (d) for the
Skellam distribution (39) with 〈Q〉 = 2 (dashed line) and for the Bessel distribution (43) with Q = 2 (solid lines) are shown as functions of z.

Their characteristic functions are the following:

FN± (k) ≡
∞∑

N+,N−=0

eikN±P (N+, N−) = e±iQ k
2

IQ
(
2zei k

2
)

IQ(2z)
, (44)

FNch (k) ≡
∞∑

N+,N−=0

eikNchP (N+, N−) = IQ(2zeik )

IQ(2z)
. (45)

Here IQ is the modified Bessel function of the first kind.
The expressions (44) and (45) depend on two parameters:
Q and z. The cumulants κl [N±] and κl [Nch] are obtained by
taking derivatives of the corresponding cumulant generating
functions ln(FN± ) and ln(FNch ). The mean values and the
scaled variances read

〈Nch〉 = z(a+ + a−), (46)

〈N±〉 = 〈Nch〉 ± Q

2
, (47)

ω[Nch] = 1 + z

[
2 + b+ + b−

a+ + a−
− (a+ + a−)

]
, (48)

ω[N±] = 1 − z

[
a± − b±

a±

]
, (49)

where a± = IQ±1[2z]/IQ[2z], b± = IQ±2[2z]/IQ[2z].
Simplified expressions can be obtained in certain limits.

For large systems, z � Q and z � 1, one has κl [N±] ≈
(2z)/2l and κl [Nch] = 2l kl [N±]. Explicit expressions for

means and variances in this limit read

〈N+〉 ∼= 〈N−〉 ∼= 1

2
〈Nch〉 ∼= z,

ω[N±] ∼= 1

2
+ 1

8z
∓ Q

4z
, ω[Nch] ∼= 1 + 1

4z
. (50)

For z 	 √
Q + 1 the cumulant generating functions of N±

and Nch read

ln[FN± (k)] = ikQδ±,+ + z2

[Q + 1]

∞∑
l=1

(ik)l

l!
,

ln[FNch (k)] = ikQ + z2

[Q + 1]

∞∑
l=1

(2ik)l

l!
, (51)

and κl [N±] = z2/[Q + 1], κl [Nch] = 2l kl [N±], l > 1. Using
the above equations one calculates the asymptotic behavior
at z 	 √

Q + 1:

〈N+〉 ∼= Q, 〈N−〉 ∼= z2

Q + 1
, 〈Nch〉 = Q, (52)

ω[N+] ∼= 1 − z2

(Q + 1)(Q + 2)
,

ω[N−] ∼= z2

Q(Q + 1)
, ω[Nch] = 4z2

Q(Q + 1)
. (53)
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Figure 2(a) presents the z dependence of scaled variances
ω[Nch] and ω[N±] for the Bessel distribution (43) with Q = 2.

The skewness and kurtosis for N± and Nch fluctuations
are presented in Figs. 2(c) and 2(d), respectively. Relation
κl [Nch] = 2l kl [N±] was verified to hold for all values of z,
as can be seen from Figs. 2(a), 2(c) and 2(d). Higher-order
cumulant ratios of charged particle number fluctuations are
enhanced by the exact charge conservation. Moreover, the
Nch cumulants are not equal to the sum of cumulants of
negatively and positively charged particles. We attribute this
to a presence of multiparticle correlations induced by the exact
charge conservation.

The net charge Q is conserved globally and does not
fluctuate in the full space, i.e., in the limit x → 1. The scaled
variance of net charge fluctuations in full space is, therefore,
vanishing: ω[Q] = 0. The skewness and kurtosis of Q, on
the other hand, attain finite values in the limit x → 1, which
follow from Eqs. (34)–(36):

Sσ [Q] = − Q

〈Nch〉 , κσ 2[Q] = 1. (54)

The behavior of Sσ [Q] and κσ 2[Q] for the Bessel distribution
with Q = 2 is shown in Fig. 2(b).

The above results illustrate the nontrivial behavior of fluc-
tuation measures of positively or negatively charged particle
numbers that arise because of the exact conservation of the
net charge. This behavior is present already for fluctuations in
the full phase space, x = 1. The BAC expressions, Eqs. (10)–
(12), for single charge and Eqs. (29)–(32) for net charge,
allow them to obtain the corresponding behavior in a finite
acceptance, x < 1. It should be pointed out, however, that
the results of this section are obtained for an idealized sys-
tem. For example, effects of resonance decays have been
neglected here. These decays produce an additional source
of correlations. More generally, one should also consider a
simultaneous conservation of all three conserved charges,
baryon number, electric charge, and strangeness, rather than of
just a single conserved charge. These effects are incorporated
in UrQMD transport model studies that we present below.

