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It is shown that the Cholesky decomposition method, implemented in mirror nuclei to extract an orthonormal
basis from a redundant set of states composed of a valence particle (hole) coupled to Tamm-Dancoff approxima-
tion (TDA) phonons, yields a few levels which violate the mirror symmetry, at variance with the shell model. A
more appropriate implementation of the method is suggested which eliminates this inconsistency.
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I. INTRODUCTION

The particle-vibration coupling (PVC) model is an efficient
method for studying the polarizing action of the core exci-
tations on the valence nucleon in odd nuclei [1]. The core
vibrations were described in the random-phase-approximation
(RPA), based on nonrelativistic [2–4] and relativistic [5]
energy density functionals (EDF), and in the quasiparticle
phonon model (QPM) [6].

In all these approaches, only a restricted number of
phonons is taken into account. They are chosen arbitrarily
according to the specific problem to be solved. Moreover, the
antisymmetrization between the odd particle (or quasiparticle)
and the phonons is neglected.

We have developed for even nuclei a multiphonon ap-
proach, dubbed the equation of motion phonon method
(EMPM), where, by resorting to the Cholesky method, an
orthonormal basis of n-phonon states |αn〉 (n = 0, 1, 2, . . . ) is
extracted from a redundant set of tensor products of particle-
hole (p-h) [7–9] or quasiparticle [10] Tamm-Dancoff approxi-
mation (TDA) phonons |α1 = λ〉 and then adopted for solving
the eigenvalue problem in such a multiphonon space.

More recently, the method was extended to odd nu-
clei [11–15]. For these systems, an orthonormal basis was
extracted from the overcomplete set of states |(p × αn)v〉
[ |(h−1 × αn)v〉], of spin v, composed of a valence particle
[hole] coupled to the states |αn〉 describing the excitations of
the core.

We should expect that this multiphonon formulation should
be equivalent to shell model within the same configuration
space, as is the case for even nuclei. Let us consider, for
illustrative purposes, the specific case of a hole-phonon basis
(n = 1), which spans the space usually adopted in the PVC.

An approach using an orthonormal basis extracted from the
set of states |(h−1 × λ)v〉 should be equivalent to one adopting
the basis states |((h−1

1 × h−1
2 )� × p)v〉 composed of two holes

coupled to a particle as in the shell model.

Calculations using the optimized chiral potential NNLOopt

[16] confirm such a consistency for nuclei of the oxygen
region with neutron excess [14,15]. However, in 15O and 15N
[15] and, to a less extent, in 17O and 17F [11,12], a few levels
were found to violate the mirror symmetry, which is instead
preserved in phenomenological shell model calculations, con-
sistent with experiments [17–19].

Such a symmetry breaking is only partly induced by the
violation of the charge symmetry of the NNLOopt potential.
As anticipated in Ref. [15] and discussed here, it is caused in
large part by the selection of the linearly independent states
operated by the Cholesky method.

In order to obviate this inconsistency one may try alter-
native methods for selecting the linearly independent basis.
An obvious possible candidate is the direct diagonalization
of the overlap matrix proposed by Rowe [20]. Unfortunately
this method would spoil the structure of the equations of
motion. These would become too involved and of problematic,
practically impossible, numerical implementation if extended
to spaces spanned by two or more phonon basis states.

We need therefore to preserve the Cholesky method and
find a prescription which brings minimal changes on the
equations. This is the case of the recipe proposed here.

We consider the space spanned by states composed of a
particle (hole) coupled to TDA phonons and argue that the
treatment in this restricted space guarantees the conservation
of the mirror symmetry in any multiphonon space. We use
the NNLOsat [21] chiral potential, which incorporates the
contribution coming from the three-body force and violates
the charge symmetry more weakly than the NNLOopt adopted
in Refs. [11,12].

II. THE METHOD

We intend to generate an orthonormal basis of hole-core
states |ν1〉 of spin v and energy Eν1 having the form

|ν1〉 =
∑

hλ

Cν1
hλ

|(h−1 × λ)v〉 =
∑

hλ

Cν1
hλ

(bh × O†
λ)v|0〉, (1)
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TABLE I. Energies and dominant p-h compositions of a few
TDA phonons in 16O with (I) and without (II) Vπν .

