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Background: The nuclear level density (NLD) and photon strength functions (PSFs) are necessary quantities
for calculating the interaction of photons with nuclei, in particular the reaction cross sections. As such, they are
important especially in nuclear astrophysics and in the development of advanced nuclear technologies.
Purpose: The presence of a resonancelike structure in the E1 PSF at γ -ray energy of about 5.5 MeV was reported
in γ -soft A ≈ 200 nuclei from several experimental techniques. However, as data from different experiments are
not fully consistent, additional information on PSFs in this region is of great interest. In addition, present PSF
models have difficulties to describe resonancelike structures for energies below the neutron separation energy
Sn. There are also open questions about the energy and parity dependence of the NLD.
Methods: The γ rays following the radiative neutron capture on 195Pt s-wave resonances were measured
with the highly segmented γ -ray calorimeter Detector for Advanced Neutron Capture Experiments at the Los
Alamos Neutron Science Center. The γ -ray energy spectra for different multiplicities were gathered for several
resonances of both possible spins.
Results: The γ -ray energy spectra were analyzed within the statistical model and allowed us to get information
about the NLD and PSFs in 196Pt. Neither the PSFs from any previous experiment nor any available PSFs models
are able to describe our spectra. We were able to find PSFs and NLD that reasonably describe experimental
spectra and impose various restrictions on these quantities.
Conclusions: The presence of a resonancelike structure in the E1 PSF at a γ -ray energy of about 5.6 MeV
is confirmed. The constant temperature energy dependence is favored for a NLD with a significant parity
dependence up to an excitation energy of at least 4 MeV. The preferred M1 PSF shape is close to a Lorentzian
tail of the spin-flip resonance.

DOI: 10.1103/PhysRevC.101.024302

I. INTRODUCTION

With presently available experimental techniques the com-
plete spectroscopic data in medium- and heavy-mass nuclei
can be obtained only for levels at lowest excitation energies
below at most up to about 2 MeV in even-even nuclei away
from closed shells. These limitations originate mainly from
the nuclear level density (NLD) rapidly increasing with exci-
tation energy. Properties of medium-weight and heavy atomic
nuclei at higher excitation energies are then usually described
using the statistical model in terms of the NLD and a set
of photon strength functions (PSFs) for different transition
types. These quantities are necessary for calculations of cross
sections in all reactions involving photons and are important
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especially in nuclear astrophysics [1,2] and in the develop-
ment of advanced nuclear reactors [3].

The study of these quantities is important especially in
regions where they show significant irregularities or, in the
case of PSFs, presence of resonance structures below neutron
separation energies. One of these regions appears for γ -soft
A ≈ 200 nuclei, where previously measured data indicate a
presence of a resonance at Eγ ≈ 5.5 MeV in a PSF [4–9].
As experimental data from average resonance capture indicate
dominance of E1 strength at these energies in this mass region
(see latest compilation [10] and references therein) and the
resonance is significantly weaker than the dominant giant
electric dipole resonance (GEDR), the observed structure
is usually referred to as pygmy E1 resonance. The pygmy
resonance was observed in many isotopes across the nuclei
chart [11].

Low-lying dipole resonances, i.e., pygmy E1 and scissors
M1 resonances, are usually not reflected in widely used PSFs
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models, such as those compiled in RIPL-3 [12], or recently
proposed systematic based on the HFB+QRPA calculations
[13]. However, their presence may have serious implications
for heavy-element nucleosynthesis [14].

Important information on PSFs and NLD can be obtained
from an analysis of coincident γ -ray spectra measured in the
decay of isolated neutron resonances. In this paper we report
on results from the analysis of the so-called multistep cascade
(MSC) spectra gathered for s-wave resonances in radiative
neutron capture on 195Pt. The γ -ray spectra were measured
with the Detector for Advanced Neutron Capture Experiments
(DANCE) [15,16]. This highly segmented, highly-efficient
γ -ray calorimeter, consisting of 160 BaF2 crystals, is installed
at the pulsed neutron beam at Los Alamos Neutron Science
Center (LANSCE) at Los Alamos National Laboratory.

In Sec. II we describe the experimental technique to mea-
sure the MSC spectra with the DANCE calorimeter as well
as modeling of the statistical γ cascades. Information about
the PSFs and NLD that can be extracted from the measured
MSC spectra is presented in Sec. III. Consistency of observed
size of fluctuations in spectra from different resonances with
predictions of the statistical model is then discussed in Sec. IV
and a summary is given in Sec. V.

II. EXPERIMENT AND DATA PROCESSING

A. Experimental setup

A 30-h-long neutron-capture experiment with an enriched
Pt sample was performed at neutron flight path 14 at LAN-
SCE [17,18]. A white spectrum of spallation neutrons was
produced by irradiation of a tungsten target with 800-MeV
protons with a repetition rate of 20 Hz. The low-energy
part of the neutron-flux distribution is enhanced by a water
moderator. A comprehensive description of the experimental
setup can be found in Refs. [15,16,19,20]. Here we restrict
ourselves only to basic features and details specific to the Pt
measurement.

A self-supporting 1/4 × 1/4 in. square metal foil sample of
Pt enriched to 97.29% in 195Pt with total mass of 35 mg was
located at the center of the DANCE detector at a distance of
20.25 m from the spallation neutron source.

The DANCE consists of 160 BaF2 crystals which cover
a solid angle of ≈3.5π with an efficiency of 86% for a
single photon with Eγ = 1 MeV [21]. The energy resolution
is about 16% and 7% for 1 and 6 MeV γ rays, respectively.
A 6LiH shell about 6 cm thick is placed between the sample
and the crystals to absorb a significant fraction of neutrons
that scatter from the sample and would otherwise strike the
crystals. The energy of neutrons impinging on the sample was
determined using the time-of-flight (TOF) technique. Events
corresponding to neutron energies En > 9 eV were recorded.

The DANCE acquisition system [20] is based on digiti-
zation of signals from all 160 BaF2 detectors using Acqiris
DC265 digitizers with a sampling rate of 500 mega samples
per second. Intensities of the fast (decay time ≈600 ps) and
slow (decay time ≈600 ns) components of the scintillation
signal from each BaF2 detector are collected independently.
The ratio of these two signal components is then used for

discrimination against the α background from natural radioac-
tivity of Ra in the BaF2 crystals [16]. A precise time stamp of
γ -ray arrival is also stored and in this analysis the signals from
individual detectors that arrive within 10 ns are considered to
belong to the same event.

The energy calibration of the individual DANCE crystals
was performed with a combination of γ -ray sources 137Cs,
88Y, 22Na and the intrinsic radioactivity in the BaF2 crystals
due to a small amount of 226Ra contaminant and its daughters.
The latter calibration was conducted on a run-by-run basis
to provide the energy alignment of all crystals in the off-line
analysis.

B. Data reduction

The experimental approach is similar to that presented in
Ref. [22] and only its most important features are listed below.

An emitted γ ray does not necessarily deposit its full en-
ergy in a single crystal, but rather several, often neighboring,
BaF2 crystals [19]. We combined all contiguous crystals that
fired during an event into clusters and considered each cluster
as the response of the detector array to a single γ ray. The
number of clusters observed in an event is called the cluster
multiplicity M. Although we use the cluster multiplicity, the
conclusions presented here do not depend one whether the
crystal or the cluster multiplicity is used.

Only events corresponding to strong, well-resolved
resonances—identified from the TOF spectrum—with suffi-
cient statistics and unambiguously known spin were analyzed.
The relevant part of the TOF spectrum is shown in Fig. 1
after transformation to the neutron-energy scale. Sufficiently
strong and well-resolved s-wave resonances (with Jπ = 0−
or 1−) are observed only for En � 600 eV. In total we were
able to get spectra from 5 and 11 Jπ = 0− and 1− resonances,
respectively. The neutron energy regions used in the analysis
are indicated in Fig. 1.

Spectra of sums of deposited γ -ray energies, hereafter
called sum-energy spectra, are shown for M = 2–4 in Fig. 2
for a few resonances. The spectra, after background sub-
traction described below, are normalized to the same total
number of events of M = 3–7 in the sum-energy range E� =
7–8 MeV corresponding to the neutron separation energy
Sn = 7.92 MeV.

