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The cluster states in 13C are investigated by antisymmetrized molecular dynamics. By investigating the
spectroscopic factors, the cluster configurations of the excited states are discussed. It is found that the 1/2+

2

state is dominantly composed of the 12C(0+
2 ) ⊗ s1/2 configuration and can be regarded as a Hoyle-analog state.

On the other hand, the p-wave states (3/2− and 1/2−) do not have such structure, because of the coupling with
other configurations. The isoscalar monopole and dipole transition strengths from the ground to the excited states
are also studied. It is shown that the excited 1/2− states have strong isoscalar monopole transition strengths
consistent with the observation. On the other hand, the excited 1/2+ states unexpectedly have weak isoscalar
dipole transitions except for the 1/2+

1 state. It is discussed that the suppression of the dipole transition is attributed
to the property of the dipole operator.
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I. INTRODUCTION

Currently, the Hoyle state of 12C [1–6] attracts much
interest as a possible bosonic condensate. A natural extension
of this interest is the search for the analog states in heavier 4n
nuclei such as 16O and 20Ne. Recently, a possible candidate in
16O [7–10] has been intensively discussed, and a theoretical
study [11] predicted the existence of the α particle condensate
up to approximately the 10α system 40Ca.

Another direction of the research is the study of N �= Z
nuclei in which nucleon particles or holes can be injected into
the α particle condensate as an impurity. In the case of 11B
which has a proton hole coupled to 12C, the theoretical stud-
ies based on antisymmetrized molecular dynamics (AMD)
[12,13] pointed out that the 3/2−

3 state located just below
the 7Li +α threshold has pronounced 2α + t clustering with
large radius. Hence, the state was suggested as a candidate
of the Hoyle-analog state. More recently, Yamada et al. per-
formed the orthogonality condition model (OCM) calculation
[14] and predicted the 1/2+

2 state as another candidate of the
Hoyle-analog state in which all of the 2α and triton particles
occupy the s-wave state.

Several discussions have also been made for 13C which has
an extra neutron. Yamada et al. [15] discussed the possible
reduction of spin-orbit splitting in the Hoyle-analog states.
Namely, they suggested that the spin-orbit splitting between
the p1/2 and p3/2 coupled to the Hoyle state (1/2− and 3/2−
states) will be reduced, because the splitting is dependent on
the first derivative of the density distribution and the Hoyle

state has a dilute density profile. In addition to this, Yamada
et al. performed the OCM calculation [16] and predicted the
Hoyle-analog 1/2+ state in which all of three α particles
and a neutron occupy the same s-wave state, which is quite
similar to the analysis made for 11B. Thus, the 3/2−, 1/2−,
and 1/2+ states in 13C are of particular interest and im-
portance for the understanding of the Hoyle-analog state in
N �= Z nuclei.

At present, the existence of the Hoyle-analog 3/2−, 1/2−,
and 1/2+ states in 13C is still ambiguous, because the infor-
mation is not enough to identify them. Therefore, in this work,
we conduct the AMD calculation to supply further theoretical
information. We investigate the spectroscopic factors (S fac-
tors) in 12C + n and 9Be +α channels to identify the Hoyle-
analog states. Furthermore, we focus on the isoscalar dipole
(IS1) transition strength as well as the isoscalar monopole
(IS0) transition strength, which are known to be enhanced for
the cluster states [12,17–21]. We expect that they are useful to
identify the Hoyle-analog states in 13C.

This paper is organized as follows: First, we explain the-
oretical framework of AMD and how to calculate S factors
of the 12C + n and 9Be +α channels. Second, we present
our numerical calculation results and compare them to experi-
mental data. We analyze nuclear structure of 3/2−, 1/2−, and
1/2+ states in detail using S factors and identify the Hoyle-
analog states. We also discuss on the IS0 and IS1 transition
strengths to supply theoretical information for forthcoming
experiments. Finally, we summarize our paper.
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II. AMD FRAMEWORK

A. Hamiltonian and model wave function

The Hamiltonian employed in this work is

Ĥ =
A∑

i=1

t̂i − t̂c.m. +
∑
i< j

v̂NN +
∑
i< j

v̂Coul, (1)

where t̂i is the ith nucleon kinetic energy and v̂NN and v̂Coul

are the Gogny D1S nucleon-nucleon interaction [22] and
Coulomb interaction, respectively. The center-of-mass kinetic
energy t̂c.m. is subtracted from the Hamiltonian.