E |Cλ
ph|2

Jπ I II (p × h)τ I II

1−
1 7.2793 7.8604 (1/2+

1 × 1/2−
1 )π 60.22 79.58

(1/2+
1 × 1/2−

1 )ν 24.30 13.57

1−
2 8.7068 8.6276 (1/2+

1 × 1/2−
1 )π 31.67 13.36

(1/2+
1 × 1/2−

1 )ν 66.06 75.43

2−
1 8.4730 8.7871 (5/2+

1 × 1/2−
1 )π 71.53 97.26

(5/2+
1 × 1/2−

1 )ν 21.60 0.00

2−
2 9.2414 9.2136 (5/2+

1 × 1/2−
1 )π 72.50 0.00

(5/2+
1 × 1/2−

1 )ν 24.15 96.97

3−
1 6.4808 8.1211 (5/2+

1 × 1/2−
1 )π 51.05 99.25

(5/2+
1 × 1/2−

1 )ν 40.16 0.00

3−
2 9.1313 8.4912 (5/2+

1 × 1/2−
1 )π 44.12 0.00

(5/2+
1 × 1/2−

1 )ν 53.63 99.18

4−
1 15.8451 16.1035 (5/2+

1 × 3/2−
1 )π 80.53 99.70

(5/2+
1 × 3/2−

1 )ν 19.02 0.00

4−
2 16.8085 16.7096 (5/2+

1 × 3/2−
1 )π 18.76 0.00

(5/2+
1 × 3/2−

1 )ν 80.10 99.66

where O†
λ = ∑

ph cλ
ph(a†

p × bh)λ is the p-h TDA phonon opera-
tor of energy Eλ acting on the Hartree-Fock (HF) vacuum |0〉.
The operators a†

p = a†
xp jpmp

and bh = (−) jh+mh axh jh−mh create
a particle and a hole of energies εp and εh, respectively.

The phonons and their energies are determined by solving
the equation

〈(p × h−1)λ|(Hνν + Hππ + Vπν )|λ〉 = Eλcλ
ph, (2)

where π and ν denote protons and neutrons.
Our formalism starts with the equations of motion

〈λ ‖ [a†
h, H] ‖ ν〉 = (Eν − Eλ)〈λ ‖ a†

h ‖ ν〉. (3)

Expanding the commutator, we obtain after several manipula-
tions [11] the generalized eigenvalue equation

(A − E )DC = 0. (4)

The matrix A is given by

Aν1
hλh′λ′ = (εh + Eλ)δhh′δλλ′ + Vv

hλh′λ′ , (5)

where Vv
hλh′λ′ describes the interaction beteween hole-phonon

states. Its expression is given by

Vv
hαh′α′ =

∑

σ

[σ ]1/2(−)h+h′−σW (ασvh′; α′h)Fσ
hαh′α′ , (6)

where W (σhλ′v; h′λ) are Racah coefficients and

Fσ
hαh′α′ =

∑

tq

F σ
hh′tq〈α ‖ (a†

t × bq)σ ‖ α′〉. (7)

Here the sum runs over particles tq = p1 p2 and holes tq =
h1h2 and F σ is related to the nucleon-nucleon potential V � by
the Pandya transformation

F σ
rsqt =

∑

�

[�](−)r+t−σ−�W (rsqt ; σ�)V �
rqst . (8)

TABLE II. Energy and structure of some selected states deter-
mined using TDA phonons with (I) and without (II) Vπν .

