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Hydrodynamic results on multiplicity fluctuations in heavy-ion collisions
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Multiplicity fluctuations are one of the most crucial observables in the Beam Energy Scan program of the
Relativistic Heavy Ion Collider. It is understood that they can be utilized to probe the whereabouts of the critical
point on the phase diagram of the QCD matter. However, a significant portion of these fluctuations is, apart from
that related to the QCD phase transition, attributed to the other origins, which we refer to as “noncritical” ones.
The present study is dedicated to the noncritical aspects of the multiplicity fluctuations in heavy-ion collisions.
In particular, we focus on those of dynamical origin, such as the hydrodynamic expansion of the system and the
event-by-event initial fluctuations, in addition to the usual thermal fluctuations, finite-volume corrections, and
resonance decay at the freeze-out surface. The obtained results are compared to those of the hadronic resonance
gas model as well as to the experimental data.
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I. INTRODUCTION

The ongoing Beam Energy Scan (BES) program [1–3] at
the Relativistic Heavy Ion Collider (RHIC) is dedicated to ex-
ploring the phase diagram of the strongly interacting nuclear
matter. For Au + Au collisions from 3.0 to 62.4 GeV, precise
measurements are being realized for the high-baryon-density
region of the QCD matter regarding the critical endpoint of
expected phase transition. In principle, the dynamics of such
phase transitions are described by the quantum chromody-
namics (QCD). One intriguing characteristic of the system
concerns the chiral symmetry. Many theoretical efforts have
been devoted concerning its spontaneously breaking in the
QCD vacuum, as well as the restoration at the extremely hot
or dense environment. There quarks and gluons are the rele-
vant degrees of freedom through the deconfinement transition
from the hadronic state of matter. Lattice QCD studies [4,5]
demonstrated that the transition of the system is a smooth
crossover at vanishing baryon density and large strange quark
mass. At finite chemical potential, on the other hand, a
variety of models [6–10] predict the occurrence of a first-
order phase transition between the hadronic and quark-gluon
plasma (QGP), sometimes accompanied by a very complex
phase structure. These results indicate there exists a critical
endpoint which is located somewhere on the QCD phase dia-
gram where the line of first-order phase transitions terminates.
The transition is expected to be of second order at this point.
Among other established goals, the BES program is driven by
the search for the critical endpoint. Intuitively, one might look
for quantities that are sensitive to the underlying physics while

accessible experimentally. The higher cumulants of conserved
charges and combinations of them, such as cumulant ratios,
are candidates for such observables. These quantities fulfill
the requirement as they carry vital information on the primor-
dial medium created in the collisions. Moreover, it has been
suggested [11] that they are sensitive to the phase structure
of the QCD matter, and in particular, the whereabouts of the
critical point. In this regard, recently, multiplicity fluctuations
have drawn much attention as one of the key observables.

In fact, the experimentally observed multiplicity fluctua-
tions are governed by various distinct mechanisms [11,12]
associated with the physical system in question. As a ther-
modynamical system, a considerable portion of the measured
multiplicity fluctuation comes from the thermal fluctuations.
Calculations have been carried out in terms of the hadron
resonance gas (HRG) models in the grand-canonical ensemble
(GCE) [13–15] or canonical ensemble regarding conserved
charges [16–18]. For the latter, the conditions for the conser-
vation of net charges are explicitly considered, and the effect
was shown to be substantial. In addition, resonance decay was
shown to cause non-negligible deviation from pure statistical
distributions [15–17]. For the most part, the obtained results
[13–15,18–20] are manifestly consistent with the experimen-
tal data [21,22]. On the other hand, various physical quantities
become divergent, such as correlation length and particle fluc-
tuations, as the system approaches the critical point of a sys-
tem in thermal equilibrium. While a quantitative description
of the critical phenomena is provided by the theory of renor-
malization group, due to the sophistication of the problem at
hand, one usually resorts to phenomenological approaches,
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such as the σ model [23]. It has been speculated [24–26]
that the normalized fourth-order cumulant of multiplicity
distribution might be a nonmonotonic function of collision
energy. In reality, instead of being stationary, homogeneous,
and infinite in extension, the system created in heavy-ion
collisions evolves rapidly in time, it is highly inhomogeneous
while occupies only a small volume in space. Meanwhile,
the measurements are carried out on the freeze-out surface in
terms of hadronized particles, which might be not so close
to the critical point in the phase diagram. In this regard, the
effect of the critical endpoint on the dynamics of the system is
essential. Such tentatives [27] eventually leads to a variety of
models. For instance, the chiral fluid dynamics [28–31] treats
quarks as an equilibrated heat bath. Subsequently, a Langevin
equation is obtained for the chiral field. On the other hand,
Hydro+ [32] approach focuses on the critical slowing down
when the timescale to achieve local equilibrium becomes
comparable to that for global equilibrium. Moreover, even in
the framework of conventional hydrodynamics, the existence
of a critical point may impact the temporal evolution via its
modification to the equation of state (EoS). Also, there are
additional sources which may affect the resulting multiplicity
fluctuations. To be more specific, thermal [33] and nonequi-
librium [34] fluctuations on freeze-out surface, experimental
uncertainties and cuts, and other spurious contributions may
substantially attenuate the measured signals [35,36].

In the present work, we focus on a hydrodynamic study of
the multiplicity fluctuations, which is mainly based on the sce-
nario of HRG models. Our approach takes into consideration
thermal fluctuations by using the formalism of GCE. Also,
volume correction, as well as resonance decay, are considered
regarding hadron emission. The hydrodynamic evolution is
expressed in terms of the smoothed particle hydrodynamics
(SPH) algorithm. In our model, every elementary degree of
freedom of the system, namely, a small fluid element denoted
by an SPH particle, is treated as a quantum GCE. In com-
parison with statistical model approaches, system expansion
is encoded in terms of freeze-out surface. As a result, the
resultant element of the freeze-out surface may also possess
nonvanishing spatial component. Moreover, event-by-event
initial conditions (IC) are explicitly considered and shown to
play a significant role in the resulting quantities.

The paper is organized as follows. In the following section,
we briefly review relevant aspects concerning thermodynam-
ical fluctuations and resonance decay. We give an account
of the specific implementation for the hydrodynamic code
SPheRIO (Smoothed Particle hydrodynamic evolution of Rel-
ativistic heavy IOn collisions) in Sec. III. Numerical simula-
tions are carried out, and the results are presented and dis-
cussed in Sec. IV. The last section is dedicated to concluding
remarks.

