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We present a microscopic calculation of α-cluster formation in heavy nuclei 104Te (α + 100Sn), 212Po (α +
208Pb), and their neighbors 102Sn, 102Te, 210Pb, and 210Po by using the quartetting wave function approach. To
improve the local density approximation, the shell structure of the core nucleus is considered, and the center-of-
mass (c.m.) effective potential for the quartet is obtained self-consistently from the shell model wave functions.
The α-cluster formation and decay probabilities are obtained by solving the bound-state of the c.m. motion of
the quartet and the scattering state of the formed α cluster in the Gurvitz approach. Striking shell effects on
the α-cluster formation probabilities are analyzed for magic numbers 50, 82, and 126. The computed α-decay
half-lives of these special nuclei are compared with the newest experimental data.
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I. INTRODUCTION

The α-cluster formation problem is an important and chal-
lenging issue not only in light nuclei but also in heavy and
superheavy nuclei. Despite much effort, this problem has still
not been fully solved [1–8]. For light nuclei, microscopic
approaches have been successfully used to investigate the
α-like correlations (quartetting) with a full account of the
Pauli exclusion principle [9–13]. In contrast, it is difficult to
describe microscopically the formation of α clusters in heavy
(superheavy) nuclei because it involves a complex many-body
problem [14]. Reasonable approximations to the ab initio
methods should be adopted to make the calculations feasible
within present computer capacities [14]. An ideal heavy α-
emitter for testing those approximations is the nucleus 212Po,
which is the case of α decay to a doubly magic core ( 208Pb).
Recently, another heavy α-emitter 104Te was reported, which
is not only the second case of α decay to a doubly magic
core ( 100Sn) but also a self-conjugate nucleus [15]. Subse-
quent experimental search for 104Te observed two events with
properties consistent with the previously reported data [16].

With the growth of data in the past several years [17], one
great challenge for the field is to describe quantitatively α-like
correlations and its decay in heavy (superheavy) nuclei from
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first principles. So far, only a few microscopic works have
been carried out to treat the α-cluster formation problem in
212Po (see reviews [18–20]). Motivated by the concept of pair-
ing in nuclei and inspired by the THSR (Tohsaki-Horiuchi-
Schuck-Röpke) wave-function concept that has been suc-
cessfully applied to light nuclei [9], we recently proposed a
quartetting wave function approach (QWFA) for describing α

clustering and decay in heavy and superheavy nuclei [21–24].
Unlike the light nuclei, the quartet consisting of n ↑, n ↓,
p ↑, and p ↓ (α-like cluster) is considered to move with
respect to a fixed center because the core nucleus is heavy;
i.e., recoil effects are neglected. Even with this approximation
where the core is considered as a mean field, the problem
of α-cluster formation is still very difficult to handle as one
needs to treat correctly both the intrinsic motion between
four nucleons in the cluster and the relative motion of the
cluster versus the core [14]. The respective center of mass
(c.m.) and intrinsic Schrödinger equations are coupled in a
complex way by contributions containing derivative terms of
the intrinsic wave function with respect to the c.m. coordinate.
No investigations of such derivative terms have performed yet
for finite nuclear systems [14]. The solution of QWFA should
join two limiting cases, the situation where the quartet is well
inside the core nucleus and a shell-model calculation can be
performed, and the limit of distant clusters. In particular, we
consider that an α-like state in QWFA can exist only at den-
sities lower than the critical density ρc = 0.02917 fm−3 (see
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Refs. [14,23,24]) and dissolves at higher densities (ρ > ρc)
into nearly uncorrelated (free) single-quasiparticle states due
to self-energy shifts and the Pauli blocking effects. By using
the two-potential technique [25], the α-cluster formation and
decay probabilities can be well defined by solving the bound
state of the c.m. motion of the quartet and the scattering state
of the formed α-cluster [21,22].

