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The deuteron form factors are calculated using two model wave functions obtained from the 2007 covariant
spectator theory high-precision fits to np scattering data. Included in the calculation is a new class of isoscalar
np interaction currents which are automatically generated by the nuclear force model used in these fits. If the
nuclear model WJC2 is used, a precision fit (χ2/datum � 1) to the Sick global analysis (GA) of all ed elastic
scattering data can be obtained by adjusting the unknown off-shell nucleon form factors F3(Q2) (discussed
before) and F4(Q2) (introduced in this paper) and predicting the high-Q2 behavior of the neutron charge form
factor GEn(Q2) well beyond the region where it has been measured directly. Relativistic corrections, isoscalar
interaction currents, and off-shell effects are defined and discussed, and their sizes are displayed. A rationale for
extending ed elastic scattering measurements to higher Q2 is presented.
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I. INTRODUCTION

A. Background

This work is the last in a series of papers [1–3] (referred to
as Refs. I, II, and III; with errata to Ref. II given in Ref. [4])
that present the fourth-generation calculation of the deuteron
form factors using the covariant spectator theory (CST) [5–7].
The third generation, done by Van Orden and collaborators in
1995 [8], calculated the form factors from a variation of model
IIB (originally obtained from a 1991 fit to the np database [9],
with an improved fit giving χ2/datum � 2.5 [8]) and provided
an excellent description of the deuteron form factors. The
current calculation is needed only because a better CST fit to
the np database was found in 2007. This fit, with a χ2/datum
≈1, included momentum-dependent terms in the kernel and
requires a completely new treatment. For a brief review of the
previous CST history of calculations of the form factors, see
the introduction to Ref. [1]. For a more comprehensive survey
of this field, see several recent reviews [10–12].

The CST, in common with other treatments based on the
assumption that NN scattering can be explained by the ladders
and crossed ladders arising from the exchange of mesons
between nucleons [7,13], treats nucleons and mesons as the
elementary degrees of freedom, with the internal structure of
the nucleons and mesons treated phenomenologically. This
means that, in particular, the electromagnetic form factors of
the nucleons that are bound into a deuteron are not calculated
but must be obtained from direct measurements of electron-
nucleon scattering. If the form factors cannot be measured
directly, they can be treated as undetermined functions that
can be fixed by fitting the theory to electron-deuteron (ed)
scattering data.

*gross@jlab.org

Like the 1991 fit that lead to model IIB, the new fit to the
2007 np data base [14,15] was obtained using the CST two-
body equation (sometimes called the Gross equation) with a
one-boson exchange (OBE) kernel. However, we found that a
high-precision fit (with χ2/datum ∼1) could be obtained only
if the NNσ0 vertices associated with the exchange of a scalar-
isoscalar meson, denoted σ0, included momentum-dependent
terms in the form

�σ0 (p, p′) = gσ0 1 − νσ0 [�(p) + �(p′)], (1.1)

where νσ0 is a parameter fixed by fitting the NN scattering
data, p and p′ are the four-momenta of the outgoing and
incoming nucleons, respectively, and the � are projection
operators

�(p) = m − /p

2m
, (1.2)

which are nonzero for off-shell particles, and hence are a
feature of both the Bethe-Salpeter and CST equations.

Two high-precision models were found with somewhat dif-
ferent properties. Model WJC1 (originally designated WJC-
1), designed to give the best fit possible, has 27 parameters,
χ2/datum � 1.06, and a large νσ0 = −15.2. Model WJC2
(originally designated WJC-2), designed to give an excellent
fit with as few parameters as possible, has only 15 parameters,
χ2/datum � 1.12, and a smaller νσ0 = −2.6. Both models
also predict the correct triton binding energy (see Figs. 12
and 13 of Refs. [14] and [16]). The deuteron wave functions
predicted by both of these models [15] have small P-state
components of relativistic origin, and the normalization of
the wave functions includes a term coming from the energy
dependence of the kernel, which contributes −5.5% for WJC1
and −2.3% for WJC2.

This momentum dependence of the kernel implies the
existence of a new class of np isoscalar interaction
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currents that will contribute to the electromagnetic interac-
tion of the deuteron, leading to the need for this fourth-
generation calculation. These currents were fixed in Ref. I
and used to predict the deuteron magnetic moment (Ref. II)
and the quadrupole moment (Ref. III). This paper completes
this series of papers by calculating the dependence of the
form factors on the momentum transfer of the scattered
electron, Q2.

In the process of fitting the ed data, one is able to de-
termine two off-shell nucleon form factors and predict the
high-momentum behavior of the neutron electric form factor,
GEn(Q2), beyond the region where it has been measured.
These and other major conclusions of this paper are discussed
in detail in Sec. VI below.

B. Organization of the paper

This paper is organized into six sections, with most of
the theoretical details moved to the Appendixes. The rest of
this section describes the ingredients of the calculation as
simply as possible, with emphasis on the important off-shell
nucleon current. A more complete discussion can be found
in the Appendixes and in Refs. I–III. The major results are
described in Sec. II, which gives predictions that are extracted
from the ed measurements. Section III shows how the indi-
vidual deuteron form factors are built up from the different
theoretical contributions, and Sec. IV discusses the size and
importance of relativistic effects. The results for the deuteron
static moments are reviewed in Sec. V, and finally I draw
major conclusions in Sec. VI. The reader eager to get to the
conclusions may jump to Sec. VI and backtrack as needed to
fill in the many missing details.

Seven Appendixes summarize many details needed for a
precise understanding of this paper. Appendix A reviews the
theoretical definitions of the deuteron form factors, deuteron
current, and deuteron wave and vertex functions and examines

how the arguments of the amplitudes are shifted by the
relativistic boosts that enter into the calculation of the form
factors. Appendix B derives the form of the nonrelativis-
tic deuteron charge form factor, GC , in momentum space.
Appendixes C and D discuss some details of the extraction of
the nucleon form factors from the theory, and Appendixes E
and F describe some theoretical transformations that facilitate
the calculations. Finally, Appendix G discusses some errors
(Ref. [4]) that were found in Ref. II.

C. Diagrammatic form of the deuteron current

In CST, when a OBE kernel is used to describe the NN
interaction, the two-body current is given initially by the four
diagrams shown in Fig. 1. Here, by convention, it is assumed
that particle 1 is on shell (I could have chosen particle 2
to be on shell with corresponding changes in the diagrams),
and the necessary (anti)symmetry between the two particles is
contained in the kernel, which is explicitly (anti)symmetrized.
Note that, if the photon interacts with particle 1, energy and
momentum conservation will not allow both the incoming and
outgoing nucleons to be on shell at the same time, and this
gives rise to two diagrams 1(B±). (These are individually sin-
gular, but when both are included their singularities cancel.) In
all of the diagrams, the deuteron structure is represented by a
vertex function, �, in which particle 1 is on shell and particle
2 off shell, or a vertex function �BS in which both particles
are off shell. The vertex function � is calculated directly from
the deuteron bound-state equation and �BS can be calculated
from �.

I showed in Ref. I how the interaction current operator
shown in Fig. 1(C) can be re-expressed in terms of products
of the nucleon current and two truncated kernels V

(i)
+ (and

their Dirac conjugates V
(i)
− ), defined to be the coefficients of

the factors γi · P± (where i = {1, 2} and γ
μ
i operates in the

FIG. 1. Diagrammatic representation of the current operator of the covariant spectator theory with particle 1 on shell (the on-shell particle
is labeled with a ×). Diagrams (A), (B+), and (B−) are the complete impulse approximation (CIA), while (C) is the interaction current term.
Note that both particles are off-shell in the initial state in diagram (B+) and in the final state in diagram (B−). (In all diagrams, the � or �BS in
the outgoing state is to be read as the Dirac conjugate � = γ0�

†γ0 or �BS = γ0�
†
BSγ0.)
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FIG. 2. Diagrammatic representation of the form of the interaction current derived in Ref. I and discussed in the text.

space of particle i) that appear in the full kernel. This result is
shown diagrammatically in Fig. 2. I emphasize that minimal
substitution for the Pμ

± at each different meson vertex leads
to a replacement by the same current operator, and that this
current operator is the known nucleon current. This remark-
able result is due to the principle of picture independence,
as discussed in Ref. I. Then, using the bound-state wave
equation to absorb the truncated kernels leads to two new
effective vertex functions �(i) (and their Dirac conjugates),
leading to the final result shown in Fig. 3. Figure 3(A(2))
≡ 3(A(2)

+ )+3(A(2)
− ) is the contributions from �

(2)
± (which is

reduced to a single diagram using symmetry). Similarly,
Fig. 3(B) ≡ 3(B+)+3(B−), with the subtracted vertex function
�̂BS = �BS − �(1), includes the combined contributions from
Figs. 1(B±) and the V

(1)
± contributions from the interaction

current. The diagrams of Fig. 3 are completely equivalent to
the five diagrams shown in Fig. 2 of Ref. II (but the labeling
of the momenta in those diagrams differs from the choice
here).

Figures 3(A) and 3(A(2)) describe the interaction of the
photon with particle 2, allowing particle 1 to be on shell in
both the initial and final state. The internal momenta are

k = {Ek, k} ≡ k̂, p± = P± − k, (1.3)

where P+ (P−) are the four-momenta of the outgoing (incom-
ing) deuterons, and the hat symbol over a four-vector means
that the four-vector is on shell. Figure 3(B) describes all the
interactions of the photon with particle 1, so that both particles
must be off shell in either the initial or in the final state. Here

the internal momenta are

k̃ = {k0, k}, p̃ = P± − (̃k ± 1
2 q
)
. (1.4)

The final (initial) nucleon is on shell when k0 = E+ (E−), with

E± =
√

m2 +
(

k ± q
2

)2

. (1.5)

D. Strong form factor h and the bound nucleon current

In this section, I describe two central features of the CST
calculation of the deuteron observables and form factors from
the diagrams in Fig. 3. These are (i) the presence of a strong
nucleon form factor, h, and (ii) the structure of the bound
nucleon current, which depends on four form factors: not only
the usual Dirac and Pauli form factors F1 and F2, but also two
off-shell form factors F3 and F4. The first of these, F3, has been
discussed extensively in previous work, but F4 has never been
introduced before and is a major new feature of this paper.

1. The strong nucleon form factor h(p)

In all strong, nonperturbative theories of hadronic struc-
ture, there is a need to include form factors that cut off
high-momentum contributions and provide convergent results.
In the CST-OBE models studied so far, the form factors at
the meson-NN vertices are assumed to be products of strong
form factors for each particle entering or leaving the vertex.
This means that for each nucleon with momentum p entering
or leaving a vertex, there is a universal strong nucleon form
factor h(p) (a function of p2 only) present at that vertex. This

FIG. 3. Using the consequences of current conservation (as represented in Fig. 2), the diagrams in Fig. 1 can be transformed into the
diagrams shown above. Diagram (A) is unchanged. The two diagrams (A(2)

± ) arise from the interaction current contributions V
(2)
± ; their sum

will be referred to collectively as diagram (A(2)). The diagrams (B±) are the sum of the diagrams (B±) of Fig. 1 plus the interaction current
contributions V

(1)
± . The sum of these two diagrams, expressed in terms of the off-shell momentum k̃, is referred to as diagram (B). Off-shell

nucleon lines are thicker than on-shell lines.
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form factor is normalized so that when p = p̂ (so that p is on
shell), h( p̂) = 1.

Because it is universal, the strong form factor associated
with each external nucleon line can be factored out from the
NN scattering kernel, giving

V (k, k′; P) = h(k)h(p)Ṽ (k, k′; P)h(k′)h(p′), (1.6)

where k (k′) are the four-momentum of the outgoing (incom-
ing) particle 1, Ṽ is the reduced kernel and, for both primed
and unprimed variables, p = P − k. Note that the expression
for the kernel is written allowing for the possibility that any
(or all four) of the particles could be off shell. Similarly,
removing the strong form factors from the vertex function
gives a reduced vertex function �̃BS , where

�̂BS (k, P) = h(k)h(p)�̃BS (k, P). (1.7)

Since h(p) is included in the kernel, and h(k̂) = 1 when
particle 1 is on shell, the dependence of the results on vari-
ations of h(p) when particle 1 is on shell has already been
studied in the fits to the NN scattering and presents nothing
new. However, when electromagnetic current conservation is
imposed, the presence of h(p) leads to a modification of the
nucleon current. This h dependence is a new feature of the
relativistic theory that is interesting to study. In addition, when
particle 1 is off shell, so that k �= k̂, the dependence of the
calculation on h(p) for k0 − E± �= 0 is another feature of the
relativistic theory that is new.

I will report on some of these effects later in Sec. III; for
now I only want to highlight existence of the strong form
factor h, because its presence drives the discussion of the
bound nucleon current.

2. Structure of the bound nucleon current

Using interactions that depend only on 	, the momentum
transfer by the interacting particles, Feynman showed a long
time ago that current conservation could be proved if the
off-shell bound nucleon current satisfied the Ward-Takahashi
(WT) identity

qμ jμ0 (p′, p) = e0[S−1(p) − S−1(p′)], (1.8)

where S(p) is the propagator of a bare nucleon, which in my
notation (with the i’s removed) is

S(p) = 1

m − /p − iε
. (1.9)

When a strong nucleon form factor is present, the interac-
tions in a one-boson exchange (OBE) model will be of the
form h(p)V (	)h(p′) and can be made to depend only on 	

if the strong nucleon form factors coming from the initial and
final interactions that connect each propagator are moved from
the interactions to the propagators connecting them. Since
each propagator connects two interactions, the new (dressed)
nucleon propagator then has the form

Sd (p) = h2(p)S(p). (1.10)

Now a similar proof of current conservation is possible [17]
provided a reduced current jμR (p′, p) is constructed,

jμ(p′, p) = h(p′)h(p) jμR (p′, p), (1.11)

and required to satisfy a generalized WT identity

qμ jμR (p′, p) = e0
[
S−1

d (p) − S−1
d (p′)

]
. (1.12)

There are many solutions to (1.12). The one I use in this paper
is

jμ(p′, p) = e0 f0(p′, p)

[
Fμ

1 + F2(Q2)
iσμνqν

2m

]
+ e0 g0(p′, p)�(p′)

[
Fμ

3 + F4(Q2)
iσμνqν

2m

]
�(p),

(1.13)

where f0, g0 are (uniquely determined) off-shell functions
discussed below, e0 = 1

2 is the isoscalar charge, the off-shell
projection operator � was defined in (1.2),

Fμ
i = [Fi(Q

2) − 1]γ̃ μ + γ μ

= Fi(Q
2)γ̃ μ + /qqμ

q2
, (1.14)

and the transverse γ matrix is

γ̃ μ = γ μ − /qqμ

q2
, (1.15)

with q = p′ − p. Except for the addition of the new form
factor F4, this is precisely the current that has been used in
all previous work.