II. THERMODYNAMICAL FLUCTUATIONS
AND RESONANCE DECAY

For a static ideal gas, the particle number fluctuations
can be measured regarding the variance and covariance of
particle numbers. These quantities can be readily evaluated
by quantum statistical physics [37]. To be specific, the GCE

average value and variance of the occupation density in the
momentum space read [16,17]

〈np,i〉 = 1

exp
[(√

p2 + m2
i − μi

)/
T

] − γi

, (1)

〈
�n2

p,i

〉 ≡ 〈(np,i − 〈np,i〉)2〉 = 〈np,i〉(1 + γi〈np,i〉), (2)

where p is the momentum, the subscript i indicates particle
species; T is the temperature; mi and μi are the particle mass
and chemical potential, respectively; and γi corresponds to
Bose (+1), Fermi (−1), or Boltzmann (0) statistics.

For systems at chemical equilibrium, one has

μi = qiμQ + biμB + siμS, (3)

where qi, bi, and si are the electric charge, baryon number, and
strangeness of particle species i and μQ, μB, and μS are the
chemical potentials of the corresponding conserved charges.

In our present approach, the fluctuations are independent
for different particle species as well as different momentum
space, the covariance is found to be

〈�np,i�nk, j〉 = δi jδpkv
2
p,i, (4)

where �np,i = np,i − 〈np,i〉 and v2
p,i = 〈�n2

p,i〉, given in
Eq. (2).

By summing up different momentum states, the average
number of particles of species i is given by

〈Ni〉 =
∑

p

〈np,i〉 = giV

2π2

∫ ∞

0
p2d p〈np,i〉. (5)

The variance σ 2 for species i reads

〈(�Ni )
2〉 = T

(
∂Ni

∂μ

)
T

, (6)

and, similarly, since the covariance between different particle
species vanishes, we have

〈�Ni�Nj〉 =
∑
p,k

〈�np,i�nk, j〉 = δi j

∑
p

v2
p,i. (7)

Besides, higher statistical moments of multiplicity distribu-
tions like skewness S ∝ 〈�N3〉 and kurtosis κ ∝ 〈�N4〉 are
also of particular importance. These quantities are sensitive
enough to the correlation length. Furthermore, products κσ 2

and Sσ are directly related to the ratios of the cumulants of
particle numbers. For a homogeneous system, these quantities
are same the ratios of susceptibilities where the volume-
and temperature-dependent terms cancel out [11]. While such
higher moments can be evaluated similarly, the calculations,
as well as the resulting expressions, are somewhat tedious.
Therefore, we delegate a succinct account for the relevant
expressions to the Appendix of the present paper.

In order to consider the effect of conserved charges, one
may follow Refs. [16,17] to insert some additional factor into
the phase-space integral of the grand partition function. To be
specific,

∏
i

1

2π

∫ 2π

0
dφi exp [−iQiφi], (8)
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where Qi stands for the total charge of type i, for instance,
Qi = Q, B, S, etc. The integral can be evaluated by further
making use of the saddle-point expansion technique and there-
fore approximated but analytic results can be obtained. The
resulting partition function is usually referred to as “canoni-
cal” in the literature. We note that for the above prescription,
the conservation is demanded for specific net charges but not
for individual particle species. Otherwise, the variance of any
particle species shall vanish by definition. It was shown [16]
that, depending on specific model parameters, the effect of
conserved charges could be substantial.

The resonance decay can be considered by introducing the
following generating function [16]

G ≡
∏

R

(∑
r

bR
r

∏
i

λ
nR

i,r

i

)NR

, (9)

where for a given resonance R, a specific decay channel is
denoted by r with the branching ratio bR

r . Also nR
i,r indicates

the number of particles i obtained through the decay channel r
of the resonance in question. Here λi is the “external source”
which will be taken to be 1 by the end of the calculations. The
resulting particle number of a specific particle species i can be
obtained by the operation λi

∂
∂λi

. As a result, one finds

Ni ≡
∑

R

〈Ni〉 = λi
∂

∂λi
G =

∑
R

NR

∑
r

bR
r nR

i,r ≡
∑

R

NR〈ni〉R,

(10)

NiNj ≡
∑

R

〈NiNj〉R +
∑
R �=R′

〈NiNj〉R,R′

= λi
∂

∂λi

(
λ j

∂

∂λ j
G

)

=
∑

R

[NR(NR − 1)〈ni〉R〈n j〉R + NR〈nin j〉R]

+
∑
R �=R′

NRNR′ 〈ni〉R〈n j〉R′ . (11)

Here we have used an overline “ ” to indicate the resulting
ensemble average value after considering all possible decay
modes. Whereas 〈· · · 〉R means the average over different
decay modes for a given resonance R. For instance, 〈nin j〉R =∑

r bR
r nR

i,rnR
j,r . The overlined value is thus obtained by sum-

ming up all the contributions from different resonances. The
derivation for other relevant higher moments used in this work
can be found in the Appendix.

When one evaluates the variance and covariance, which
involves more than one particle, it is noted that the contri-
bution may come from a variety of possible decay processes.
For instance, two decayed particles might originate from the
same resonance, two distinct resonances of the same type, and
two different resonance. However, all these possibilities are
automatically taken care of as referred from the last line of
Eq. (11).

Subsequently, one may proceed to evaluate experimental
observables. One such quantity frequently cited in the lit-
erature is the scaled variance. For a given initial resonance

distribution, it is found to be

ωi∗
R ≡

〈
N2

i

〉
R − 〈Ni〉2

R

〈Ni〉R

=
〈
n2

i

〉
R − 〈ni〉2

R

〈ni〉R

=
∑

r bR
r

(
nR

i,r

)2 − (∑
r bR

r nR
i,r

)2∑
r bR

r nR
i,r

. (12)

The resulting expression taking into account for all different
resonances reads

ωi∗
R = N2

i − Ni
2

Ni
=

∑
R NR

〈
n2

i

〉
R − ∑

R NR〈ni〉2
R∑

R NR〈ni〉R
. (13)

In realistic events, resonance yields NR also fluctuate, and
the resultant scaled variance reads

ωi∗ ≡
〈
N2

i

〉
T − 〈

Ni
2〉

T

〈Ni〉T
= ωi∗

R +
∑

R

〈ni〉RωR, (14)

where

ωR ≡
〈
N2

R

〉
T − 〈NR〉2

T

〈NR〉T
(15)

is the scaled variance of the resonance R.
If the system is static and in thermal and chemical equilib-

rium, then the thermal fluctuations used in the above expres-
sions are those discussed above in Eqs. (6) and (7).