The intrinsic AMD wave function is a Slater determinant
of nucleon Gaussian wave packets [23–25],

�AMD = A{ϕ1ϕ2 · · ·ϕA}, (2)

ϕi = φi ⊗ χi ⊗ ξi, (3)

φi =
(

π3

8|ν|
)− 1

4

exp

[
−

∑
σ=xyz

νσ

(
riσ − Ziσ√

νσ

)]
, (4)

χi = αi|↑〉 + βi|↓〉, ξi = |p〉 or |n〉. (5)

It is noted that the center-of-mass wave function �c.m. is
analytically separable from the intrinsic wave function,

�AMD = �int�c.m., (6)

�c.m. =
(

π3

8A3|ν|
)− 1

4

exp

[
−A

∑
σ=xyz

νσ R2
σ

]
. (7)

Here, �int is the internal wave function, and we assume that
the relation

∑
i Zi = 0 holds. Therefore, the AMD framework

is completely free from spurious motion. This is an important
advantage when we calculate the IS1 transition strengths.
The parameters of the AMD wave function ν, Zi, αi, and
βi are determined so as to minimize the energy after parity-
projection,

�π = 1 + π P̂x

2
�int, π = ±, (8)

Eπ = 〈�π |Ĥ |�π 〉
〈�π |�π 〉 . (9)

To describe the various states of 13C, we impose the
constraint on the expectation values of harmonic oscillator
quanta N , λ, and μ, which are defined by using the harmonic
oscillator quanta in Cartesian coordinates Nx, Ny, and Nz:

N = Nx + Ny + Nz, λ = Nz − Ny, μ = Ny − Nx. (10)

Here, we assume the relation Nx � Ny � Nz. Roughly speak-
ing, the excitation of system is expressed by N , and λ and
μ indicate the asymmetries around the longest and shortest
deformed axis. The details of this constraint are described in
Ref. [26].

Compared with the constraint on the quadrupole defor-
mation parameters (βγ constraint), which is often used in
mean-field and AMD calculations, the constraint on N , λ,
and μ is appropriate for the description of the highly excited
states. The βγ constraint is useful to describe the low-lying
quadrupole collectivity but it often fails to describe highly
excited states. On the other hand, the constraint on N , λ

and μ is capable of describing the highly excited states with
many-particle many-hole configurations. In this study, the
possible combinations of values for N , λ, and μ up to N = 18
(9h̄ω excitation) are adopted as the constraint. We denote
thus-obtained basis wave function as �π (Nλμ).

After energy variation, the basis wave functions are pro-
jected to angular-momentum eigenstates and superposed to
obtain excitation spectra and eigen wave functions [generator
coordinate method (GCM)]:

�Jπ
MK (Niλiμi ) = N− 1

2
K P̂J

MK�π (Niλiμi ), (11)

NK = 〈
�Jπ

MK (Nλμ)
∣∣�Jπ

MK (Nλμ)
〉
, (12)

�Jπ
n =

∑
Ki

gJπ
Kin�

Jπ
MK (Niλiμi ), (13)

where P̂J
MK is the angular momentum projection operator. The

coefficients gJπ
Kin is determined by diagonalizing the Hamilto-

nian,∑
i′K ′

HJπ
iKi′K ′gJπ

i′K ′n = EJπ
n

∑
i′K ′

NJπ
iKi′K ′gJπ

i′K ′n, (14)

HJπ
iKi′K ′ = 〈

�Jπ
MK (Niλiμi )

∣∣Ĥ ∣∣�Jπ
MK ′ (Ni′λi′μi′ )

〉
, (15)

NJπ
iKi′K ′ = 〈

�Jπ
MK (Niλiμi )

∣∣�Jπ
MK ′ (Ni′λi′μi′ )

〉
. (16)

B. Reduced width amplitudes and spectroscopic factors

To search for Hoyle-analog states, we calculate the reduced
width amplitudes and S factors in the 12C + n and 9Be +α

channels. The reduced width amplitude in the 12C + n channel
is defined as

yJπn
jCπC jl (a) =

√
13

〈
δ(r − a)

r2

[
�

jCπC
C [Yl (r̂)χ1/2] j

]
J |�Jπ

n

〉
,

(17)

where �
jCπC
C is the wave function of 12C and χ1/2 is the

spin-isospin wave function of the neutron. jC and πC are
angular momentum and parity of 12C, and j and l are total and
orbital angular momenta of the neutron. In a same manner, the
reduced width amplitude in the 9Be +α channel is defined as

yJπn
jBeπBel (a) =

√
13!

9!4!