Each sum-energy spectrum consists of a peak near Sn,
which corresponds to detection of nearly all γ -ray energy
emitted in a cascade following neutron capture, and a con-
tinuum formed by events where a part of the emitted γ -ray
energy escapes the detection. The intensity at E� � 3 MeV
in M � 3 spectra may have a strong background contribution
coming from various sources [16]. There is also a background
contribution at higher E� from capture of scattered neutrons in
Ba of the detector crystals. As two Ba isotopes have Sn above
8.5 MeV, this contribution is usually visible in lower multi-
plicities for energies above the peak near Sn of the isotope of
interest [22,23], located at ≈7.7 MeV in the case of 196Pt.
As evident from Fig. 2 this background is virtually absent
in the Pt resonances adopted in the analysis. Nevertheless,
using the spectra from neighboring off-resonance regions this
very small background above E� ≈ 3 MeV was subtracted.
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FIG. 1. Number of detected γ cascades as a function of neutron energy for events with M > 1 and E� = 7–8 MeV. The resonances from
capture on other Pt isotopes ( 192,198Pt at 53 and 96 eV, respectively) are barely visible due to the selection criteria on M and E� . The hatched
intervals indicate neutron energies used in the analysis.

Bumplike structures at E� ≈ 2 and 6 MeV in the sum-energy
spectra of some resonances surely come from incomplete
detection of γ cascades from 196Pt as very similar structures
are observed also in the simulations described below.

Events with deposited sum energy E� = 7–8 MeV were
used to construct the experimental MSC spectra. For a given
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FIG. 2. Sum-energy spectra for M = 2–4 events of three 0− and
three 1− resonances. The background was not subtracted to show its
contribution in different resonances.

resonance, an experimental MSC spectrum for multiplicity
M was constructed by incrementing counts in M bins cor-
responding to the γ energies deposited in the M individual
clusters within an event. In other words, to better visualize
the multiplicity and energy makeup of the registered events,
we sort the events by multiplicity and then plot a spectrum
of all individual γ energies within the events. A bin width
of 100 keV, which is close to the energy resolution of crys-
tals for low Eγ , was chosen. The experimental MSC spec-
tra inherit the normalization of sum-energy spectra. It turns
out that the results do not depend on the exact sum-energy
range used for construction of MSC spectra provided that the
events from the peak near Sn are considered. A background
contribution from the scattered-neutron capture on Ba was
subtracted using off-resonance regions as in the case of the
sum-energy spectra. The background subtraction significantly
changes only the M = 1 experimental MSC spectra. Ex-
amples of a few background-subtracted experimental MSC
spectra for resonances with both possible spins are plotted in
Fig. 3.

We were able to verify most resonance spin assignments
from [24] with the help of the multiplicity-based method [25]
combined with the characteristic shapes of experimental MSC
spectra. The resonances entering the analysis are those for
which the combined information on spin assignment unam-
biguously confirmed the one from [24]. As can be seen in
Fig. 2 the sum-energy spectra practically coincide for M � 3
no matter the resonance spin, which is likely a consequence of
the spin difference between the resonances and ground state
being only 0 or 1. On the other hand, the intensities at the
Sn peak in M = 2 spectra exhibit sizable fluctuations, which
is a manifestation of strong fluctuations of a few high-Eγ

primary transitions; see M = 2 MSC spectra in Fig. 3. It
turns out that the shapes of MSC spectra for M = 2–4 differ
for resonances of different spins; see Figs. 3 and 4. The
difference stems mainly from the absence of Jπ = 1+ states
at excitation energies below about 2 MeV. These are the only
states expected to be strongly fed from Jπ = 0− resonances
via primary transitions.
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FIG. 3. Experimental MSC spectra for M = 2–4 of three 0− and
three 1− resonances. The same resonances as in Fig. 2 are shown.

As mentioned above, the M = 2 MSC spectra dominantly
consist of cascades via relatively high-Eγ primary transitions
to an intermediate level that subsequently decays to one of
the three lowest-lying levels.1 The number of available inter-
mediate levels below an excitation energy of about 3 MeV
is so low, especially for primary transitions from 0− reso-
nances, that we can observe individual primary transitions.
Spectra from individual resonances in Fig. 3 show that strong
primary transitions feed different intermediate levels and that
the fluctuations of primary transition intensities to the same
intermediate levels from different neutron resonances are
sizable. This feature points towards an enhancement of (pri-
mary) transitions with Eγ ≈ 5–6 MeV in terms of PSFs, not
towards nonstatistical, common structural effect in different
resonances. The presence of resonances with similar struc-
ture would manifest itself via strong primaries to the same
intermediate levels. Furthermore, these observed differences
in the MSC spectra of individual resonances are expected in
the statistical model as a consequence of Porter-Thomas (PT)
fluctuations [26] of primary intensities.

1The available sum energies for the cascades to the ground state
and first two excited states are 7.92, 7.57, and 7.23 MeV, respectively,
which all fall into the chosen interval E� = 7–8 MeV. The cascade is
registered as an event terminating at the excited state when its decay
to the ground state escapes detection.
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FIG. 4. Mean experimental MSC spectra. For Jπ = 1− the full
rectangle gives Iexp with its uncertainty while the larger error bar
represents the expectation value of φexp. The average ± one standard
deviation is plotted for Jπ = 0−. For details see Sec. II B and Sec. 1
of the Appendix.

For comparison of experimental data with model predic-
tions, we decided not to use spectra from individual res-
onances but we constructed the mean experimental MSC
spectra. The mean experimental MSC spectra better capture
the average characteristic features of the decay. The details
are given in Sec. 1 of the Appendix.

The mean experimental MSC spectra for both resonance
spins and M = 2–7 are shown in Fig. 4. For Jπ = 1− we
used Lexp = 11 individual resonances; the uncertainty of Iexp

is displayed as a full rectangle while φexp is represented by
the larger error bar (Iexp ± φexp is drawn). Since we were not
able to gather the spectra for more than five resonances with
Jπ = 0−, we calculated the mean experimental MSC spectra
as a simple average and standard deviation for this resonance
spin; the average ± one standard deviation is plotted. There
are virtually no events with M > 8.

C. Simulated MSC spectra

The MSC spectra are products of a complex interplay
between the PSFs, NLD, and a nontrivial detector response.
As a result, there is no easy way to extract the PSFs and
the NLD directly from the experimental MSC spectra. To
learn about these quantities we thus adopted a trial-and-error

024302-4



EXAMINATION OF PHOTON STRENGTH FUNCTIONS … PHYSICAL REVIEW C 101, 024302 (2020)

approach—the simulated MSC spectra obtained assuming
various PSFs and NLD models were compared with their
experimental counterparts. The comparison allowed us to
reject many model combinations and select those giving a
reasonable description of the experimental spectra.

Simulations of individual γ cascades deexciting neutron
resonances with specific Jπ were performed utilizing the
Monte Carlo DICEBOX algorithm [27,28]. The response of
the detector to individual cascades was then obtained from the
Monte Carlo GEANT4-based code [19]. The use of the DICE-
BOX algorithm allows correct treatment of the PT fluctuations
[26] of individual transition intensities as well as artificial
fluctuations due to the random discretization of the NLD.
Simulations were performed for many different combinations
of models of NLD and E1, M1, and E2 PSFs, below labeled
as fE1, fM1, and fE2, respectively. As the description of the
γ decay via the statistical approach is surely not adequate at
the lowest excitation energies; the information on the level
scheme was taken from [29] below the critical energy Ec =
1.88 MeV unless specified otherwise. There are only a few
uncertainties in the level scheme below 1.88 MeV, which
have negligible influence on the results of our simulations.
An increase of Ec introduces significantly more uncertainties
in the low-lying level scheme without any improvement in
the description of the related regions of MSC spectra; Ec

lower than 1.88 MeV enhances the fluctuations at the edges
of simulated MSC spectra without having any positive effect.

More details on the DICEBOX algorithm, including the
calculation of the measures of experimental observables, are
given in Sec. 2 of the Appendix.