III. A HYDRODYNAMIC APPROACH

In this section, we elaborate an approach which incorpo-
rates the effect of hydrodynamical evolution of the system,
together with the event-by-event fluctuating IC on multi-
plicity fluctuations. To take into consideration the temporal
expansion into our framework, we employ SPheRIO [38], a
hydrodynamic code for an ideal relativistic fluid based on SPH
algorithm. In this approach, the fluid motion is represented
in terms of discrete Lagrangian coordinates, known as SPH
particle. In the case of an ideal fluid, the latter is assigned
with a given fraction of conserved quantities, say, the entropy
and also the baryon number. In term of the SPH particle
degree of freedom, the equation of motion can be derived
by using the variational principle. We neglect in the present
work any dissipative effects and assume Cooper-Frye sudden
freeze-out take place at constant temperatures. The latter,
when transformed into the local rest frame, provides the
baseline to evaluate the thermal fluctuations at the moment
of hadronization. We do not introduce any additional free
parameter into the model as the existing ones that have been
determined as to appropriately reproduce the experimental
data regarding the particle spectra [39–47].

On the freeze-out surface, every small fluid element, that
is, in our case, an SPH particle is treated as a GCE for a given
temperature and the mean baryon number. One might proceed
further to take into account conserved charges, as discussed
in the previous section. Unfortunately, the latter is highly
nontrivial, due to precisely the same difficulties to explicitly

024904-3



HONG-HAO MA et al. PHYSICAL REVIEW C 101, 024904 (2020)

incorporate global charge conservation at hadronization in
most hydrodynamical models. A hydrodynamic event is a
collection of GCE ensembles represented by SPH particles.
While in the fluid dynamical representation, it naturally gives
the correct value for the total charge of the system on average,
once we introduce the freeze-out for hadronization via GCE,
the exact charge conservation becomes extremely difficult to
be implemented numerically. To be specific, this is because
the momentum space integral involving a conserved total
charge is then to be carried out on all individual freeze-out
surface elements resolved numerically. It is noted that signifi-
cant progress has been achieved recently about implementing
canonical or microcanonical systems on the freeze-out surface
[48]. As a first approximation, however, we will ignore the
condition of charge conservation in our present approach.

For each fluid element at the moment of hadronization,
it is in local equilibrium. In this case, however, the volume
in Eq. (5) becomes anisotropic. It should be replaced by a
time-like 3-surface. Moreover, the particle number flux also
depends on the frame of reference, and the integral in mo-
mentum space should be modified accordingly. To be specific,
the average number of particles of species i is replaced by the
following covariant form:

Ed3Ni

d p3
= d3Ni

2π pT d pT dy
=

∫
σ

dσμ pμ〈ni(u, p, x)〉, (16)

which is expressed in terms of dynamical variables such
as rapidity y and transverse momentum pT . As mentioned
before, the volume has been substituted by an integral carried
out on σμ, an element determined by the hydrodynamical
calculations. For the latter, if only its time component is non-
vanishing, contracting with pμ and integrating in momentum
will bring it right back to Eq. (5), since

〈ni(u, p, x)〉 ≡ 〈ni(up, x)〉
= 1

exp {[u(x)p − μi(x)]/T } − γi
(17)

is the local occupation density in the comoving frame.
Following the spirit of the SPH method, Eq. (16) can be

rewritten in terms of SPH degrees of freedom. One finds

E
d3Ni

d p3
=

∑
j

ν jn jμ pμ

s j

∣∣n jρuρ
j

∣∣θ (u jδ pδ )〈ni(u jν pν, x)〉, (18)

where the sum in j is carried out for SPH particles and ν j and
s j denote the total entropy and entropy density of the jth SPH
particle. Therefore, the ensemble average of particle number
reads

〈Ni〉 =
∫

p⊥d p⊥dydφ
∑

j

ν jn jμ pμ

s j

∣∣n jρuρ
j

∣∣θ (u jδ pδ )〈ni(u jν pν, x)〉,

(19)

where, again, different fluid elements are treated to be statis-
tically independent, as they are individual GCEs.

We note that the Cooper-Frye formalism may lead to a
negative contribution to particle flux which is stripped away
by the θ function in Eq. (16). This is a known problem which
leads to a sudden increase in energy after the hadronization

process. For event-by-event fluctuating IC, the total energy
discrepancy can be about 20–25%, and for smoothed IC, the
situation is less severe, and the amount is less than 10%.
Similarly, the deviation of the baryon number and other
conserved charges can be determined accordingly regarding
the specific EoS in question. As discussed below, the above
issue regarding conservations of energy and other conserved
charges might be improved by adopting a more subtle scheme
of hadronization.

It is not difficult to further show that the covariance is

〈�Ni�Nj〉 =
∫

p⊥d p⊥dydφ
∑

j

ν jn jμ pμ

s j

∣∣n jρuρ
j

∣∣
× θ (u jδ pδ )v2

i (u jν pν, x), (20)

where v2
i (u jν pν, x) follows the defintion introduced in Eq. (4).

Equations (19) and (20) can be readily employed to eval-
uate the moments and replace those for a static system, for
instance, Eqs. (5)–(7). Also, we relegate the expressions for
higher moments to the Appendix.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We carried out hydrodynamic simulations of Au + Au
collisions based on the SPheRIO code for different centrality
windows at different energies in accordance with the existing
data of the BES program [21,22,49]. The IC are generated by
using NeXuS [50,51].1 The results presented below are from
simulations carried out for 977 events for 0–3.5% Pb + Pb
collisions at 8.8 GeV, as well as 756, 455, and 533 events
for 0–5% Au + Au collisions at 19.6, 62.4, and 200 GeV,
respectively. For the sake of extracting the effects of event-
by-event fluctuations, we also make use of the event-averaged
IC, obtained by smoothing out the local density fluctuations
for each centrality.

In Figs. 1 and 2, we show the calculated dynamical fluc-
tuations of particle ratios p/π , K/π , and K/p at different
energies. For instance, the quantity νdyn,p/π measures the
deviation in the ratios of p/π with respect to those of an ideal
statistical Poissonian distribution. It is defined as

νdyn,p/π = 〈Np(Np − 1)〉
〈Np〉2

+ 〈Nπ (Nπ − 1)〉
〈Nπ 〉2

− 2
〈NpNπ 〉

〈Np〉〈Nπ 〉 .

(21)

The results of hydrodynamic simulations by SPheRIO and
those of UrQMD (Ultra relativistic Quantum Molecular Dy-
namics) as well as HRG models are presented together
with the data from the NA49 [49] and STAR [21] Collab-
orations. In the case of SPheRIO, calculated results both
with event-by-event fluctuating IC (in the right column
denoted by “w/EbE”) and event-averaged IC (in the left
column denoted by “w/o EbE”) are presented. The error

1This event generator has been updated and referred to as EPOS
(energy conserving quantum mechanical multiple scattering ap-
proach, based on Partons (parton ladders) Off-shell remnants, and
Splitting of parton ladders) [52–54], but for the purpose of the present
study, NeXuS is sufficient.
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FIG. 1. The calculated dynamical fluctuations of particle ratios p/π , K/π , and K/p in comparison with the data for different energies.
The experimental data are from the NA49 [49] and STAR [21] collaborations. The STAR data are for 0–5% Au + Au collisions at various
energies from

√
sNN = 7.7 to 200 GeV, presented by filled blue stars. The NA49 data are for 0–3.5% Pb + Pb collisions at energies from√

sNN = 6.3 to 17.3 GeV, shown in filled black squares. The SPheRIO results are given by filled red squares for both average (left column) and
event-by-event fluctuating (right column) ICs. The UrQMD model calculations are shown in open dark-yellow triangles with dashed curves.
The HRG calculations are presented in purple solid curves.

bars accompanying the hydrodynamical results correspond
to the standard error related to the finite number of IC
samples.