3. Uniqueness of the bound nucleon current
and the principle of balance

The longitudinal parts of the current (1.13) are largely de-
termined by the generalized WT identity (1.12). Still, as (1.14)
displays, the important physics contained in the form factors
F1 and F3 is purely transverse, and the longitudinal part that
is constrained by the WT identities will not contribute to
any observable since it is proportional to qμ which vanishes
when contracted into any conserved current or any of the
three polarization vectors of an off-shell photon. The form
factors themselves are completely unconstrained by current
conservation, except for the requirement that F1(0) = F3(0) =
1 (with the real normalization set by e0). This is as it should
be; the structure of the nucleon should not be fixed by the
general requirement of current conservation.

Similarly, the transverse Pauli-like terms F2 and F4 are
completely unconstrained, and there are may other off-shell
terms that one could add to the current. What principal is to
constrain these?

In Ref. I, I introduced the principles of simplicity and
picture independence in an attempt to limit possible contri-
butions. I found that, using current conservation and these
principles, all contributions from the structure of the meson-
nucleon vertices could be expressed in terms of the nucleon
structure F1 alone; no new interactions, such as the famous
ρπγ interaction current, needed to be added. However, these
arguments placed no constraint on the F2 term. Clearly it must
be included because the free nucleon cannot be described
without it, but the choice of whether or not to multiply the
F2 term by f0 is not dictated by these principles. Similarly, I
emphasize that the introduction of F4 is not required by the
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principles of simplicity or picture independence. To justify the
introduction of F4 and to explain the use of the same f0 for
both F1 and F2, and the same g0 terms for F3 and F4, a new
principle is needed.

The new principle will be referred to as the principle of
balance between Dirac and Pauli interactions. The principle
states that whenever a Dirac-like charge term (F1 and F3 in
this case) is required, a similar Pauli-like term (F2 and F4) will
be included. This ensures that the off-shell current, expressed
in terms of the F3 and F4 form factors, could also be expressed
in terms of off-shell charge (Goff

E ) and magnetic (Goff
M ) form

factors, without a constraint on the structure of either (except
for the previously discussed constraint F3(0) = 1).

4. Properties of f0 and g0

The simplest solution to (1.12) is

f0(p′, p) = h′

h

[
m2 − p2

p′2 − p2

]
+ h

h′

[
m2 − p′2

p2 − p′2

]
,

g0(p′, p) = 4m2

p′2 − p2

[
h

h′ − h′

h

]
, (1.16)

where I use the the shorthand notation h = h(p) and h′ =
h(p′). Both f0 and g0 are symmetric in p′, p, and important
limits are

f00(p2) = lim
p′2→p2

f0(p′, p) = 1 + 2a(p2)(m2 − p2),

f01(p2) = lim
p′2→m2

f0(p′, p) = lim
p′2→m2

f0(p, p′) = 1

h
,

g00(p2) = lim
p′2→p2

g0(p′, p) = −8m2a(p2), (1.17)

where

a(p2) = 1

h

dh

d p2
. (1.18)

E. Definitions of deuteron observables

Precise definitions of the deuteron form factors will be
reviewed in Appendix A. For an understanding of the results
to be presented in Sec. II, it is only important to review that
electron-deuteron scattering is described by three independent
deuteron form factors [10,11]: GC (charge), GM (magnetic),
and GQ (quadrupole). Denoted generically by GX (with X =
{C, M, Q}). These form factors are a sum of products of
isoscalar nucleon form factors, Fi(Q2) (where the subscript
s labeling these as isoscalar will be omitted throughout this
paper for simplicity), and body form factors, DX,i(Q2), so that

GX (Q2) =
4∑

i=1

Fi(Q
2)DX,i(Q

2). (1.19)

It is important to realize that the theory presented in this
paper calculates the body form factors only; the nucleon form
factors must be obtained from another source.

The deuteron form factors can be measured by the anal-
ysis of three independent experiments. Two of these can be
obtained from the unpolarized elastic scattering of electrons

from the deuteron. In one-photon exchange approximation,
this elastic scattering is given by

dσ

d
= dσ

d

∣∣∣∣
NS

[A(Q2) + B(Q2) tan2(θ/2)], (1.20)

where

dσ

d

∣∣∣∣
NS

= α2E ′ cos2(θ/2)

4E3 sin4(θ/2)
= σM

E ′

E
= σM

1 + 2E
md

sin2 1
2θ

(1.21)

is the cross section for scattering from a particle without
internal structure (σM is the Mott cross section), and θ , E , E ′,
and d are the electron scattering angle, the incident and final
electron energies, and the solid angle of the scattered electron,
all in the laboratory system. The structure functions A and B,
which can be separated by comparing unpolarized measure-
ments in the forward and backward directions, depend on the
three electromagnetic form factors

A(Q2) = A(GC ) + A(GM ) + A(GQ)

= G2
C (Q2) + 8

9η2G2
Q(Q2) + 2

3ηG2
M (Q2),

B(Q2) = 4
3η(1 + η)G2

M (Q2), (1.22)

where

η = Q2

4M2
d

. (1.23)

To further separate GC and GQ, the polarization of the out-
going deuteron can be measured in a separate, analyzing
scattering. The quantity most extensively measured is

T̃20 = −
√

2
y(2 + y)

1 + 2y2
, (1.24)

where

y = 2ηGQ

3GC
. (1.25)

Note that the structure function B depends only on GM , and
T20 depends on y, both of which are linear in the the nucleon
form factors. However, the structure function A is quadratic in
the nucleon form factors.

II. FITS TO THE DEUTERON OBSERVABLES

A. Introduction

All results for the deuteron form factors depend on the
off-shell nucleon form factors F3(Q2) and F4(Q2). However,
except for the sole requirement that F3(0) = 1, these form
factors are completely unknown, and it is appropriate to use
the deuteron form factor data to determine them. The first step,
determining F3 and F4, is done in Sec. II B below.

I have found that the most efficient way to do this is to
use the data from GM (determined directly from B) and T̃20

[actually y from Eq. (1.25)]. Both GM and y are linear in
F3 and F4, so a solution is straightforward and it is easy to
determine the errors in F3 and F4 from the errors in GM and y.
Details are given in Appendix C.

The data are scattered, and to do this efficiently it would
first be necessary to find a smooth fit to all the data.
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TABLE I. Summary of theoretical models discussed in this pa-
per. All models listed in the table have no ρπγ exchange current,
except for model VODG. The model GK05 is discussed in Ref. [19]
and shown in Fig. 12.

Name Deuteron GEn F3 F4 Color Line

VODGa IIB GK05 Dipole 0 Black Long-dash
VODG0 IIB GK05 Dipole 0 Black 2 dash–2 dot
1A WJC1 GK05 Dipole 0 Blue Short-dash
2A WJC2 GK05 Dipole 0 Red Short-dash
1B WJC1 GK05 F3(1) F4(1) Blue 2 dash–2 dot
2B WJC2 GK05 F3(2) F4(2) Red 2 dash–2 dot
2C WJC2 CST2 F3(2) F4(2) Red Long dash-dot
2D WJC2 CST1 F3(2) F4(2) Red Thick solid

aModel VODG includes a ρπγ exchange current calculated using
the Rome 2 ρπγ form factor [20].

Fortunately, Sick has produced a global analysis (GA) [12,18],
where he reanalyzed all of the data starting from the detailed
records. I will use his GA for a representation of the data.
Once F3 and F4 have been determined, the data (that is, the
Sick GA) for B and T̃20 are exactly reproduced, as shown in
Sec. II C.

Note that T̃20 determines only the ratio of the independent
form factors GC and GQ, not their size. The third observable,
A, can vary even when B and T̃20 are fixed. This is studied in
Sec. II D, where it is shown that GEn can be adjusted to give
the correct A (fortunately, B and T̃20 are very insensitive to
GEn, so that this determination of GEn does not alter the fits
to B and T̃20). The predictions for GEn made by each model

is discussed in Sec. II D, where it is shown that model WJC1
fails at this point, but model WJC2 works very well. Finally,
using the predicted F3 and F4 and various models of GEn,
Sec. II E presents the deuteron form factors and compares
them to Sick’s GA.

In order to keep the number of figures to a minimum, the
reader is warned that some of the early figures will show
results for models that will not be introduced until later in
the discussion. To help with this, all of the models that will
be used are summarized in Table I. Models 1A and 2A are
a starting point; their input is the same as the successful
VODG calculation (except I never have any ρπγ interaction
current). Model VODG used the GK05 prediction of GEn, and
in the absence of any previous knowledge, assumed a standard
dipole for F3 and F4 = 0. Then, models 1B and 2B replace F3

and F4 by the solutions found in Sec. II B, giving precise fits to
B and T̃20. Finally, models 2C and 2D show the results of using
models for GEn based on the predictions given in Sec. II D and
cannot be understood until that section is studied.

B. Predictions for the off-shell nucleon form factors

As mentioned in the introduction, the off-shell form factors
can be found by simultaneously fitting them to the GA data
points for GM and T20 (which is independent of GM). Each
GA point has its own error that I use to estimate the errors
in the fitted values of the form factors. The results obtained
from models WJC1 and WJC2 are shown in Figs. 4 and 5.
Each red and blue point in the figure is the (simultaneous)
solution for F3 and F4 at each GA point, which extend out to
Q = 7 (fm)−1 = 1.379 (GeV) (limited by the measurements
of T20).

FIG. 4. Results for model WJC1 (left panel) and model WJC2 (right panel). Both panels show F3(Q2) (small red circles) and F4(Q2) (small
blue squares) obtained by simultaneously fitting to Sick’s GA for GM and T20. Only the error bars obtained from the errors in Sick’s GM are
shown, reflecting the fact that the requirements to fit GM are far more stringent than those necessary to fit T20. (Note that F4 for model WJC2
is four times larger than shown in the figure.) The panels also show the results for F3 fitted to GM (solid black diamonds) or to T20 (half filled
black diamonds) when F4 = 0. The smooth black curve is the dipole model and the red and blue curves are the fits discussed in the text.
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FIG. 5. Same results as shown in the right panel of Fig. 4, but
on a bigger scale, which allows a fuller picture of the form factors at
smaller Q. (Note that F4 is four times larger than shown in the figure.)

In the same figures, I also show the values obtained by
fitting F3 separately to GM (solid black diamonds) or T20 (half
filled black diamonds) under the assumption that F4 = 0. The
fact that these fits differer substantially shows that it is not
possible to obtain a good fit to the GA data without including
a nonzero F4.

Note that the form factors are largely undetermined at
Q � 1.4 GeV, and also at small Q where the errors in the fitted
form factors are large. In order to have results for all Q, and
especially beyond the range where data for T20 exists, I chose
smooth curves that fit the points in the range 0.5 �Q � 1.3
GeV, where they are well constrained. The generic models
used for F3 and F4 are

F3(Q2) = 1 + aQ2 + bQ4 + cQ6 + dQ8

(1 + eQ2)n
,

F4(Q2) = aQ2 + bQ4 + cQ6 + dQ8

(1 + eQ2)9
, (2.1)

where n = 7 for WJC1, n = 9 for WJC2, and the other param-
eters are given in Table II. The asymptotic limits of these form
factors are

lim
Q2→∞

F3 = const

Q2n−8
∼
{

Q−6 WJC1

Q−10 WJC2
,

lim
Q2→∞

F4 = const

Q10
, (2.2)

and note that I have constrained

lim
Q→0

F4 = aQ2. (2.3)

TABLE II. Parameters for the fits to F3 and F4 with Q in GeV.
Here Fi(X) ≡ Fi(WJCX).

F3(1) F3(2) F4(1) F4(2)

a −30.905 1.3508 −29.467 −1747.8
b 457.66 4.0568 1141.0 2395.0
c −1401.7 0 −2422.0 0
d 1618.9 −137.69 404.21 −3370.4
e 1.2323 0.6131 1.1115 1.0004

Finally, I point out that the models for these form factors are
real analytic functions with cuts in the complex q2 plane along
the positive real axis. For the model WJC2, these cuts start at

q2 = −Q2 = 1/e =
{

1.63 GeV2 F3(2)

1.00 GeV2 F4(2).
(2.4)

Both cuts start near or above the the 7mπ threshold, confirm-
ing that they are short-range effects. Similar results hold for
Fi(1). I have not investigated the dispersion relations that these
functions satisfy.

C. Fits to B(Q2 ) and T20(Q2 )

With the off-shell form factors determined, I now confirm
that the fits to B(Q2) and T20(Q2) do indeed agree with the
Sick GA. (The fits to GM , related to B, will be shown later
when the other form factors are discussed.) This is also an
opportunity to compare the results for models WJC1 and
WJC2 with the previous successful calculation of Van Orden
et al. [8], which is refered to as VODG. The various models
under discussion in this and the following sections are defined
in Table I and will be referred to by the simple names given in
the table.

I begin by showing the data for B(Q2) in Fig. 6. The rapid
variation of B with Q makes it difficult to see how the theory
compares with data, so I have scaled everything by the simple
fit function

fitB = 0.4 exp(−2.2 Q/0.197)

+ 0.7 × 10−6 exp(−0.35 Q/0.197), (2.5)

where Q is measured in GeV, and the tail was adjusted to be
near an expected secondary maximum in B. The results of
dividing both data and predictions by this function are shown
in Fig. 7. This figure also shows how the various theoretical
models shown in Table I compare with the experimental data
and the Sick GA. Figure 8 shows how the models and Sick
GA compare with the experimental data for T20.

Study of the curves in Figs. 7 and 8 show that models 1A
and 2A, with the same assumptions as VODG (standard dipole
for F3, F4 = 0, and GK05 nucleon form factors) are both
successful at low Q � 1 GeV, but 1A seriously overshoots B
at higher Q and 2A undershoots B already at about Q � 0.5.
Model VODG overshoots B a little near Q ∼ 1 GeV (this will
be more clearly displayed when I show GM below), but the
discrepancy is smaller than either models 1A or 2A. VODG
gives a better explanation than either models 1A and 2A.
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FIG. 6. Data for the magnetic structure function B(Q2) compared
to Sick’s GA (small solid black circles). The function fitB (dashed
green line) is shown for comparison. The data are Stanford-65 [21],
Mainz-81 [22], Saclay-85 [23], Bonn-85 [24], SLAC-90 [25,26], and
JLab-89 [27,28]. The high-Q tail of model 2B (cf. Table I), used to
construct the high-Q tail of fitB, is the red dashed line connected to
red squares.

As expected, models 1B and 2B, that use the appropriate
F3 and F4 for each model, do indeed give excellent agreement
with the B(Q2) structure function and T20(Q2) over the entire

region where the GA exists. Note that the size of the ρπγ

exchange current used by VODG can be inferred from the
differences between VODG0 and VODG and is smaller than
the effects arising from F3 and F4, particularly for model
WJC2.