〈
δ(r − a)

r2
�α

[
�

jBeπBe
Be Yl (r̂)

]
J |�Jπ

n

〉
,

(18)

where �
jBeπBe
Be is the wave function of 9Be with angular

momentum jBe and parity πBe. �α is the wave function of the
ground state of the α cluster. The S factors of the 12C + n and
9Be +α channels are defined as the integrals of the reduced
width amplitudes,

SJπn
jCπC jl =

∫ ∞

0
da

∣∣ayJπn
jCπC jl (a)

∣∣2
, (19)

SJπn
jBeπBel =

∫ ∞

0
da

∣∣ayJπn
jBeπBel (a)

∣∣2
. (20)

To evaluate the reduced width amplitudes, we use the
Laplace expansion method proposed in Ref. [27], which can
treat the deformed and the excited cluster wave functions
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FIG. 1. The calculated and observed [28] excitation spectra of
the 1/2±, 3/2±, and 5/2± states of 13C with the threshold energies
for the relevant channels. The calculated threshold energies from the
12C(0+

2 ) + n threshold are −5.4 MeV for 12C(2+
1 ) + n, 4.2 MeV

for 12C(2+
2 ) + n, −1.9 MeV for 9Be(5/2−

1 ) + n, −1.7 MeV for
9Be(1/2−

1 ) + n, and −2.0 MeV for 9Be(1/2+
1 ) + n channels.

without any approximations. In this study, the α cluster is
described by the (0s)4 configuration with oscillator parameter
ν = mω/(2h̄) = 0.25 fm−1 while the wave functions of 9Be
and 12C are obtained by AMD + GCM calculations.

III. RESULTS AND DISCUSSIONS

A. Excitation spectra

We performed the energy variation under constraint on the
harmonic oscillator quanta N , λ and μ. Using the basis wave
functions generated by the energy variation, we performed
the GCM calculation and obtained excitation spectra of 13C.
The observed data [28] and calculated excitation spectra up to
Ex = 20 MeV with Jπ � 5/2± are shown in Fig. 1.

The calculated yrast states reasonably agree with the ob-
served spectra. On the other hand, the energies of the non-
yrast states above 10 MeV are overestimated. For example,
the 3/2−

2 state observed at 9.9 MeV is located at 13.2 MeV in
the present calculation. As shown later, many of the excited
states located above 10 MeV have cluster structure. Thus, we
can say that the present calculation overestimates the energies
of the cluster states. This is mainly due to the limitation of our
model space. The restriction up to N = 18 configuration may
not be sufficient to describe the relative motion of clusters.

B. Structure of 1/2− states

In this section, we discuss the structure of the 1/2−
states, which are the candidates of the Hoyle-analog state
having 12C(0+

2 ) ⊗ p1/2 configuration. The calculated root-
mean-square (rms) radii, S factors in the 12C + n and 9Be +α

channels, and the IS0 transition matrix from the ground state
M(IS0) are shown in Fig. 2. The transition matrix is defined
as

MIS0 =
A∑

i=1

(ri − rc.m.)
2, rc.m. = 1

A

∑
i

ri, (21)

M(IS0) = ∣∣〈�1/2−
k

∣∣MIS0
∣∣�1/2−

1

〉∣∣. (22)

The ground state (1/2−
1 state) has the compact shell struc-

ture with a radius of 2.52 fm. This state has large overlap
(0.94) with the basis wave function obtained by energy vari-

FIG. 2. The excitation energies and the properties of the 1/2−

states obtained in the present work. In the upper panels, the cal-
culated excitation spectra, matter rms radii rrms, and IS0 transition
matrix from the ground state M(IS0) are shown from left to right.
The calculated S factors in the 12C + n and 9Be + α channels are
presented in the lower panels. In the last panel, l denotes the orbital
angular momentum between α and 9B clusters.

ation with the constraint (N, λ, μ) = (9, 0, 3); its intrinsic
density distribution is shown in Fig. 3(a). The shell-model
like character of the ground state can be confirmed by the
large S factors in the 12C(0+

1 ) ⊗ p1/2 and 12C(2+
1 ) ⊗ p3/2

channels, which are 0.81 and 0.94 respectively. It is noted that
12C(0+

1 ) ⊗ p1/2 and 12C(2+
1 ) ⊗ p3/2 channels identically cor-

respond to (0s)4(0p3/2)8(0p1/2)1 configuration if the 12C(0+
1 )

and 12C(2+
1 ) have the (0s)4(0p3/2)8 and (0s)4(0p3/2)7(0p1/2)1

configurations, respectively.
While the ground state has the compact shell structure,

the excited 1/2− states have rms radii larger than 2.70 fm.
The enhancement of the rms radii in the excited 1/2− states
implies their developed cluster structure. The 1/2−