Within the local density approximation (LDA) (strictly
valid for infinite matter), the Thomas-Fermi model for the
core nucleus was taken in our previous calculations [21,22].
According to the Thomas-Fermi rule [23,24], four nucleons
are added to the core at the sum of the respective Fermi
energies which is identical with the tunneling energy of the
emitted α particle (bound-state energy −28.3 MeV plus the
kinetic energy which gives together the tunneling energy, in
the case of 212Po: −19.52 MeV). However, this approach is
not fully consistent. In particular, it is not able to describe the
nuclear shell structure of the core nucleus. This rule is too
restrictive, and nucleons are added to the core in shell states
which have a finite energy difference above occupied states in
the core. A gap in the strength of nucleon-nucleon (NN) inter-
action has been found through the fitting of realistic α-decay
lifetimes of Po isotopes [26]. In this work, we investigate
the c.m. motion of the α-like quartet moving under the shell
structure influence of core nucleus. We improve the Thomas-
Fermi rule by introducing quasiparticle (shell model) nucleon
states for the core nucleus. In contrast to former investigations
in Refs. [21,22], the c.m. effective potential for the quartet
is now obtained self-consistently from the contributing shell
model wave functions with the same NN interaction.

We perform calculations of both α-cluster formation and
decay probabilities in ideal heavy α emitters 104Te, 212Po,
and their neighbors 102Sn, 102Te, 210Pb, and 210Po. Com-
parisons of the c.m. effective potentials and quartetting wave
functions are made between neighboring nuclei. The underly-
ing physics of striking structure effects across major shells 50,
82, and 126 on the α-cluster formation and decay probabilities
are analyzed in detail.

This paper is organized as follows. In Sec. II, the formalism
of coupled intrinsic and c.m. Schrödinger equations of the
quartet is explicitly given. The shell-model wave functions
of the quartet nucleons are displayed in Sec. III. The c.m.
effective potential of quartet is discussed in Sec. IV. Section V
gives the numerical results of α-cluster formation and decay
probabilities from QWFA. The last section gives a short
summary.

II. INTRINSIC AND C.M. SCHRÖDINGER EQUATIONS
OF THE QUARTET

The main ingredient of the quartetting wave function ap-
proach is the introduction of a collective variable R, describ-
ing the c.m. motion of the quartet, and variables that describe
the intrinsic motion s j = {S, s, s′} with the Jacobi-Moshinsky
coordinates for the quartet nucleons [14,23,24]:

rn,↑ = R + S/2 + s/2, rn,↓ = R + S/2 − s/2,

rp,↑ = R − S/2 + s′/2, rp,↓ = R − S/2 − s′/2. (1)

The energy eigenstate �(R, s j ) of the quartet can be sub-
divided in a unique way into a c.m. motion part �(R) and an
intrinsic motion part ϕintr (s j, R)

�(R, s j ) = ϕintr (s j, R)�(R) (2)

with the normalization condition∫
d3R

∫
d9s j |�(R, s j )|2 = 1,

∫
d9s j |ϕintr (s j, R)|2 = 1.

(3)

The Hamiltonian of the α cluster can be written as

H =
(

− h̄2

8m
∇2

R + T [∇s j ]

)
δ3(R − R′)δ3(s j − s′

j )

+V (R, s j ; R′, s′
j ) (4)

where − h̄2

8m ∇2
R is the kinetic energy of the c.m. motion and

T [∇s j ] the kinetic energy of the internal motion of the quartet.
The interaction V (R, s j ; R′, s′

j ) contains the mutual interac-
tion between quartet nucleons as well as the interaction of
the quartet nucleons with an external potential. For the c.m.
motion of the quartet we have the Schrödinger equation

− h̄2

8m
∇2

R�(R) − h̄2

4m

∫
d9s jϕ

intr,∗(s j, R)

× [∇Rϕintr (s j, R)][∇R�(R)]

− h̄2

8m

∫
d9s jϕ

intr,∗(s j, R)[∇2
Rϕintr (s j, R)]�(R)

+
∫

d3R′ W (R, R′)�(R′)=E �(R), (5)

with the c.m. potential

W (R, R′) =
∫

d9s j d9s′
j ϕ

intr,∗(s j, R)[T [∇s j ]δ
3(R − R′)

× δ9(s j − s′
j ) + V (R, s j ; R′, s′

j )]ϕ
intr (s′

j, R′).