Eν W ν
vλ

ν 15O 15N (v × λ)ν 15O 15N

3/2+
1 8.205 10.013 (1/2−

1 × 1−
1 ) 81.47

(1/2−
1 × 1−

2 ) 68.76
(3/2−

1 × 3−
1 ) 12.83

I 7/2+
1 9.002 11.758 (1/2−

1 × 3−
1 ) 91.77

(1/2−
1 × 3−

2 ) 82.83
9/2+

1 13.915 15.886 (3/2−
1 × 3−

1 ) 95.24
(3/2−

1 × 3−
2 ) 36.44

(1/2−
1 × 4−

1 ) 3.45 61.37

3/2+
1 9.782 9.681 (1/2−

1 × 1−
1 ) 71.67

(1/2−
1 × 1−

2 ) 77.80
II 7/2+

1 10.891 11.204 (1/2−
1 × 3−

1 ) 85.06
(1/2−

1 × 3−
2 ) 85.17

9/2+
1 15.510 15.661 (3/2−

1 × 3−
1 ) 66.77

(3/2−
1 × 3−

2 ) 69.60
(1/2−

1 × 4−
1 ) 26.38 19.11

17O 17F 17O 17F

I 11/2−
1 7.714 10.081 (5/2+

1 × 3−
1 ) 99.92

(5/2+
1 × 3−

2 ) 96.75

II 11/2−
1 9.351 9.564 (5/2+

1 × 3−
1 ) 95.80

(5/2+
1 × 3−

2 ) 96.01
39Ca 39K 39Ca 39K

I 13/2−
1 9.151 11.100 (3/2+

1 × 5−
1 ) 98.56

(3/2+
1 × 5−

2 ) 97.28

II 13/2−
1 10.306 10.412 (3/2+

1 × 5−
1 ) 97.03

(3/2+
1 × 5−

2 ) 96.97

D is the overlap matrix given by

Dv
hλh′λ′ = 〈(h−1 × α)v|(h′−1 × α′)v〉

= δhh′δλλ′

+
∑

σ

[σ ]1/2W (σhλ′v; h′λ)〈λ′ ‖ (a†
h′ × bh)σ ‖ λ〉.

(9)

The second piece reintroduces the exchange terms among the
odd hole and the TDA states.

The eigenvalue equation (4) is ill defined. Since the set
of states |(h−1 × λ)v〉 is overcomplete, the overlap matrix
D is singular. The redundancy is eliminated by resorting
to the Cholesky decomposition method which extracts from
the set |(h−1 × λ)v〉 a basis of linearly independent states
spanning the subspace of the correct dimensions. We can then
construct in such a subspace the overlap matrix Dn and, by
left multiplication, obtain from Eq. (4)

D−1
n (AD)nC

n = ECn. (10)

The solution of the above equation determines only the coeffi-
cients Cn of the selected states. Those of the redundant states
are undetermined and, therefore, can be safely put equal to
zero. The orthonormal basis {|ν1〉} [Eq. (1)] we searched for
is determined thereby.
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FIG. 1. Spectra of 15O and 15N using TDA phonons generated (I) with the proton-neutron potential Vπν included, (II) without Vπν . The
positive and negative parity levels are in red and black, respectively.

We can now solve the full eigenvalue problem in the space
spanned by the single hole plus the hole-phonon basis states
{|ν0〉, |ν1〉}, obtaining the eigenfunctions

|ψν〉 =
∑

νn

Cν
νn

|νn〉, (11)

where |ν0〉 = |v−1〉 and |ν1〉 is given by Eq. (1).

III. MIRROR SYMMETRY BREAKING

We focus our analysis mainly on 15O and 15N. The
adopted Hamiltonian is composed of an intrinsic kinetic op-
erator Tint and the chiral potential NNLOsat. The HF basis
states were generated in a space encompassing all harmonic
oscillator shells up to Nmax = 12. A subset of them, up to
N = 7, was used to generate the TDA phonons. We checked

that the inclusion of higher energy shells does not affect
the results. The Jπ = 1− TDA phonons are free of spurious
admixtures induced by the center-of-mass (CM) motion. They
have been removed by resorting to a method based on the
Gramm-Schmidt orthogonalization of the p-h basis to the CM
state [22].

One may notice in Table I the large energy splitting be-
tween the nearby 1− and, especially, the 3− states and the
corresponding strong mixing between proton and neutron p-h
components.