2 state
at Ex = 13.8 MeV largely overlaps with a wave function
having 9Be +α cluster configuration, shown in Fig. 3(b),
which amounts to 0.46. Hence, this state has large S factors
in the 9Be(3/2−

1 ) ⊗ l = 2 and 9Be(5/2−
1 ) ⊗ l = 2 channels,

which are 0.11 and 0.09, respectively. The RWAs in the
9Be(3/2−) ⊗ l = 2 and 9Be(5/2−) ⊗ l = 2 channels have
two nodes (N = 6), as shown in Fig. 4(b), while the those
in the ground state have one node (N = 4). This means that
the 1/2−

2 state is regarded as the nodal excitation of the
intercluster motion between 9Be and α clusters. Therefore,
the 1/2−

2 state is not a Hoyle-analog state but an excited
9Be +α cluster state, although it also has non-negligible S
factors in the 12C + n channels.

The 1/2−
3 , 1/2−

4 , and 1/2−
5 states have large

overlap with the basis wave functions displayed in
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FIG. 3. Intrinsic matter and valence neutron density distributions on the z = 0 plane for the basis wave functions obtained with variation
under the constraint on the H.O. quanta. The contour plot indicates the matter density distribution while the color plot indicates the valence
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4 , and 1/2−

5 states, respectively.
The panels (f)–(h) are those of the 1/2+

1 , 1/2+
2 , and 1/2+

3 states, respectively.

Figs. 3(c), 3(d), and 3(e), respectively. These states have
non-negligible S factors in the 12C(0+

2 ) ⊗ p1/2 channel
but the magnitudes are less than 0.20. This means
that the 12C(0+

2 ) ⊗ p1/2 configuration (Hoyle-analog
configuration) does not manifest as a single excited state, but
it is fragmented into these 1/2− states. Thus, we conclude that
there is no Hoyle-analog 1/2− state. Interestingly, these states
also have the S factors in the 12C(2+

2 ) ⊗ p1/2 channel, which
corresponds to the rotational excited state of the Hoyle state.
The differences between the 1/2−

3 , 1/2−
4 , and 1/2−

5 states are
seen in different magnitudes of the coupling to the 9Be +α

channels. Similar result was also obtained by Yamada et al.
[16]. They argued that Hoyle-analog state does not appear in
the 1/2− states because of the enhanced 9Be +α correlation
induced by the attractive odd-parity α-n interaction. We also
confirm this on account of the non-negligible S-factors
in the 12C(0+

2 ) ⊗ p1/2, 12C(2+
2 ) ⊗ p3/2 and 9Be +α

channels. In addition, our result shows the shrinkage of
the rms radii compared to the Hoyle state (2.94 fm),
which is also consistent with the interpretation suggested
by Yamada et al. [16].

Although there is no Hoyle-analog state, it is interesting to
note that all of the four 1/2− states have a large monopole
transition matrix comparable with the Hoyle state, which,
in total, exhaust 24% of the energy weighted sum rule,
which is consistent with the experimental results [29–31]. One
may wonder why the number of excited states with a large
monopole matrix is increased in 13C rather than in 12C despite
the fragmentation of the 12C(0+

2 ) ⊗ 0p1/2 configuration into
many states. The reason for the increase and the origin of the
monopole strength of each state are explained as follows.

The origin of the monopole strength of the 1/2−
2 state

is the excitation of the relative motion between 9Be and
α clusters. As already mentioned, the 1/2−

2 state has a
9Be +α cluster structure in which the intercluster motion

is excited by 2h̄ω from the ground state. Therefore, it
naturally has the enhanced monopole strength. Differently
from the 1/2−

2 state, the monopole strengths of the other
1/2− states originate in the excitation of the 12C core.
In particular, we found that the monopole excitation of
12C(2+

1 ) → 12C(2+
2 ) plays an important role, as does the

excitation of 12C(0+
1 ) → 12C(0+

2 ). To elucidate this, we here
show a simple estimation of the monopole transition ma-
trix. First, let us assume that the ground state of 13C (the
1/2−

1 state) has a (0s1/2)4(0p3/2)8(0p1/2)1 configuration, and
12C(0+

1 ) and 12C(2+
1 ) respectively have (0s1/2)4(0p3/2)8 and

(0s1/2)4(0p3/2)7(0p1/2)1 configurations. Then, 13C(1/2−
1 ) can

be written as

|13C(1/2−
1 )〉 = n0|A{12C(0+

1 ) ⊗ 0p1/2}〉, (23)