Finally, the figures show the important result that the
best models, 2C and 2D that have not yet been introduced,
are practically indistinguishable from 2B in the region of
the GA fit. Their significance will be discussed in the next
section.

D. Predictions for A(Q2 ) and GEn(Q2 )

To complete the picture, Fig. 9 shows the data and predic-
tions for A(Q2) similar to those shown for B(Q2) in Fig. 6.
This figure shows nicely how A(Q2) falls as an exponential
over many decades. As was the case for B, comparing theory
to data on such a curve obscures all but huge differences. To
see differences of a factor of 2 or 3, the A structure function is
scaled by the simple function

fitA = 0.2 exp(−1.5 Q/0.197) (2.6)

(where Q is measured in GeV), and Figs. 10 and 11 show these
scaled results, which play a role in my discussion of A similar
to that played by Fig. 7 in my discussion of B. To emphasize
the differences at large Q, Fig. 11 is the same as Fig. 10, but
with the scales expanded.

Figures 10 and 11 show that all theoretical models give
an excellent description of A at Q � 0.7 GeV. However (ex-
cluding models 2C and 2D for now) none of the models do
very well describing the GA significantly above Q ∼ 0.7 GeV.
VODG does the best (with the ρπγ exchange current playing
a decisive role), model 2B is not far off, but models 1A

FIG. 7. The same data for the magnetic structure function B(Q2) shown in Fig. 6, Sick’s GA, and various theoretical predictions all scaled
by the function fit B, Eq. (2.5). Both panels show the data, the GA, and model 2D (thick red solid line). The left panel also shows models 1A
(blue short-dashed line), 1B (blue double-dash-dotted line), VODG (black long-dashed line), and VODG0 (black double-dash-dotted line). The
right panel shows models 2A (red short-dashed line), 2B (red double-dash-dotted line), and 2C (red long-dash-dotted line). Note that models
2C and 2D are nearly indistinguishable.
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FIG. 8. The data for T20 compared to Sick’s GA (black dots) and the same theoretical models labeled as they were in Fig. 7 and Table I. The
data are Bates-84 [29], Novosibirisk-85 [30,31], Novosibirisk-90 [32], Bonn-91 [33], Bates-94 [34,35], NIKHEF-96 [36], NIKHEF-99 [37],
JLabC-00 [38], Novosibirisk-01 [39], and Bates-11 [40].

and 1B, and 2A all depart substantially from the GA and
are clearly unacceptable. This means that even when the two
unknown off-shell form factors F3 and F4 are adjusted to fit B
and T20, model WJC1 disagrees with the data for A by such
a large amount that it cannot be repaired, as discussed in the
next section.

FIG. 9. Data for the structure function A(Q2). The function fitA
(linear green dotted line) is shown for comparison. The theoretical
curves are model 2D (red line and three black lines) and are discussed
in the text. The data are HEPL-65 [21], Orsay-66 [41], CEA-69 [42],
DESY-71 [43], SLAC-75 [44], Mainz-81 [22], Bonn-85 [24], Saclay-
90 [45], JLabA-99 [46], and JLabC-99 [47].

Note that model 2B does well out to Q ∼ 1.4 GeV, but
dips below the data in the region from 1.5 � Q � 2.2 GeV.
This is a region where the nucleon charge form factor, GEn,
is unknown, and hence this calculation can be used to predict
GEn in this region.

Models 2C and 2D will be discussed below, and the failure
of any of the models to describe A at the highest values of Q
will be discussed in the conclusions section.

The values of GEn required to bring each model into
agreement with the GA points for A(Q2) are shown in Fig. 12.
The GA fits to A(Q2), shown Figs. 10 and 11, extend out to
Q � 1.576 (GeV) = 8 (fm)−1, well beyond the region where
B(Q2) is known. However, since A is quadratic in GEn (but
only one root is acceptable; see the discussion in Appendix D),
there is no guarantee that a real solution can be found at each
point. It is remarkable that real solutions do exist except at
the highest values of Q. I found that there were no solutions
for model WJC1 at the three highest GA points (Q � 2.319
GeV) and for WJC2 at the five highest GA points (Q � 2.216
GeV). The errors shown are determined by the GA errors in
A only; at high Q the theory depends on the extrapolations
obtained from the fits F3(i) and F4(i) (where i = 1, 2), and
hence are subject to additional errors I have not tried to
estimate.

Here one has a very different situation from my previous
study of F3 and F4. Measurements of GEn from free neutrons
using recoil polarization [48–53] are completely independent
of any theory of the deuteron, and those from a polarized
deuteron target [54–56] are almost as clean. All of these
measurements are shown in Fig. 12, and I chose to focus only
on them because they are insensitive to deuteron theory. For
a recent review of the experimental data, see Ref. [57]; many
other measurements exist.

Figure 12 shows that the solution for GEn for model WJC1
is in serious disagreement with the form factor measurements
from free neutrons. There seems to be no way to repair model
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FIG. 10. The same data for the structure function A(Q2) shown in Fig. 9, Sick’s GA (small black solid circles), and various theoretical
predictions all scaled by the function fit A, Eq. (2.6) (and all drawn with the same line style used in Figs. 7 and 8 and Table I). Both panels
show model 2D. The left panel shows models 1A and 1B, almost indistinguishable from each other, and VODG and VODG0. The right panel
shows models 2A, 2B, and 2C.

WJC1; for this reason, I did not study the predictions for
model WJC1 further.

In contrast, the solution for GEn from model WJC2 is in
good agreement with the free data. To study various possibili-
ties, I decided to represent GEn by the general functional form

Gmodel
En (Q2) = aQ2(1 + bQ2 + cQ4 + dQ6)

(1 + eQ2)6
, (2.7)

which goes like Q−4 at large Q and has cuts only for positive
q2, required if it is to be represented by a dispersion relation.

FIG. 11. The right panel of Fig. 10 with expanded scales.

This functional form is so flexible that it can describe GK05
and two additional models of potential interest. The parame-
ters used for these three models of GEn are given in Table III.

FIG. 12. Experimental data for GEn and “data,” with errors, for
GEn determined by fitting to Sick’s GA points for A. The errors
were obtained from the errors in A quoted by Sick. Solutions WJC1
are the blue points with smaller values of GEn; those for WJC2 are
the red points. The small open circles at the highest momenta are
points at which there is no solution for GEn. The models shown
are GK05 (solid black line), CST1 (solid green line with the bump
at at small Q), and CST2 (brown dashed line following GK05 at
small Q and CST1 at larger Q). The experimental data are from
Ede94 [48], Her99 [49], Ost99 [50], Gla05 [51], Mad03 [52],
Pla05 [53], Pas99 [54], Zhu01 [55], and War04 [56].

024001-10



COVARIANT SPECTATOR THEORY OF np … PHYSICAL REVIEW C 101, 024001 (2020)

TABLE III. Parameters for the GEn models using Eq. (2.7), with
Q in GeV.

GK05 CST1 CST2

a 0.4779 0.4930 0.4930
b 0.5798 16.254 0.5532
c 1.8452 −27.849 0.6805
d 0.4045 33.710 0.6861
e 0.8628 1.5836 0.7904

Model CST1 is a very good representation of the solution
obtained from A, while model CST2 follows GK05 up to the
highest Q2 points [52,53] and then tracks CST1 at higher Q2.
All three of these models are shown in Fig. 12.

It turns out that both B and T20 are very insensitive to GEn,
so my choice of a new GEn different from GK05 will not
disturb my previous fits to B and T20 (this can be confirmed
by noting that the left panels of Figs. 7 and 8 show almost
no differences between models 2B, 2C, and 2D in the regions
where they were used to obtain F3 and F4). Hence, the only
effect of choosing a new GEn is an improvement in A, and
as Fig. 11 shows, model 2D (with GEn represented by model
CST1) provides an excellent fit to the data (except at the
highest points, as discussed in the conclusions section), while
model 2C (with GEn represented by model CST2) is almost as
good, and this GEn tracks GK05 in the region where GEn has
been measured. Final conclusions will be drawn in Sec. VI.

Predictions for the three form factors GC , GM , and GQ are
shown in the next subsection.

E. Predictions for the deuteron form factors

I now can complete the discussion by presenting the three
deuteron form factors and comparing them to Sick’s GA,
which has been determined in the region Q � 1.4 GeV.

In order to better see the details, all form factors are
normalized to unity at Q = 0, and divided by scaling functions

TABLE IV. Parameters for the scaling functions given in
Eq. (2.8), with Q2 in fm−2.

GC (n = 1) GM (n = 2) GQ(n = 3)

a1(n) 0.6743 0.5149 0.4980
a2(n) 0.0693 0.2912 0.0559
a3(n) 0.0084 0.0013 0.00008
b0(n) 1.8478 1.8422 1.2732
b1(n) 0.4185 0.5252 0.2956
b2(n) 0.1557 0.1749 0.0963
b3(n) 0.0321 0.0204 0.0194

with the same functional form as used in Ref. [12]:

ScaleGn (Q2) =
3∑

i=0

ai(n) exp[−bi(n)Q2], (2.8)

where

a0(n) = 1 − a1(n) − a2(n) − a3(n), (2.9)

ensuring that ScaleGn(0) = 1. In order to scale the large-Q
behavior of the form factors, I found it necessary to refit the
coefficients, and the values I use in this paper are given in
Table IV.

The scaled deuteron form factors are shown in Figs. 13
and 14. In the figures, I display the cases studied in the
previous sections, even though the models 2C and 2D are the
only ones that are in quantitative agreement with the Sick GA.

Note that model VODG predicts all of the form factors
within 1–2 standard deviations over the entire range. Model
2B, designed to agree precisely with B and T20, gives an exact
description of GM over the entire range (as expected) but fails
to provide a precise explanation of GC and GQ. In the region
1 � Q � 1.4, both −GC and GQ are too large, so that their
ratio, measured in T20, is correct. Only models 2C and 2D give
a precise explanation of all form factors.

I call attention to the contributions of the F3 and F4 form
factors which are easy to see on these plots. Since F3 cannot
be zero (because of the constraint F3(0) = 1), the best way to
isolate the size of these contributions is to compare models 1A

FIG. 13. Predictions for the three deuteron form factors for models VODG, VODG0, 1A, 1B, and 2D (with lines as in the previous figures)
compared to the GA.
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FIG. 14. Predictions for the three deuteron form factors for models 2A–2D (with lines as in the previous figures) compared to the GA.

and 1B, or models 2A and 2B, shown respectively by the short
dashed and double dash-dotted lines (blue for WJC1 and red
for WJC2). The figures show that that there is little difference
at Q � 0.6 GeV, except that model 2A fails to describe GM

even at quite small Q.
Table V shows how closely models 2C and 2D predict

Sick’s GA (using Sick’s error bars). Except for a few points
in A at the highest Q (the tail), the fits are excellent, of
comparable quality except for GC , GQ, and A, where model
2D provides a more accurate prediction than 2C.

Table VI shows the χ2/datum for the published data
compared to model 2D. Note that the CST prediction is in
reasonable agreement with the data for B and T20, but that
there are large discrepancies with the data for A(Q2), even for
Q � 0.6 GeV and that the measurements at the three largest
Q points (JLabA) are in significant disagreement with the
prediction (but the disagreement is not as large as with the
Sick GA). I will discuss this further in the conclusions section.

III. PHYSICAL INSIGHTS

In this section, I study the size of various partial contribu-
tions to the form factors. The study is limited to model 2D,
which gives the best fit to the Sick GA. Before discussing
the individual contributions, it is helpful to briefly identify the
ingredients of the theory.

TABLE V. The χ 2/datum for the predictions of models 2C and
2D compared to Sick’s GA. The first point at Q = 0.001 fm−1 has
been excluded.

Number of points 2C 2D

GC 28 3.613 0.116
GM 32 0.713 0.763
GQ 28 1.920 0.446
A 44 6.440 0.774
Atail 5 125.1 116.5
B 34 1.130 1.131
T20 28 0.127 0.131

A. Physical quantities of the theory

The physical quantities that I will focus in in this section
are summarized in Table VII. They are (i) vertex functions
� and �(2) when one particle is on shell, (ii) the subtracted
vertex function �̂BS for both nucleons off shell, and (iii)
the new off-shell nucleon form factors F3 and F4 already
discussed extensively above. To make the presentation simple,
I postpone all precise definitions until Appendix A.

B. Study of the isoscalar interaction currents

The isoscalar interaction currents (IC) produce the interac-
tion current vertex function �(2) generated by V (2) and giving
rise to Fig. 3(A(2)), and the subtraction terms �(1) generated
by V (1) and discussed in Ref. I. The behavior of these terms is
shown in Fig. 15.

TABLE VI. The χ 2/datum for the prediction of model 2D com-
pared to the published data for A, B, and T̃20.

A(Q2) Number χ 2/d T20(Q2) Number χ 2/d

HEPL-65 5 2.53 Bates-84 2 0.13
Orsay-66 4 1.63 Nuovo-85 2 0.78
CEA-69 18 3.01 Nuovo-90 2 0.83
DESY-71 10 0.71 Bonn-91 1 0.55
SLAC-75 8 1.61 Bates-94 3 2.50
Mainz-81 18 7.36 NIK-96 1 1.02
Bonn-85 5 20.18 NIK-99 3 0.70
Saclay-90 43 2.77 JLabC-00 6 0.86
JLab-A 16 4.59 Nuovo-01 5 3.14
JLab-C 6 2.87 Bates-11 9 0.94
All 131 3.98 All 34 1.29

A(Q2) ranges B(Q2)

Q � 0.6 GeV 64 3.82 Stan-65 4 1.08
Q > 0.6 GeV 67 4.14 Mainz-81 4 2.87
3 largest 3 21.83 Saclay-85 13 0.75

Bonn-85 5 1.07
JLab-89 6 2.06

SLAC-90 9 2.28
All 41 1.56
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TABLE VII. Physical quantities that enter into a calculation of the deuteron form factors.

� = S−1� Relativistic vertex function (with particle 1 on shell); contributes to all diagrams
shown in Fig. 3; solution of a two-nucleon CST equation using the OBE kernel

�(2) = S−1� (2) Relativistic vertex function (with particle 1 on shell); generated by interaction
currents of type V (2) which arise from the momentum dependence of the boson
couplings to particle 2; calculated by iterating the CST equation once using the
kernel V (2); Fig. 3(A(2))

�̂BS = �BS − �(1) Subtracted vertex function (with both particles off shell); the �(1) subtraction arises
from interaction currents V (1) coming from the momentum dependence of the
boson couplings to particle 1; calculated by iterating the CST equation once
using the subtracted kernel V − V (1) with both particles off-shell in the final
state; Fig. 3(B)

F3 and F4 Form factors describing the off-shell nucleon current; Fig. 3(A)

Figure 15 shows that both IC’s make significant contribu-
tions to GC , even at low Q. For the other form factors, GM

and GQ, their contributions are quite small at low Q, but are
still important for Q � 0.5 GeV (for GM) and Q � 1 GeV (for
GQ). These interaction currents are a significant part to the
overall theoretical picture.