We would like to note that for normalization of simulated
spectra, as in the case of experimental ones, we need only
one common normalization factor for all M. We thus have
not only information on spectral shapes of individual M but
also on the multiplicity distribution of detected cascades. The
comparison of the spectra is not shown in the figures below for
M � 6 as spectral shapes do not show interesting structures,
see Fig. 4, and do not provide any additional restrictions apart
from reflecting the multiplicity distribution. The multiplicity
distribution is in some cases used when discussing the accept-
ability of models in Sec. III. As in the case of experiment,
there are virtually no events with M > 8.

To correctly statistically quantify the degree of agree-
ment between the simulated and experimental MSC spec-
tra, enormously time-consuming simulations with an ex-
tremely large number of suprarealizations would be needed
as contents of individual bins in MSC spectra are mutu-
ally correlated in a very complicated fashion and the cor-
responding correlation matrix is a priori not known. As
a consequence, within the search for suitable PSFs and
NLD models the degree of agreement was checked only
visually.

It is to be stressed that the predicted spectra are not sensi-
tive to the absolute values of PSFs if the Eγ -dependent ratios
of PSFs for different transition types are kept the same. So, we
are rather probing the energy dependence of PSFs and relative
contribution of various transition types than the PSFs absolute
values. The only quantity from simulations that depends on
the absolute PSFs values is the total radiative width.

III. TEST OF NUCLEAR LEVEL DENSITY AND PHOTON
STRENGTH FUNCTIONS MODELS

Mean experimental MSC spectra were compared to pre-
dictions based on many different combinations of PSFs and
NLD models. As a first step in Sec. III B we checked the
acceptance of several global models available in the literature.
Further in Sec. III C we tested the PSFs based on available
experimental data. Finally, we tried to fine-tune the PSFs and
checked the influence of certain features in the PSFs and NLD
on predicted spectra; see Sec. III D. In total several hundreds
of different PSFs and NLD combinations were tested. The
key results of these simulations are presented in this section.
Although we compare MSC spectra mostly for 1− resonances,
a very similar degree of agreement for all presented models is
obtained also for spectra from 0− resonances.

A. Nuclear level density models and data

Tested NLD models and experimental data2 from measure-
ment at the Oslo Cyclotron Laboratory [30] are compared
in Fig. 5. The constant-temperature (CT) and back-shifted
Fermi-gas (BSFG) models are taken from [32]. The model
labeled “Oslo” consists of, in accord with the original work
[30], interpolation through the Oslo experimental points fol-
lowed by extrapolation above 6 MeV by the CT formula and
the spin distribution adopted from [32]. The NLD calculation
labeled “Combinatorial” is available as the tabulated energy-
dependent NLD for levels with each spin and parity coming
from the Hartree-Fock-Bogoliubov (HFB) plus combinatorial
method [33].

With a few exceptions of high-spin levels (which play a
marginal role in the decay of s-wave resonances) there are
no known levels with negative parity below an excitation
energy of about 2 MeV [29]; a significant dominance of
positive parity levels is thus expected also in the region above
Ec. For simulations with the CT, BSFG, and Oslo models
we have introduced the parity dependence of NLD in the
form proposed in Ref. [34] which gives the fraction of levels
with positive parity F (π = +) with respect to total NLD at
excitation energy E as

F (π = +) = 1

2

(
1 + 1

1 + exp [Cπ (E − �π )]

)
. (1)

We usually adopted �π = 3 MeV and Cπ = 1 MeV−1. There
is virtually no parity dependence for an excitation energy
above about 5.5 MeV for this parameter choice. We tested
also several other choices of �π and Cπ as well as NLD
which are parity-independent above Ec. The influence of the
NLD parity dependence is discussed in Sec. III D 2. The
contribution of levels with both parities is for low excitation
energies indicated for the CT model [with parity dependence
given by Eq. (1)] and the combinatorial NLD in Fig. 5(b).

Even-even nuclei show staggering between odd and even
spins at low excitation energies [35]. We adopted the stag-
gering of the form proposed in Refs. [32,35], which linearly

2For details about the procedure of normalization (and extrapola-
tion) of NLD experimental data in the Oslo method see Refs. [30,31].
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FIG. 5. Nuclear level densities used in simulations in comparison
with experimental data. Total NLD is shown and compared with the
Oslo data [30] in (a). The NLD of J = 0–3 and both parities for
the CT model and Combinatorial calculation is compared to ENSDF
data [29] in (b). Hatched areas reflect the minimum and maximum
allowed number of levels with given parity in a 200-keV bin from
[29]. The constant-temperature (CT) and back-shifted Fermi-gas
(BSFG) models are from [32], combinatorial NLD from [33].

decreases with excitation energy with maximum effect below
1 MeV and vanishing at 4 MeV. Unless specified otherwise,
the simulations presented below were made with the Oslo
model of NLD with the above-given parity dependence and
staggering as proposed in Ref. [32].

B. Global photon strength functions models

We started with a comparison of the mean experimental
MSC spectra to predictions based on the PSFs models that
are traditionally used.3 Predictions from two such models,
presented by lines in Fig. 6(a), are shown in Fig. 7 for

3In all model combinations (not only those discussed in this sub-
section) we adopted for E2 PSF the single-particle (constant) model
with fE2 = 1 × 10−10 MeV−5. The contribution of E2 transitions is
always small and has a negligible impact on the results.
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FIG. 6. Experimental data on PSFs from a few methods, that are
available for 196Pt, and models exploited in this work. The PSFs
of two widely used models, described in Sec. III B, corresponding
to primary transitions are shown in (a). The additional tested PSFs
combinations, introduced in Secs. III C and III D, are shown in (b).
The sources of experimental data are Oslo [8], NRF [7], (n, γ ) [37],
ARC (BT) [38], ARC (Kopecky) [10].

1− resonances. One of them consists of the widely used
generalized Lorentzian (GLO) model for E1 and the spin-
flip (SF) standard Lorentzian resonance model for M1 PSF
[12]. The other model labeled as “QRPA” is based on the
QRPA + HFB calculations with the D1M force [36] for
both E1 and M1 PSFs to which a “low-energy enhancement”
is added as proposed by the systematics in Ref. [13]. The
presented simulation using the QRPA model was made with
the combinatorial NLD.

The MSC spectra predicted with these two models do not
coincide with the experiment; see Fig. 7. In reality, several
different NLD models were tested in combination with these
two PSFs models. Use of any NLD model does not help to
reduce the disagreement between simulated and experimental
MSC spectra indicated in Fig. 7. Specifically, none of the
model combinations is able to predict significant bumps in the

024302-6



EXAMINATION OF PHOTON STRENGTH FUNCTIONS … PHYSICAL REVIEW C 101, 024302 (2020)

2 4 6 8

1

2

3

M=5

2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07M=6

1

2

QRPA

GLO + SF

Experiment

M=2

1

2

3

M=3

1

2

3

M=4

1

2

3

M=5M=5

0.2 0.4 0.6 0.8
1

10

0.2 0.4 0.6 0.8
1

10

0.2 0.4 0.6 0.8
1

10

 (MeV)γE

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

FIG. 7. Comparison of the mean experimental MSC spectra from
1− resonances with the predictions for the two models described
in Sec. III B. The symbols for experimental data are the same as
in Fig. 4. The simulated bands correspond to μ ± σ as introduced
in Sec. II C and Sec. 2 of the Appendix.

MSC spectra near 5.6 MeV due to the lack of extra strength,
such as a pygmy resonance, in the E1 PSF.

C. Photon strength functions based on available
experimental data

Information on PSFs in 196Pt or nuclei with very similar
mass from several different experimental techniques can be
found in the literature. Data for 196Pt are shown in Fig. 6.
They come from nuclear resonance fluorescence measure-
ments from γ ELBE [7], preliminary analysis of 195Pt(d, pγ )
reaction with the Oslo method [8], and from the (n, γ ) re-
action. As for the (n, γ ) data, there are two data sets from
the 1960s which were compiled in Ref. [4]. One of them
comes from the spectrum fitting method of the singles γ -ray
spectrum [37] and the other one from the average resonance
capture (ARC) measurement [38]. There is also a data set from
newer ARC measurement [10,39]; all transitions in this data
set are assumed to be of E1 character.