The SPheRIO results with event-averaged IC show a quite
reasonable agreement with those obtained by the static cases
(HRG + resonance decays shown in continuous curves)
and also with those from UrQMD.2 This indicates that
the corrections from the temporal expansion of the system

2When comparing against the particle list of UrQMD, SPheRIO
considers all the baryons essentially up to 1.7 GeV and mesons

are rather moderate. However, it is interesting to note that
the hydrodynamic effects for the K/π cases appear slightly
more significant regarding the others. It is understood that the
most dominant factor that leads to the above difference for
the statistical model approach is the mass of specific particle
species. To be more specific, numerically, the contribution
from the protons in Eq. (21) is found to be less significant. We
also note that the resultant energy dependencies and splitting

up to 1 GeV. Therefore, we believe that the difference does not
quantitatively affect the discussions in the present study.
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FIG. 2. The calculated dynamical fluctuations of particle ratios p±(∓)/π±, K±(∓)/π±, and K±(∓)/p± in comparison with the data for
different energies. As in Fig. 1, the experimental data are also from the STAR [21] collaborations. The data are for 0–5% Au + Au collisions
at various energies from

√
sNN = 7.7 to 200 GeV, presented by open, half-filled blue stars. Again, the SPheRIO results are given by open,

half-filled red squares for both average (left column) and event-by-event fluctuating (right column) ICs. The HRG calculations are presented
in purple dashed and dotted curves.

among the isospin states of our model are more or less
consistent with the experimental data, while the static HRG
or UrQMD approaches give rather flat energy dependencies.
On the other hand, for the p/π case, SPheRIO results present
systematic deviation in the lowest-energy region, although the
order of magnitude is still in accordance with the data. We will
come back to this point later.

When the event-by-event fluctuations are switched on,
one finds that the calculated dynamical fluctuations are aug-
mented. For each term of Eq. (21), both the numerator and
denominator can be essentially cast into Eq. (A15). For the
latter, the contributions due to the event-by-event fluctuations,

on top of the thermal ones, are demonstrated in terms of
covariance of thermal averages for different events. As shown
in Eq. (A15), these covariances will be positive, as long as
event-by-event multiplicity fluctuations of different species
are positively correlated. The overall effect, while one consid-
ers both the numerator and denominator, presented in various
terms, gives rise to a slightly positive contribution.

Numerically, although the trend for lower-energy Pb + Pb
collisions is consistent with the data from NA49 Collabo-
rations, the calculated dynamical fluctuations predominantly
overestimate the experimental data. Moreover, the obtained
dynamical fluctuations are found to be significantly above the
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TABLE I. The calculated dynamical fluctuations by considering Boltzmann as well as quantum statistics on the freeze-out surface. The
resulting contributions are divided into those of thermal as well as event-by-event (denoted by EbE) ones.

νdyn,K/π (×10−4) νdyn,p/π (×10−4) νdyn,K/p (×10−4)

Energy (GeV) Statistics EbE Thermal Total EbE Thermal Total EbE Thermal Total

8.8 Boltzmann 3.16 28.6 31.8 117 −8.88 108 128 23.7 152
Quantum 3.04 19.3 22.3 116 −10.7 106 128 22.4 150

19.6 Boltzmann 6.50 7.86 14.4 9.63 −4.06 5.57 21.6 7.27 28.9
Quantum 6.50 5.74 12.2 9.72 −5.00 4.72 21.7 6.37 28.1

62.4 Boltzmann 5.97 5.91 11.9 17.6 −1.69 16.0 39.5 5.34 44.9
Quantum 5.97 4.34 10.3 17.7 −2.50 15.2 39.5 4.70 44.2

200 Boltzmann 10.5 6.03 16.5 15.6 −1.23 14.3 50.5 5.64 56.2
Quantum 10.5 4.49 14.9 15.6 −2.02 13.5 50.5 4.96 55.5

data and HRG model calculations. The above difference is at-
tributed to the event-by-event fluctuations in the IC generated
by NeXuS. To be more specific, it is speculated that the cause
of the augmented dynamical fluctuations is the significant
event-by-event local baryon density fluctuations associated
with the baryon stopping presented primarily in low-energy
events [55]. This is manifested especially in the measurements
shown in the top-right and bottom-right plots where protons
are involved. We understand that these fluctuations related to
the baryon density are largely suppressed once one employs
the event-average IC, and as a result, they are not observed
in the case of the left column of Figs. 1 and 2. Furthermore,
another possible cause of overwhelmed fluctuations might be
related to the definition of centrality window. In fact, when
the event-by-event fluctuations are switched on, an additional
point, absent from the event-averaged IC, comes into play. To
be specific, besides the baryon density fluctuations, significant
multiplicity fluctuations may present even for a given impact
parameter. However, we note that the experimental data seems
to indicate that the STAR date on dynamical fluctuations of
p/π and K/p are qualitatively different from those for K/π .
While the latter is mostly a monotonical function of energy,
the former is characterized by a “dip” at

√
s ∼ 20 GeV. This

feature is not shown in the results of the HRG, UrQMD,
and event-averaged hydrodynamical calculations. It is some-
how interesting to point out, in the case of event-by-event
hydrodynamics, although not quantitatively, this tendency is
reproduced due to the elevated fluctuations presented in the
low-energy region.

For the present calculations, the definitions of centrality
windows follow that of the impact parameters, while the
experimentalists used multiplicity counts of charged tracks
for given pseudorapidity region from the TPC detector. It is
understood that the use of impact parameters might poten-
tially lead to more significant overall multiplicity fluctuations.
Therefore, to eliminate this potential ambiguity, we have
carried out the calculations by using the definition of centrality
window in terms of the overall multiplicity. However, the
resultant dynamical fluctuations of particle ratios are found
almost identical in comparison with those presented in the
right column of Figs. 1 and 2. Therefore we conclude that
the overall multiplicity fluctuation does not play a significant
role here for νdyn. This probably can likely be attributed to the

fact that, according to Eq. (A15), the observable in question is
normalized in terms of multiplicities for each species.