IV. UrQMD SIMULATIONS OF p + p REACTIONS

Transport simulations can provide useful information
about the acceptance dependence of fluctuations, and test
accuracy of the BAC in various setups. Earlier, to study the net
charge fluctuations within the transport model the hadronic
matter simulations in a box with periodic boundary conditions
were used [35]. Cuts in coordinate space were applied, i.e., it
was assumed that the detection of particles takes place only
inside the subsystem with volume v = xV , where V denotes
the total volume of a box with periodic boundary conditions
and x is the acceptance parameter. It was shown that the accep-
tance dependencies of the skewness and kurtosis of net charge
fluctuations in such a system do satisfy the BAC predictions.
Because the multiplicity distribution P (N+, N−) for hadrons
inside the box within transport models appears to be close to
the Bessel distribution (43), only convex downward curves for
κσ 2[Q] were obtained.

Actual high-energy collision experiments measure the mo-
menta of final state particles rather than coordinates. There-
fore, the BAC should be considered in the momentum space.
In this section the BAC predictions for fluctuations of particle
numbers, as well as of conserved charges B and Q, are
compared with results of the UrQMD transport model [22,23]
simulations of inelastic p + p reactions. UrQMD is an event
generator producing a list of hadrons and their momenta
in the final state of the collision. The generator satisfies
the exact conservation of energy momentum and of all the
QCD conserved charges. It also naturally incorporates cor-
relations between particles emerging from resonance decays
and string fragmentations. Acceptance cuts in the momen-
tum space can be applied straightforwardly, making UrQMD
suitable for direct comparisons to data. This is in contrast
to statistical-thermal models where additional assumptions
are needed, the BAC being one such possible assumption.
The measured hadron multiplicities and momentum spectra
calculated within UrQMD simulations are usually in a fair
agreement with available experimental data. All in all, this
makes UrQMD a useful tool to analyze the behavior of
fluctuations in various acceptance windows, and to test the
performance of the BAC in various setups.

Here we analyze inelastic p + p collisions at an SPS en-
ergy of

√
s = 6.3 GeV as well as at one of the RHIC ener-

gies, namely
√

s = 62.4 GeV. In p + p collisions the electric
charge and the net baryon number are equal to Q = B = 2
and do not fluctuate in the full phase space. We shall analyze
in some detail the acceptance dependence of fluctuations of
positively and negatively charged hadron multiplicities, as
well as of (net) baryon number and net charge.

A. Rapidity window dependence of acceptance parameters

The same value of the BAC x parameter corresponds to
quite different regions in the momentum space at different
collision energies. To be definite, we chose the acceptance
region as a pT -integrated finite rapidity interval −�y/2 �
y � �y/2 in the center of mass of the system. Any particle
in this rapidity interval is assumed to be accepted with 100%
probability, therefore the BAC parameter,

xi =
∫ �y/2
−�y/2 dy dNi

dy∫ ∞
−∞ dy dNi

dy

≡ 〈ni〉
〈Ni〉 , (55)

is simply the ratio between the mean number of particles in
the acceptance relative to the one in the full phase space.

Figures 3(a) and 3(b) presents the UrQMD results for
binomial acceptance parameters for positively and negatively
charged hadrons, x+ and x−, for baryons and antibaryons, xB

and xB, as well as for net charge and net baryon numbers,

xq ≡ 〈n+〉 − 〈n−〉
Q

, xb ≡ 〈nB〉 − 〈nB〉
B

, (56)

as functions of �y for p + p collisions at
√

s = 6.3 GeV and√
s = 62.4 GeV, respectively.
As seen from Fig. 3, x− > x+ and xB > xB. This is because

of the difference in rapidity spectra, dNi/dy, of the negatively
and positively charged hadrons in p + p collisions, and similar
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FIG. 3. The acceptance xi parameters as functions of the rapidity interval �y calculated in the UrQMD model. The orange lines present
the difference �x = x− − x+ or �x = xB̄ − xB. The black dash-dotted lines present acceptance of (a) and (b) the net electric charge or (c) and
(d) of the net baryon number.

difference of the rapidity spectra of antibaryons and baryons.
Thus, one cannot apply the simplified BAC Eqs. (34) and (36)
which would be valid for x+ = x− or xB = xB. The value of
�x ≡ x− − x+ decreases and goes to zero in the limits �y →
0 and �y → ∞. At large enough �y all particles are accepted.
Thus, both x− and x+ become close to 1, and their difference
goes to zero (similar behavior is seen for xB and xB). At a
low collision energy of

√
s = 6.3 GeV there are almost no

antibaryons produced, thus xb ≈ xB.