As mentioned above, simulations with PSFs of identical
shape, that differ only in the absolute value, yield exactly the
same MSC spectra. Considering that the absolute normaliza-
tion of PSFs deduced from many experiments, including the
spectrum fitting from (n, γ ) and Oslo methods, is nontrivial,
below we consider arbitrary normalizations with fixed shapes
for discussion purposes. Multiplying the NRF experimental
values from Ref. [7] by 0.6 brings this data set on top of Oslo
(and newer ARC) data at Eγ ≈ 5.5 MeV. The multiplication
of (n, γ ) data from [4] by 1.5 would match the other data sets
at Eγ ≈ 4–5 and ≈6 MeV, pull the (n, γ ) data significantly
above the Oslo data for Eγ = 2–4 MeV, and put the ARC data

from [38] in a good agreement with newer ARC data from
[10,39].

All these data (perhaps with the exception of the ARC data
from [10,39]) really indicate a presence of a resonancelike
structure near 5.6 MeV. The structure is less pronounced in
the (n, γ ) data [37] compared to the other data sets.

A similar structure was also observed in other nuclei in
the A ≈ 200 mass region. Despite the fact that there is no
information on the strength of M1 transitions from ARC in
196Pt, the ARC data in this mass region indicate that the
E1 PSF for Eγ ≈ 5–7 MeV is stronger than the M1 PSF.
According to [10] the ratio fE1/ fM1 = 4–4.5 holds for a
majority of A = 190–200 nuclei at energies ≈5.5–6 MeV;
the lowest ratio is about 2.9 (for 197Pt). In order to comply
with this finding, a realistic PSFs model should have E1 PSF
significantly higher than the M1 PSF at Eγ � 5 MeV.

We decided to test PSFs based on data from all the
above-mentioned reactions. As no experimental information
is available for Eγ � 2 MeV, an extrapolation down to Eγ =
0 is needed. Usually several different extrapolations were
tested; see details below. We further assume that all tested
PSFs depend only on Eγ and are—in accord with the Brink
hypothesis [40]—independent of any other quantity, such as
excitation energy.

1. PSFs based on (n,γ) data

We adopted the fE1 + fM1 following the experimental
points labeled as “(n, γ )” and “ARC(BT)” in Fig. 6. We
tested a few different extrapolations for Eγ < 2 MeV and
decomposition into E1 and M1 strength in combination with
several NLD models. For decomposition into E1 and M1 we
adopted the M1 PSF in the form of either the SF model or a
constant (single particle) (with fM1 = 6 × 10−9 MeV−3) and
the E1 PSF was then calculated as a difference between the
experimental points and fM1. Results from two simulations
are shown in Fig. 8. Both have the same M1 PSF (SF model)
and NLD model (Oslo in Fig. 5). The difference is only in the
low-energy PSF behavior. The PFSs labeled as “nγ (const)”
uses constant fE1 + fM1 below Eγ = 2 MeV, while in the
combination “nγ (0)” the PSF linearly decreases to fE1 +
fM1 = 0 for Eγ = 0.

Although the experimental shapes of MSC spectra are
better described, especially for M = 2, with these PSFs than
with those from Sec. III B, see Fig. 7, the bumps near 2 and
5.6 MeV are still too high in experimental spectra for M = 3
and 4. In addition, all the PSF variations based on (n, γ ) data
overestimate the intensity in the Eγ ≈ 2–4 MeV in the M � 4
MSC spectra, which is almost surely a consequence of the
excess of the PSF between Eγ = 2 and 4 MeV visible in the
(n, γ ) experimental data with respect to the Oslo data; see
Fig. 6. These observations indicate that a realistic PSF should
exhibit a larger decrease from the bump near 5.6 MeV down
to Eγ between about 2 and 4 MeV.

We would like to point out one feature of the simulations
that is evident from comparison of the two predictions in
Fig. 8. The higher PSF at low Eγ (below 2 MeV in this
case) shifts the multiplicity distribution toward higher M. This
behavior is intuitive as higher PSFs at low energies increase a

024302-7



N. SIMBIRTSEVA et al. PHYSICAL REVIEW C 101, 024302 (2020)

2 4 6 8

1

2

3
M=5

2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07M=6

1

2

(const)γn

(0)γn

Experiment

M=2

1

2

3

M=3

1

2

3

M=4

1

2

3

M=5M=5

0.2 0.4 0.6 0.8
1

10

0.2 0.4 0.6 0.8
1

10

0.2 0.4 0.6 0.8
1

10

 (MeV)γE

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

FIG. 8. Comparison of the mean experimental MSC spectra from
1− resonances with the predictions for the two models described in
Sec. III C 1. For the symbol explanation see Fig. 7.

probability for emission of a low-Eγ transitions and will be
further examined in Sec. III D 5.

2. PSFs based on NRF data

The PSF from NRF data is available only for Eγ �
4.5 MeV. A PSF extrapolation in a broad Eγ range important
for decay is thus necessary. We have tested several different
extrapolations; they were based on the shape of either the Oslo
data or the above-discussed (n, γ ) data.

The NRF data overlap with the Oslo data at 4.5 MeV, see
Fig. 6(a), which allows the Oslo-based extrapolation from
4.5 MeV down to 2 MeV without any scaling of either data
set. A comparison of the mean experimental MSC spectra
with predictions using this Oslo-based extrapolation and a
constant PSF below 2 MeV, labeled as “NRF,” can be found
in Fig. 9. The bump in the PSF near 5.5 MeV is evidently too
strong in this model. The same conclusion can be made from
simulations with any tested PSF extrapolation below 2 MeV
as well as any extrapolation based on the unscaled (n, γ ) data.

Further we tested PSFs in which the NRF shape was
connected at ≈5 MeV to shapes given by the Oslo or the (n, γ )
data. The simulations with PSFs connecting the NRF and the
(n, γ ) shapes result in predictions almost indistinguishable
from those discussed in Sec. III C 1 and shown in Fig. 8, no
matter what extrapolation was used for Eγ < 2 MeV. This
result is caused by the characteristic dependence of the (n, γ )
data between 2 and 4 MeV. Use of the PSFs that connect the
NRF shape to the Oslo shape at ≈5 MeV leads to predictions
that reproduce the mean experimental MSC spectra very
reasonably. Specifically, predictions with the model going
through scaled NRF data for Eγ � 4.8 MeV, Oslo data for
Eγ = 2–4.8 MeV [black squares in Fig. 6(b)] and a constant
PSF for Eγ < 2 MeV are shown in Figs. 9 and 10. This model
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FIG. 9. Comparison of the mean experimental MSC spectra from

1− resonances with the predictions for the two models described in
Sec. III C 2. For the symbol explanation see Fig. 7.

is labeled as “NRF(adjusted),” see the red curves in Fig. 6(b),
and is one of the best combinations found in our analysis.

Both simulations shown in Fig. 9 used the Oslo model
for NLD and the M1 PSF was given by the SF model. Use
of different NLD models, different extrapolations for Eγ <

2 MeV, and different decomposition into E1 and M1 PSFs
leads to similar or worse reproduction of mean experimental
MSC spectra.
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FIG. 10. Comparison of the mean experimental MSC spectra
from 0− resonances with the predictions for the NRF(adjusted) and
tuned PSFs. For the symbol explanation see Fig. 7.
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FIG. 11. The Oslo PSF data together with its decomposition
based on [8] into the GEDR tail and two pygmy resonances. Two
displayed models are introduced in Sec. III D 5.

3. PSFs based on Oslo data

The PSF data from the NRF and Oslo methods differ—
depending on the absolute PSF normalization one can either
say that the resonance structure near 5.6 MeV is more pro-
nounced in the NRF or that the Oslo data indicate a presence
of additional “resonance structure” near 7.5 MeV; see Fig. 6.
To preserve the consistency of data from the Oslo experiment,
all Oslo-based PSFs should be coupled with the Oslo NLD
model as these two quantities are strongly correlated.

The difference in predictions between the NRF(adjusted)
and PSFs based on the Oslo data for Eγ � 6 MeV is minimal.
However, the Oslo-based PSFs significantly overestimate the
experimental MSC intensities for Eγ ≈ 7 MeV in M � 3
spectra if the PSF is dominated by the E1 contribution at these
high energies (see also Sec. III D 3).