= n2|A{12C(2+
1 ) ⊗ 0p3/2}〉, (24)

where n0 and n2 denote the normalization factors defined as

n0 = 〈A{12C(0+
1 ) ⊗ 0p1/2}|A{12C(0+

1 ) ⊗ 0p1/2}〉−1/2, (25)

n2 = 〈A{12C(2+
1 ) ⊗ 0p3/2}|A{12C(2+

1 ) ⊗ 0p3/2}〉−1/2. (26)

Second, the other excited 1/2− states (1/2−
3 , 1/2−

4 and 1/2−
5 )

may be written as

|13C(1/2−
ex)〉 = an′

0|A{12C(0+
2 ) ⊗ 0p1/2}〉

+ bn′
2|A{12C(2+

2 ) ⊗ 0p3/2}〉
+ (other configurations) (27)

since they are dominated by the 12C(0+
2 ) ⊗ 0p1/2

and 12C(2+
2 ) ⊗ 0p3/2 configurations. Here, n′

0 and n′
2 are

the normalization factors defined in a similar manner, and
we assumed that the neutron orbits are unchanged from the
ground state. We also assume that n′

0|A{12C(0+
1 ) ⊗ 0p1/2}〉
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FIG. 4. The calculated RWAs of the 1/2− states in the 12C + n
and 9Be + α channels. The RWAs that yield S larger than 0.04 are
displayed.

and n′
2|A{12C(2+

1 ) ⊗ 0p3/2}〉 are orthogonal, and their
amplitudes are represented by a and b.

Finally, following the discussion by Yamada et al. [18], we
rewrite the monopole operator as

MIS0(13C) = MIS0(12C) + 12
13 r2, (28)

where MIS0(12C) acts on the 12C core, while r denotes
the coordinate between the 12C core and valence neutron.
With these expressions, we can derive an estimation for the
monopole transition matrix,

M(IS0) = 〈13C(1/2−
ex)|MIS0(13C)|13C(1/2−

1 )〉

= a∗ n′
0

n0
〈12C(0+

2 )|MIS0(12C)|12C(0+
1 )〉

+ b∗ n′
2

n2
〈12C(2+

2 )|MIS0(12C)|12C(2+
1 )〉

+ (other channels). (29)
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FIG. 5. The calculated excitation spectra, the rms matter radii
rrms, and the S factors of 3/2− states below 20 MeV. The S factors
smaller than 0.05 are not displayed.

The derivation of the Eq. (29) is almost same as that explained
in Ref. [18]. Thus, the monopole strengths of the excited 1/2−
states can be related to the monopole transitions of 12C. Here,
it is noted that n′

0/n0 and n′
2/n2 are almost equal to 1, and

〈12C(2+
2 )|MIS0(12C)|12C(2+

1 )〉 is as large as or even larger
than 〈12C(0+

2 )|MIS0(12C)|12C(0+
1 )〉. Therefore, if a and b are

not small and have the same phase, the transition matrix can
be large. From this simple estimation, it is also clear that the
12C(2+

2 ) ⊗ 0p3/2 channel increases the number of 1/2− states
having large monopole transition strengths.

C. Structure of the 3/2− states

The 3/2− states are also candidates of the Hoyle-analog
state with a P-wave valence neutron. The properties of the
3/2− states below 20 MeV are summarized in Fig. 5. In our
calculation, except for the 3/2−

1 and 3/2−
4 states, the 3/2−

states have matter rms radius larger than 2.75 fm.
The 3/2−

1 state is obviously dominated by the 12C(2+
1 ) ⊗

p1/2 channel (S = 0.87), and its configuration is concluded
to be (0p3/2)−1(0p1/2)2 because 12C(2+

1 ) is dominated by the
(0p3/2)−1(0p1/2)1 configuration. The properties of the other
3/2− states are not clear, since their S factors are small in
all calculated channels (S � 0.14). In particular, there are no
states having sizable S factor in the 12C(0+

2 ) ⊗ p3/2 channel
except for the 3/2−

1 state. Therefore, we conclude that there is
no Hoyle-analog 3/2− state below 20 MeV.

As explained above, the Hoyle-analog state with a P-wave
neutron does not appear. This is due to the strong attractive
interaction between the α cluster and the P-wave neutron,
which induces the coupling with many different channels. As
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FIG. 6. The calculated excitation spectra, matter rms radii,
M(IS1), and S factors of 1/2+ states below 20 MeV are shown in
the same manner as in Fig. 2.

a result, the 12C(0+
2 ) ⊗ p1/2 and 12C(0+

2 ) ⊗ p3/2 configura-
tions are fragmented into many states.