Also, we carry out calculations to show how the quantum
ensemble considered in the present study is different from
the scenario when one considers a classical ensemble. The
results are presented in Table I. There, the calculated dynam-
ical fluctuations are further divided into different contribu-
tions, namely, those from thermal fluctuations and the rest
associated with event-by-event initial fluctuations. It is ob-
served that the difference in thermal fluctuations between clas-
sical and quantum statistics is quite substantial. The relative
deviation is larger when light meson, such as π , is involved,
which goes up and reaches 30%. Regarding the contributions
from event-by-event fluctuating IC, on the other hand, the
difference between classical and quantum statistics is not
significant. In the case where the magnitude of event-by-event
fluctuations dominates, for instance, the K/π fluctuations re-
garding the events at 200 GeV, the overall difference between
the classical and quantum statistics is less significant. This
is because, for those cases, the event-by-event fluctuations
play a crucial role in the overall contribution. While, on the
other hand, when thermal fluctuations dominate, the overall
difference due to classical or quantum statistics becomes more
appreciable.

In Fig. 3, we present various cumulant ratios at differ-
ent energies obtained by SPheRIO together with those by
UrQMD and HRG models. Here the SPheRIO results are
those of averaged ICs. The STAR measurements [22] are for
0–5% Au + Au collisions at various energies from

√
sNN =

7.7 to 200 GeV. As discussed above, the products κσ 2 and Sσ

are related to the ratios of particle number cumulants, which
are identical to those of susceptibilities in a homogeneous
system. In particular, for an ideal Poissonian distribution,
Sσ/Skellam and κσ 2 are both expected to be equal to 1. For a
hydrodynamic approach, the system is assumed to be in local
equilibrium but not necessarily homogeneous. Numerically,
the results from SPheRIO demonstrate a similar tendency as
compared to those obtained by the HRG model. These results
are somewhat expected. As mentioned before, for the smooth
IC, the hydrodynamic calculations are not much different
from the HRG ones since the freeze-out surface is relatively
smooth, and its impact on particle fluctuations might be rather
inconsequential. In the cases of Sσ/Skellam and κσ 2, unlike
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FIG. 3. The energy dependence of the higher moments of particle multiplicity. The results for net charge, net kaon, and net proton are
shown in the top, middle, and bottom panels. In the left, middle, and right columns, one presents the cumulant ratios σ 2/M, Sσ/Skellam, and
κσ 2, respectively. The STAR data [22] are for 0–5% Au + Au collisions at various energies from

√
sNN = 7.7 to 200 GeV, presented in open

blue stars. The corresponding SPheRIO results, with and without resonance decay, are shown in filled and open red circles, respectively. Those
obtained by UrQMD model calculations are displayed in dashed olive curves or cross-hatched area. The HRG calculations are given in small
open purple circles connected by solid curves.

the UrQMD calculations, both HRG and hydrodynamical
results indicate a less-sensitive energy dependence. For net-
kaon fluctuations, both the HRG and hydrodynamical models
give results consistent with the STAR measurements while
considering the uncertainties. In comparison, for net-charge
fluctuations, the observed energy dependence is reasonably
captured by UrQMD simulations. On the other hand, the
measured κσ 2 of net-proton decreases with decreasing energy,
whereas none of the above models were able to reproduce
such a trend. As pointed out by the STAR Collaborations,
nonmonotonic behavior is observed in the energy dependence
of the net-proton κσ 2, subjected to further confirmation by
improving the statistical and systematic uncertainties. The
presented results by hydrodynamical calculations based on
GCE approach indicated that such nonmonotonic feature does
not come from the collective system expansion either thermal
fluctuations.

V. FURTHER DISCUSSIONS AND CONCLUDING
REMARKS

In this work, we studied some of the noncritical aspects
of the multiplicity fluctuations in heavy-ion collisions by
employing a hydrodynamic model. Apart from the critical
behavior of the system near the critical point, there are
many other sources which also contribute to the multiplicity
fluctuations eventually observed experimentally. In the HRG
model, the effects of thermal fluctuations, finite-volume cor-
rection, and resonance decay on the final multiplicities are
taken into account. In this study, in addition to characteristics
of the HRG approaches, we explore the fluctuations associated
with the hydrodynamic freeze-out process. We further inves-
tigate how the present dynamical framework is affected by
the IC by comparing the event-by-event generated ensembles
to those resulting from a single smooth IC. It is also worth
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noting that we did not introduce any additional free parameter
into the present hydrodynamic model, as the existing ones are
determined in previous studies. The obtained results are then
compared to those of the HRG, UrQMD models, as well as
the experimental data. Overall, regarding the existing data, the
results obtained by SPheRIO are reasonable in comparison
with those by using different approaches. In particular, it is
observed that the event-by-event ICs may cause a sizable
effect, especially at lower energies where the involved baryon
density fluctuations might be significant. This, in turn, po-
tentially implies a more stringent requirement for the event
generator in terms of event-by-event fluctuations. Moreover,
it might be meaningful to carry out a more detailed analysis
regarding a more realistic EoS focused on the region with
finite baryon density. Furthermore, our results on the energy
dependence of the cumulant ratios are mostly consistent with
HRG and UrQMD model calculations. Therefore, it is con-
cluded that it is likely that experimentally observed nonmono-
tonical behavior is not due to collective system expansion,
either thermal fluctuations.

In our present study, we did not explicitly take into account
the conserved charges. We note that the magnitude of the fluc-
tuations is reduced as one introduces more conservation laws
[56]. To be more rigorous, it is essential to explicitly include
relevant conservation laws on an event-by-event basis when
one studies the fluctuation. In particular, it has been shown
that for a system of very few particle species, such a constraint
in the evaluation of partition function is known to cause a
remarkable suppression in particle number fluctuations [16].
In the scenario of relativistic heavy-ion collisions, however,
the total number of particle species is much larger, while on
the other hand, there are a total of three conserved charges,
namely, electric charge, baryon, and strangeness number. As
the number of multiplicities is much more significant to that
of the conservation law, the effect of the latter might be less
crucial. As shown by full-fledged calculations carried out by
using the HRG model [18], the difference is less significant
compared to the order of magnitude of the data. Nevertheless,
to properly implement the conservation of energy among other
conserved charges is an essential aspect of the hydrodynamic
model, which deserves attention. As discussed above, the total
energy discrepancy at the freeze-out surface becomes rather
significant, especially for the case of event-by-event fluctu-
ating ICs. Besides, the employed hydrodynamical approach
does not include the effect of viscosity. Overall, we under-
stand that the introduction of viscosity will further suppress
the multiplicity fluctuations. Also, viscosity is expected to
have a significant impact on the collective flow of the high-
transverse-momentum region. Its effect on overall multiplicity
fluctuations, however, may be less substantial in this regard.
Another relevant feature which is within the framework of
hydrodynamics is the so-called continuous emission [57,58].
In this context, since the hadronization takes place according
to a given escape probability, the temperature at the freeze-out
“surface” is not a constant. As a result, it gives rise to ad-
ditional fluctuations in comparison to the case of the Cooper-
Frye scenario. Moreover, there are other hadronization scenar-
ios employed in practice, where the freeze-out hypersurface is
characterized by constant energy density, Knudsen number,

etc. It is interesting to investigate further how different freeze-
out criterions affect the resultant multiplicity fluctuations.