As shown in Table II and Fig. 1, the mirror symmetry is
strongly violated by the 3/2+

1 , 7/2+
1 , and 9/2+

1 levels. In 15N,
these levels differ from the corresponding ones in 15O by
≈1.8, ≈2.8, and ≈2.0 MeV, respectively. The other corre-
sponding levels of 15N and 15O are fairly close, in general.
Their energy differences range from ≈0.1 to ≈0.6 MeV.

024308-3



G. DE GREGORIO et al. PHYSICAL REVIEW C 101, 024308 (2020)

FIG. 2. The same as in Fig. 1 for 17O and 17F.

The symmetry breaking is also apparent from the asym-
metric neutron-proton composition of the wave functions
(Table II). This asymmetry, however, gets manifest only in a
few states.

As anticipated in Ref. [15], the reason of such a breaking
can be understood by analyzing the structure of the 7/2+

1 . In
shell model, we get for 15O

|7/2+
1 〉SM ∼ ∣∣[(0p−1

1/2(ν) × 0p−1
1/2(π )

)1 × 0d5/2(π )
]7/2〉

. (12)

The component [(0p−1
1/2(ν) × 0p−1

1/2(ν))1 × 0d5/2(ν)]7/2, in-
volving identical particles, is excluded by the Pauli principle.
The 7/2+

1 state of 15N is deduced from (12) by interchanging
neutrons with protons. Thus, in the shell model, the 7/2+

1
levels in 15O and 15N are almost degenerate, consistently with
experiments.

In our scheme, the 7/2+
1 arises from coupling the neutron

or proton hole 0p−1
1/2 mainly to 3− phonons. The two lowest 3−

1

and 3−
2 are ≈2.5 MeV far apart and have the proton-neutron

mixed structure

|3−
i 〉 ∼ cπ

i

∣∣(0d5/2 × (0p1/2)−1)3
π

〉

+ cν
i

∣∣(0d5/2 × (0p1/2)−1)3
ν

〉
, (13)

where |cπ
1 |2 ≈ 0.51 and |cν

1|2 ≈ 0.40 for 3−
1 and |cπ

2 |2 ≈ 0.44
and |cν

2|2 ≈ 0.54 for 3−
2 . Such a large energy splitting and

proton-neutron mixing are induced by the strong proton-
neutron interaction.

The Cholesky method selects hole-phonon components
rather than single shell model configurations. Thus, it picks
the [0p−1

1/2(ν) × 3−
1 ]7/2 component for 15O (Table II) since the

3−
1 has a proton dominance (Table I) and discards as redundant

the [0p−1
1/2(ν) × 3−

2 ]7/2 which contains the neutron dominant

3−
2 phonon. In contrast, it selects the [0p−1

1/2(π ) × 3−
2 ]7/2 state

for 15N and discards the [0p−1
1/2(π ) × 3−

1 ]7/2.
The above selection, though formally correct, has the

effect of breaking the mirror symmetry. In fact, the 7/2+
1
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FIG. 3. The same as in Fig. 1 for 39Ca and 39K.

level in 15O differs from the corresponding one in 15N by
≈2.8 MeV because of the energy splitting between the 3−

1
and 3−

2 .
The strong proton-neutron mixing in the two 3− states

seems to cause an additional inconsistency with shell model.
The 7/2+

1 contains the Pauli principle forbidden configura-
tions |(0p1/2)−1

ν × (0d5/2 × (0p1/2)−1)3
ν〉 in 15O through 3−

1
and |(0p1/2)−1

π × (0d5/2 × (0p1/2)−1)3
π 〉 in 15N through 3−

2 .
This, however, is an artifact of the hole-phonon scheme. It is
possible to show that, once we perform an angular momentum
recoupling, the coefficient of the forbidden shell model con-
figuration [(0p−1

1/2(ν) × 0p−1
1/2(ν))1 × 0d5/2(ν)]7/2 vanishes.

Analogous conclusions can be drawn for the 9/2+
1 and

3/2+
1 corresponding levels. In the first case, the 3−

1 and 3−
2

phonons couple to the neutron and proton 0p3/2 holes, while
the 3/2+

1 states result from coupling the 1−
1 and 1−

2 phonons
to the neutron and proton 0p1/2.