B. Scaled variances

Figure 4 presents the scaled variances for nega-
tively(positively) charged hadrons and for (anti-)baryons ac-
cepted in the central rapidity region as functions of the cor-
responding acceptance parameters xi. The UrQMD results are
shown by full blue and red points, and the BAC expressions
according to Eqs. (10)–(12) are presented by dashed lines.
As expected, the fluctuation measures approach the Poisson
limit predicted by the BAC as x → 0. Note that this does not
imply that correlations between particles disappear for small
acceptance; rather, it is the ability to measure these correla-
tions using cumulants which does imply that (see a related
discussion in Ref. [36]). The BAC reproduces the UrQMD
results in the full phase space limit x → 1 by construction.

The BAC interpolates x dependence of ωx[ni] by a straight
line, as follows from (10). These BAC results are found to
deviate considerably from the actual UrQMD results. For all
considered quantities presented in Fig. 4 the actual UrQMD
values for ωx[ni] appear to be larger than those obtained within
the BAC procedure. Another interesting feature is an increase
of ωx[ni] at small values of xi. This leads to ωx[ni] > 1 at small
xi, i.e., the fluctuations of ni at small xi exceed the Poisson
baseline. This takes place for all considered particle types,
i = +,−, B, B, and for both collision energies considered.
Such a behavior leads to a maximum of ωx[ni] as functions
of xi at intermediate values of xi < 1, and to their decrease at
xi → 1. These features of ωx[ni] seem to be somewhat general
for all UrQMD simulations that we performed. A decrease of
ω[ni] at xi → 1 is a natural consequence of the global charge
conservation. The effect is stronger for ω[N+] in comparison
to ω[N−], and for ω[NB] in comparison to ω[NB], reflecting
positive net charge and net baryon numbers Q = B = 2 in
p + p interactions.

C. Skewness and kurtosis of conserved charges fluctuations

Figure 5 presents the skewness and kurtosis for fluctuations
of, respectively, the electric charge, q ≡ n+ − n−, and the net
baryon number, b ≡ nB − nB̄. These quantities are presented
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FIG. 4. Scaled variances ωx[ni] as functions of xi. Blue and red points are calculated for p + p collisions in the UrQMD model and
represent, respectively, energies of

√
s = 6.3 and

√
s = 62.4 GeV. The BAC results (10)–(12) are shown by dashed lines.

as functions of the corresponding acceptance parameters at
the two collision energies,

√
s = 6.3 and 62.4 GeV.

At the ends of the acceptance interval, x → 0 and x → 1,
the BAC Eqs. (29)–(32) coincide with the UrQMD results.
The BAC expressions are calculated according to Eqs. (29)–
(32) and are shown in Fig. 5 for 0 � x � 1 by dashed lines.
These have a more involved structure than straight lines for
(35) for Sσx[q] and Sσx[b] or symmetric parabolas (36) for
κσ 2

x [q] and κσ 2
x [b], which would both be expected if accep-

tance parameters were equal for particles and antiparticles. In
addition, values of the skewness at x → 0 deviate from the
results of Eq. (34). All these complications of the BAC results
in comparison to Eqs. (35) and (36) are because of essential
corrections from �x terms in Eqs. (29)–(32).

The UrQMD results for Sσx[q] and Sσx[b] presented in
Fig. 5 show a nonmonotonic dependence on the corresponding
acceptance parameters xq and xb. The behavior of κσ 2

x [q]
and κσ 2

x [b] is even more nontrivial: they demonstrate a
zigzaglike behavior with a maximum at small acceptance
parameter xq,b

∼= 0.1 and a minimum at xq,b = 0.4−0.6 for
both collision energies. Such features of the skewness and
kurtosis for conserved charges can sometimes lead to their
nonmonotonic dependencies on the collision energy, even in
the absence of any mechanisms for critical fluctuations as
is the case for UrQMD. Note that the results of Secs. IV B
and IV C have been obtained using the UrQMD model and

are not guaranteed to be unique. It would therefore be useful
to perform the analysis within other event generators, e.g.,
PYTHIA, HIJING, AMPT, and SMASH. This can be a subject
for future studies.