(6)

For the intrinsic motion of quartet nucleons, we have another
Schrödinger equation

− h̄2

4m
�∗(R)[∇R�(R)][∇Rϕintr (s j, R)]

− h̄2

8m
|�(R)|2∇2

Rϕintr (s j, R)

+
∫

d3R′ d9s′
j �

∗(R)[T [∇s j ]δ
3(R − R′)δ9(s j − s′

j )

+V (R, s j ; R′, s′
j )]�(R′)ϕintr (s′

j, R′) = F (R)ϕintr (s j, R).

(7)

The respective c.m. and intrinsic Schrödinger equations
are coupled by contributions containing the expression
∇Rϕintr (s j, R) which disappears in homogeneous matter. The
approach presented here to include four-nucleon correlations
is based on a first-principle approach to nuclear many-body
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FIG. 1. The contributing single-particle wave functions of protons and neutrons in the quartets of 102Sn, 102Te, 104Te, 210Pb, 210Po, and 212Po.

systems; however, several approximations should be per-
formed to make the approach practicable. One of the approx-
imations is that the derivative terms ∇Rϕintr (s j, R) in Eqs. (5)
and (7) are not included in QWFA at present.

III. SHELL-MODEL WAVE FUNCTIONS
OF QUARTET NUCLEONS

In previous calculations, the core nucleons have been
treated within the Thomas-Fermi approximation as the sim-
plest version of LDA [14,21,22]. To introduce a quartet at
minimum energy, each nucleon must be added at the corre-
sponding Fermi energy. From this, two consequences follow
immediately: First, the effective potential inside the core for
the c.m. motion of the quartet is constant given by the constant
chemical potential, not strongly increasing as usually found
in the literature, and second that the value of the sum of
these four chemical potentials coincides with the energy of
the emitted α particle. This Thomas-Fermi rule for the core
nucleus was assumed in QWFA. This rule is quite simple
and gives a local density description for the quartet, which
is not able to describe self-consistently the shell effects as
observed in our previous work (Ref. [22]). Here, we improve
the Thomas-Fermi rule by taking the discrete level structure
of the core nucleus into account. We use the Woods-Saxon
potential + ls coupling to determine single-nucleon orbits that

are occupied up to the Fermi energy [27]

VWS(r) = V0

1 + exp
( r−R0

a

) , (8)

where the strength of the Woods-Saxon potential is param-
eterized as V0 = −46[1 ± 0.97( N−Z

A )](“+” for protons and
“−” for neutrons). The parameter R0 is 1.43A1/3 fm for both
protons and neutrons and the diffusivity parameter a is 0.7 fm.
The Coulomb potential we adopt is

VC (r) = (Z − 1)e2

{(
3R2

Coul − r2
)/

2R3
Coul, r � RCoul

1/r, r > RCoul
(9)

with the radius RCoul = 1.25A1/3 fm. For the ls coupling
potential, we use the following form,

Vso(r) = 1

2μ2r

(
∂

∂r

λV0

1 + exp
( r−Rso

aso

)
)

l · s, (10)

where μ is the reduced mass of the α-core system. The
diffusivity parameter aso is also 0.7 fm and the parameter Rso

is 1.37A1/3 fm. The normalization factor of the ls coupling
strength λ is 37.5 for neutrons and 31 for protons, respectively.
Note that other choices of parameter sets for the Woods-Saxon
potential + ls coupling can be used in QWFA, provided that
the shell-model states are correctly reproduced. In Fig. 1, the
contributing single-particle wave functions of the quartet are
shown for the α emitters 104Te, 212Po, and their neighbors
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102Sn, 102Te, 210Pb, and 210Po. It is clear that only states near
the Fermi energy can form an α-like cluster because only these
single-particle states extend to the low-density regions at the
surface of the nucleus [21,22]. The quartet will be introduced
on top of the core nucleus in the shell above the Fermi level.
As the 104Te is a self-conjugate nucleus, the protons and
neutrons in the quartet occupy the same 2d5/2 single-particle
states. This is contrary to the case of 212Po where the proton
and neutron orbits in the quartet are quite different (see
Fig. 1). A problem to be solved in future investigations is the
treatment of partially filled shells, when spherical symmetry
cannot be assumed.