The mirror symmetry is also strongly violated by the
11/2− state in 17O and 17F (Fig. 2 and Table II). This state
arises from coupling the 0d5/2 neutron to the 3−

1 phonon with
proton dominance in 17O and the 0d5/2 proton to the 3−

2 with
neutron dominance in 17F. Thus the corresponding levels get
≈2.5 MeV far apart.

In 39Ca and 39K as well as in 41Ca and 41Sc, the states
which violate strongly the mirror symmetry have high spins
and energies. In 39Ca and 39K, for instance, the correspond-
ing levels of spin 13/2−

1 differ by ≈2 MeV (Fig. 3 and
Table II) due to the energy difference between 5−

1 and 5−
2

which couple to neutron and proton 0d3/2 holes, respectively.

IV. RESTORATION OF THE MIRROR SYMMETRY

It is clear from the above analysis that it is necessary to in-
vestigate if and how the mirror symmetry can be restored. The
recipe we propose is simple. Since the redundancy is caused
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FIG. 4. Theoretical versus experimental spectra of 15O. The levels of unknown parity and (or) spin are in blue.

only by the unsymmetrized configurations involving identical
nucleons, like [0p−1

1/2(ν) × (0d5/2 × 0p−1
1/2)3

ν]7/2 present in the

[0p−1
1/2(ν) × 3−]7/2 component of 15O, it is more appropriate

to implement Cholesky in separate neutron and proton hole-
phonon subspaces. This can be achieved by the following
simple prescriptions:

(1) Neglect the neutron-proton interaction Vπν in the TDA
eigenvalue equation (2). Its solution yields doublets of
quasidegenerate TDA phonons: one of proton (|λ〉 =
|λπ 〉) and the other of neutron (|λ〉 = |λν〉) nature.

(2) Apply the Cholesky method to the overlap matrix D
computed using the states |(h−1 × λ)v〉 with the new
phonons.

(3) Recover the proton-neutron potential neglected in the
TDA equation (2) by inserting Vπν between TDA
phonons directly in the hole-phonon eigenvalue equa-
tion (4). This can be done by the simple replacement

in the matrix A,

Eλδλλ′ → Eλδλλ′ + 〈λ|Vπν |λ′〉. (14)

The corresponding states selected by Cholesky from the D
matrix are |(h−1

ν × λπ )v〉 for 15O and |(h−1
π × λν )v〉 for 15N.

They are quasidegenerate and proton-neutron symmetric since
the corresponding proton and neutron phonons are quaside-
generate. Moreover, the terms violating the Pauli principle
present in the old hole-phonon basis do not appear at all in
the new one.

The restoration of the mirror symmetry is confirmed by the
numerical calculations. As shown in Fig. 1, the energy differ-
ences between corresponding levels are of the same order of
the differences between proton and neutron HF p-h energies.
The proton-neutron symmetry is also amply recovered in the
wave functions (Table II).

Analogous results are obtained for A = 17 (Fig. 2) and in
nuclei around 40Ca (Fig. 3). The appreciable deviations one
may notice for some levels are due to the differences between
proton and neutron HF p-h energies.
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FIG. 5. Theoretical versus experimental spectra of 15N.

The effect of the new basis on the transitions is significant
quantitatively but not qualitatively. Those resulting strong or
weak in the old basis remain strong or weak in the new
basis (Table III). Such a result was expected since the mirror
symmetry breaking affects only and partially the structure of
a few states.

The correct implementation of the Cholesky method within
the restricted space spanned by a particle (hole) coupled
to TDA phonons guarantees the conservation of the mirror
symmetry also in the multiphonon spaces. In fact, since our
method generates doublets of quasidegenerate TDA phonons
of proton and neutron nature, to each multiphonon state of
proton character must correspond a specular quasidegenerate
one with the same neutron dominance. Cholesky selects the
first state for the nucleus with a valence proton and the second
for the system with a valence neutron.

The conservation of the symmetry beyond the
particle(hole)-phonon scheme is of the uttermost importance
since the multiphonon states are badly necessary for a fairly
realistic description of the spectra of the N = Z doubly magic

nuclei, whose complexity is well known [26–28]. In fact, the
one-phonon space considered here is far from providing a
faithful description of these spectra. Let us focus for instance
on the A = 15 nuclei.