To conclude, the PSFs from no previous study provide a
good description of our data. To create PSFs leading to a
satisfactory reproduction of our experimental data we have
to combine the NRF and Oslo data sets assuming a normal-
ization bias in at least one of the data sets. The resulting
NRF(adjusted) PSFs, described in Sec. III C 2, adopt the shape
of the Oslo data for Eγ = 2–4.8 MeV connected to the shape
of the NRF data with appropriate low-energy extrapolation
and E1-M1 decomposition. In this combination the E1 PSF
can be regarded as a pygmy resonance on the GEDR tail while
the M1 PSF is given by a spin-flip resonance.

D. Search for optimum model and additional
information on PSFs

Further PSFs tuning was inspired by the interpretation of
the Oslo data by the authors of Ref. [8], specifically their de-
composition of the PSF data into two pygmy resonances (with
maxima at 5.6 and 7.5 MeV and maximum cross sections of
4.9 and 26.1 mb, respectively) and the tail of the GEDR in
the form from [41]. The decomposition as well as the sum of
individual components, labeled as the “zero limit” model, are
visualized in Fig. 11. We tried all combinations of the types
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FIG. 12. Comparison of the mean experimental MSC spectra

from 1− resonances with the predictions for the tuned and tuned +
LER models. The low-energy resonance (LER) in the M1 PSF was
centered at 1.8 MeV with the maximum cross section 0.15 mb and
resonance width 0.8 MeV. For the symbol explanation see Fig. 7.

of two pygmy resonances and further varied the low-energy
PSF dependence below Eγ ≈ 3 MeV again assuming the exact
validity of the Brink hypothesis. The resulting model best
describing the mean experimental MSC spectra is labeled
“tuned” and is shown in Fig. 6. In this model, the pygmy
resonance at 5.6 MeV is of the E1 type and the M1 PSF is
mimicked by the tail of the higher-lying resonance. Due to the
absence of negative parity levels for E � 2 MeV the simula-
tions are virtually insensitive to the M1 PSF for Eγ � 6 MeV.
The fM1 (and fE1 + fM1) is thus not shown in the figure for
these Eγ . We would like to stress that the resulting M1 PSF
does not have to be given by the higher-lying resonance from
the Oslo analysis [8]. A practically identical M1 PSF is given,
for instance, by a Lorentzian resonance centered between
6.7 and 7.0 MeV with width of ≈2.5 MeV and strength of
≈3.5 mb. Such a resonance is much closer to the RIPL-3
systematics [12] for the SF and does not contradict the ARC
results [10].

Based on our experience with the MSC spectra, see [13]
and references therein, the reproduction of MSC spectra sim-
ilar to that with the NRF(adjusted) (as shown in Figs. 9 and
10) or with the tuned PSFs (as shown in Figs. 10 and 12)
is very good. We usually did not reach better agreement for
previously published nuclei. Of course, within the trial and
error approach we cannot guarantee that the MSC spectra will
not be well described also with rather different combinations
of PSFs and NLD models. Nevertheless, we were not able to
find a better reproduction of the MSC spectra with any other
tested PSFs combination. An illustration of the quality of the
reproduction of the sum-energy spectra for the tuned model
can be found in Fig. 13. The comparison of differences in
MSC predictions with the NRF(adjusted) and tuned PSFs also
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FIG. 13. Comparison of the background-subtracted experimental
sum-energy spectra of three 0− and three 1− resonances with the pre-
dictions for the tuned model. The band from simulations corresponds
to μ ± σ as introduced in Sec. II C. The same resonances as in Fig. 2
are shown.

indicates sensitivity of the spectra to relatively small PSFs
changes.

There are only a few regions in the MSC spectra with
visible imperfections in the description of experimental spec-
tra with the NRF(adjusted) and tuned PSFs. Specifically, the
size of the bump at Eγ ≈ 1.6 MeV is underestimated in the
M � 3 spectra; the effect is very small for M � 5. We also see
slightly higher predicted intensity at higher Eγ in the M � 3
spectra. Specifically, in the M � 5 spectra this is the case of
both PSFs combinations for Eγ � 4 MeV and in the M = 3–4
spectra the NRF(adjusted) PSFs overestimate the intensity at
Eγ � 6.5 MeV for Jπ = 1− resonances and the tuned model
at Eγ ≈ 5 MeV for Jπ = 0− resonances. We made various
attempts to remove these imperfections in simulations. Some
of them are discussed below together with a more detailed
analysis of PSFs in different Eγ regions.

1. Attempts to reproduce MSC spectra near 1.6 MeV

The most visible remaining difference between the simu-
lated and experimental MSC spectra is the bump at 1.6 MeV
in M = 3 and 4. It seems natural that a postulation of a weak
low-energy resonance (LER) in the PSF at this energy might
lead to a better description of the mean experimental MSC

spectra. Despite many attempts it turns out that a postulation
of any resonance structure at these energies, that is able to
reproduce the observed bump in the M = 3 and 4 spectra,
leads to significant changes in other regions. Specifically,
as indicated in Fig. 12 with the model combination labeled
“tuned + LER,” the predicted intensity is significantly smaller
for Eγ between about 2.5 and 5 MeV in the M = 2 and 3
spectra and usually the bump near 1.6 MeV is overestimated
in the M � 5 spectra. We conclude that we have not found
a better reproduction of the MSC spectra, compared to the
NRF(adjusted) or tuned PSFs, with a LER postulated near this
energy neither in the E1 nor M1 PSF.

2. Influence of nuclear level density models

The Oslo NLD model used in the majority of simulations,
e.g., those compared above in Figs. 8–12, was based on the
Oslo NLD data [30] with applied spin and parity dependence
as described in Sec. III A. We also performed simulations
using other NLDs shown in Fig. 5. In addition, for the
tested NLD models we checked the influence of the parity
dependence and the staggering between odd and even spins
introduced in Sec. III A.

Use of the parity-independent NLD model above Ec leads
to less pronounced bumps near 5.6 MeV (for M < 5), to a
small shift in the multiplicity distribution to higher values,
and especially to problems with predicted spectral intensity
at Eγ ≈ 4 MeV in the M = 2 spectrum; see also Sec. III D 6.
All these changes are due to the significantly different ratio
of the number of positive to negative parity levels in the
parity-independent model at energies below about 4 MeV.

The reduction of the predicted size of bumps near Eγ =
5.6 MeV is evidently due to the smaller number of final
levels for primary E1 transitions at excitation energies 2–
3 MeV in the parity-independent NLD model—the number
of positive plus negative parity levels is fixed independently
of the assumed parity dependence; see Eq. (1). We conclude
that the dominance of positive-parity levels at E � 4 MeV is
essential for good reproduction of experiment. The acceptable
values of parameters for the parity dependence in Eq. (1) are
Cπ ≈ 0.5–2.0 MeV−1 and �π ≈ 3–3.5 MeV.

With the parity-dependent NLD models the simulations
with the BSFG model and the combinatorial NLD shift
multiplicity distribution to higher values while simulations
with the CT model to slightly lower ones compared to the
Oslo NLD model; compare Fig. 14 with Fig. 12. This is a
consequence of the fact that the BSFG model (and even more
the combinatorial NLD) gives a significantly higher number
of levels at intermediate excitation energies (E ≈ 3–7 MeV)
compared to the Oslo and even more to the CT model; see
Fig. 5. This increase in the number of levels at intermediate
energies allows bypassing the lower-multiplicity cascades
through levels just above Ec by higher-multiplicity cascades.
With the CT model the predicted MSC spectral shapes are
not very different compared to the Oslo NLD model for fixed
PSFs models; compare Figs. 14 and 12.

The simulations with the BSFG model underestimate
the MSC intensity near 1.6 and 5.6 MeV in M = 2 and
3 MSC spectra. This results from the same effect as the
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FIG. 14. Comparison of the mean experimental MSC spectra
from 1− resonances with the predictions of the CT NLD model
and the combinatorial NLD. The tuned PSF model was used in
combination with the CT model, while a model with significantly
higher E1 PSF near 5.6 MeV, see the text of Sec. III D 2, was
combined with the combinatorial NLD. For the symbol explanation
see Fig. 7.

multiplicity distribution shift. Additional simulations with the
BSFG model indicated that an E1 resonance structure shifted
from 5.6 MeV towards 6 MeV with the strength at least three
times higher than the pygmy resonance of the tuned model is
needed to acceptably reproduce the above-mentioned bumps
in the MSC spectra. Nevertheless, such a change of the E1
PSF induces discrepancies in MSC spectra for higher M.