D. BAC inside a limited phase space

A comparison of the BAC formulas with the actual re-
sults of the UrQMD simulations demonstrate somewhat large
differences. For the fluctuation measures ωx, Sσx, and κσ 2

x
calculated in the finite rapidity regions |y| � �y/2 using
the BAC with corresponding acceptance x parameters an
agreement with the actual UrQMD results is found at the
limits x → 0 and x → 1. However, at 0 < x < 1 the BAC
and the actual UrQMD results are essentially different, even
qualitatively. This means that certain assumptions behind
the BAC procedure are not fulfilled in UrQMD. The key
BAC assumption is that a probability for a given particle to
be within acceptance is independent of all other particles.
However, there is an evident reason for event-by-event cor-
relations between the shapes of rapidity distributions and total
event multiplicities. From kinematical arguments one expects
more final particles just at small center-of-mass rapidities in
events with larger total hadron multiplicities. More special
interparticle rapidity correlations emerge in the UrQMD sim-
ulations from decays of resonances and strings. For these
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FIG. 5. Skewness and kurtosis of the net charge fluctuations (a) and (b) and the net baryon number fluctuations (c) and (d) as functions of,
respectively, net charge acceptance and net baryon number acceptance are calculated in the UrQMD model (blue and red points) and using the
BAC (29)–(32) (dashed lines).

reasons, the inaccuracy of the BAC predictions is not all that
surprising.

On the other hand, at smaller momentum scales the BAC
assumptions might be more reasonable. Let us take the fixed
rapidity interval �y = 2. We will treat now this rapidity
interval as a “full phase space” region, and the BAC values
will be calculated at smaller parts of the rapidity interval
�y = 2. The acceptance xi parameter is now defined as

xi = 〈n−〉�y<2

〈ni〉�y=2
. (57)

As an example, the UrQMD results for ωx[n−] and κσ 2
x [q]

in p + p reactions at
√

s = 62.4 GeV inside the rapidity
interval �y = 2 are shown in Figs. 6(a) and 6(b), respectively.
As seen from Fig. 6(a) an agreement of the BAC procedure
and direct UrQMD results for ωx[n−] inside the rapidity
interval �y = 2 is almost perfect. The BAC formula (10) is
used with 〈n−〉�y=2 ≡ N− and ω[N−] = 2.4. Similar results
were obtained for other fluctuation measures. In Fig. 6(b) the
same is done for κσ 2

x [q] treating all UrQMD quantities at
the rapidity interval �y as the “full phase space” values in
the BAC formulas. Thus, a basic assumption of the binomial
distribution becomes valid for these rapidity intervals and the
BAC procedure leads to the results consistent with the actual
UrQMD simulations as presented in Fig. 6. The local corre-

lations from the quantum number conservation are present.
However, if the experimental acceptance is essentially smaller
than the characteristic length of these correlations, the BAC
procedure can provide a good approximation.

It should be noted that the basic question mentioned in
Sec. I– - how to define a suitable acceptance region to observe
the statistical fluctuations of conserved charges within the
grand canonical ensemble—remains beyond the scope of the
present study. It can be wrong to search for the statistical
fluctuations in the framework of the nonequilibrium transport
model. This is especially clear in p + p reactions at large
collision energy. Both the UrQMD results and the p + p
reactions data demonstrate large values of particle number
fluctuations, e.g., ω[Nch] ∝ 〈Nch〉 � 1, much above of the
standard statistical estimates [27]. Applicability of the BAC
procedure inside the central rapidity interval, as in Fig. 6,
is by no means the argument in favor of the statistical
character of particle number fluctuations inside this region.
In the statistical system treated within the grand canonical
ensemble all intensive fluctuation measures remain unchanged
in their subsystems, if only these subsystems are not too small
compared to the correlation length. The BAC procedure is
fully consistent with such systems only in the simplest case—
a mixture of noninteracting Boltzmann (classical statistics)
particles at fixed volume V and temperature T .
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FIG. 6. ωx[n−] (a) and κσ 2[q] (b) inside the rapidity interval �y < 2 as a function of corresponding acceptance parameters. The acceptance
parameters xi are defined by Eq. (57). Full blue points correspond to the UrQMD results in p + p reactions at

√
s = 62.4 GeV while orange

solid lines present the BAC results.