D. Structure of the 1/2+ states

In the above discussion, we showed that there is no Hoyle-
analog state in the 1/2− and 3/2− states, where the strong
attractive interaction between α clusters and the neutron in-
duces coupling with many different channels. On other hand,
because the interaction between the α and the S-wave neutron
is weaker than that for the P-wave neutron, we expect that
the 1/2+ state is a promising candidate of the Hoyle-analog
state.

The calculated rms radii and S factors are shown in Fig. 6.
The rms radius of the 1/2+

1 state is only 2.62 fm and suggests
that the 1/2+

1 state has a compact shell structure. In fact,
the 1/2+

1 state has the largest overlap with the basis wave
function, having the shell structure shown in Fig. 3(f). On
the other hand, the radii of the 1/2+

2 and 1/2+
3 states are

larger than 2.75 fm, which indicates their developed cluster
structure. This point can be clearly confirmed by analysis
of the S factor. The 1/2+

1 state is a particle-hole excited
state, because its S factor in the 12C(0+

1 ) ⊗ s1/2 channel is
0.84 and the other channel contributions are relatively small.
The RWA of the 1/2+

1 state in the 12C(0+
1 ) ⊗ s1/2 has one

node [Fig. 7(a)], and hence its particle-hole configuration is
(0p1/2)−1(1s1/2)1.

The 1/2+
2 state is located 3.0 MeV above 12C(0+

2 ) + n
threshold energy and has the largest S factor, 0.64, in the
12C(0+

2 ) ⊗ s1/2 channel among the calculated 1/2+ states.
The RWA in the 12C(0+

2 ) ⊗ s1/2 channel has one node

(b) 1/2+
2
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3
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FIG. 7. The calculated RWAs of the 1/2+ states in the 12C + n
and 9Be + α channels. The RWAs which yields the larger S than 0.04
are displayed.

[Fig. 7(b)], which indicates that the 1/2+
2 state is the Hoyle-

analog 1/2+ state with 12C(0+
2 ) ⊗ 1s1/2 configuration. It has

the largest overlap with the basis wave function shown in
Fig. 3(g), but its magnitude is 0.48. This state also has non-
negligible overlaps with the various basis wave functions
having 3α + n cluster structure, which suggests the dilute
gaslike nature of the 1/2+

2 state. However, the rms radius
of the 1/2+

2 state (2.76 fm) is reduced compared to that of
the Hoyle state (2.94 fm) in our calculation. This shrinkage
indicates that the Hoyle-analog nature is weakened by the
interaction between 12C and the valence neutron. This point
can be seen in the coupling with the other 12C + n channels.
For example, the 1/2+

2 state has the non-negligible S factors
of 0.11 and 0.18 in the 12C(1−

1 ) ⊗ p3/2 and 12C(2+
2 ) ⊗ d5/2

channels, respectively. It is also noted that the present result is
inconsistent with the OCM calculation [16], which concluded
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(a) 1/2+
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(b) 1/2+
3
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[MeV]

FIG. 8. The calculated reduced widths γ 2 of the 1/2+
2 and 1/2+

3

states for 12C + n and 9Be + α channels. The matching radius
a = 4.5 fm is applied.

the 1/2+
5 state is a Hoyle-analog state. We will revisit this

problem in Sec. III E.
The 1/2+

3 state has quite different nature from the 1/2+
1 and

1/2+
2 states. This state has almost zero S factors in the 12C + n

channels shown in Fig. 6, but the S factors in the 9Be +α

channels amount to 0.32 in total. Therefore, we conclude that
the 1/2+

3 state has the 9Be +α cluster structure. Interestingly,
its density distribution [Fig. 3(h)] shows a structure similar
to to the 1/2−

2 state [Fig. 3(b)]. Furthermore, the S factors
indicate that they are dominated by the 9Be(3/2−

1 ) + α and
9Be(5/2−

1 ) + α channels. Therefore, we consider that the
1/2−

2 and 1/2+
3 state constitute a parity doublet having the

9Be +α cluster structure. A similar bent-armed 3α + n clus-
ter structure in negative parity states was also discussed by
Furutachi et al. [32] in relation to the inversion doublet of the
9Be +α cluster band suggested by Millin and von Oertzen
[33]. In addition to this, it is worthwhile to mention that the
1/2+