IV. C.M. EFFECTIVE POTENTIAL OF THE QUARTET

The main issue in this section is to obtain an effective
potential for the c.m. motion of the quartet from the contribut-
ing single-particle wave functions shown in previous section.
In particular, the behavior of the effective potential inside
the core is of interest. The Thomas-Fermi model demands
a constant behavior, and previous calculations with nucleon
orbitals [23,24] show also a nearly constant behavior. Here,
we derive results using realistic shell-model states. The quar-
tet wave function �4 with the Jacobi-Moshinsky coordinates

(R, S, s, s′) is given by

�4(R, S, s, s′) = �(r1, σ1; r2, σ2; r3, σ3; r4, σ4)

=
∑

J12,M12,J34,M34

〈J12, M12, J34, M34|J, M〉

×
∑

m1,m2

〈 j1, m1, j2, m2|J12, M12〉

× | j1, m1〉| j2, m2〉
∑

m3,m4

〈 j3, m3, j4, m4|J34, M34〉

× | j3, m3〉| j4, m4〉, (11)

where the notations 1 and 2 denote two protons in the quartet
and 3 and 4 denote two neutrons. The quantum numbers for
the total angular momentum and its z component of nucleon i
are denoted by ji and mi, respectively. j1 and j2 are coupled
to J12, j3, and j4 to J34, and then J12 and J34 to J . Here we
consider only the ground-state α transitions of even-even nu-
clei, so that we have J12 = J34 = J = 0, M12 = M34 = M =
0. Therefore, the quartet wave function can be subdivided into
the wave function of two protons �(r1, σ1; r2, σ2) and the
wave function of two neutrons �(r3, σ3; r4, σ4). Let a, b =
1, 2 or 3,4, the Fourier transformation of the wave function of
two nucleons �(ra, σa; rb, σb) is

ϕab(p) = 1

(2π )6

∫
d3ra

∫
d3rb|�(ra, σa; rb, σb)|2e−ip·ra−ip·rb

= 1

(2π )6

∑
msa,msb

∑
ma,m′

a,mb,m′
b

∑
mla,m′

la,mlb,m′
lb

〈 ja, ma, jb, mb|0, 0〉〈 ja, m′
a, jb, m′

b|0, 0〉

×
〈
la, mla,

1

2
, msa| ja, ma

〉〈
lb, mlb,

1

2
, msb| jb, mb

〉〈
la, m′

la,
1

2
, msa| ja, m′

a

〉

×
〈
lb, m′

lb,
1

2
, msb| jb, m′

b

〉
fla,mla,m′

la
(p) flb,mlb,m′

lb
(p), (12)

where the function fl,m,m′ (p) can be obtained from the con-
tributing single-nucleon wave functions

fl,m,m′ (p) =
∫

d3rR2
nl (r)Y ∗

lm(θr, ϕr )Ylm′ (θr, ϕr )e−ip·r

= 4π

2l∑
l ′=0

(−i)l ′
√

2l ′ + 1

4π
〈l, 0, l ′, 0|l, 0〉

× 〈l, m, l ′, m′ − m|l, m′〉Yl ′m′−m(θp, ϕp)

×
∫ ∞

0
r2R2

nl (r) jl ′ (pr)dr. (13)

The density distribution of the quartet ρ4(R) is then given by

ρ4(R) =
∫

d3S d3s d3s′ |�4(R, S, s, s′)|2

= 26(2π )9
∫

d3 pϕ12(p)ϕ34(p)e4ip·R. (14)

The wave function �4(R) = ρ
1/2
4 (R) of the c.m. motion of the

quartet which corresponds to the density distribution ρ4(R)
follows the Schrödinger equation [23]:

− h̄2

8m
∇2

R�4(R) + W (R)�4(R) = E�4(R). (15)

Let us introduce u4(R) = (4π )1/2R�4(R), the effective c.m
potential W (R) of the quartet is then given by

W (R) − E = h̄2

8m

u′′
4 (R)

u4(R)

= h̄2

8m

ρ ′
4(R)

Rρ4(R)
− h̄2

32m

ρ ′
4(R)2

ρ4(R)2
+ h̄2

16m

ρ ′′
4 (R)

ρ4(R)
. (16)

Note that our local potential W (R) has the correct asymp-
totic behavior to the Coulomb potential at large distances,
but inside the core where the Pauli principle acts, this local
effective potential is expected to have wiggles (in contrast
to the Thomas-Fermi model where it is constant). For the
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TABLE I. Parameters of the density distributions in the core
nucleus, which are chosen based on the results in Refs. [28–31].

Core nucleus Rn0 [fm] an [fm] Rp0 [fm] ap [fm]

98Cd, 98Sn, 100Sn 5.15 0.49 5.15 0.53
206Hg, 206Pb, 208Pb 6.70 0.55 6.68 0.447

harmonic oscillator basis, the energy eigenvalue E of the c.m
motion of the quartet can be obtained easily by subtracting
the intrinsic motion energy of the quartet from the sum of
four single-particle energies [23]. However, it is not easy to
do so in the WS+ls coupled basis. Instead of subtracting the
intrinsic motion energy from total energy, here we join the
effective c.m potential W (R) in the core region smoothly with
the α-core interaction in surface region at the critical density
ρc [21,22]. We use the following neutron and proton densities
for the core nucleus:

ρn(R) = ρn0

[1 + e(R−Rn0 )/an ]
, ρp(R) = ρp0

[1 + e(R−Rp0 )/ap]
, (17)

where the detailed values of the half-density radius and dif-
fuseness parameter are given in Table I. After getting the
baryon density ρB = ρn + ρp, we determine a critical radius
Rc corresponding to the critical density ρc = 0.02917 fm−3

for each nucleus. The critical radii are Rc( 98Cd) = 5.899 fm,
Rc( 98Sn) = 5.900 fm, Rc( 100Sn) = 5.912 fm, Rc( 206Hg) =
7.433 fm, Rc( 206Pb) = 7.432 fm, and Rc( 208Pb) = 7.438 fm,
respectively. In the local density approximation, the formation
and dissolution of the α cluster happens sharply at the critical
radius Rc. At distances larger than Rc, there is a certain prob-
ability that an α cluster can be formed. The α-core interaction
V (R) in surface region with R > Rc consists of the attractive
nuclear potential VN (R), the Coulomb potential VC (R), and the
repulsive Pauli potential as a consequence of antisymmetriza-
tion between the α cluster and the core. The Pauli blocking
term depends on the baryon density ρB [14,23,24] as we use
for the local density approximation

W Pauli(ρB) ≈ 4515.9 MeV fm3ρB − 100935 MeV fm6ρ2
B

+ 1202538 MeV fm9ρ3
B. (18)

For the nuclear potential, the M3Y-type nucleon-nucleon
interaction is used in the double-folding procedure with matter
density distributions of both α and core nucleus. This M3Y-
type NN interaction consists of a short-range repulsion part
and a long-range attraction part [32],

VN (R) = c exp(−4R)/(4R) − d exp(−2.5R)/(2.5R). (19)

Previously, the strength parameters c and d of the NN
interaction in Eq. (19) were adjusted for each α emitter by
fitting the measured decay energy and half-life [21,22]. Shell
structure effect of the core nucleus manifests itself in the
strength parameters and the c and d values are not the same
for all nuclei [22]. This is not satisfactory as one should in
principle start from the same NN interaction instead of adjust-
ing c and d for each nucleus. By replacing the Thomas-Fermi
rule with the shell model calculations for the core nucleus, we
are able to use the same strength parameters c = 17692 and
d = 4980 for all α emitters considered here. Figure 2 exhibits