C. Off-shell effects

What are off-shell effects? This discussion must be ap-
proached carefully or serous misunderstandings may emerge.
For example, in the CST one nucleon is always off shell in
intermediate states; this is the way, the CST creates virtual
intermediate states and, at the same time, preserves four-
momentum conservation. In conventional quantum mechan-
ics, the particles are always on shell, but the virtual interme-
diate states do not conserve the total energy of the particles. It
can be shown that these two approaches are largely equivalent,
with the CST having the advantage that it is relativistically
covariant, and the disadvantage that it must learn how to
describe off-shell particles (with their accompanying antipar-
ticle components). In the context of the discussion of NN
scattering, for example, the role of the virtual antiparticles is
an interesting off-shell effect. However, in the context of ed
scattering, I will look only at new effects that did not already
arise in NN scattering.

The unique off-shell effects that are studied here are the
contributions that arise when both nucleons are off shell.
These are the contributions from the vertex functions �̂BS,
which take us outside the usual boundaries of the CST.
The need to discuss the physics of two nucleons off shell
does not arise in the discussion of three-nucleon scattering
[16,58–60] but does arise in the discussion of ed scattering
and electron-triton scattering [61,62]. How should these ef-
fects be defined so that they give us useful insight into the
physics of this theory?

Only Fig. 3(B) requires particle 1 to be driven off shell.
In the Breit frame, P± = {D0,± 1

2 qz}, with qz = Q. When
the incoming (outgoing) particle 1 is on shell, the outgoing
(incoming) particle 1 will have four-momentum

k̃± = {Ẽ∓, k̃ ± 1
2 qz
}
, (3.1)

where

Ẽ± =
√

m2 + (k̃ ± 1
2 qz
)2

. (3.2)

This particle is off shell with an energy k̃±
0 = Ẽ∓ �= Ẽ±. I find

it convenient to describe this extra degree of freedom by the
parameter x10, which is defined as the ratio of the off-shell

FIG. 15. Study of the two interaction currents, V (2) (blue dot-dashed line) and V (1) (blue long-dashed line). Setting both to zero gives model
2D with no IC (thick black dotted line), while restoring both gives the full model 2D (thick red line) shown in previous figures.
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FIG. 16. Plot of the maximum and minimum of x10 as a function
of Q. The black solid lines show the maximum and minimum, includ-
ing boost effects, as obtained from Eq. (A31); the blue dashed lines
are the maximum and minimum without boost effects as obtained
from Eq. (3.4).

energy to the on-shell energy. In this case, the ratio is

x±
10 = k̃±

0

Ẽ±
→ Ẽ∓

Ẽ±
=
√√√√E2

k̃
∓ k̃zQ + 1

4 Q2

E2
k̃

± k̃zQ + 1
4 Q2

≡ ζ±, (3.3)

which is always positive. The maximum of x−
10 (x+

10) occurs
when k̃z = k̃ (or −k̃), k̃ = kmax, and solving for kmax gives

xmax
10 =

√√√√m2 + (kmax + 1
2 Q
)2

m2 + (kmax − 1
2 Q
)2

→ 1

2m
(
√

4m2 + Q2 + Q), (3.4)

and the minimum is 1/xmax
10 . This shows that as Q increases,

the particle 1 (either incoming or outgoing) is forced further
and further off shell.

While this gives some insight, what one really wants is
the result in the rest system of the deuteron, so (3.4) must
be transformed to the rest system. This is discussed in detail
in Appendix A 3. The results for both (3.4) and the relativis-
tically correct result X ±max

10 , given in Eq. (A31), are shown in
Fig. 16. Note that the boost effects are significant.

The invariants that describe �̂BS depend on the two vari-
ables k and x10 (with x10 = 1 when particle 1 is on shell).
As shown in Fig. 16, for studies of the form factor below
Q � 3, it is sufficient to know the off-shell dependence of the
invariants that describe �̂BS in the range 1.9 � x10 � −0.3.
This behavior is shown in Fig. 17, with uv and wv related to
the largest deuteron wave functions u and w by

uv (k, x10) = [(1 + x10)Ek − md ]u(k, x10),

wv (k, x10) = [(1 − x10)Ek − md ]w(k, x10). (3.5)

The other wave functions are much smaller.
To obtain the off-shell behavior, the wave functions are

iterated once using the fully off-shell kernel, as shown in
Eq. (A12b). I found that the resulting wave functions were
much smother at low momentum if the small one-photon

FIG. 17. The invariants uv and wv defined in Eq. (3.5) for the favored model WJC2, shown as a function of x10 for four fixed momenta:
k = k(1) � 0.527 MeV (blue long-dashed lines), k = k(10) � 84.0 MeV (blue short-dashed lines), k = k(23) � 450.3 MeV (red dot-dashed
line), and k = k(32) � 960.8 MeV (black solid line), where k(n) is the nth Gauss point in the mapped grid of 60 points. The values of x10

when particle 2 is on shell are shown for k(10) (solid blue circle), k(23) (solid red diamond), and k(32) (solid black square).
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FIG. 18. Study of the off-shell effects defined in the text.

exchange term was removed from the iterating kernel, and all
of the results presented in this paper were calculated in this
way. This is partly justified by the observation that keeping
the “last” one-photon exchange could be regarded as including
one higher order effect in αγ , while ignoring others, and may
not even be consistent. In any case, it introduces a small
inconsistency: When the on-shell wave functions are iterated
without the last one-photon exchange, the normalization is
changed slightly. To obtain the original normalization, the
results for WJC1 are multiplied by 0.9962 and those for WJC2
by 0.9954.

The point on the curves where particle 2 is on shell is given
by

xex
10(k) = md − Ek

Ek
, (3.6)

which depends on k. This point is marked by the small
solid black squares (for k = 960.8 MeV), red diamonds (k =
450.3 MeV), and blue circles (k = 84 MeV) along the x axis
in the panels of Fig. 17. These points are interesting because
the two-body NN bound state equation depends on vertex
functions defined only at x10 = 1 and x10 = xex

10(k); values
of the vertex functions at all other values of x10 have not
played any role in previous fits to the NN data. The off-shell
dependence of elastic ed scattering depends on values of the
vertex functions determined theoretically, but never tested
experimentally.

The size of these effects is shown in Fig. 18. In each panel,
the black dotted line is a calculation using the parameters of
model 2D with x10 = 1 in the (B) diagrams, and the thick red
solid line is the full model 2D with x10 free to vary as the
kinematics dictates (as shown previously). The contribution
from Fig. 3(B) decomposes into a contribution multiplied by
the projector �(−k) that vanishes when particle 1 is on shell
(referred to as the C contribution) and a remainder (referred
to as the B contribution, distinguished from the total (B)
contribution by the absence of the parentheses):

�̂BS(k, P)︸ ︷︷ ︸
(B)

= �(k, P)︸ ︷︷ ︸
B

−�off (k, P) 2�(−k)︸ ︷︷ ︸
C

, (3.7)

The C contribution (labeled by the blue long-dashed lines in
the figure) is quite small but still of great interest because it

depends on invariants that do not exist when one of the parti-
cles is on shell. The largest off-shell contributions come from
the B terms (dash-dotted blue lines), which make a significant
contribution to all the form factors, especially GC and GM .

The calculations are sensitive to off-shell effects at all
values of Q.

D. Size of the F3 and F4 contributions

The size of the F3 and F4 contributions was addressed in
Fig. 14; Fig. 19 shows these effects in more detail. Both F3 and
F4 make comparable contributions. It is interesting to note that
the F4 contribution plays a very important role in correcting
the failure of model 2A at low Q. In this case, the F3 and F4

contributions are individually quite large and tend to cancel
each other.

E. Accuracy of the RIA

In the absence of isoscalar interaction currents, the rela-
tivistic impulse approximation (RIA) was originally defined
to be twice the contribution from Fig. 3(A). The interest in
this approximation arose from the idea that symmetry (the
CST equations are explicitly symmetrized to ensure that NN
scattering satisfies the generalized Pauli principle exactly)
should allow one to get the full result from the electromagnetic
scattering from only one of the nucleons (multiplied by a
factor of 2). If this were true, after adding interaction currents
the results from Figs. 3(A)+ 3(A(2)) should equal the results
from Fig. 3(B), so that the full result would come from either
of these alone, or their average, which emerges if one takes
1/2 the sum of the contributions from the lower and upper
half plane.

The contributions from Figs. 3(A)+ 3(A(2)) and 3(B) are
compared in Fig. 20. The contributions from Fig. 3(B) is given
in two parts: the B and C contributions discussed in Eq. (3.7).
The figure shows the total (B) contribution (labeled with the
blue long dashed line) and the B part of this contribution
(labeled with the blue dot-dashed line); the C part can be
inferred from the difference of these two. The average of the
two long dashed lines (black and blue) is the total result for
model 2D.
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FIG. 19. Study of the sensitivity of the form factors F3 and F4. All curves use the predicted CST1 for GEn. Both black curves set F4 = 0 and
F3 �= 0: The black dotted curves use a dipole form for F3 while the black dot-dashed lines uses model F3(2). The heavy red line is the result of
adding the contributions from F4(2) to the black dot-dashed lines and gives the best model 2D. The blue dot-dashed lines, which show the size
of the F4(2) contributions by themselves, are given for reference.

I conclude from this figure that the RIA disagrees with
the magnetic form factor even at low Q, but that it works
reasonably well at low momentum transfer for the two
charge form factors. In any case, it is not good enough to
be a replacement for the full theory, as was hoped at one
time.

IV. RELATIVISTIC EFFECTS

Some in the electron scattering community still believe that
relativistic effects are small in electron deuteron scattering and
that it is possible to use deuteron wave functions calculated
from the Schrödinger equation to study ed elastic scattering.
Casper and I argued more than 50 years ago [63] that relativis-
tic corrections were important when using deuteron scattering
data to draw precise conclusions, and in this section I will
review this issue in detail.

I focus only on the observables GC and A at small Q2,
where it might be assumed that a nonrelativistic calcula-
tion would be reliable. The nonrelativistic theory for GC

gives

GNR
C (Q2) =

∫ ∞

0
dr[u2(r) + w2(r)] j0(τ0)

= 1

2

∫ ∞

0
k2dk

∫ 1

−1
dz[u(k+)u(k−)

+ P2(k̂+ · k̂−)w(k+)w(k−)], (4.1)

where τ0 = 1
2 rQ, u and w are the S and D state wave func-

tions, and

k± = k ± 1

4
q, k2

± = k2 ± 1

2
z kQ + Q2

16
,

k̂+ · k̂− = 16k2 − Q2

16k+k−
. (4.2)

[Beware that the k± defined above differs significantly
from the k̃± defined in Eq. (3.1).] This momentum space
nonrelativistic result emerges naturally from the nonrelativis-
tic limit of the CIT. I emphasize that the emergence of the
nonrelativistic limit is a very general feature of this theory and

FIG. 20. Study of the validity of the RIA. Contributions from Fig. 3(A) (black dot-dashed line) and 3(A) + 3(A2) (black long dashed line)
are compared to the contributions from 3(B) (blue long dashed line). The difference between the two blue lines is the C contribution to �BS,
defined in Eq. (3.7). The heavy solid red line is model 2D as shown in previous figures.
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FIG. 21. Study of relativistic effects. The left panel is scaled by GNR
C given in Eq. (4.1); the right panel is scaled by (GNR

C )2. In both panels,
the small black dots are the Sick GA (with error bars) and the thick sold red lines are the predictions for model 2D. The other curves are
discussed in the text.

provides an excellent starting point for the study of relativistic
effects. To get the right limits, one must be very careful
to use the correct nonrelativistic transformations: argument
shift (A13c) for the (A) diagram and A21 for the (B) diagram.
Both the (A) and (B) diagrams give exactly the same nonrela-
tivistic limit, a limit where the RIA is accurate.

The size of various contributions, scaled by the nonrela-
tivistic expression (4.1), is shown in the left panel of Fig. 21.
The blue dashed line replaces the nonrelativistic argument
shifts that appear in (4.1), and were derived in (A13c), with
the fully relativistic ones (A13b). Note that this effect alone
accounts for about a 4% correction at Q � 0.4 GeV, about
eight times the size of the error in the Sick GA. The blue
solid line shows the result obtained from the full calculation
of GC if only u and w wave functions are included. At
Q � 0.4, this produces a discrepancy of almost 10% with the
nonrelativistic calculation. All changes after this begin to go
beyond relativistic kinematics. Adding the vt and vs terms
moves the result to the red dot-dashed line, and adding the C
contributions from the (B) diagram moves the total to the red
short-dashed line, both small effects. A bigger change occurs
when I add the A(2) diagram and all contributions from the
F2 nucleon form factor, which brings the result to the red
longer-dashed line. Finally adding the contributions from the
off-shell form factors F3 and F4 brings one to the final result
for model 2D, the heavy solid red line. The green short-dashed
line is the function

Gfit
C = 1 − Q2

1.5
− Q4

2
, (4.3)

which gives a rough estimate of the size of all of the effects.
The size of the relativistic argument shift alone is about

four times smaller than the total shift, or about Q2/6, compa-
rable to the result Q2/8 that Casper and I found more than 50
years ago. For comparison, the recoil effect of the deuteron

itself is very much smaller

1

D0
= 1 − Q2

8m2
d

� 1 − Q2

32
. (4.4)

Because the kinematics and the relativistic shifts in the argu-
ments of the wave functions (that add up to the solid blue line
in Fig. 21) can explain only about 1/2 of the total shift, it
is clear that an accurate theoretical interpretation of the data
requires the use of a relativistic theory, even at the smallest
values of Q2.

The right panel of Fig. 21 shows theory and data for the
structure function A, all scaled by (GNR

C )2. The red dot-dashed
line is G2

C of model 2D while the thick solid line is the full
calculation of A using all form factors from model 2D. The
panel shows that the other contributions to A coming from G2

M
and G2

Q begin to become important at Q � 0.2 GeV.

V. THE STATIC MOMENTS

The form factors at Q2 = 0 give the charge, magnetic, and
quadrupole moments in units reported in Eq. (A4). Using
the exact equations, there is no need to expand the analytic
results around Q2 = 0 as I did in Refs. II and III. However,
comparison of the two different calculations uncovered some
errors in Ref. II, and I now find that the new value for the
magnetic moment predicted by model WJC2 is in precise
agreement with the measured result. In addition, the new,
more accurate values of the quadrupole moment differ from
the experimental values by more than 1%, with no significant
difference between the predictions of the two models, in
disagreement with the conclusions of Ref. III.