3 state also has non small S factor in the 12C(1−
1 ) ⊗ p3/2

channel. Note that a previous AMD calculation [34] predicted
the bent-armed linear-chain-like structure of the 1−

1 and 0+
3

states of 12C, and hence the 1/2+
3 state naturally has the S

factor in the 12C(1−
1 ) channel. However, the 1/2+

3 state does
not have an S factor in the 12C(0+

3 ) ⊗ s1/2 channel. This
may be due to the lack of the low energy s orbit for the
valence neutron around the bent-armed linear chain, as the
lowest ones are already occupied by the nucleons in the α

clusters.
The calculated IS1 transition matrix M(IS1) (Fig. 6) indi-

cates that the 1/2+
1 state is strongly populated by IS1 transition

from the ground state [M(IS1) = 0.95 W.u.] while the 1/2+
2

and 1/2+
3 states are not. In particular, despite of its Hoyle-

analog structure, the IS1 transition strength of the 1/2+
2 state

is unexpectedly small. This may be explained as follows.
Following the discussion in Refs. [20,35], we decompose the
system into the 12C core and the valence neutron, and rewrite
the IS1 operator as

MIS1
μ = 132

169
r2Y1μ(r) − 5

39

∑
i∈12C

ξ 2
i Y1μ(r)

+ 4
√

2π

39

⎡
⎣∑

i∈12C

Y2(ξi ) ⊗ Y1(r)

⎤
⎦

1μ

+
∑
i∈12C

ξ 2
i Y1μ(ξi ),

(30)

where ξi denote the internal coordinates of the 12C core, while
r denotes the valence neutron coordinate. The first term of
Eq. (30) is dependent only on r and induces the IS1 transition
of the valence neutron. Therefore, the 1/2+

1 state, which
has the one-particle–one-hole (1p1h) configuration, is mainly
excited by this term. This is the reason why 1/2+

1 state has a
strong IS1 transition matrix comparable with the Weisskopf
estimate.
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FIG. 10. Same with Fig. 4 but obtained by using the modified
Gogny D1S interaction.

On the other hand, the second and third terms induce the
monopole and quadrupole transitions of 12C core. Therefore,
if these terms act on the ground state wave function [Eq. (30)],
they bring about the core excitations 12C(0+

1 ) → 12C(0+
2 )

and 12C(2+
1 ) → 12C(0+

2 ) combined with the valence neutron
excitations to yield the Hoyle-analog 1/2+

2 state. Since the
transition matrix for the core excitations are large, we expect
that the IS1 excitation from the ground state to the 1/2+

2 state
is enhanced. However, the coefficients for these two terms
are rather small (5/39 and 4

√
2π/39). As a result, the 1/2+

2
state has relatively small transition strength despite its dilute
gaslike nature.

Thus, the Hoyle-analog 1/2+
2 state has unexpectedly small

M(IS1). However, in the preliminary reported IS1 transition
strength distribution of 13C, there is a small peak around
13 MeV [29–31], which is close to our prediction and may
correspond to the Hoyle-analog 1/2+

2 state.
Finally, we discuss the decay width of the 1/2+ states.

Owing to the cluster structure of the 1/2+
2 and 1/2+

3 states,
they have unique decay patterns. The calculated reduced
widths γ 2 of the 1/2+

2 and 1/2+
3 states in the 12C + n and

9Be +α channels are shown in Fig. 8. The 1/2+
2 state has

largest reduced width of 0.96 MeV in the 12C(0+
2 ) ⊗ s1/2

channel. The reduced widths in the other channels are neg-
ligibly small. On the other hand, The reduced decay widths
in the 9Be(3/2−

1 ) ⊗ l = 1 and 9Be(5/2−
1 ) ⊗ l = 3 channels

are largest in the 1/2+
3 state. Because of the larger Q value,

the 1/2+
3 state dominantly decays via the 9Be(3/2−

1 ) ⊗ l = 1
channel. Therefore, the strong decays via the 12C(0+

2 ) ⊗ s1/2

and 9Be(3/2−
1 ) ⊗ l = 1 channels are signatures of the 1/2+

2
and 1/2+

3 states, respectively.
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FIG. 11. Same as Fig. 7 but obtained by using the modified
Gogny D1S interaction.