As shown in Figs. 4 and 5, the low-lying theoretical
positive parity levels in A = 15 are ≈4 MeV above the
corresponding experimental levels. Such a discrepancy is
surprising at first sight since, as shown in Fig. 6, the low-lying
negative parity TDA levels overlap with those measured in
16O. On the other hand, as we go to the A = 15 nuclei, the
ground state, of single-hole character, gets shifted downward
in energy due to its strong coupling to the hole-phonon states
while the energies of the latter states remain unchanged.

It is worthwhile to point out that the NNLOopt produces a
stronger discrepancy with experiments. The energies of TDA
negative parity phonons are ≈5 MeV above the experimental
levels and those obtained by using the NNLOsat (Fig. 5). Con-
sequently, the hole-phonon energies of the A = 15 nuclei are
≈3 MeV above those obtained using NNLOsat and ≈7 MeV
above the experimental levels (Fig. 4). The discrepancy with
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FIG. 6. TDA versus experimental spectra of 16O.

respect to NNLOsat is attenuated by the fact that, due to the
higher energy of the phonons, the coupling to the hole-phonon
state is weaker and induces a smaller energy shift of the
ground state.

The multiphonon configurations are expected to improve
considerably the description of the spectra.

A substantial downward energy shift of the theoretical lev-
els should be induced from the n-phonon to (n + 2)-phonon
coupling given by

〈(h−1 × αn)v|H |(h′−1 × αn+2)v〉
=

∑

α2

〈0|H |α2〉〈(h−1 × [α2 × αn])v|(h′−1 × αn+2)v〉. (15)

This equation shows that the 1-to-3 and the 2-to-4 phonon
couplings are governed simply by the matrix elements be-
tween the HF vacuum and the two-phonon states. Such cou-
plings are known to be strong.

We have exploited already the above equation to compute
the 1-to-3 phonon coupling in calculations using NNLOopt

[12] and obtained a ≈3–4 MeV shift of the low-lying
positive parity levels. Since an analogous effect should be
induced by NNLOsat, we expect to obtain a substantial
overlap between theoretical and experimental positive parity
spectra.

The case of the low-lying negative parity states is more
critical. Most of them have a dominant two-phonon structure
and, therefore, can be pushed down in energy toward the
experimental levels only by the coupling to four phonons.
Treating exactly these configurations is very challenging. We
rely on the simple structure of the above formula to extract,
under some simplifying assumptions on the overlap, the main
contribution to the energy shift of the hole (two-phonon) states
coming from their coupling to four phonons.

The multiphonon states are necessary also for getting a
better description of moments and transitions.

Most of the ground state moments and β-decay f t values
(Table III) as well as a few transition strengths (Table IV) are
fairly close to the experimental data due to the dominantly
single particle (hole) nature of the states involved.
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TABLE III. Moments and β-decay f t values computed with (I)
and without (II) Vπν in TDA. Experimental data were taken from
Refs. [23–25]. The sign of the experimental quadrupole moments of
17F and 39Ca is unknown.

I II Expt.

15O μ (μN ) +0.6010 +0.5967 +0.7189 (8)
log f t 3.650 3.649 3.637

15N μ (μN ) −0.24885 −0.24848 −0.28319
17O Q (efm2) −1.442 −1.341 −2.578

μ(μN ) −1.81 −1.81 −1.89370(9)
17F Q (efm2) −8.3 −8.2 5.8(4)

μ (μN ) +4.55 +4.54 +4.72
log f t 3.337 3.336 3.358(2)

39Ca Q (em2) +0.9 +0.7 3.6 (7)
μ (μN ) +1.05540 +1.06749 +1.02168 (12)
log f t 3.5521 3.5512 3.6326 (10)

39K Q (efm2) +5.74 +5.88 +5.85 (6)
μ (μN ) +0.12422 +0.11665 +0.39146616 (33)

Most E1 and E3 transition strengths are of the same
order as the corresponding experimental strengths (Table IV)
indicating that the excited states involved have a dominant
particle(hole)-phonon component.