E. Net proton fluctuations from net baryon fluctuations

One interesting question is a connection of (anti)proton
fluctuations with those of (anti)baryons. In the experiment,
the skewness and kurtosis of the net proton number fluctu-
ations are measured, but not of the net baryon number ones
because of the problems with detecting neutral baryons and
antibaryons, mainly neutrons and antineutrons. One can con-
sider now BAC by assuming that a randomly chosen baryon
is within an acceptance if it is a proton and outside of it
otherwise. In p + p reactions at

√
s = 62.4 GeV the UrQMD

results in the full phase space provide

xp ≡ 〈Np〉
〈NB〉 ≈ 0.5, xp ≡ 〈Np〉

〈NB〉 ≈ 0.4, (58)

where Np and Np denote the numbers of protons and antipro-
tons, respectively.

Figure 7 presents the skewness and kurtosis of the net
baryon and the net proton number fluctuations in p + p
reactions at

√
s = 62.4 GeV. The UrQMD results, depicted

by lines with symbols, show sizable differences between net

baryon and net proton fluctuation measures, suggesting that
the latter may not be a particularly good direct proxy for
the former. The red line shows the net proton fluctuations
constructed out of the net baryon fluctuations by applying
the BAC using the xp and xp̄ acceptance parameters listed
above. One observes a quite good agreement of the net
baryon fluctuations calculated by the BAC procedure from
the net baryon values using acceptance parameters (58) with
their exact UrQMD values. The results suggest that con-
structing the net proton fluctuations from net baryon ones
using a binomial filter, as suggested in Refs. [5,20], might
be a reasonable procedure. This observation is important in
the context of attempts to relate the net proton fluctuation
measurements in heavy-ion collisions with QCD net baryon
number susceptibilities computed, e.g., using first-principle
lattice simulations [37]. We hope that the results of Secs.
IVD and IVE is not because of the specific features of the
UrQMD model and can be also approximately valid within
the data. To check this, analogous calculations can be per-
formed using other models, which can be a subject for future
studies.
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FIG. 7. Skewness (a) and kurtosis (b) for inelastic p + p interactions at collision energy of
√

s = 62.4 GeV as functions of �y. Blue and
black solid full points represent, respectively, the net baryon number and the net proton number fluctuations as calculated in the UrQMD
model. Red solid lines represent the net proton number fluctuations as obtained using the BAC formulas with xp and xp given by Eq. (58) and
fixed values of xp/B = 0.5, xp̄/B̄ = 0.4.
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V. SUMMARY

We studied the binomial acceptance corrections which re-
late distributions of various particle number and/or conserved
charge distributions in a region of phase space to the corre-
sponding distributions in the full phase space. The binomial
acceptance corrections are derived under the assumption that
each particle is accepted with a certain probability indepen-
dently from all other particles. Based on this, we derive
explicit formulas that connect high-order cumulants and their
various ratios such as scaled variance, skewness, and kurtosis
of fluctuations within a given acceptance (subsystem) with
those in a broader acceptance (system). Where applicable, our
formalism reproduces earlier results on the binomial accep-
tance [19,20].

The BAC transform a Poisson distribution into another
Poisson distribution. Therefore BAC cancels out in all cu-
mulant ratios if the underlying particle number distribution in
the full space is Poissonian. However, this is not the case for
other distributions. Particularly the fluctuations of conserved
charges, i.e., quantities which are conserved globally, are
studied in some detail in the present work. Exact conservation
induces correlations between positive and negative particles,
in contrast to the Poisson baseline that entails no correlations.
We show that fluctuations of these quantities within a given
acceptance are expressed through fluctuations of a sum of pos-
itively and negatively charged particles Nch = N+ + N− in the
full phase space, Eqs. (29)–(32). As a particular example, we
explore Nch and N± distributions within canonical relativistic
statistical mechanics. In contrast to the grand-canonical en-
semble where all these fluctuations are the Poisson ones, in the
canonical ensemble, these are given by a more involved Bessel
distribution. These observations will be useful for future
measurements and analysis of net electric charge fluctuations.
It should be noted, however, that a presence of local charge
conservation and radial flow can break the assumptions behind
the binomial acceptance procedure, namely that the momenta
of particles are uncorrelated. Such questions might be better

clarified by measurements of momentum-dependent balance
functions, as suggested recently in Ref. [36].

UrQMD simulations of inelastic p + p interactions were
then used to explore the performance of the BAC when
applied to a momentum space acceptance, as is appropriate
for high-energy collision experiments. It was found that actual
UrQMD fluctuations of various particle numbers in a given
rapidity window deviate considerably from those predicted
using the BAC procedure applied to fluctuations in full phase
space. This indicates that the BAC assumption of an uncorre-
lated acceptance probability is not fulfilled in UrQMD simula-
tions, which can take place if particle rapidities are correlated
on scales smaller than beam rapidities. We do find that the
BAC procedure is found to be significantly more accurate
when applied to relate fluctuations between various smaller
rapidity windows which span no more than two units. We plan
to address system-size systematics of the BAC accuracy in a
future work.