Various contributions to the static moments are defined in
Table VIII. Here, in order to provide details that may be of
use to future investigators, I also report some contributions
that I did not study in the previous references. Tables IX–XI
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TABLE VIII. Separate contributions to the deuteron static moments from the diagrams shown in Fig. 3.

A Total from diagram (A) with full f00, g00 given in Eq. (1.16)
A0 Diagram (A) with f00 = 1, g00 = 0
A − A0 Total h dependence from diagram (A)
A2 Diagram (A(2)), calculated using Eq. (A12a) with the interaction V (2)

B, C The two parts of diagram (B) [the B and C terms in the decomposition (3.7)] with �̂BS calculated
using Eq. (A12b)

B0, C0 The two parts of diagram (B) with k0 fixed at Ek in �̂BS , but not in h(p)
Bh, Ch The dependence of h(p) on k0 − Ek in the two parts of diagram (B)
B0 − Bh, Removes the dependence of h(p) on k0 − Ek from
C0 − Ch B0 and C0, leaving k0 = Ek everywhere (on shell)

On shell A0 + B0 − Bh + C0 − Ch; z2
� terms of Ref. [2], or 0.286 (1+Q	

NR + QRc + QP + Qχ ) of Ref. [3]
h A − A0 + Bh + Ch; a�z2

� terms of Ref. [2], or 0.286 Qh′ of Ref. [3]
V (2) A2; z�z

(2)
� terms of Ref. [2], or 0.286 QV2 of Ref. [3]

Off shell B − B0 + C −C0; z�̂z� terms of Ref. [2], or 0.286 (QV1 + Qint ) of Ref. [3] (includes the V (1) current)
Total A+A(2)+B+C

compare the results obtained from the exact form factors
with the results obtained from the approximate expansions
reported in Refs. II and III (and for the magnetic moment,
in Appendix G).

A. Charge and magnetic moment

In Ref. II, I conjectured that the errors in the expansions
should be about 0.002. As shown in Table IX, the calculations
of the charge agree to better than this, but the magnetic
moment presents a more complicated picture. I originally
found such large disagreements with the expansions for the
magnetic moment reported in Ref. II that I redid them and
found the corrected results given in Appendix G. Table X
shows that the new expansion disagrees with the exact results
by about 0.002 for several terms but there are discrepancies
as large as 0.007 (0.7%) with others. I believe that the major
source of this discrepancy is the expansion of the nucleon
kinetic energy

Ek

m
� 1 + k2

2m2
− k4

8m4
+ · · · . (5.1)

TABLE IX. The contributions to the deuteron charge (or normal-
ization). Since Ch = 0, it is not shown.

WJC1 WJC2

Quantity 1B Ref. [2] 2D Ref. [2]

On shell (k0 = Ek) 1.0547 1.055 1.0231 1.023
h dependence 0.0245 0.025 0.0176 0.018
V (2) current −0.0228 −0.023 −0.0111 −0.011
Off shell (k0 �= Ek) −0.0562 −0.057 −0.0297 −0.030
Total 1.0002 1.000 1.0000 1.000

2 × A0 1.0547 1.055 1.0231 1.023
2× (A − A0) 0.0245 0.025 0.0176 0.018
2× B 0.9693 0.9835
2× C −0.0025 −0.0021
2 × B0 1.0816 1.0428
2 × C0 −0.0025 −0.0021
2 × Bh 0.0245 0.025 0.0176 0.018

Since k4 terms were dropped, the discrepancy could be as
large as 0.007 if the terms conspire to make the coefficient of
the k4 term of the order of unity (and not 1/8) and the mean
momentum of the nucleon is about 300 MeV. In any case, the
expansions are not as reliable as I expected. The remarkable
new result is that the magnetic moment for model WJC2 is
in very good agreement with experiment, differing by only
0.07%.

B. Quadrupole moment

The comparison of the quadrupole moment with the ex-
pansions reported in Ref. III does not fare much better. Here
I originally estimated the error to be about 0.2% or a δQ of
0.0006, and a comparison with Table XI shows that this seems
to be accurate for the small terms but fails for the largest terms

TABLE X. The contributions to the deuteron magnetic moment,
μd = mGM (0)/md (in nuclear magnetons). The experimental value
is 0.8574.

WJC1 WJC2

Quantity 1B App G 2D App G

On shell (k0 = Ek) 0.8985 0.8812 0.8643 0.8630
h dependence 0.0123 0.0145 0.0112 0.0092
V (2) current −0.0156 −0.0167 0.0004 0.0000
Off shell (k0 �= Ek) −0.0289 −0.0170 −0.0180 −0.0129
Total 0.8663 0.8620 0.8580 0.8594
Error 0.0089 0.0046 0.0006 0.0020
Error (%) 1.04% 0.48% 0.07% 0.23%

2 × A0 0.9155 0.8646
2× (A − A0) 0.0141 0.0158
2× B 0.7193 0.7163
2× C 0.1150 −0.1183
2 × B0 0.7904 0.7553
2 × C0 0.1017 0.1154
2 × Bh 0.0145 0.0093
2 × Ch −0.0039 −0.0026
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TABLE XI. The contributions to the deuteron quadrupole mo-
ment Qd = m2

d GQ(0) (in fm−2). The experimental value is 0.2859(6).

WJC1 WJC2

Quantity 1B Ref. [3] 2D Ref. [3]

On shell (k0 = Ek) 0.2831 0.285 0.2815 0.284
h dependence 0.0011 0.000 0.0007 0.000
V (2) current −0.0009 −0.001 −0.0002 0.000
Off shell k0 �= Ek −0.0014 −0.005 −0.0003 0.000
Total 0.2820 0.279 0.2817 0.284
Error −0.0039 −0.007 −0.0042 −0.0019
Error (%) − 1.38% −2.4% −1.49% −0.7%

2 × A0 0.2825 0.2815
2× (A − A0) 0.0014 0.0008
2× B 0.2835 0.2829
2× C −0.0017 −0.0016
2 × B0 0.2863 0.2836
2 × C0 −0.0017 −0.0016
2 × Bh 0.0009 0.0006
2 × Ch −0.0001 −0.0000

with an error of about 0.002, or about 1% (similar to that
found for the magnetic moment). However, since all terms
seem to have similar signs and magnitudes, there is no reason
to expect an error in the expansion as I did for the magnetic
moment, and I did not recalculate the expansions given in
Ref. III. The new conclusion here is that the two models have
similar quadrupole moments, differing by about 1.5% from
the experimental result.

C. Rms radius

The rms radius of the deuteron is, by definition,

R2
rms = −6

d

dQ2
GC (Q2). (5.2)

The values of R2
rms (in GeV−2) and Rrms (in fm) are shown

in Table XII. Note that the corrections from the relativistic
effects discussed in Sec. IV are very small.

Perhaps it is interesting to see how a linear fit to the Q2

dependence of the form factor might affect how the radius
would be extracted from experimental data. Figure 22 shows
four fits, with parameters listed in Table XIII, to a set of

TABLE XII. Contributions to the deuteron radius for model 2D.
The experimental value of 2.130(10) fm is taken from Ref. [64]. The
last row of the table is model 2D with dGC/dQ2 = −19.36 (GeV)−2.

Approximation R2
rms (GeV)−2 Rrms fm

NR 116.1 2.122
NR with (A) shift 117.0 2.131
All u, w 116.6 2.128
Add vt , vs 116.7 2.128
Add C terms 116.7 2.128
Add A(2) and F2 116.3 2.124
Add F3 and F4 116.2 2.123

FIG. 22. Study of the dependence of the deuteron charge form
factor on Q2 at very small Q2. The two red dashed lines are linear
and quadratic fits to the lowest four points represented by red
dots surrounded by a red circle, all at Q2 < 0.01. The solid black
lines are (indistinguishable) quadratic and cubic fits to all the red
dots, including 6 beyond beyond Q2 = 0.01. The black dots are the
Sick GA.

theoretical points calculated using model 2D. The large vari-
ation in the derivative, c2, shows how difficult it is to get the
slope at Q2 = 0 from the fits. Using the 10 points seems to be
less reliable than the four lowest points, and it is a surprise
to me that the quadratic fit to the lowest points, which is
completely unreliable at higher Q2, gives a c2 closest to the
derivative.

VI. CONCLUSIONS AND DISCUSSION

A. Major new results

This is the first time the deuteron form factors have been
calculated using models WJC1 and WJC2, which give preci-
sion fits to the np data base with χ2/datum ≈1. These models
use a kernel with a dependence on the momentum of the
off-shell particle and therefore require isoscalar interaction
currents in order to conserve the two-body np current. At
first, it seems that the existence of these currents would
make it impossible to make any unique predictions for the
form factors, but I showed in Ref. I that using principles of

TABLE XIII. Fitting parameters for the four curves of the form
f (Q2) =∑n=3

n=1 c2nQ2n shown in Fig. 22. Recall that direct calculation
of the derivative gave c2 = −19.36.

4 points 4 points 10 points 10 points

c2 −17.667 −19.202 −15.701 −18.318
c4 0 293.13 106.05 229.76
c6 0 0 0 −1372.6
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simplicity and picture independence it is possible to all but
uniquely fix these currents in terms of the already determined
parameters of the np models. These results fixed the currents
at Q2 = 0, and I show here that the exact calculations of the
static moments of the deuteron, calculated without adjustable
parameters (assuming F4(0) = 0), give very good predictions.
[If F4(0) �= 0, its effect on the magnetic moment is much
larger than the quadrupole moment, justifying the choice
F4(0) = 0.]

In addition, I believe that this is the first time anyone has
obtained a precision fit to all of the deuteron elastic scattering
data (where precision in this case also means χ2/datum
≈1). I immediately qualify this remark: Such a fit would be
impossible without using the global analysis of Ingo Sick. To
obtain this global analysis, Sick reanalyzed all for the data
for the invariant functions A(Q2), B(Q2), and the polarization
transfer function T20(Q2). My fit is actually to the Sick GA;
as I have discussed briefly above, direct fits to the published
data cannot give such a low χ2 because the published data
are not consistent to this level (recall Table VI). These issues
deserved to be reviewed by other scientists.

A third major new result is a prediction for the neutron
charge form factor, GEn(Q2), in the region Q2 � 2 (GeV)2,
where it has not been measured experimentally (see Fig. 12
and model CST1 in Table III).

The last new result I want to highlight is the determination
of two new off-shell nucleon form factors F3(Q2) and F4(Q2),
defined in Eqs. (1.13) and (1.14). These new form factors
can contribute only when both the incoming and the outgoing
nucleon is off shell, and thus contribute only to Fig. 3(A), the
only one where this is possible. The form factor F3, known
for a long time, cannot be zero because current conservation
requires F3(0) = 1. Form factor F4 (new to this paper) is
purely transverse and hence cannot be constrained by current
conservation in any way. However, balance between the on-
shell form factors F1(Q2) and F2(Q2) provides an ab initio
argument for including F4 (and excluding others that appear in
the most general expansion of the off-shell nucleon current):
Since F3 is required to complement F1, it is not a stretch to ar-
gue that F4 should be included to complement F2, even though
neither F2 nor F4 can be constrained by current conservation.
The data will determine these form factors; as it turns out
F2 can be directly measured by electron nucleon scattering,
while F4 can only be measured by electron scattering from a
composite nucleus, the deuteron being the simplest.

In this paper, model WJC2 uses the Sick GA at inter-
mediate Q2 to predict the form factors F3 and F4. The data
are insensitive to precise values of F4 at low Q2 (I assumed
F4(0) = 0, a value that would likely emerge from a compari-
son of the static moments, but not investigated here) and there
is insufficient data at Q2 � 2 (GeV)2 for a prediction, so I
adjusted fits so that the large Q2 behavior of these form factors
would be small. These introduce small uncertainties which I
cannot estimate. The reason for not using the model WJC1 to
extract F3 and F4 was discussed in Sec. II D.

Table XIV gives numerical values for the 12 model 2D
body form factors DX,i(Q2) introduced in Eq. (1.19). The
reader may use these to extract her own nucleon form factors
from the data.

B. Assessment

For this assessment, I return to an issue I raised in Ref. I:
Can the CST make predictions? Stated more forcefully, if I
obtain a precision fit to the three independent sets of deuteron
data for A, B, and T20 by adjusting another set of three
independent functions F3, F4, and GEn, in what sense does
this provide any understanding? I will discuss this issue in
four parts:

(i) First, the independent functions are multiplied by a
body form factor and hence are constrained by the
values of the body form factor itself, which depends
on the np dynamics of the WJC models. If the body
form factors are small or have the “wrong” sequence
of signs for GC, GM , GQ, this will prevent the inde-
pendent functions from giving a desirable fit to all
three form factors.

(ii) Next, the predictions for the static deuteron moments
are absolute; they are free of any parameters (because
GEn(0) and F3(0) are known, and I constrain F4(0) =
0). The low-Q2 behavior of A, B, and T20 (Figs. 10, 7,
and 8, respectively) all show a complete insensitivity
to the independent functions for Q � 0.5 GeV. This
shows that the CST gives precise predictions for all
low Q2 observables, largely independent of the choice
of the independent functions.

(iii) Determination of the three independent functions us-
ing model WJC1 gives values of GEn that disagree
with the data for GEn over the entire range of Q2, as
shown in Fig. 12. In this sense, model WJC1 fails,
allowing me to conclude that the prediction obtained
from model WJC2, which is consistent with the data
for GEn out to the highest Q point measured (Q � 1.4
GeV), is not an accident, but a real success (the body
form factors for WJC2 have the correct properties).
An experimental confirmation of the prediction for
GEn at higher Q would be a further success of model
WJC2.

(iv) Finally, note that no choice of GEn can fit the GA for
A at the highest Q2 points (recall the small circles in
Fig. 12). This is either an indication that model WJC2
fails at the highest Q2, or might be an indication that
the GA is inaccurate at the highest points, a possibility
suggested by the largest Jefferson Laboratory Hall A
measurement for A at Q2 � 6 GeV2. Further measure-
ments at high Q2 would clarify this.

C. Alternative interpretation

The central role played by the off-shell form factors F3 and
F4 leads to the following question: Will the physics described
by these form factors disappear in a formalism where the
nucleons are always on shell? The answer is “no.” The way the
same physics is described in alternative formalisms is shown
in Fig. 23, where for shorthand I used �μ = iσμνqν/(2m).
The left panel shows, as an example, the case where the
one-pion exchange mechanism is the “last” interaction to
be factored out of the NN iteration kernel, and the right
panel shoes how the the projection operators � cancel the
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FIG. 23. Figure showing how the use of off-shell form factors
(left panel) can generate IC diagrams (right panel). In this case, the
removal of a one-pion exchange interaction from the CST kernel with
off-shell form factors is equivalent to another calculation with a two-
pion interaction current and no off-shell form factors.

propagators S, leaving a two-pion exchange term with an
effective interaction at the 2πNN vertex.