In the literature, multiplicity fluctuations also have been
investigated by using hydrodynamic approaches by other
authors [33,34]. In Ref. [33], the cumulant ratios have
been studied. There, it was assumed that the multiplicity
fluctuations during the hadron emission follow those of a GCE
of a classical Maxwell-Boltzmann system, namely the Poisson
distribution. Therefore, any resultant deviation from the latter
is due to the effects of subsequential physical processes such
as volume fluctuations, hadronic evolution, resonance decays,
among others. Our calculations have shown that the difference
between classical and quantum ensemble can be substantial.
Other studies are focused on different aspects. For instance,
in Ref. [34], the cause of the fluctuations is attributed to the
quantum fluctuations in the vicinity of the critical point. The
latter is implemented by employing the spirit of the so-called
σ model where the fluctuations of a phenomenological σ field
were associated with those of emitted hadrons. The present
study, on the other hand, is essentially based on the HRG
model. This is applied to every fluid element at the freeze-out
surface, where the thermal fluctuations of a quantum GCE are
accounted for, and the correlation functions are subsequently
calculated analytically.

In this regard, a model which is aimed to probe relevant
physics, meanwhile being able to reproduce the particle pro-
duction with quantitatively correct numbers, shall be esteemed
as more useful in the endeavor of BES program. Although
HRG models provide a seemingly reasonable description of
the existing data, it is indeed meaningful to further incor-
porate the physics of critical phenomena explicitly into the
present approach. As discussed in the introduction, there are
at least three relevant aspects. First, the existence of a critical
point may affect the EoS, even in the context of traditional
hydrodynamics. To study the impact on the multiplicity fluc-
tuations regarding an EoS which carries explicit information
on the critical point might be potentially interesting. Second,
a more fundamental approach involves the modification of the
hydrodynamical equation of motion itself. The chiral phase
transition may directly impact the form of the hydrodynamical
equation. The above mentioned σ model is an exciting possi-
bility. Besides, chiral hydro approaches implement the physics
of the spontaneous symmetry breaking of a phenomenolog-
ical chiral field in terms of the source term of the existing
hydrodynamic equation. The physics related to the critical
slowing down may also affect the temporal evolution of the
system on a fundamental level. Last, many other realistic
factors should be implemented, especially when we intend to
deal with experimental measurements. A further study in this
direction is in progress.
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APPENDIX: HIGHER MOMENTS OF THE MULTIPLICITY DISTRIBUTION

In this Appendix, we enumerate some of the expressions that are made use of in our numerical implementation. Some of the
formulas shown below have already be derived in the literature [16–18]; they are presented here for the sake of completeness.

By definition, the second-, third-, and fourth-order moments of multiplicity distribution can be written as

〈�Ni�Nj〉 = 〈NiNj〉 − 〈Ni〉〈Nj〉, (A1)

〈�Ni�Nj�Nk〉 = 〈NiNjNK〉 − 〈NiNj〉〈Nk〉 − 〈NiNk〉〈Nj〉 − 〈NkNj〉〈Ni〉 + 2〈Ni〉〈Nj〉〈Nk〉, (A2)

〈�Ni�Nj�Nk�Nl〉 = 〈NiNjNK Nl〉 − 〈NiNjNk〉〈Nl〉 − 〈NiNkNl〉〈Nj〉 − 〈NiNjNl〉〈Nk〉 − 〈NjNkNl〉〈Ni〉
+ 〈NiNj〉〈Nl〉〈Nk〉 + 〈NiNk〉〈Nl〉〈Nj〉 + 〈NiNl〉〈Nj〉〈Nk〉 + 〈NjNk〉〈Ni〉〈Nl〉 + 〈NjNl〉〈Ni〉〈Nk〉
+ 〈NkNl〉〈Ni〉〈Nj〉 − 3〈Ni〉〈Nj〉〈Nk〉〈Nl〉, (A3)

where the subscripts i, j, k, and l represent the particle species.
These quantities are closely associated with the higher-order cumulants of particle number as follows [37]:

〈(�Ni )
3〉 = T 2

(
∂2Ni

∂2μ

)
T

, (A4)

〈(�Ni )
4〉 − 3〈(�Ni )

2〉 = T 3

(
∂3Ni

∂3μ

)
T

. (A5)

By taking into considering that the covariance between different particle species vanishes, it is straightforward to find, with
the aid of Eq. (5),

〈�Ni�Nj�Nk〉 =
∑

p

〈(�np,i )
3〉

=
∑

p

2〈np,i〉(1 + γi〈np,i〉)2 − 〈np,i〉(1 + γi〈np,i〉)

=
∑

p

〈np,i〉
(
1 + 3γi〈np,i〉 + 2γ 2

i 〈np,i〉2
)
, (A6)

〈�Ni�Nj�Nk�Nl〉 − 〈(�Ni�Nj )(�Nk�Nl )〉 − 〈(�Ni�Nk )(�Nj�Nl )〉 − 〈(�Ni�Nl )(�Nj�Nk )〉
=

∑
p

〈(�np,i )
4〉 − 3〈(�np,i )

2〉

=
∑

p

6〈np,i〉(1 + γi〈np,i〉)3 − 6〈np,i〉(1 + γi〈np,i〉)2 + 〈np,i〉(1 + γi〈np,i〉)

=
∑

p

〈np,i〉
(
1 + 7γi〈np,i〉 + 12γ 2

i 〈np,i〉2 + 6γ 3
i 〈np,i〉3

)
. (A7)

In the RHIC BES data, skewness S and kurtosis κ are two quantities closely related to the measurements, and their definitions
are closely related to the cumulants. To be more specific, the following ratios are frequently being used:

σ 2

M
= 〈(�N )2〉

〈N〉 , Sσ = 〈(�N )3〉
〈(�N )2〉 , κσ 2 = 〈(�N )4〉 − 3〈(�N )2〉2

〈(�N )2〉 . (A8)

The reason for the ratio combinations is that the above three quantities are identical to 1 in the case of ideal Poissonian
distribution.