FIG. 2. The c.m. effective potentials of the α cluster in
(a) 102Sn, 102Te, and 104Te and (b) 210Pb, 210Po, and 212Po. The
sketch of small box with filled circles denotes the core nucleus
considered as a mean field. The position of the energy eigenvalues
E for the c.m. motion is marked.

the complete c.m effective potentials for these α emitters
by joining smoothly the inner part W (R) and outer part
V (R). With the Thomas-Fermi rule, the quartet c.m. motion
inside the core nucleus was described by a constant effective
potential, which is absolutely valid only for nuclear matter.
As expected, it is observed here from Fig. 2 that the effective
c.m. potential behaves much more flat inside the heavy core
208Pb as compared to 100Sn. It is also observed that the c.m.
potential inside core nucleus is quite sensitive to the details of
contributing shell model states. A pocket is still formed for the
effective potentials after introducing shell model states for the
core nucleus. The sharp edge in the effective local potential
may be cured in future work by (i) describing a smooth
behavior not only of the bound-state energy near the critical
radius but also the intrinsic wave function, e.g., considering
scattering states in the local density approximation accounting
for the correlation between the nucleons in shell model states,
(ii) taking into account the gradient terms of ϕintr (s j, R) which
are neglected in our present work [see the sentence below
Eq. (7)] but may become relevant if ϕintr (s j, R) abruptly
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FIG. 3. Comparison of the normalized bound state wave func-
tions for (a) 102Sn, 102Te, and 104Te and (b) 210Pb, 210Po, and 212Po.
The critical radius Rc of each nucleus is marked. The two peaks or
the shift of the maximum are caused by the formation of a pocket in
Fig. 2.

changes its behavior near the critical radius, (iii) improving a
local density treatment of the Pauli blocking where according
to Eq. (18) only the local density ρB(R) determines the contri-
bution W Pauli[ρB(R)]. We know that the exchange interaction
is nonlocal and is determined by the entire wave function
�(R, s j ), not by the local density. Note that this is a general
problem in any local density theory, also in electronic systems
like condensed matter, and may be improved by considering
gradient terms. Within a more detailed calculation taking into
account the extension of the α-like cluster and the nonlocal
character of the Pauli blocking, we expect that this sharp edge
will be washed out.

V. α-CLUSTER FORMATION AND DECAY
IN HEAVY NUCLEI

Using the two-potential approach of Gurvitz [25], the
complete effective c.m. potential is split into two potentials
at a separation radius Rsep. The choice of separation radius
does not affect the final result as long as it is large enough,

FIG. 4. The scattering wave functions χ (R) for α-emitters 104Te
and 212Po in the two-potential approach. The separating point is
chosen to be Rsep = 15 fm.

e.g., Rsep = 15 fm. This method enables one to obtain a per-
turbative expansion for the decay width and the energy shift of
a quasistationary state like the α decay. Both the bound state
wave function �(R) of the first potential and the scattering
state wave function χ (R) of the second one are calculated
by solving the corresponding Schrödinger equations. The nor-
malized bound state c.m. wave functions (4π )1/2R�(R) are
plotted in Fig. 3. As clearly shown in Fig. 3, the bound-state
wave functions �(R) of both 104Te and 212Po have a large
component in the surface region with R > Rc as compared
with their neighbors. This is clearly due to the shell structure
effect of core nucleus. The α-cluster preformation probability
Pα is obtained by integrating the bound-state wave function
�(R) from the critical radius Rc to infinity [14,21,22]:

Pα =
∫ ∞

0
d3R|�(R)|2�[ρc − ρB(R)]. (20)

From Fig. 3, it is found that the behavior of bound-state wave
functions �(R) of 102Sn and 102Te is quite different and
sensitive to their contributing single-particle states. On the
contrary, the behavior of �(R) of 210Pb and 210Po is rather
similar. The scattering state wave functions χ (R) are obtained
as combinations of regular and irregular Coulomb functions;
see Fig. 4. A strong oscillating feature of χ (R) is exhibited as
a natural result of two-body Coulomb repulsion.