This correspondence mirrors that shown in Fig. 8 of Ref. I.
In that case, the off-shell sigma coupling canceled the nucleon
propagators. Here the details are very different, but the way
in which off-shell projectors cancel propagators, reducing
the effective interaction of the off shell particle to a point
interaction (modified by F3 or F4), is the same. It is another
example of the theorem I proposed in Ref. I: A theory with
off-shell couplings is equivalent to another theory with no
off-shell couplings plus an infinite number of very complex
interaction currents.

This comparison provides two further insights. First, I
showed in Ref. [1] that the momentum-dependent couplings
in the kernel did not generate any two-pion exchange currents,
while, as the example in Fig. 23 shows, the off-shell form
factors do. Second, since the comparison suggests the physical
role for F4 is to generate two-pion exchange currents (as well
as exchange currents involving other pairs of mesons) perhaps
a more natural scale for the �μ factor multiplying F4 is 1/mπ

(instead of 1/m which is merely a carryover from the factors
multiplying F2). If this were the case, the F4 form factor would
be m/mπ ≈ 7 times smaller that the curves shown in Figs. 4
and 5. The new F4 would be more comparable in size to F3.

D. Outlook

I remind the reader that model VODG provides a very good
explanation of the data for A, B, and T20. However, the revised
model IIB, which is the basis of the VODG calculation,
does not give a high-precision fit to the np data. The newer
high-precision fits provided by models WJC1 and WJC2, with
their momentum-dependent couplings and accompanying ex-
change currents, required a completely new calculation.

The fits to the off-shell form factors and the prediction
of a new high-Q2 behavior of GEn completely fixes model
WJC2 and allows for a precise prediction, without any free
parameters, for the rescattering term in deuteron electrodisin-
tegration at modest energy using the CST [65]. In addition to
being important in its own right, comparing this prediction to
electrodisintegration data would be a decisive test of the CST.

Finally, extending the measurements of A and particularly
B or T20 to higher Q2 would yield new information about the
off-shell deuteron form factors, and perhaps (in the absence
of direct measurements) the neutron charge form factor GEn.
This paper provides the predictions with which to compare
experimental results. Note in particular the CST prediction
that B will flatten out and reach a secondary maximum [recall
Fig. 6]. The large size of B in this region may make mea-
surements less difficult than previously anticipated, and it is
important to confirm this expected behavior.
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APPENDIX A: SHORT REVIEW OF THE THEORY

This Appendix reviews some details of the calculations of
the deuteron form factors discussed in several previous papers,
but also includes some new analysis useful for a detailed
understanding of this paper.

1. Form factors and helicity amplitudes

The most general form of the covariant deuteron electro-
magnetic vector current illustrated in Figs. 1 and 3 can be
expressed in terms of three deuteron form factors,

〈P+ λ|Jμ|P− λ′〉

= −2Dμ

{
G1 ξ ∗

λ · ξ ′
λ′ − G3

(ξ ∗
λ · q)(ξ ′

λ′ · q)

2m2
d

}
− GM

[
ξ

′μ
λ′ (ξ ∗

λ · q) − ξ
∗μ

λ (ξ ′
λ′ · q)

]
, (A1)

where the form factors G1, G3, and GM = G2 are all functions
of the square of the momentum transfer q = P+ − P−, with
Q2 = −q2, Dμ = 1

2 (P+ + P−)μ, and ξ ′
λ′ (ξλ) are the four-

vector polarizations of the incoming (outgoing) deuterons
with helicities λ′ (λ). The polarization vectors satisfy the
well-known constraints

P+ · ξλ = P− · ξ ′
λ′ = 0, ξ ∗

λ · ξρ = −δλρ,

ξ ′∗
λ′ · ξ ′

ρ ′ = −δλ′ρ ′ . (A2)

This notation agrees with that used in Ref. [11], except that
now λ denotes the helicity of the outgoing deuteron and λ′ the
helicity of the incoming deuteron.

The form factors G1 and G3 are usually replaced by the
charge and quadrupole form factors, defined by

GC = G1 + 2
3ηGQ, GQ = G1 + (1 + η)G3 − GM, (A3)
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with η defined in Eq. (1.23). At Q2 = 0, the three form factors
GC , GQ, and GM give the charge, quadrupole moment, and
magnetic moment of the deuteron:

GC (0) = 1 = G1(0) (units of e),

GM (0) = μd = G2(0) (units of e/2md ),

GQ(0) = Qd = G3(0) + 1 − μd
(
units of e/m2

d

)
.

(A4)

Contracting the vector current (A1) with the photon helicity
vectors

ε
μ
0 = {0, 0, 0, 1}, ε

μ
± = {0,∓1,−i, 0}/

√
2 (A5)

gives the helicity amplitudes, denoted by

G
λγ

λλ′ ≡ 〈P+ λ|Jμ|P− λ′〉εμ
λγ

. (A6)

The properties of the helicity amplitudes are discussed in
Sec. III of Ref. II, where it was shown that only three of the
possible 27 amplitudes are independent, so the form factors
can be expressed in terms of the three combinations

J1 ≡ G0
00 = 2D0

(
GC + 4

3
η GQ

)
,

J2 ≡ G0
+− = 2D0

(
GC − 2

3
η GQ

)
,

J3 ≡ 1

2
(G+

+0 + G−
0−) = Q

D0

Md
GM , (A7)

where the symmetrized sum in the definition of J3 is used
for convenience. To calculate the deuteron form factors, it
therefore sufficient to calculate the Jn (with n = 1, 2, 3).

The experimental observables A, B, and T̃20 were defined
in terms of the form factors in Eqs. (1.22) and (1.24).

2. Mathematical form of the current

The helicity amplitudes of the current, Jn(q), are the sum
of the three types of contributions shown in Fig. 3:

Jn(q) = J A
n (q) + J (2)

n (q) + J B
n (q). (A8)

The J A
n and J (2)

n contributions were combined in Eq. (3.28)
of Ref. II; here I find it convenient to write them as two
separate terms. Including the (B) diagrams from Eq. (3.36)
of Ref. II, all three contributions can be written in a compact
form:

J A
n (q) = e0

∫
k

{
f0(p+, p−)

2∑
i=1

[Fi(Q
2)An,i(�+�−)]

+ g0(p+, p−)

4m2

4∑
i=3

[Fi(Q
2)An,i(�+�−)]

}
, (A9a)

J (2)
n (q) = −e0

∫
k

2∑
i=1

Fi(Q
2)

[
h+
h−

An,i(�+�
(2)
− )

+ h−
h+

An,i(�
(2)
+ �−)

]
, (A9b)

J B
n (q) = e0

∫
k

{[
mEk

kzQ

] 2∑
i=1

Fi(Q
2)

(Bn,i(k0)

k0

∣∣∣∣
−
− Bn,i(k0)

k0

∣∣∣∣
+

)

− 1

m
On

2∑
i=1

Fi(Q
2)Cn,i(� �̂off )

}
, (A9c)

where the integral is∫
k

=
∫

d3k

(2π )3

m

Ek
, (A10)

the operator OnX (q) = X (q) + εn3X (−q), with the phase
εn3 = (1 − 2δn3), and |± → |k0=E± , where E± was defined
in Eq. (1.5). The coefficient of the g0 term in Eq. (A9a)
differs from that reported in Ref. II; it includes a sum over
two off-shell nucleon form factors, F3 and F4, defined in
Eq. (1.13). The quantities A,B, and C are traces over products
of pairs of covariant wave functions (or vertex functions),
summarized in Table VII, one for the initial and one for
the final deuteron, and are multiplied by one of the four
form factors describing the interaction of the virtual pho-
ton with the off-shell nucleon. The detailed formulas for
these traces are given in Ref. II: Eqs. (B1) and (B2) for A,
Eqs. (B6) and (B7) for B, and Eqs. (B9) and (B10) for C.
I found corrections to these formulas that are reported in
Appendix G.

The three types of wave functions or vertex functions that
enter into the traces (A9a)–(A9c) are �, � (2), and �̂BS. The
equation for the bound state wave function with particle 1 on
shell is

S−1(p) �(k̂, P) = −
∫

k′
V (k̂, k̂′; P)�(k̂′, P), (A11)

where V is the symmetrized one-boson exchange (OBE)
kernel (introduced in Ref. [14] and discussed in detail in
Ref. I) and the volume integral was defined in (A10). The
wave function � (2)(k̂, P) and the subtracted vertex function
�̂BS(̃k, P) (where k̃ = {k0, k} can be off shell) are obtained
from an iteration of the basic equation (A11) using the kernels
V

(2)
and V − V

(1)

S−1(p)� (2)(k̂, P) = −
∫

k′
V

(2)
+ (k̂, k̂′; P)�(k̂′, P), (A12a)

�̂BS(̃k, P) = −
∫

k′
[V − V

(1)
+ ](̃k, k̂′; P)�(k̂′, P),

(A12b)

where V
(1)
+ and V

(2)
+ are kernels constructed from the momen-

tum dependence of the meson-NN vertex couplings to parti-
cles 1 and 2 as described in Ref. I and used in the diagrams

shown in Fig. 2. The computation of the wave functions �
(2)

and �̂BS requires the transformed kernels V
(1)
− and V

(2)
− .

The off-shell subtracted vertex function �̂BS is composed
of two parts with a different matrix structure. These were
previously defined in Eq. (3.7). The B part of the vertex
function appears in the B traces and the C part in the C
traces. [The reader is warned not to confuse the B term in
Eq. (3.7) with the total contribution to the (B) diagrams.] Note
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that each of the B trace terms is singular when Q → 0, and
only through the cancellation of the two terms at k0 = E± is
this singularity removed. This cancellation is required by the
physical behavior of this contribution, as discussed in detail
in Sec. II F of Ref. I. The C term vanishes when particle
1 is on shell and is interesting because it is a measure of
contributions from off-shell terms that do not contribute to the
on-shell two-body CST equation used to fix the parameters of
the kernel.

3. Relativistic effects due to shifts in the arguments
of the wave functions

The wave functions and vertex functions (referred to col-
lectively as wave functions in the following discussion) that
enter into the relativistic formulas have arguments shifted by
the relativistic kinematics. It is of considerable interest in itself
to study the size of these affects, and this is the focus of this
subsection.

a. Arguments for the A diagrams

As discussed in Sec. II C of Ref. II, when one particle is on
shell, the wave functions depend on only one variable, which
I have chosen to be k2 (the square of the three-momentum of
the on-shell particle 1). When boosted to the rest frame, this
variable is denoted by R2, which is then either the momentum
of particle 1 or the relative momentum of both particles
(identical in the rest frame). The quantity R is a function of
k2, kz (the component of k in the direction of q), and Q.

For the A diagrams, with the momenta labeled as in
Fig. 1(A), the exact expression for this argument is [using R2

A
for rest frame values from diagram (A)]

(R±
A )2 = (P± · k̂)2

m2
d

− m2 (A13a)

= k2 ∓ kz Q
D0Ek

m2
d

+ η
(
E2

k + k2
z

)
(A13b)

→
(

k ∓ 1

4
q
)2

m, md → ∞, (A13c)

where (R−
A )2 [(R+

A )2] is the rest frame value of R2
A obtained

from a moving incoming (outgoing) deuteron in the Breit
frame.

The last expression, Eq. (A13c), is the value of the rest
frame momentum (R±

A )2 in the infinite mass (nonrelativis-
tic) limit, and shows that, nonrelativistically, these momenta
must be interpreted as the relative momenta, ρ = 1

2 (k1 − k2),
because before and after the collision with the photon, the
assignment of momenta that correctly describes this process is

before

⎧⎨⎩
k1 = k
k2 = −k − 1

2 q
ρ = k + 1

4 q
,

after

⎧⎨⎩
k1 = k
k2 = −k + 1

2 q
ρ = k − 1

4 q
. (A14)

Note the reassuring fact that Eq. (A13a) gives the same result
if k̂ is replaced by the relative momentum in the moving

FIG. 24. Locus of the points rz and rx = r⊥, Eq. (A17), as a
function of θ . The two closed curves and the solid round and square
reference points near rz ∼ −1 are discussed in the text. I chose
Q = 2 GeV and k = 400 MeV when the curves or reference points
depended on Q or k.

frame:

(R±′
A )2 =

[
P± · (k̂ − 1

2 P±
)]2

m2
d

−
(

k̂ − 1

2
P±

)2

= (P± · k̂)2

m2
d

− (P± · k̂) + m2
d

4
− m2 + (P± · k̂) − m2

d

4

= (R±
A )2. (A15)

The lesson from this discussion is that the effective rest frame
momentum, (R±

A )2, is the same whether or not one starts in
the moving frame from the four-momentum of particle 1, or
the relative four-momentum of the two particles; this must be
true, of course, since the two are indistinguishable in the rest
system.

To better understand the results (A13b) and (A13c), it
is useful to obtain the longitudinal and transverse compo-
nents of R±

A by directly transforming the components of k̂ =
{Ek, k⊥, kz} from the moving system to the rest system, using
the relations

(R±
A )⊥ = k⊥ = k sin θ,

(R±
A )z = D0

md
k cos θ ∓ Q

2md
Ek, (A16)

where it is easily shown that (R±
A )2 = (R±

A )2
⊥ + (R±

A )2
z . In

Fig. 24, I show the related components

r⊥ = (R−
A )⊥
k

= sin θ,

rz = 1

k

[
(R−

A )z − QEk

2md

]
=
√

1 + η cos θ (A17)

plotted in the rx = r⊥, rz plane.
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Two cases are shown in the figure. The first is the non-
relativistic limit of the boost (with η = 0). It is described
by the dashed black circle which can be described as the
locus of points swept out by the unit vector r (represented by
the dashed arrow fixed to the origin) rotating through polar
angle θ with the ẑ axis. However, the same circle is also
the locus of points swept out by R−

A/k, represented by the
longer black dashed vector, with one end fixed at the reference
point (represented by the round black dot at r0

z = −Q/(4k) =
−1.25 in the figure) and the other end following the locus of
points swept out by dashed circle. This vector, which is the
rest frame momentum in the nonrelativistic limit divided by
k, must change length in order to track the dashed circle.

The second case shown is the solid red ellipse, which
shows the behavior of the relativistic A-type rest-frame mo-
mentum. Because η �= 0 (η � 0.02835 for the parameters
chosen), the curve changes from a circle to an ellipse and
the reference point (represented by the solid red square) shifts
to r0

z = −QEk/(2kmd ) � −1.359. The vector that sweeps out
the relativistic momentum R−

A/k is represented by the red
arrow that connects the solid red square reference point to the
ellipse. One can see clearly how the relativistic transformation
changes the effective rest-frame momentum; the shift in the
reference point is due to the role that the particle energy plays
in the transformation, and change from a circle to an ellipse is
due to the dilation factor in the transformation.