In practice, measurements are carried out for the net-particle multiplicity distribution regarding the above cumulant ratios.
For instance, for net-proton multiplicity distribution, one finds

σ 2
p−p̄

Mp−p̄
= 〈(�Np−p̄)2〉

〈Np−p̄〉 , Sp−p̄σp−p̄ = 〈(�Np−p̄)3〉
〈(�Np−p̄)2〉 , κp−p̄σ

2
p−p̄ = 〈(�Np−p̄)4〉 − 3〈(�Np−p̄)2〉2

〈(�Np−p̄)2〉 , (A9)
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where

〈Np−p̄〉 = 〈Np〉 − 〈Np̄〉, (A10)

〈(�Np−p̄)2〉 = 〈(�Np)2〉 + 〈(�Np̄)2〉 − 2〈�Np�Np̄〉, (A11)

〈(�Np−p̄)3〉 = 〈(�Np)3〉 − 〈(�Np̄)3〉 − 3〈(�Np)2�Np̄〉 + 3〈�Np(�Np̄)2〉, (A12)

〈(�Np−p̄)4〉 − 3〈(�Np−p̄)2〉 = 〈(�Np)4〉 − 3〈(�Np)2〉2 + 〈(�Np̄)4〉 − 3〈(�Np̄)2〉2 − 4[〈(�Np)3�Np̄〉
−3〈(�Np)2〉〈�Np�Np̄〉] + 6[〈(�Np)2(�Np̄)2〉 − 2〈�Np�Np̄〉2 − 〈(�Np)2〉〈(�Np̄)2〉]
− 4[〈(�Np̄)3�Np〉 − 3〈(�Np̄)2〉〈�Np�Np̄〉]. (A13)

In the case of ideal Poissonian distribution, it is straightforward to show that

σ 2
p−p̄

Mp−p̄
→ 〈Np〉 + 〈Np̄〉

〈Np〉 − 〈Np̄〉 , Sp−p̄σp−p̄ → 〈Np〉 − 〈Np̄〉
〈Np〉 + 〈Np̄〉 , κp−p̄σ

2
p−p̄ → 1. (A14)

while the emissions of protons and antiprotons are treated as independent.
As one further considers event-by-event fluctuating ICs, the above quantities are further modified to include the fluctuations

between different events. For a total of n events, E ≡ {E1, E2, . . . , En}, one has

〈(�Ni )(�Nj )〉E = 1

n

[〈(�Ni )(�Nj )〉E1 + 〈(�Ni )(�Nj )〉E2 + · · · + 〈(�Ni )(�Nj )〉En

] + 1

n

[
(〈Ni〉E1 − 〈Ni〉E )(〈Nj〉E1 − 〈Nj〉E )

+ (〈Ni〉E2 − 〈Ni〉E )(〈Nj〉E2 − 〈Nj〉E ) + · · · + (〈Ni〉En − 〈Ni〉E )(〈Nj〉En − 〈Nj〉E )
]
. (A15)

Here 〈· · · 〉Ek indicates the ensemble average discussed above, and therefore �Ni in the first term on the right-hand side of the
above expression is evaluated with respect to the ensemble average for a given event k. However, 〈· · · 〉E stands for the event
average, in the sense that �Ni on the left-hand side is regarding the event average of ensemble ones.

In terms of SPH degree of freedom, the above results can be rewritten as follows:

〈�Ni�Nj�Nk〉 =
∫

p⊥d p⊥dydφ
∑

j

ν jn jμ pμ

s j

∣∣n jρuρ
j

∣∣θ (u jδ pδ )v3
i (u jν pν, x), (A16)

〈�Ni�Nj�Nk�Nl〉 =
∫

p⊥d p⊥dydφ
∑

j

ν jn jμ pμ

s j

∣∣n jρuρ
j

∣∣θ (u jδ pδ )v4
i (u jν pν, x), (A17)

where
v3

i (u jν pν, x) = ni(u jν pν, x)
[
1 + 3γini(u jν pν, x) + 2γ 2

i n2
i (u jν pν, x)

]
,

v4
i (u jν pν, x) = ni(u jν pν, x)

[
1 + 7γini(u jν pν, x) + 12γ 2

i n2
i (u jν pν, x) + 6γ 3

i n3
i (u jν pν, x)

]
. (A18)

Now, when resonance decay is considered, the three- and four-particle correlators entirely due to resonance decay can be
evaluated by making use of the generating function defined in Eq. (9),

NiNjNk ≡
∑

R

〈NiNjNk〉R +
∑
R �=R′

〈NiNjNk〉R,R′ +
∑

R �=R′ �=R′′
〈NiNjNk〉R,R′,R′′

= λi
∂

∂λi

[
λ j

∂

∂λ j

(
λk

∂

∂λk
G

)]

=
∑

R

[NR〈nin jnk〉R + NR(NR − 1)(〈nin j〉R〈nk〉R + 〈nink〉R〈n j〉R + 〈nkn j〉R〈ni〉R)

+NR(NR − 1)(NR − 2)〈ni〉R〈n j〉R〈nk〉R] +
∑
R �=R′

NR′ [NR〈nin j〉R + NR(NR − 1)〈ni〉R〈n j〉R]〈nk〉R′

+
∑
R �=R′

NR′ [NR〈nink〉R + NR(NR − 1)〈ni〉R〈nk〉R]〈n j〉R′ +
∑
R �=R′

NR′ [NR〈n jnk〉R + NR(NR − 1)〈n j〉R〈nk〉R]〈ni〉R′

+
∑

R �=R′ �=R′′
NRNR′NR′′ 〈ni〉R〈n j〉R′ 〈nk〉R′′ , (A19)

NiNjNkNl ≡
∑

R

〈NiNjNkNl〉R +
∑
R �=R′

〈NiNjNkNl〉R,R′ +
∑

R �=R′ �=R′′
〈NiNjNkNl〉R,R′,R′′ +

∑
R �=R′ �=R′′ �=R′′′

〈NiNjNkNl〉R,R′,R′′,R′′′

= λi
∂

∂λi

{
λ j

∂

∂λ j

[
λk

∂

∂λk

(
λl

∂

∂λl
G

)]}
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=
∑

R

[NR〈nin jnknl〉R + NR(NR − 1)〈nin jnk〉R〈nl〉R + NR(NR − 1)(〈nin jnl〉R〈nk〉R + 〈nin j〉R〈nlnk〉R)

+ NR(NR − 1)(〈ninknl〉R〈n j〉R + 〈nink〉R〈nln j〉R) + NR(NR − 1)(〈n jnknl〉R〈ni〉R + 〈n jnk〉R〈nlni〉R)

+ NR(NR − 1)(NR − 2)(〈nin j〉R〈nk〉R〈nl〉R + 〈nink〉R〈n j〉R〈nl〉R + 〈n jnk〉R〈ni〉R〈nl〉R)

+NR(NR − 1)(NR − 2)(〈ninl〉R〈n j〉R〈nk〉R + 〈n jnl〉R〈ni〉R〈nk〉R + 〈nknl〉R〈ni〉R〈n j〉R)

+ NR(NR − 1)(NR − 2)(NR − 3)〈ni〉R〈n j〉R〈nk〉R〈nl〉R]