The combinatorial NLD is so different from the other
NLDs used that it predicts very different MSC spectral shapes;
see Fig. 14. The combination of this NLD with the tuned PSFs
yields predictions similar to those with the QRPA PSFs shown
in Fig. 7, i.e., without any clear bumps for Eγ ≈ 5.6 MeV.
Absence of the bumps can be (at least partly) understood from
Fig. 5. The combinatorial NLD yields the highest number
of levels accessible via primary transitions at intermediate
excitation energies (E ≈ 3–7 MeV) out of all tested models.
At the same time the number of predicted positive-parity
levels is relatively small below about 2.5 MeV. This behavior
strongly suppresses the total intensity carried by primary
transitions with Eγ close to 5.6 MeV. An enormous PSF
enhancement near 5.6 MeV would be required to reproduce
the bumps in the MSC spectra, which would introduce other
discrepancies in the MSC spectra similarly to the case of the
BSFG model. To illustrate the inability of the combinatorial
NLD to reproduce bumps in the MSC spectra even with very
strong E1 PSF near 5.6 MeV, simulations presented in Fig. 14
were performed with the PSFs based on the tuned ones but
with the pygmy resonance near 5.6 MeV three times stronger
than the original one shown in Fig. 11. Even this strength of
the pygmy resonance is far from that which is needed.

For completeness, we should add that we have found no
significant influence of the staggering between odd and even
spins on predicted MSC spectra.

Due to the complexity of possible changes in NLD (de-
pendence on energy, spin, and parity) and the entanglement
with the PSFs models when predicting the MSC spectra, it is
rather difficult to make any definite statements related to this
quantity. Nevertheless, we can conclude that the excitation
energy dependence of the NLD based on the Oslo data [30]
combined with significant parity dependence up to relatively
high excitation energy seems to be reasonable. With the
parity-independent NLD model we have never reached the
quality of the description of the experimental MSC spectra
as with the parity-dependent one. The combinatorial NLD is
not consistent with our data.

3. Photon strength functions at Eγ � 6.5 MeV

As evident from Fig. 6 the Eγ dependencies of PSFs
from available experimental data are rather different for Eγ �
6 MeV. Specifically, the Oslo data indicate a significantly
steeper dependence than data from other reactions. Exact PSF
decomposition into E1 and M1 is also not known although,
as mentioned above, it is expected from ARC data for Eγ �
5 MeV that E1 PSF dominates.

The vast majority of the intensity observed in the MSC
spectra at these energies is due to the primary transitions. As
mentioned above, there are no levels to be fed by M1 primary
transitions below the excitation energy of about 2 MeV, so the
simulations are completely insensitive to fM1 at Eγ � 6 MeV.
On the other hand, it turns out that the spectral intensity in
M = 2 (and unreported M = 1 from 1− resonances) MSC
spectra is rather sensitive to the relative size of fE1 in this
region with respect to lower Eγ . As already mentioned in
Sec. III C 3, our simulations clearly indicate that the E1 shape
from the Oslo method [8] is inadequate as it overestimates
the MSC intensity for Eγ � 6 MeV. In contrast, the Eγ

dependence given by NRF and (n, γ ) data, see Fig. 6, is very
reasonable. In reality, the fE1 at Eγ � 6.5 MeV could be
slightly higher than that in the NRF(adjusted) PSFs by about
1/3 of the difference between the Oslo and NRF shapes.

4. Size of the resonance structure near 5.6 MeV

With the tuned PSFs we checked in detail the influence
of the size of the pygmy resonance near 5.6 MeV. We found
that its maximum cross section surely lies between 2.5 and
6.5 mb, which corresponds to 0.18–0.47% of the Thomas-
Reiche-Kuhn sum rule. The required size of the pygmy res-
onance is partly related to the exact parity dependence of the
NLD model; the above-given range was determined using all
reasonable possibilities of the parity dependence.

5. Possible low-Eγ enhancement

An interesting feature of PSFs is a possible presence of a
low-Eγ enhancement (LEE) previously reported from Oslo-
type experiments. Although it has never been observed in
nuclei as heavy as Pt, it was recently reported even in Sm
nuclei [42].
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FIG. 15. Comparison of the mean experimental MSC spectra
from 1− resonances with the predictions for the zero limit and LEE
models as shown in Fig. 11. For the symbol explanation see Fig. 7.

We tested an influence of the low-Eγ PSFs shape in various
forms including constant, linear, and exponential [in the form
fLEE = f0 exp (−Eγ /Es)] enhancement with different zero-Eγ

PSFs limits. The simulated MSC spectra for two PSFs shapes,
shown in Fig. 11, are presented in Fig. 15. The zero limit
model is the interpretation of the Oslo data by authors of
Ref. [8] in terms of two pygmy resonances and the tail of
the GEDR. The first pygmy resonance was assumed to be of
E1 while the second one of the M1 type. This model with
additional low-Eγ enhancement fLEE is denoted as “LEE”;
for the presented simulation the M1 transition type with
f0 = 3 × 10−8 MeV−3 and Es = 0.8 MeV was adopted. We
tested also the E1 and mixed character of fLEE with different
parameters.

The comparison of spectra in Fig. 15 shows clear shifts
in the multiplicity distribution—the higher enhancement, the
more cascades with higher M—and distorted spectral shapes.
The influence of the LEE on the spectra is smaller if the
LEE is assumed in the E1 PSF (instead of the M1 PSF). The
reason for smaller sensitivity to E1 type comes from the dom-
inance of positive-parity levels at low excitation energies, see
Sec. III D 2, and is also thoroughly discussed in Sec. III D 6.
We can conclude that the reproduction of experimental MSC
spectra requires a presence of nonzero sum fE1 + fM1 at
Eγ ≈ 0.5–3 MeV, which should not significantly differ from
a constant. For the (less sensitive) E1 type of LEE the f0

is definitely within 0.5–2 × 10−8 MeV−3 for Es = 0.8 MeV
and 0.2–4 × 10−8 MeV−3 for Es = 0.3 MeV. The limits on
the M1 LEE are even more strict. Sizable differences are
already present for relatively small changes in f0 especially
if the LEE changes the PSF at Eγ � 1 MeV. Use of the LEE
which influences only transitions with Eγ < 1 MeV, i.e., Es �
0.3 MeV, makes the changes smaller but still visible—our

sensitivity to very low Eγ (below about 0.5 MeV) is limited as
transition intensities are proportional to the product fXL × E3

γ .
We would like to note that in the NRF(adjusted) and tuned

PSFs, we used the E1-dominated PSFs at low Eγ .

6. PSF composition at intermediate and low Eγ

Although getting information on the PSF decomposition
at intermediate and low Eγ is not that straightforward as for
Eγ � 6.5 MeV, discussed in Sec. III D 3, we can still say
something about dipole PSFs for individual transition types.

The M = 2 MSC spectrum is dominantly composed of cas-
cades via two γ rays starting from negative-parity resonances
and ending at positive-parity low-lying levels. Due to the low
spin difference between the resonances and low-lying levels
and expected dominance of dipole transitions, the cascades
are of E1-M1 or M1-E1 makeup with the former being more
probable. Use of a model with very low M1 contribution at
Eγ = 3–5 MeV (smaller than E1 PSF by at least an order
of magnitude) leads to a significant underestimation of the
intensity in this Eγ region in M = 2 spectra, as the competing
cascades of higher multiplicities (with first two E1 steps)
divert the intensity.

Unfortunately, a relatively broad range of ratios fE1/ fM1

between about 2 and 10 for Eγ ≈ 4 MeV gives predictions that
are consistent with experimental data. This can be understood
as follows: due to the parity selection rules and the low
number of negative parity levels at low excitation energies the
influence of the E1 PSF is strongly suppressed for transitions
below the excitation energy of about 4–5 MeV. Hence the
simulations exhibit low sensitivity to the fE1/ fM1 ratio for
Eγ ≈ 4 MeV but yield significant constraints on the M1 PSF
shape for these Eγ .