E. Interaction dependence of the results

The major problem of the results discussed above is that
the threshold energies of various cluster channels are not
reproduced correctly. This mainly due to the limitation of the
present model space and the Gogny D1S effective interaction
used in this study. In particular, the Gogny D1S interaction
does not reproduce the energy of the Hoyle state. As a result
(see Fig. 1) the energies of the highly excited cluster states
are overestimated and there is an energy gap between the
highly excited cluster states and the low-lying shell-like states
(1/2±

1 , 3/2±
1 , 5/2±, 3/2+

2 , and 5/2+
2 states). Therefore, one

may doubt that the discussion about the structure of the Hoyle-
analog state will be qualitatively changed if we employ a
different effective interaction.

Therefore, in this section, we discuss the interaction depen-
dence of the Hoyle-analog state. For this purpose, we modified
the Wigner and Majorana parameters of the central part of
the Gogny D1S interaction by multiplying with factors of
1.02 and 0.98, respectively. This modification reproduces the
energy of the Hoyle state measured from the 3α threshold
energy. The spectra calculated by this modified interaction are
shown in Fig. 9. One can see that the energy gap between the
low-lying shell-like states and the highly excited cluster states
are reduced and are close to the observations, although the

024317-8



HOYLE-ANALOG STATE IN 13C STUDIED WITH … PHYSICAL REVIEW C 101, 024317 (2020)

ground state is overbound by 5 MeV. The calculated S factors,
rms matter radii, and IS strengths of the 1/2± states are shown
in Figs. 10 and 11. Unexpectedly, we found that the properties
of the excited cluster states are not qualitatively changed by
the change of the effective interaction. In particular, the 1/2+

2
state is still dominated by the 12C(0+

2 ) ⊗ s1/2 channel and
is regarded as a Hoyle-analog state, contradicting the OCM
calculation [16]. Thus, the properties of the excited cluster
states are unchanged by the modification of the interaction,
and we consider that the inconsistency between the OCM and
AMD results about the 1/2+ states originates in the difference
of the model space or the difference between the macroscopic
and microscopic nuclear models, which should be resolved in
future works.

IV. SUMMARY

We studied the Hoyle-analog states in 13C based on AMD.
The basis wave functions are obtained by the energy varia-
tion with constraint on the expectation values of harmonic
oscillator quanta. Using these basis wave functions, the GCM
calculation was performed to obtain the excitation energies
and the eigen wave functions.

The analysis of the S factors in the 12C + n and 9Be +α

channels revealed the characters of the ground and ex-
cited states of 13C. The ground state (1/2−

1 state) has the
(0s)4(0p3/2)8(0p1/2)1 configuration, and the 3/2−

1 and 1/2+
1

states have the 1p1h configurations. In contrast to these shell-
model-like states, the non-yrast states have developed cluster
structures. The 1/2−

2 and 1/2+
3 states constitute the inversion

doublet of the bent-armed 9Be +α cluster structure. The
1/2−

3 , 1/2−
4 , and 1/2−

5 states are 3α + n cluster states in which
the 12C(0+

2 ) ⊗ 0p1/2 and 12C(2+
2 ) ⊗ 0p3/2 configurations are

mixed. However, they cannot be regarded as the Hoyle-analog
state because the S factors in the 12C(0+

2 ) ⊗ p1/2 channel
are small. Similarly, there is no Hoyle-analog state in 3/2−
states, because of the fragmentation of 12C(0+

2 ) ⊗ 0p3/2 con-
figuration into many states. The absence of the Hoyle-analog
states in P-wave states is attributed to the strong α-n P-wave
interaction. On the hand, the 1/2+

2 state located at 15.4 MeV
is a Hoyle-analog state dominated by the 12C(0+

2 ) ⊗ 1s1/2

configuration with S = 0.64.
The characters of the 1/2− and 1/2+ states are reflected

to the IS0 and IS1 transitions. The IS0 transitions to the
excited 1/2− states are comparable to the Hoyle state in 12C.
The origin of the enhanced IS0 transitions is the clustering
nature of the excited 1/2− states. In particular, the enhanced
M(IS0) of the 1/2−

3 , 1/2−
4 , and 1/2−

5 originate in the coupling
of the 12C(0+

2 ) ⊗ 1s1/2 and 12C(2+
2 ) ⊗ 0p3/2 configurations.

In contrast, the IS1 transition to the Hoyle-analog 1/2+
2

state is suppressed due to the property of the IS1 transition
operator.

The decay widths of the 1/2+ states show very unique
patterns. The Hoyle-analog 1/2+

2 state dominantly decays via
the 12C(0+

2 ) ⊗ s1/2 channel but the 1/2+
3 state decays via the

9Be(3/2−
1 ) ⊗ l = 1 channel. These unique decay patterns are

key observables to identify the Hoyle-analog 1/2+ state.
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