Figure 24 shows the relativistic ellipse expanding in the ẑ
direction, rather than contracting. This is because I am keep-
ing k constant in the moving frame. To obtain this condition,
I must start from an expanded ellipse in the rest frame, so
that when it is contracted by the transformation to the moving
system it will be compressed back into a circle. Hence, the
transformation behaves as expected after all. This expansion
explains qualitatively the behavior of the relativistic argument
shift shown by the dashed blue line shown in Fig. 21.

b. Arguments for the B diagrams

For the B diagrams, when both particles can be off shell,
the wave functions can depend on an additional variable,
which was previously chosen to be the energy of particle 1
in the moving frame, k0, which transformed to R0 in the rest
frame. The momenta are labeled in Fig. 3(B) and, following
the discussion in Sec. III C, I make the substitution

k̃±
0 = x±

10Ẽ± (A18)

into the momenta given in Ref. II (with the change in notation
R̃ → RB):

[R±
B (k̃, x±

10)]2 = (P± · k̃±)2

m2
d

− k̃2
± = k̃2

⊥ + k̃2
±z

∓ x±
10 k̃±zQ

D0Ẽ±
m2

d

+ η
[
(x±

10 Ẽ±)2 + k̃2
±z

]
→ k̃2

⊥ + k̃2
±z ∓ 1

2
x±

10k̃±zQ + x±2
10

Q2

16

=
[

k̃ ± 1

4
(2 − x±

10)q
]2

m, md → ∞,

R±
0 (k̃, x±

10) = P± · k̃±
md

= 1

2md
[2x±

10D0Ẽ± ∓ k̃±zQ]

→ x±
10m + x±

10

2m

[
k̃2
⊥ + k̃2

±z + 1

8
Q2

]
∓ k̃±zQ

4m

= x±
10m + 1

2m

[
x±

10k̃2 ± 1

2
k̃zQ(2x±

10 − 1)

+ 1

16
(5x±

10 − 4)Q2

]
m, md → ∞, (A19)

where [recalling that the momenta in Fig. 3(B) are labeled
with a tilda to distinguish them from momenta in Fig. 3(A)]

k̃± = {
x±

10Ẽ±, k̃ ± 1
2 q
}
, k̃±z = k̃z ± 1

2 Q. (A20)

I prefer using the variable x10 instead of the unconstrained
energy k0 because when particle 1 is on- shell, x10 = 1,
independent of momenta. Hence,

[R±
B (k̃, 1)]2 = k̃2

⊥ + k̃2
±z ∓ k̃±zQ

D0Ẽ±
m2

d

+ η[Ẽ2
± + k̃2

±z]

→
(

k̃ ± 1

4
q
)

m, md → ∞,

R±
0 (k̃, 1) = 1

2md
[2D0Ẽ± ∓ k̃±zQ],

→ m + 1

2m

(
k̃ ± 1

4
q
)2

m, md → ∞. (A21)

It is easy to see that R±
0 is constrained by the mass shell

condition

R±
0 (k̃, 1) =

√
m2 + [R±

B (k̃, 1)]2, (A22)

as required by relativity. The condition x±
10 = 1 is now a

simple, momentum-independent way to specify that particle
1 is on-shell.

In the calculation of the (B) diagram, only the values of x±
10

given in Eq. (3.3) are needed. To order 1/m2, these are

x±
10 = ζ± � 1 + k̃2

∓
2m2

− k̃2
±

2m2
= 1 ∓ k̃zQ

m2
. (A23)

When this is substituted into (A19), the result to order 1/m2 is

R±
0 (k̃, ζ±) � m

(
1 ∓ k̃zQ

m2

)
+ 1

2m

[
k̃2 ± 1

2
k̃zQ + Q2

16

]
= m + 1

2m

[
k̃2 ∓ 1

2
k̃zQ + Q2

16

]

�
√

m2 +
(

k̃ ∓ 1

4
q
)2

, (A24)

showing that the mass shell condition holds to order 1/m2.
While x±

10 is the appropriate quantity describing the off-
shell behavior in the moving frame, the quantity that describes
this in the rest frame of each state, denoted by X ±

10(k̃, x±
10), is

defined by the relations

R±
0 (k̃, x±

10) = X ±
10(k̃, x±

10)
√

m2 + [R±
B (k̃, x±

10)]2. (A25)
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This can be derived directly by transforming k̃±
0 and Ẽ± in

Eq. (A18) to the rest frame and requiring the transformation
of x±

10 → X ±
10 to maintain the equation. Note that setting

x±
10 = 1 in (A25) and using the relation (A22) gives the result

X ±
10(k̃, 1) = 1.

It is satisfying to observe that nonrelativistic limits of the
momenta (A19) [or (A21)] correctly describe the process in
which the photon is absorption on particle 1 instead of particle
2:

before

⎧⎨⎩k1 = k − 1
2 q

k2 = −k
ρ = k − 1

4 q
,

after

⎧⎨⎩k1 = k + 1
2 q

k2 = −k
ρ = k + 1

4 q
. (A26)

This is a consequence of the fact that the nonrelativistic limit
of [R±

B (k̃, 1)]2 is not equal to (R±
A )2.

As I did in the previous subsection, it is useful to de-
rive (A19) directly from the Lorentz boost. Starting from the
off-shell four-momentum of particle 1 in the moving frame,
k̃± = {x±

10Ẽ±, k̃ ± 1
2 Q} (where k̃± pairs with momenta P±),

and transforming to the rest frame using R±
B = �∓k̃±, gives

(R±
B )⊥ = k̃⊥ = k̃ sin θ,

(R±
B )z = D0

md
k̃±z ∓ x±

10

QẼ±
2md

,

R±
0 = ∓Qk̃±z

2md
+ x±

10

D0Ẽ±
md

. (A27)

This result for R±
0 agrees immediately with (A19), and it is

also easy to show that [R±
B ]2 = (R±

B )2
⊥ + (R±

B )2
z as expected.

To represent the behavior of the spacial components when
particle 1 is on shell, Fig. 25 shows the behavior of the two
components that enter into the (B+) diagram when x10 = 1:

rb
⊥ = 1

k̃
[R+

B (1)]⊥ = sin θ,

rb
z = 1

k̃

[
[R+

B (1)]z − Q

2md
(D0 − E0)

]
=
√

1 + η cos θ − Q

2kmd
(E+ − E0). (A28)

In defining rb
z , I introduced a new subtraction term depending

on the energy E0,

E0 ≡
√

m2 + k2 + Q2

4
= E+(cos θ = 0), (A29)

chosen to be independent of θ and of the correct size to center
the elliptical locus of the points {rb

⊥, rb
z } at the origin.

The solid red ellipse shown in Fig. 25 is the locus of
points swept out by the vector R+

B /̃k, which reaches from
the new reference point (the subtraction term) shown as a
solid red diamond located on the ẑ axis at −0.930 to the
smaller of the red ellipses, and has a different length than
the one for diagram (A). For comparison, the ellipse for the
transformation of diagram (A) shown in Fig. 24 is the red

FIG. 25. Locus of the points {rb
z , rb

⊥} of Eq. (A28) (the solid line
ellipse) compared to {rz, r⊥} of Eq. (A17) (the dashed-line ellipse,
identical to the one shown in Fig. 24) as a function of θ . The diamond
reference point near rz ∼ −1 is the point from which the magnitude
of the transformed momentum is measured. I choose Q = 2 GeV and
k = 400 MeV for this example.

dashed ellipse in Fig. 25. The Lorentz transformation of the
(A) and (B) diagrams have very different behaviors, which can
be traced to the different behavior of the energies of particle 1
in the two cases.

I return now to the issue of how far off shell particle 1
is forced by the kinematics in the 3(B) diagrams. This was
already addressed nonrelativistically in Sec. III C above. As
I showed there, the relevant values of x±

10, denoted ζ±, were
given in Eq. (3.3). The correct quantity is therefore

X ±
10(k̃, ζ±) = R±

0 (k̃, ζ±)√
m2 + [R±

B (k̃, ζ±)]2

= 2D0Ẽ∓ ∓ k̃±zQ√
(2D0Ẽ∓ ∓ k̃±zQ)2 ± 8m2

d k̃zQ
. (A30)

The maximum of X ±
10 occurs when k̃z = ∓k (I drop the tilde

at this point), giving

X ±max
10 = 2D0E+(Q) + k−Q√

(2D0E+(Q) + k−Q)2 − 8m2
d k Q

, (A31)

where

E±(Q) =
√

m2 + (k ± 1
2 Q
)2

. (A32)

As for the nonboosted case, the minimum is found by chang-
ing k → −k (or θ = 0 to π ). Also, note that

lim
md →∞ X ±max

10 = E+(Q)

E−(Q)
, (A33)
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which, once kmax has been found, agrees with the result
(3.4).

For each Q, this limiting function is has a maximum at a
particular value of k (which is best found numerically) so the
maximum and minimum for all k can be shown as a function
of Q only. This limiting value was already shown in Fig. 16.
The figure shows how far off shell the particle can be forced,
even at modest values of Q.

4. Calculation of the off-shell invariant functions

The wave and vertex functions can be expanded into scalar
functions. For a recent discussion of the decomposition of
�, see Appendix A of Ref. II and Sec. III of Ref. [15]. The
wave function � can be expressed in terms of four scalar
functions: the two familiar nonrelativistic S- and D-state wave
functions, u (S state), w (D state), and the two small P-state
components of relativistic origin, vt (spin triplet P state), and
vs (spin singlet P state), or alternatively in terms of the helicity
amplitudes zρ1ρ2

� (with ρ1 = +; see the discussion below). The
momentum dependence of these wave functions was shown in
Figs. 6 and 7 of Ref. [15].

In this subsection, I discuss a few technical details that I
found helpful in carrying out the numerical calculations.

First, instead of using the amplitudes zρ1ρ2
� , where

z++
0 = 1√

6
(u +

√
2w), z++

1 = 1√
6

(
√

2u − w),

(A34)

z+−
0 = − 1√

2
vs, z+−

1 = − 1√
2
vt ,

I use the related amplitudes

yρ1ρ2
� (k, k0) = δρ2 zρ1ρ2

� (k, k0), (A35)

where ρ = ± and δρ is related to the inverse of the nucleon
propagator Gρ for positive- and negative-energy nucleon
states. These propagators are

Gρ = ρ

Ek + ρ(k0 − md )

= ρ

Ek (1 + ρ x10) − ρ md )
≡ ρ

δρ

. (A36)

The reason for using the y’s instead of the z’s is that the
propagator appears naturally when the z’s are extended off
shell. Since G+ is singular at δ+ = 0, or at

x10 = md − Ek

Ek
� 1 − k2

m2
, (A37)

the z’s are singular at these points, and it is hard to compute
them numerically around these singularities. The problem
becomes critical because these singularities are very close to
x10 = 1 at small k2. These singularities are canceled in the
amplitudes y, which are very smooth near x10 = 1 and provide
a much better input for numerical solutions.

The eight invariant functions that define the Dirac-space
form of the vertex function can be expressed in terms of the
helicity amplitudes yρ1ρ2

� . The results in terms of the z’s was
given in Eq. (A27) of Ref. [2]. When expressed in terms of the

y’s, the relations become

F

C0
= (Ek + k0)

[
δ−y++

1 − m

k
δ+y+−

1

]
− (Ek − k0)

[
δ+y−−

1 + m

k
δ−y−+

1

]
,

k2G

mC1
= (Ek + k0)

[
δ−

(
Eky++

0 − my++
1√
2

)
− kδ+y+−

1√
2

]
− (Ek − k0)

[
δ+

(
Eky−−

0 − my−−
1√
2

)
+ kδ−y−+

1√
2

]
,

k H

mEkC0
= −(Ek + k0) y+−

1 − (Ek − k0) y−+
1 ,

k2I

m2C1
= (Ek + k0)

[
m y++

0 − Ek√
2

y++
1 + k y+−

0

]
− (Ek − k0)

[
m y−−

0 − Ek√
2

y−−
1 − k y−+

0

]
,

kK1

mEkC0
= −δ+y+−

1 − δ−y−+
1 ,

k2K2

m2C1
= m δ−y++

0 − Ek
δ−y++

1√
2

− kδ+y+−
0

− m δ+y−−
0 + Ek

δ+y−−
1√
2

− kδ−y−+
0 ,

kK3

m2C0
= −k y++

1 − m y−+
1 + k y−−

1 − m y+−
1 ,

k2K4

m3C0
=

√
2 Eky++

0 − my++
1 + ky−+

1

−
√

2 Eky−−
0 + my−−

1 + ky+−
1 , (A38)

where

C0 =
√

3K
2Ekmd

C1 =
√

2 C0 (A39)

with K = π
√

2md .
It turns out that only the four amplitudes y+ρ2

� need to be
considered; the amplitudes y−ρ2

� will never contribute to the
final result. The argument is in two steps. First, when particle 1
is on shell, k0 = Ek , and the four invariant functions F, G, H, I
do not depend on the amplitudes y−ρ2

� . Next, when both
particles are off shell, only subtracted amplitudes Ĥ, . . . , K̂4

contribute, and I have found that the subtracted amplitudes
ŷ−ρ2
� are numerically so small as to be nearly zero and can be

discarded from the calculation. In this case, the subtracted K̂i

are not zero, but depend only on the amplitudes ŷ+ρ2
� . I have

not looked for a proof of the relation ŷ−ρ2
� = 0, which I believe

to be true.
All of the invariants are regular as k → 0, yet the ex-

pressions for all but F show a possible singularity at k = 0.
To avoid this there, must be relations between the y’s near
k = 0. To examine this, drop all of the y−ρ2

� terms, substitute
k0 = x10Ek , and examine the k → 0 limits, dropping all terms
proportional to k2 or higher, since they are finite. Taking
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md → 2m, and using the expansions

δ+ � m(x10 − 1), δ− � m(3 − x10) (A40)

gives

lim
k→0

G = G0

k2
(1 + x10)

{
(3 − x10)

[
y++

0 − y++
1√

2

]
− (x10 − 1)

k

m

y+−
1√

2

}
,

lim
k→0

H = H0

k
(1 + x10) y+−

1 ,

lim
k→0

I = I0

k2
(1 + x10)

(
y++

0 − y++
1√

2
+ k

m
y+−

0

)
,

lim
k→0

K1 = K10

k
(x10 − 1) y+−

1 ,

lim
k→0

K2 = K20

k2

{
(3 − x10)

[
y++

0 − y++
1√

2

]
− (x10 − 1)

k

m
y+−

0

}
,

lim
k→0

K3 = K30

k

{
k

m
y++

1 + y+−
1

}
,

lim
k→0

K4 = K40

k2

{√
2 y++

0 − y++
1 + k

m
y+−

1

}
. (A41)

Requiring that these seven invariants be regular at k = 0
gives conditions on the four vertex functions. Near k = 0, and
independent of x10, one requires

lim
k→0

(y++
1 −

√
2y++

0 ) → a1k2,

lim
k→0

y+−
1 → a2k, lim

k→0
y+−

0 → a3k. (A42)

Note that these limits are satisfied by the usual behavior of the
momentum space wave functions. Using the definitions [taken
from (A34) multiplied by δρ2 ] gives

y++
1 −

√
2y++

0 = −
√

3

2
wv = −

√
3

2
δ+w,

y+−
0 = − 1√

2
δ−vs, y+−

1 = − 1√
2
δ−vt , (A43)

which shows that the standard k� behavior of the P and D state
wave functions will satisfy the necessary conditions.