The BAC can also be used to correct for the inability to
measure cumulants of neutral particles such as neutrons. Our
UrQMD analysis of p + p collisions shows that net proton
fluctuations obtained by applying the BAC to net baryon fluc-
tuations agrees quite well with actual net proton fluctuations.
The BAC can thus be used to reconstruct the net baryon
fluctuations from the measured net proton ones [5,20] or to
estimate the net proton fluctuations in a framework where
their explicit calculation is problematic but where baryon and
antibaryon fluctuations are tractable by theoretical models.
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Maćkowiak-Pawłowska, Anton Motornenko, Anar Rustamov,
and Horst Stoecker for fruitful discussions and useful com-
ments. The work of M.I.G. is supported by the Department of
Physics and Astronomy of the National Academy of Sciences
of Ukraine.

[1] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev.
Lett. 81, 4816 (1998).

[2] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev.
D 60, 114028 (1999).

[3] C. Athanasiou, K. Rajagopal, and M. Stephanov, Phys. Rev. D
82, 074008 (2010).

[4] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
[5] M. Kitazawa and M. Asakawa, Phys. Rev. C 86, 024904 (2012);

86, 069902(E) (2012).
[6] V. Vovchenko, R. V. Poberezhnyuk, D. V. Anchishkin, and M. I.

Gorenstein, J. Phys. A 49, 015003 (2016).
[7] G. Sauer, H. Chandra, and U. Mosel, Nucl. Phys. A 264, 221

(1976).
[8] J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).
[9] V. Vovchenko, D. V. Anchishkin, M. I. Gorenstein, and R. V.

Poberezhnyuk, Phys. Rev. C 92, 054901 (2015).
[10] J. P. Bondorf, A. S. Botvina, A. S. Ilinov, I. N. Mishustin, and

K. Sneppen, Phys. Rept. 257, 133 (1995).

[11] M. Asakawa, U. W. Heinz, and B. Muller, Phys. Rev. Lett. 85,
2072 (2000).

[12] S. Jeon and V. Koch, Phys. Rev. Lett. 85, 2076 (2000).
[13] M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).
[14] B. J. Schaefer and M. Wagner, Phys. Rev. D 85, 034027 (2012).
[15] J.-W. Chen, J. Deng, H. Kohyama, and L. Labun, Phys. Rev. D

93, 034037 (2016).
[16] R. Poberezhnyuk, V. Vovchenko, A. Motornenko, M. I.

Gorenstein, and H. Stoecker, Phys. Rev. C 100, 054904 (2019).
[17] X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017).
[18] B. Ling and M. A. Stephanov, Phys. Rev. C 93, 034915

(2016).
[19] A. Bzdak and V. Koch, Phys. Rev. C 86, 044904 (2012).
[20] M. Kitazawa and M. Asakawa, Phys. Rev. C 85, 021901(R)

(2012).
[21] M. Kitazawa, Phys. Rev. C 93, 044911 (2016).
[22] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998); 41, 225

(1998).