The M1 PSF for Eγ � 5 MeV increasing with Eγ , similarly
to the tail of the SF resonance as shown in Fig. 6(b), is strongly
favored. In reality, we cannot unambiguously say if zero limit
fM1 = 0 for Eγ → 0 is required, the M1 PSF might flatten for
Eγ � 2 MeV. However, any different M1 PSF shape such as
a constant PSF, which prefers lower-Eγ transitions, leads to
underestimated intensity in the midpart of M = 2 MSC spec-
tra, because intermediate levels at E = 3–5 MeV fed directly
by primary transitions are forced to decay via transitions with
small Eγ and thus contribute to higher M spectra. We would
like to note that the dominance of positive-parity levels below
about 4 MeV, crucial for the discussion in this section, is
essential to reproduce the intensity for Eγ ≈ 5.6 MeV in the
MSC spectra; see Sec. III D 2.

If we combine the information on the M1 PSF shape at
low Eγ with the findings in Sec. III D 5 on the fE1 + fM1,
we can also conclude that the region Eγ � 2.5 MeV must be
dominated by the E1 PSF which is not far from a constant
value (at least down to Eγ ≈ 0.5 MeV).

Our attempts to improve the description of present ex-
perimental data result in the conclusion that the reasonable
PSFs are indeed very close to the tuned or NRF(adjusted)
PSFs, shown in Fig. 6(b), when combined with the Oslo NLD.
We would like to stress that this conclusion is based on the
assumption that the PSFs at least approximately follow the
Brink hypothesis.
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TABLE I. Average total radiative widths 	γ (in meV) for
NRF(adjusted) and tuned PSFs in combination with different tested
NLDs. The parity dependence and the spin staggering were used
in the forms introduced in Sec. III A. The uncertainty corresponds
to the standard deviation of individual simulated values and thus
characterizes the width of the 	γ distribution obtained from the
DICEBOX simulations.

NRF(adjusted) Tuned

NLD Jπ = 0− Jπ = 1− Jπ = 0− Jπ = 1−

CT 63(8) 80(7) 71(9) 87(8)
Oslo 90(10) 106(10) 102(12) 115(10)
BSFG 117(9) 140(7) 134(10) 157(8)
Combinatorial 91(6) 94(5) 107(7) 104(6)

E. Total radiative width

The total radiative width 	γ is the only quantity coming
from simulations that depends on the absolute values of the
PSFs. Its value can be compared to experiment and possibly
used for absolute PSF normalizations.

Instead of PSF normalizations we rather decided to show,
with fixed PSFs, a dependence of the predicted average 	γ

on other quantities. First, there is a significant dependence on
the NLD model, which can be seen from the values of 	γ

with NRF(adjusted) and tuned PSFs listed in Table I. This
dependence complicates the possible absolute normalizations
of PSFs unless the appropriate NLD is fixed independently.
Second, the calculated 	γ ’s also indicate a non-negligible
dependence on the resonance spin; the only exception is
the combinatorial NLD with very different spin distribution
compared to the other NLDs. Such a dependence can be
expected as a significant fraction of 	γ comes from transitions
to low-lying levels (below about 2 MeV of excitation energy).
The absence of 1+ states at these excitation energies leads to
smaller 	γ from 0− resonances. Although usually only the
spin-independent average value of 	γ is listed in the literature,
see, e.g., [12,24], de Barros et al. [43] tried to determine 	γ

separately for resonances with both spins and arrived at 93(10)
and 118(6) meV for 0− and 1− resonances, respectively. The
observed relative difference in values for the two spins is,
within uncertainties, consistent with the differences shown in
Table I.

As the 	γ ’s predicted for the NRF(adjusted) and tuned
PSFs in combination with the Oslo NLD are close to the eval-
uated values of 122(20) and 120(20) meV from Refs. [12,24],
respectively, the absolute PSFs values used in this paper
seem to be reasonable. However, as evident from Table I,
the absolute values of PSFs would change if a different NLD
model was found appropriate.

IV. FLUCTUATION PROPERTIES OF MSC SPECTRA

In the statistical model the PT distribution is assumed for
the decay of all levels above the critical energy Ec. Within our
framework this assumption can be tested by comparing the
experimental and simulated fluctuations of MSC spectra. The
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FIG. 16. Comparison of MSC intensities and their fluctuations

from experiment and extended simulations for 1− resonances. Black
symbols indicate Iexp ± φexp obtained from the ML fit as described in
Sec. II B. The cyan band corresponds to μ ± φ and the red band to
μ ± √

φ2 + 
2 as deduced from extended simulations with the tuned
PSFs and Oslo NLD model.

number of 1− resonances, for which we were able to prepare
the MSC spectra, allows us to check also the fluctuations of
individual MSC intensities. The fluctuation analysis was, for
the first time, performed for two even-even Dy isotopes in
[22]. Observed differences among experimental MSC spectra
from different resonances seemed to be systematically smaller
than fluctuations predicted in simulations. This fact might
indicate that the use of the PT distribution for description of
fluctuations of individual transition intensities is inadequate.

Similarly to Ref. [22] we have performed extended simula-
tions with I = 40 nuclear realizations within each of K = 20
nuclear suprarealizations. These time-consuming calculations
were made only for the tuned PSFs in combination with the
Oslo and CT NLD models, which seem to provide a satis-
factory description of the mean experimental MSC spectra.
Specifically, for each suprarealization k we determined quan-
tities μk and φk introduced in Sec. II C again using the ML
approach with the ML function analogous to Eq. (A2). The
validity of assumption of the normal distribution of individual
values μik for fixed k was checked beforehand. Although ap-
plied statistical tests sometimes showed a deviation from the
normal distribution, we can claim that in energy bins between
Ec and Sn − Ec in M = 2 spectra and in all bins with the MSC
intensity significantly higher than zero in multiplicities M � 3
the distribution of MSC intensities is so close to the normal
distribution that this form of the ML function is a well justified
approximation. Nevertheless, for the sake of clarity we show
the full energy ranges of MSC spectra in Figs. 16 and 17.

The distribution of the set {φk}K
k=1 from the ML approach

is reasonably narrow with almost all values falling into φ ±
30% interval in all these energy bins. As a result it seems
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FIG. 17. Comparison of fluctuations of experimental MSC in-
tensities φexp (black symbols) with the average fluctuation within
suprarealizations φ (cyan and red lines) for the tuned PSFs in
combination with CT and Oslo NLD models, respectively.

appropriate to use the value of φ instead of the distribution
of φk when comparing with experimental fluctuations. We
have made additional tests as in Ref. [22], most importantly
there are no significant correlations between fluctuations due
to nuclear realizations and due to nuclear suprarealizations,
i.e., the quantities 
 and φ are statistically independent and
can be extracted separately from our extended simulations for
the above-mentioned Eγ bins.

It turns out that the fluctuation of means 
 is about an
order of magnitude lower than the fluctuation of intensities
from individual resonances φ for all checked energy bins,
as shown by the difference between the red and cyan fill in
Fig. 16. Small values of 
 (as compared to φ) can be used
as a justification of the approach used in Sec. III for testing
the adequacy of different PSFs models. The distribution of in-
tensities from individual nuclear suprarealizations used there
is representative of the distribution from different realizations
within a fixed suprarealization.

Assuming that the fluctuations are correctly described in
our simulations, we should not only require agreement be-
tween the mean experimental and simulated MSC intensity,
but also the estimate of fluctuations φ from simulations,
represented by cyan bands in Fig. 16, should be comparable
to the estimate of fluctuations of experimental MSC intensities
φexp, given as error bars in Fig. 4.

The fluctuations from two extended simulations and ex-
periment are compared in Fig. 17. The expectation values
of simulated fluctuations are on average higher than their
experimental counterparts for M � 3 spectra. The ratio of the
two fluctuations seems to be often in the range of ≈1.5–2.
In the M = 2 spectrum there is a significant oscillation of the
ratios for different energy regions.