TABLE IV. Transition strengths computed with (I) and without
(II) Vπν in TDA. The M1 and Eλ strengths are given in μ2

N and
e2fm2λ, respectively. The experimental data are from Refs. [23–25].

15O I II Expt.

1/2−
1 → 3/2−

2 M1 0.04 0.09 0.75
1/2−

1 → 3/2+
1 E1 0.03 0.07 >1.5 × 10−4

1/2−
1 → 5/2−

1 E2 8.2 8.8 98
1/2−

1 → 5/2+
1 E3 334 307 160 ± 28

15N
1/2−

1 → 3/2−
2 M1 0.03 0.04 (1.04 ± 0.14) × 10−1

1/2−
1 → 3/2+

1 E1 0.02 0.05 (5.2 ± 0.2) × 10−2

1/2−
1 → 5/2−

1 E2 0.05 0.02 8.6 ± 0.6
1/2−

1 → 5/2+
1 E3 382 356 280 ± 27

17O
1/2+

1 → 5/2−
1 E1 0.0005 0.0004 0.0005

5/2+
1 → 1/2+

1 E2 0.54 0.47 2.18 ± 0.16
5/2+

1 → 3/2−
1 E3 45 27 20 ± 12

17F
5/2+

1 → 5/2−
1 E1 0.42 0.19 0.0018

5/2+
1 → 1/2+

1 E2 19.86 19.78 21.64
5/2+

1 → 5/2−
1 E3 119 106

39Ca
3/2+

1 → 1/2+
1 E2 0.15 0.05 18.8 ± 2.3

3/2+
1 → 7/2−

1 E3 1248 551 487+1066
−415

39K
3/2+

1 → 5/2−
1 E1 0.0043 0.0032 0.0014+0.0006

−0.0003

3/2+
1 → 1/2+

1 E2 14.4 9.1 20.4+5.9
−4.7

3/2+
1 → 7/2−

4 E3 617 973 903+379
−289

The discrepancies with experiments are more pronounced
for the negative (positive) parity states in A = 15 (A = 17).
The calculations underestimate the M1 and E2 strengths by
orders of magnitudes (Table IV). These states have a two-
phonon character, at least, and therefore can be described
properly only within a multiphonon space.

V. SUMMARY AND PERSPECTIVES

We have proposed a variant of the particle(hole)- phonon
scheme which preserves the mirror symmetry in the odd
neighbors of the N = Z nuclei. Though applied to one-phonon
states, the new method guarantees the restoration of the sym-
metry in any multiphonon space.

The restoration of such a symmetry represents the pre-
condition for an accurate description of the complex spectra
of the odd neighbors of doubly closed shell nuclei like 16O.
This accuracy can be reached by trying to improve the nuclear
potential and, in parallel, by enlarging the configuration space.

We have seen that the discrepancies with experiments
discussed in the text are reduced significantly by replacing the
NNLOopt potential, used in previous calculations [11,12], with
the more realistic NNLOsat. For a further significant improve-
ment it is necessary to go to spaces spanned by basis states
with a sufficiently large number of phonons. We have argued
that the inclusion of three and four phonons has a strong im-
pact on the one-phonon and two-phonon states, respectively.

We are able to include up to three phonons which, through
their coupling, should shift considerably downward in energy
the low lying one-phonons states, as was the case for the
NNLOopt potential [11,12]. In virtue of such a shift, for
instance, a substantial overlap between theoretical and ex-
perimental positive parity spectra is expected for the A = 15
mirror nuclei.

In order to improve the description of the negative parity
spectra it is necessary to enlarge further the space so as to
include four phonons.

Treating exactly these states is numerically very challeng-
ing. Nonetheless, we intend to exploit the simple structure of
formula (15) governing the coupling between two and four
phonons in order to get, under some simplifying assumptions,
an approximate estimate of the downward energy shift of the
low lying two-phonon states and, therefore, get an insight on
the impact of four phonons on the low-lying negative parity
states.
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