024917-12

https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/PhysRevD.60.114028
https://doi.org/10.1103/PhysRevD.60.114028
https://doi.org/10.1103/PhysRevD.60.114028
https://doi.org/10.1103/PhysRevD.60.114028
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevC.86.024904
https://doi.org/10.1103/PhysRevC.86.024904
https://doi.org/10.1103/PhysRevC.86.024904
https://doi.org/10.1103/PhysRevC.86.024904
https://doi.org/10.1103/PhysRevC.86.069902
https://doi.org/10.1103/PhysRevC.86.069902
https://doi.org/10.1103/PhysRevC.86.069902
https://doi.org/10.1088/1751-8113/49/1/015003
https://doi.org/10.1088/1751-8113/49/1/015003
https://doi.org/10.1088/1751-8113/49/1/015003
https://doi.org/10.1088/1751-8113/49/1/015003
https://doi.org/10.1016/0375-9474(76)90429-2
https://doi.org/10.1016/0375-9474(76)90429-2
https://doi.org/10.1016/0375-9474(76)90429-2
https://doi.org/10.1016/0375-9474(76)90429-2
https://doi.org/10.1103/PhysRevLett.75.1040
https://doi.org/10.1103/PhysRevLett.75.1040
https://doi.org/10.1103/PhysRevLett.75.1040
https://doi.org/10.1103/PhysRevLett.75.1040
https://doi.org/10.1103/PhysRevC.92.054901
https://doi.org/10.1103/PhysRevC.92.054901
https://doi.org/10.1103/PhysRevC.92.054901
https://doi.org/10.1103/PhysRevC.92.054901
https://doi.org/10.1016/0370-1573(94)00097-M
https://doi.org/10.1016/0370-1573(94)00097-M
https://doi.org/10.1016/0370-1573(94)00097-M
https://doi.org/10.1016/0370-1573(94)00097-M
https://doi.org/10.1103/PhysRevLett.85.2072
https://doi.org/10.1103/PhysRevLett.85.2072
https://doi.org/10.1103/PhysRevLett.85.2072
https://doi.org/10.1103/PhysRevLett.85.2072
https://doi.org/10.1103/PhysRevLett.85.2076
https://doi.org/10.1103/PhysRevLett.85.2076
https://doi.org/10.1103/PhysRevLett.85.2076
https://doi.org/10.1103/PhysRevLett.85.2076
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevD.85.034027
https://doi.org/10.1103/PhysRevD.85.034027
https://doi.org/10.1103/PhysRevD.85.034027
https://doi.org/10.1103/PhysRevD.85.034027
https://doi.org/10.1103/PhysRevD.93.034037
https://doi.org/10.1103/PhysRevD.93.034037
https://doi.org/10.1103/PhysRevD.93.034037
https://doi.org/10.1103/PhysRevD.93.034037
https://doi.org/10.1103/PhysRevC.100.054904
https://doi.org/10.1103/PhysRevC.100.054904
https://doi.org/10.1103/PhysRevC.100.054904
https://doi.org/10.1103/PhysRevC.100.054904
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1103/PhysRevC.93.034915
https://doi.org/10.1103/PhysRevC.93.034915
https://doi.org/10.1103/PhysRevC.93.034915
https://doi.org/10.1103/PhysRevC.93.034915
https://doi.org/10.1103/PhysRevC.86.044904
https://doi.org/10.1103/PhysRevC.86.044904
https://doi.org/10.1103/PhysRevC.86.044904
https://doi.org/10.1103/PhysRevC.86.044904
https://doi.org/10.1103/PhysRevC.85.021901
https://doi.org/10.1103/PhysRevC.85.021901
https://doi.org/10.1103/PhysRevC.85.021901
https://doi.org/10.1103/PhysRevC.85.021901
https://doi.org/10.1103/PhysRevC.93.044911
https://doi.org/10.1103/PhysRevC.93.044911
https://doi.org/10.1103/PhysRevC.93.044911
https://doi.org/10.1103/PhysRevC.93.044911
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1


BINOMIAL ACCEPTANCE CORRECTIONS FOR PARTICLE … PHYSICAL REVIEW C 101, 024917 (2020)

[23] M. Bleicher et al., J. Phys. G 25, 1859 (1999).
[24] V. V. Begun, M. Gazdzicki, M. I. Gorenstein, and O. S. Zozulya,

Phys. Rev. C 70, 034901 (2004).
[25] P. Braun-Munzinger, A. Rustamov, and J. Stachel, Nucl. Phys.

A 960, 114 (2017).
[26] V. P. Konchakovski, M. I. Gorenstein, and E. L. Bratkovskaya,

Phys. Lett. B 651, 114 (2007).
[27] V. P. Konchakovski, B. Lungwitz, M. I. Gorenstein, and E. L.

Bratkovskaya, Phys. Rev. C 78, 024906 (2008).
[28] X. Luo, Phys. Rev. C 91, 034907 (2015); 94, 059901(E)

(2016).
[29] A. Bzdak and V. Koch, Phys. Rev. C 91, 027901 (2015).
[30] A. Bzdak, R. Holzmann, and V. Koch, Phys. Rev. C 94, 064907

(2016).
[31] J. O. Irwin, J. R. Stat. Soc. 100, 415 (1937).
[32] V. V. Begun, M. I. Gorenstein, and O. S. Zozulya, Phys. Rev. C

72, 014902 (2005).

[33] P. Braun-Munzinger, A. Rustamov, and J. Stachel, Proceedings,
27th International Conference on Ultrarelativistic Nucleus-
Nucleus Collisions (Quark Matter 2018): Venice, Italy, May
14–19, 2018, Nucl. Phys. A 982, 307 (2019).