The decay width given as the product of the pre-
exponential factor ν and the exponential factor T is calculated
by using the values of �(R) and χ (R) at the separation
radius [21,22]:

� = νT = 4h̄2α2

μk
|�(Rsep)χ (Rsep)|2, (21)

where μ = AαAd/(Aα + Ad ), α = √
2μ[V (Rsep) − Etunnel]/h̄,

k = √
2μQα/h̄. Ad is the mass number of the core nucleus and

Aα = 4. The tunneling energy is Etunnel = Qα − 28.3 MeV,
where Qα is the experimental α decay energy in Refs. [15,17].
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TABLE II. The α-cluster preformation probabilities and half-
lives by the quartetting wave function approach.

Parent Z N Qα [MeV] Pα T calc.
1/2 [s] T expt.

1/2 [s]

102Sn 50 52 0.0551
102Te 52 50 0.3718
104Te 52 52 4.900 0.7235 1.479×10−8 <1.8 × 10−8

210Pb 82 128 3.792 0.0176 1.777 × 1016 3.701 × 1016

210Po 84 126 5.408 0.0137 1.060 × 107 1.196 × 107

212Po 84 128 8.954 0.1045 3.395 × 10−7 2.997 × 10−7

Then the decay half-life is

T1/2 = h̄ ln 2

Pα�
. (22)

The computed α-cluster formation probabilities
and half-lives for 104Te, 212Po, and their neighbors
102Sn, 102Te, 210Pb, and 210Po are listed in Table II.
At present, there are no experimental decay energy and
half-life available for 102Sn and 102Te; only their α-cluster
formation probabilities are predicted in Table II. For 104Te,
the calculated α-decay half-life is within the range of
experimental upper limit (<1.8 × 10−8 s) [15]. An enhanced
α-cluster formation probability is found for 104Te, which
agrees very nicely with our empirical result Pα = 0.73 in
Ref. [33]. The computed α-cluster formation probability in
102Te is also large because the single-nucleon wave functions
of two contributing protons in 102Te extend much farther to
the surface region compared with 102Sn. The magnitude of
α-cluster formation probability in 212Po is several times larger
than those in its neighbors 210Pb and 210Po. There exists a
sudden change of α-decay half-lives from T 1/2( 210Po) =
1.196×107 s to T 1/2( 212Po) = 2.997×10−7 s. This sudden
change is a result of shell structure effect across the N = 126
major shell, which is very difficult to reproduce in α-decay
models [34,35]. However, it is found from Table II that the
experimental α-decay half-lives of 210Pb, 210Po, and 212Po

are well reproduced by QWFA. This can be considered as a
quite important success of our theory.

VI. SUMMARY

By using the quartetting wave-function approach, we
presented a microscopic calculation of α-cluster forma-
tion and decay in 104Te, 212Po, and their neighbors
102Sn, 102Te, 210Pb, and 210Po. An improved treatment of
shell structure for the core nucleus is added instead of the
rigid Thomas-Fermi rule. It is found that the effective c.m.
potential for the quartet is quite sensitive to the contributing
single-particle wave functions. A pocket is still formed for the
effective c.m. potential after introducing shell model states
for the core nucleus. Striking shell effects on the α-cluster
formation probabilities are shown for magic numbers 50, 82,
and 126 by using the same NN interaction. An enhanced
α-cluster formation probability is shown for both 104Te and
212Po as compared with their neighbors. The observed data
of α-decay half-lives are reproduced quite nicely by present
QWFA calculations.

Several improvements could be made in future. For in-
stance, the gradient terms of the equations for intrinsic motion
which appear in the inhomogeneous matter can be included
and the spatial extension of the α particle may be considered
to improve the local density approximation for the Pauli
blocking term. We expect that a better account of gradient
effects will lead to an effective potential W (R) for the c.m.
motion of the quartet where sharp edges are avoided.
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