Although the difference in fluctuations might indicate their
inadequate treatment in simulations we have a couple of
comments on the presented results. First, there is often a
significant correlation in values in several neighboring bins
as the energy resolution of the detector is usually worse than
100 keV. Second, the tested model combination does not
reproduce experimental spectra perfectly; see Fig. 16. It is
expected that simulated fluctuations do depend on the adopted
combination of PSFs and especially NLD models—a different
number of simulated levels in the excitation energy interval
corresponding to the Eγ range can significantly change the
simulated fluctuations φ therein. This effect is visible in
Fig. 17—simulations with the CT NLD model, which yields
a smaller number of levels than the Oslo NLD model in the
whole range of energies, show systematically higher φ at least
in M = 3–4. Furthermore, while the assumptions used in the
DICEBOX code seem to be well justified for highly excited
states such as neutron resonances, there might be additional
nonstatistical effects in the decay of levels at energies just
above Ec, which might also be responsible for our inability
to perfectly reproduce the MSC spectra.

As a result, it seems rather difficult to make any defi-
nite conclusions about the validity of the PT fluctuations of
individual transition intensities in 196Pt. Nevertheless, this
measurement shows the same tendency observed in Dy [22].
Namely, the simulations produce slightly higher fluctuations
than are supported by the data.

V. SUMMARY

The coincident measurement of γ rays from s-wave neu-
tron resonances in the 195Pt(n, γ ) reaction was performed
using the enriched Pt target at the DANCE detector array
of the LANSCE spallation neutron source. The multistep γ

cascade spectra for different multiplicities from five Jπ = 0−
and 11 Jπ = 1− neutron resonances were used to test the
validity of various PSFs and NLD models. The number of
Jπ = 1− resonances also allowed us to check the size of
observed and predicted fluctuations of MSC intensities.

The behavior of the experimental spectra, in particular
of the strong primary transitions with Eγ ≈ 5.6 MeV from
different resonances, can be described within the concept of
the statistical model and photon strength functions. The PSFs
describing well the 196Pt data must have a resonancelike
structure in the E1 PSF at γ -ray energies near 5.6 MeV that
has been reported in A ≈ 200 nuclei from other experimental
techniques in the past.

The CT and Oslo NLDs are favored over the BSFG model
and combinatorial calculation. The best description of exper-
imental spectra was found when using the parity dependent
NLDs at least below an excitation energy of 4 MeV. On the
other hand, our data are insensitive to the staggering between
odd and even spins.

Although there could be some dependence on the choice
from acceptable NLD models, the size of the resonance
structure at 5.6 MeV seems to be comparable to that reported
earlier from Oslo-type experiment [8] and about a half of the
strength reported from NRF data [7]. The Oslo data at energies
Eγ � 6.5 MeV are excluded if interpreted as an E1 resonance
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and it is in contradiction with findings from average resonance
capture experiments if interpreted as an M1 resonance. On
the other hand, the shape of NRF data at these Eγ provides
a very good description of experimental spectra. Overall,
the PSF from (n, γ ) measurements as compiled in Ref. [4]
seems inappropriate. Our analysis further shows that there is
no sizable low-Eγ PSF enhancement; the most appropriate
shapes for Eγ � 2 MeV are a constant E1 PSF and a spin-flip
Lorentzian-tail-like M1 PSF.

The size of fluctuations among experimental MSC in-
tensities from different neutron resonances with Jπ = 1− is
slightly smaller than the simulated one for the vast majority
of γ -ray energies. This finding is consistent with the results
on two even-even Dy isotopes—the first case where the fluc-
tuations were analyzed. Although this observation may point
towards the invalidity of the Porter-Thomas distribution for
fluctuations of individual primary transition intensities, the
situation is more complicated due to the imposed assump-
tions. In any case further investigation of this phenomenon
is necessary.
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APPENDIX: EXPERIMENTAL OBSERVABLES AND THEIR
SIMULATED COUNTERPARTS

The way of calculating the measures of observables from
experimental data and their simulated counterparts are given
in this Appendix.

1. Details on the mean experimental MSC spectra

For Jπ = 1− resonances we adopted the procedure in-
troduced in Ref. [22]. Specifically, we computed, for each
Eγ bin, the mean experimental MSC intensity Iexp and the
fluctuation of experimental MSC intensities φexp using a
maximum likelihood (ML) fit of the set of (normalized and
background-subtracted) experimental MSC intensities from
Lexp = 11 individual resonances λ. The experimental intensity
in each bin is for each resonance characterized by its mean Iλ
and uncertainty �λ.

For the ML fit we assumed that the probability density
function describing the distribution of experimental MSC
intensities Iλ is a normal distribution. Hence the likelihood

function L was defined as

L =
Lexp∏
λ=1

1√
2π

(
�2

λ + φ2
exp

) exp

[
−(Iλ − Iexp)2

2
(
�2

λ + φ2
exp

)
]

h(�λ),

(A1)

where h(�λ) is the error distribution.

2. Details on the simulated MSC spectra

Simulations of individual γ cascades deexciting neutron
resonances with specific Jπ were performed utilizing the
Monte Carlo DICEBOX algorithm [27,28]. Let us call any simu-
lated set of levels and intensities of all transitions as a nuclear
realization and a specific set of realizations with identical
levels below Sn and identical intensities of secondary transi-
tions as a nuclear suprarealization. The detailed description
of the DICEBOX algorithm, that includes nuclear realizations
and suprarealizations, can be found in Ref. [28] and specific
details of application of the algorithm to simulations of MSC
spectra in [22]. This concept allows (in favorable conditions)
separation of two different sources of fluctuations present in
simulations. The first type of fluctuations is caused by the
PT fluctuations of primary transitions—in the actual nucleus
the decays of different neutron resonances of the same spin
and parity differ only in intensities of primary transitions
while all levels and intensities of secondary transitions are
identical. However, the exact positions of levels below Sn as
well as intensities of secondary transitions are not known. To
overcome this we randomly simulate a number of artificial
nuclei, which differ in individual levels coming from random
discretization of the NLD formula and their decay. This
difference introduces the second type of fluctuations.

From simulations of i = 1, . . . , I nuclear realizations
within each of k = 1, . . . , K nuclear suprarealizations we can
get the following measures for any observable μik : (i) μ as
the mean value, (ii) μk as the mean over realizations within a
given suprarealization k, (iii) 
 as the size of fluctuations of
means μk over suprarealizations, (iv) φk as the size of fluctu-
ations of μik over realizations i in a given suprarealization k,
and (v) φ2 as the average of φ2

k over suprarealizations k. There
are different ways to calculate these measures, e.g., simple
averaging or maximum likelihood fits. For the purpose of this
paper we used the latter option. We assume that the observable
μik corresponds to the simulated normalized intensity in a bin
of a MSC spectrum. The simulated MSC spectra were con-
structed in the same way as their experimental counterparts.

During the search for appropriate models of PSFs and NLD
in Sec. III we simulated I = 1 nuclear realization within each
of K = 20 nuclear suprarealizations for each model combi-
nation. For this choice of K and I not all above-mentioned
measures can be deduced. We determined the value μ and
the overall fluctuation σ of individual μk ≡ μ1k using the ML
method assuming again their normal distribution:

Lsim =
K∏

k=1

1√
2π (μk/L + σ 2)

exp

[ −(μk − μ)2

2(μk/L + σ 2)

]
, (A2)
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where the term μk/L reflects the Poisson uncertainty of
Monte Carlo counting. Unless specified otherwise L = 2 ×
105 random γ cascades were generated within each nuclear
realization.

The case of more time-consuming extended simulations,
that were made only for a few model combinations and
1− resonances, with K = 20 and I = 40 is discussed in
Sec. IV. The full information on the quantities (i)–(v) de-
fined above was obtained and comparison to the fluctuations

of experimental MSC intensities φexp allows us to draw
some conclusions not only about the validity of different
models of PSFs and NLD but also about adequacy of PT
fluctuations.

The assumption on normal distribution of values μik used
in the ML fit seems to be reasonable for a majority of bins
in MSC spectra but it is definitely incorrect at the wings of
M = 2 spectra, where the dominant contribution comes from
cascades via a few well-separated levels.
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