+
∑
R �=R′

NR′ [NR〈nin jnk〉R + NR(NR − 1)(〈nin j〉R〈nk〉R + 〈nink〉R〈n j〉R + 〈n jnk〉R〈ni〉R)

+ NR(NR − 1)(NR − 2)〈ni〉R〈n j〉R〈nk〉R]〈nl〉R′ +
∑
R �=R′

NR′ [NR〈nin jnl〉R + NR(NR − 1)(〈nin j〉R〈nl〉R

+〈ninl〉R〈n j〉R + 〈n jnl〉R〈ni〉R) + NR(NR − 1)(NR − 2)〈ni〉R〈n j〉R〈nl〉R]〈nk〉R′

+
∑
R �=R′

NR′ [NR〈ninknl〉R + NR(NR − 1)(〈nink〉R〈nl〉R + 〈ninl〉R〈nk〉R + 〈nknl〉R〈ni〉R)

+ NR(NR − 1)(NR − 2)〈ni〉R〈nk〉R〈nl〉R]〈n j〉R′ +
∑
R �=R′

NR′ [NR〈n jnknl〉R + NR(NR − 1)(〈n jnk〉R〈nl〉R

+〈n jnl〉R〈nk〉R + 〈nknl〉R〈n j〉R) + NR(NR − 1)(NR − 2)〈n j〉R〈nk〉R〈nl〉R]〈ni〉R′

+
∑
R �=R′

[NR〈nin j〉R + NR(NR − 1)〈ni〉R〈n j〉R][NR′ 〈nknl〉R′ + NR′ (NR′ − 1)〈nk〉R′ 〈nl〉R′ ]

+
∑
R �=R′

[NR〈nink〉R + NR(NR − 1)〈ni〉R〈nk〉R][NR′ 〈n jnl〉R′ + NR′ (NR′ − 1)〈n j〉R′ 〈nl〉R′ ]

+
∑
R �=R′

[NR〈n jnk〉R + NR(NR − 1)〈n j〉R〈nk〉R][NR′ 〈ninl〉R′ + NR′ (NR′ − 1)〈ni〉R′ 〈nl〉R′ ]

+
∑

R �=R′ �=R′′
NR′NR′′ [NR〈nin j〉R + NR(NR − 1)〈ni〉R〈n j〉R]〈nk〉R′ 〈nl〉R′′

+
∑

R �=R′ �=R′′
NR′NR′′ [NR〈nink〉R + NR(NR − 1)〈ni〉R〈nk〉R]〈n j〉R′ 〈nl〉R′′

+
∑

R �=R′ �=R′′
NR′NR′′ [NR〈ninl〉R + NR(NR − 1)〈ni〉R〈nl〉R]〈n j〉R′ 〈nk〉R′′

+
∑

R �=R′ �=R′′
NR′NR′′ [NR〈n jnk〉R + NR(NR − 1)〈n j〉R〈nk〉R]〈ni〉R′ 〈nl〉R′′

+
∑

R �=R′ �=R′′
NR′NR′′ [NR〈n jnl〉R + NR(NR − 1)〈n j〉R〈nl〉R]〈ni〉R′ 〈nk〉R′′

+
∑

R �=R′ �=R′′
NR′NR′′ [NR〈nknl〉R + NR(NR − 1)〈nk〉R〈nl〉R]〈ni〉R′ 〈n j〉R′′

+
∑

R �=R′ �=R′′ �=R′′′
NRNR′NR′′NR′′′ 〈ni〉R〈n j〉R′ 〈nk〉R′′ 〈nl〉R′′′ . (A20)

Now by taking into consideration the primordial particles created before the resonance decay, namely

〈�Ni〉 = 〈�N∗
i 〉 +

∑
R

〈NR〉
∑

r

bR
r nR

i,r ≡ 〈�N∗
i 〉 +

∑
R

〈NR〉〈ni〉R, (A21)

where the terms with the superscript “∗” indicate the corresponding primordial quantities before the decay process. Subsequently,
the covariance between the particles of species i and j after the resonance decay is

〈�Ni�Nj〉 = 〈�N∗
i �N∗

j 〉 +
∑

R

[〈NR〉〈�ni�n j〉R + 〈(�NR)2〉〈ni〉R〈n j〉R]. (A22)
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The third and fourth moments of multiplicity distribution can be obtained in a similar way, which read

〈�Ni�Nj�Nk〉 = 〈�N∗
i �N∗

j �N∗
k 〉 +

∑
R

〈NR〉〈�ni�n j�nk〉R + 〈(�NR)2〉(〈�ni�n j〉R〈nk〉R

+〈�ni�nk〉R〈n j〉R + 〈�nk�n j〉R〈ni〉R) + 〈(�NR)3〉〈ni〉R〈n j〉R〈nk〉R, (A23)

C4(Ni, Nj, Nk, Nl ) = C4(N∗
i , N∗

j , N∗
k , N∗

l ) +
∑

R

〈NR〉〈�ni�n j�nk�nl〉R − 〈NR〉(〈�ni�n j〉R〈�nk�nl〉R

+〈�ni�nk〉R〈�n j�nl〉R) − 〈NR〉(〈�ni�nl〉R〈�nk�n j〉R) + 〈(�NR)2〉(〈�ni�n j�nk〉R〈nl〉R

+〈�ni�n j�nl〉R〈nk〉R) + 〈(�NR)2〉(〈�ni�nk�nl〉R〈n j〉R + 〈�nk�n j�nl〉R〈ni〉R)

+〈(�NR)2〉(〈�ni�n j〉R〈�nk�nl〉R + 〈�ni�nk〉R〈�n j�nl〉R) + 〈(�NR)2〉(〈�ni�nl〉R〈�nk�n j〉R)

+〈(�NR)3〉(〈�ni�n j〉R〈nk〉R〈nl〉R + 〈�ni�nk〉R〈n j〉R〈nl〉R) + 〈(�NR)3〉(〈�ni�nl〉R〈n j〉R〈nk〉R

+〈�n j�nk〉R〈ni〉R〈nl〉R) + 〈(�NR)3〉(〈�n j�nl〉R〈ni〉R〈nk〉R + 〈�nk�nl〉R〈ni〉R〈n j〉R)

+ (〈(�NR)4〉 − 3〈(�NR)2〉2)〈ni〉R〈n j〉R〈nk〉R〈nl〉R, (A24)

where the term C4 on both sides of the equality is defined to be

C4(Xi, Xj, Xk, Xl ) = 〈�Xi�Xj�Xk�Xl〉 − 〈�Xi�Xj〉〈�Xk�Xl〉 − 〈�Xi�Xl〉〈�Xj�Xl〉 − 〈�Xi�Xk〉〈�Xj�Xl〉. (A25)
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