[34] L. Yuan and J. D. Kalbfleisch, Ann. Inst. Stat. Math. 52, 438
(2000).

[35] H. Petersen, D. Oliinychenko, J. Steinheimer, and M.
Bleicher, Proceedings, 25th International Conference on Ultra-
Relativistic Nucleus-Nucleus Collisions (Quark Matter 2015):
Kobe, Japan, September 27–October 3, 2015, Nucl. Phys. A
956, 336 (2016).

[36] C. A. Pruneau, Phys. Rev. C 100, 034905 (2019).
[37] A. Bazavov, H. T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E.

Laermann, S. Mukherjee, H. Ohno, P. Petreczky, E. Rinaldi, H.
Sandmeyer, C. Schmidt, C. Schroeder, S. Sharma, W. Soeldner,
R. A. Soltz, P. Steinbrecher, and P. M. Vranas (HotQCD), Phys.
Rev. D 96, 074510 (2017).

024917-13

https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1103/PhysRevC.70.034901
https://doi.org/10.1103/PhysRevC.70.034901
https://doi.org/10.1103/PhysRevC.70.034901
https://doi.org/10.1103/PhysRevC.70.034901
https://doi.org/10.1016/j.nuclphysa.2017.01.011
https://doi.org/10.1016/j.nuclphysa.2017.01.011
https://doi.org/10.1016/j.nuclphysa.2017.01.011
https://doi.org/10.1016/j.nuclphysa.2017.01.011
https://doi.org/10.1016/j.physletb.2007.06.032
https://doi.org/10.1016/j.physletb.2007.06.032
https://doi.org/10.1016/j.physletb.2007.06.032
https://doi.org/10.1016/j.physletb.2007.06.032
https://doi.org/10.1103/PhysRevC.78.024906
https://doi.org/10.1103/PhysRevC.78.024906
https://doi.org/10.1103/PhysRevC.78.024906
https://doi.org/10.1103/PhysRevC.78.024906
https://doi.org/10.1103/PhysRevC.91.034907
https://doi.org/10.1103/PhysRevC.91.034907
https://doi.org/10.1103/PhysRevC.91.034907
https://doi.org/10.1103/PhysRevC.91.034907
https://doi.org/10.1103/PhysRevC.94.059901
https://doi.org/10.1103/PhysRevC.94.059901
https://doi.org/10.1103/PhysRevC.94.059901
https://doi.org/10.1103/PhysRevC.91.027901
https://doi.org/10.1103/PhysRevC.91.027901
https://doi.org/10.1103/PhysRevC.91.027901
https://doi.org/10.1103/PhysRevC.91.027901
https://doi.org/10.1103/PhysRevC.94.064907
https://doi.org/10.1103/PhysRevC.94.064907
https://doi.org/10.1103/PhysRevC.94.064907
https://doi.org/10.1103/PhysRevC.94.064907
https://doi.org/10.2307/2980526
https://doi.org/10.2307/2980526
https://doi.org/10.2307/2980526
https://doi.org/10.2307/2980526
https://doi.org/10.1103/PhysRevC.72.014902
https://doi.org/10.1103/PhysRevC.72.014902
https://doi.org/10.1103/PhysRevC.72.014902
https://doi.org/10.1103/PhysRevC.72.014902
https://doi.org/10.1016/j.nuclphysa.2018.09.074
https://doi.org/10.1016/j.nuclphysa.2018.09.074
https://doi.org/10.1016/j.nuclphysa.2018.09.074
https://doi.org/10.1016/j.nuclphysa.2018.09.074
https://doi.org/10.1023/A:1004152916478
https://doi.org/10.1023/A:1004152916478
https://doi.org/10.1023/A:1004152916478
https://doi.org/10.1023/A:1004152916478
https://doi.org/10.1016/j.nuclphysa.2016.01.059
https://doi.org/10.1016/j.nuclphysa.2016.01.059
https://doi.org/10.1016/j.nuclphysa.2016.01.059
https://doi.org/10.1016/j.nuclphysa.2016.01.059
https://doi.org/10.1103/PhysRevC.100.034905
https://doi.org/10.1103/PhysRevC.100.034905
https://doi.org/10.1103/PhysRevC.100.034905
https://doi.org/10.1103/PhysRevC.100.034905
https://doi.org/10.1103/PhysRevD.96.074510
https://doi.org/10.1103/PhysRevD.96.074510
https://doi.org/10.1103/PhysRevD.96.074510
https://doi.org/10.1103/PhysRevD.96.074510