APPENDIX B: NONRELATIVISTIC FORM FACTOR

While the formulas for nonrelativistic form factors in coor-
dinate space are well known and widely used, I am unaware

of similar results for the form factors in momentum space. As
the CST gives the nonrelativistic limits in momentum space, I
show here that the result obtained for GC does indeed agree
with the usual nonrelativistic limit. This is needed for the
discussion in Sec. V C.

1. Wave functions in momentum space

To prepare for the discussion of the nonrelativistic form
factor, I write the nonrelativistic wave functions in the form

Z�m(r) = i� z�(r)

r
Y�m(r̂), Z�m(k) = z�(k)Y�m(k̂), (B1)

where z� a generic name for the radial wave functions, u(� =
0) or w(� = 2), and Y�m is the spherical harmonic with rela-
tions ∫

dr̂ Y�m(r̂)Y ∗
�′m′ (r̂) = δmm′δ��′,

4π

2� + 1

�∑
m=−�

Y�m(r̂)Y ∗
�m(k̂) = P�(k̂ · r̂),

4π

2� + 1

�∑
m=−�

Y�m(r̂)Y ∗
�m(r̂) = 1. (B2)

Following the usual conventions, the wave functions in co-
ordinate space are reduced (divided by r), and I use the
convention that the wave functions in coordinate and momen-
tum spaces are distinguished only by their arguments (r for
coordinate space and k for momentum space). For a discussion
of the phase i�, see Eq. (3.36) and the last paragraph of
Sec. III C in Ref. [15]. This phase, which comes from the
familiar plane wave expansion, is need to keep the z�’s real.
The standard Fourier transform links the two spaces

Z�m(r) = 1

(2π )
3
2

∫
d3k exp(ik · r) Z�m(k),

Z�m(k) = 1

(2π )
3
2

∫
d3k exp(−ik · r) Z�m(r). (B3)

Using the familiar plane wave expansion

exp(ik · r) =
∞∑

�=0

(2� + 1)i� j�(kr)P�(k̂ · r̂)

= 4π

∞∑
�=0

i� j�(kr)
�∑

m=−�

Y�m(k̂)Y ∗
�m(r̂), (B4)

where j�(kr) is the spherical Bessel function, I reduce the
Eqs. (B3) to

1

(2π )
3
2

∫
d3k exp(ik · r) z�(k)Y�m(k̂) = Z�m(r) = i�z�(r)

r
Y�m(r̂) = i�

√
2

π

∫ ∞

0
r2 dr j�(kr)z�(k)Y�m(r̂),

i�

(2π )
3
2

∫
d3r exp(−ik · r)

z�(r)

r
Y�m(r̂) = Z�m(r) = z�(k)Y�m(k̂) =

√
2

π

∫ ∞

0
r2 dr j�(kr)

z�(r)

r
Y�m(k̂). (B5)
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Dropping the common factors gives the relations [see Eq. (A32) of Ref. [2]]

z�(r)

r
=
√

2

π

∫ ∞

0
k2dk j�(kr)z�(k), z�(k) =

√
2

π

∫ ∞

0
r2dr j�(kr)

z�(r)

r
. (B6)

2. Derivation of the charge form factor in momentum space

The nonrelativistic charge form factor is

GNR
C =

∫ ∞

0
dr[u2(r) + w2(r)] j0(τ0), (B7)

where τ0 = 1
2 Qr.

To transform each factor in Eq. (B7) to momentum space, begin by restoring the missing angular integrals:∫ ∞

0
r2dr j0(τ0)

z2
� (r)

r2
= 1

2π

∫ ∞

0
r2dr

∫
dr̂ exp

[
iq · r

2

]
z2
� (r)

r2
= 2

2� + 1

∫
d3r exp

[
iq · r

2

]
z2
� (r)

r2

�∑
m=−�

Y�m(r̂)Y ∗
�m(r̂)

= 2

2� + 1

∫
d3r

∫
d3r′ δ(r − r′) exp

[
iq · r

2

]
z�(r)

r

z�(r′)
r′

�∑
m=−�

Y�m(r̂)Y ∗
�m(r̂′)

= 2

(2�+1)(2π )3

�∑
m=−�

∫
d3k

∫
d3r exp

[
i

(
k+1

2
q
)

·r
]

z�(r)

r
Y ∗

�m(r̂)
∫

d3r′ exp[−ik · r′]
z�(r′)

r′ Y�m(r̂′)

= 2

(2� + 1)(2π )3

�∑
m=−�

∫
d3k

∫
d3k′ δ

(
k′ − 1

2
q − k

)∫
d3r exp[ik′ · r]

z�(r)

r
Y ∗

�m(r̂)

×
∫

d3r′ exp[−ik · r′]
z�(r′)

r′ Y�m(r̂′)

= 2

2� + 1

�∑
m=−�

∫
d3k

∫
d3k′ δ

(
k′ − 1

2
q − k

)
z�(k′)Y ∗

�m(k̂′)z�(k)Y�m(k̂)

= 2

2� + 1

�∑
m=−�

∫
d3k z�(k 1

2
)z�(k)Y ∗

�m(k̂ 1
2
)Y�m(k̂) = 1

2π

∫
d3kP�(k+ · k−)z�(k+)z�(k−), (B8)

where k 1
2

= k + 1
2 q and k± was already defined in Eq. (4.2). This final result was already given in Eq. (4.1).

APPENDIX C: EXTRACTION OF F3 AND F4

FROM DATA FOR GM AND T20

Here I present details of how the unknown off-shell form
factors F3 and F4 are determined from a simultaneous fit
to the Sick GA “data” for GM and T20. To this end, recall
the expansion (1.19). Dropping explicit mention of the Q2

arguments, this expansion is rewritten in a form that isolates
the F3 and F4 contributions

GX = GX,0 +
4∑

i=3

FiDX,i, (C1)

where GX is the value of form factor at each Sick GA point
GX = GX (Q2

i ). A similar expansion for the parameter y of
Eq. (1.25) that fixes T20 can be written

3yGC = 2η GQ →
4∑

i=3

Fiai = a0, (C2)

where

ai = 3yDC,i − 2η DQ,i i = {3, 4},
a0 = 2η GQ,0 − 3yGC,0. (C3)

Solving Eqs. (C1) (with X → M) and (C2) (for i = {3, 4} and
j = {4, 3} �= i) gives

Fi = 1

Di j
[a0DM, j + a j (GM,0 − GM )], (C4)

where

Di j = aiDM, j − a jDM,i = −Dji. (C5)

Note that when y → ±∞, Fi becomes

Fi → GC,0DM, j + DC, j (GM − GM,0)

DM,iDC, j − DC,iDM, j
, (C6)

independent of the sign of y, ensuring that the Fi are continu-
ous at the point where T20 = −1/

√
2.

Assuming there are no errors other than the error δGM in
GM and δy in the y parameter, the errors in F3 and F4 can be

024001-29



FRANZ GROSS PHYSICAL REVIEW C 101, 024001 (2020)

obtained by expanding Eqs. (C1) and (C2) to first order, giving

4∑
i=3

δFi DM,i = δGM ,

4∑
i=3

δFi ai = −3δy(GC,0 + F3DC,3 + F4DC,4)

≡ −3δy b0, (C7)

with the solution

δFi = − 1

Di j
(a jδGM + 3δyDM, jb0)

→
∣∣∣∣ 1

Di j

∣∣∣∣(|a jδGM | + |3δyKjMb0|], (C8)

where the second expression ensures that each error is treated
as a positive contribution.

APPENDIX D: EXTRACTION OF GEn FROM DATA FOR A

While it is straightforward to extract the predicted values
of GEn from the data for A, it is still useful to outline here
the way in which this was done. I begin by isolating the
GEn contribution from the expansion (1.19). Dropping the Q2

arguments, the new expansion is

GX = GE DX,E + GMDX,M +
4∑

i=3

FiDX,i ≡ GE J1X + J0X ,

(D1)

where J1X = DX,E , J0X is defined by the expression, and, as
before, all nucleon form factors contributing to the deuteron
are isoscalar, so that here GE = GEs = GE p + GEn. (In this
section, GM denotes the nucleon magnetic form factor, and
not the deuteron.) The first two on-shell nucleon form factors,
F1 and F2 are related to the nucleon electric and magnetic form
factors in the usual way

GE (Q2) = F1(Q2) − τF2(Q2),

GM (Q2) = F1(Q2) + F2(Q2), (D2)

where τ = Q2/(4m2). Hence,

DX,1(Q2) = DX,E (Q2) + DX,M (Q2),

DX,2(Q2) = DX,M (Q2) − τDX,E (Q2), (D3)

or, in terms of the calculated body form factors,

DX,E = DX,1 − DX,2

1 + τ
, DX,M = τDX,1 + DX,2

1 + τ
. (D4)

This defines all of the coefficients in the expansion (D1).
The quadratic dependence of A on GE can now be ex-

pressed in a compact form

A = G2
EC2 + GEC1 + C0. (D5)

The coefficients Ci (all functions of Q2) are

C2 = J2
1C + 8

9η2J2
1Q + 2

3ηJ2
1M ,

C1 = 2J1CJ0C + 16
9 η2J1QJ0Q + 4

3ηJ1MJ0M ,

C0 = J2
0C + 8

9η2J2
0Q + 2

3ηJ2
0M . (D6)

The solution to (D5) is

GE = 1

2C2

(√
4C2(A − C0) + C2

1 − C1
)
, (D7)

where the sign of the square root was chosen to give a positive
GE when GM → 0.

The error in GE comes from both the error in A and the
errors in F3 and F4. Since F3 and F4 contribute only to J0X , its
contribution to the error is contained in the factors

δJ0X =
4∑

i=3

δFiDX,i, (D8)

which contribute the following errors to the Ci

δC0 = 2
[
J0CδJ0C + 8

9η2J0QδJ0Q + 2
3ηJ0MδJ0M

]
,

δC1 = 2
[
J1CδJ0C + 8

9η2J1QδJ0Q + 2
3ηJ1MδJ0M

]
, (D9)

combining these errors with the experimental error in A gives
the following estimate for the error in GE :

δGE = δA − δC0 − δC1GE√
4C2(A − C0) + C2

1

. (D10)

With these results in hand, I find the solution for GEn from
the solution for GE by subtracting GE p, which is also assumed
to have no error. Hence, δGEn = δGE as given in (D10).

APPENDIX E: REDEFINITIONS OF THE C TRACES

In Refs. II and III, the arguments for the B and C traces
were chosen differently. This is inconvenient for the numerical
calculations performed in this paper and can be easily avoided
by some redefinitions. In the case when the outgoing particle
1 is on shell, momenta used for the B were

k̃B
+ = {

E+, k + 1
2 q
}
, k̃B

− = {E+, k − 1
2 q
}
,

p̃B
− = {D0 − E+,−k}, (E1)

while for the C traces I previously used

kC
+ = {Ek, kC}, kC

− = {Ek, kC − q},
pB

+ = {
D0 − Ek,−kC + 1

2 q
}
, (E2)

where here, to avoid confusion, I labeled the k momenta used
for the C diagrams by kC and therefore in these expressions
Ek ≡ EkC .

The C momenta can be transformed into the B momenta by
the simple transformation

kC → k + 1
2 q. (E3)

In this Appendix, I show the effect of this transformation on
the formulas for the C traces published in Ref. II.

First, consider the argument shifts for the C traces. In
Ref. [2], the arguments of the Ki are shifted to

R̂2
− = 1

m2
d

[
D0Ek + 1

2
(kCz − Q) Q

]2

− (m2 + 2kCzQ − Q2)

→ 1

m2
d

[
D0E+ + 1

2

(
kz − 1

2
Q

)
Q

]2

− (m2 + 2kzQ),
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R̂−
0 = 1

2md
[2D0Ek + (kCz − Q) Q]

→ 1

2md

[
2D0E+ +

(
kz − 1

2
Q

)
Q

]
, (E4)

while the argument of the outgoing generic on-shell Z+ is

R2
+ = 1

m2
d

[
D0Ek − 1

2
kCzQ

]2

− m2

→ 1

m2
d

[
D0E+ − 1

2

(
kz + 1

2
Q

)
Q

]2

− m2. (E5)

If the outgoing state in the B traces has particle 1 on shell, so
that k0 = E+, these expressions are identical to the argument
shifts given in Eq. (A19), showing that the transformation (E3)
transforms the shifts for C into those for B.

The expressions for the C traces depend on the coeffi-
cients defined in Table IX of Ref. [2] (some of which are
defined in Tables VI and VII of that reference). The only
coefficients that depend on k are the a’s, with transforma-
tions summarized in Table XV, and the coefficients c′

0, cq,
and the particle 1 momentum squared, p2

+, all of which
transform to

c′
0 = D0Ek → D0E+,

cq = −QkCz → −Q

(
kz + 1

2
Q

)
,

p2
+ = (P+ − k)2 = m2

d + m2 − 2D0Ek + QkCz

→ m2
d + m2 − 2D0E+ + Q

(
kz + 1

2
Q

)
. (E6)

Finally, the volume integral transforms to∫
k

≡
∫

d3kC

(2π )3

m

Ek
→
∫

d3k

(2π )3

m

E+
=
∫

k

Ek

E+
, (E7)

where in the final expression, I return to the definition Ek =√
m2 + k2 used everywhere.
With these substitutions, the same four-vector k+ =

{E+, k + 1
2 q} is used for both the C and B+ traces.

APPENDIX F: CORRECTED TREATMENT OF THE
ANGULAR INTEGRALS WHEN x10 �= 1

Evaluation of the angular integrals was discussed in detail
in Appendix B of Ref. [15], but the discussion there is not

accurate for cases when x10 �= 1. In that paper, we introduced
the variable x0 to scale for the off-shell energy dependence to
the relative energy, where

p0 = x0
(
Ep − 1

2W
)

(F1)

(cf. Eq. (A16) of Ref. [15]). However, since the relative energy
p0 can be large when p → 0, the quantity x0 defined in this
way can also become quite large, making numerical calcula-
tions using this quantity difficult to carry out accurately. In this
paper, I have chosen to scale the off-shell energy of particle 1,
using the relation

p10 = x10Ep, p20 = W − x10Ep. (F2)

It follows immediately that the relative energy expressed in
terms of x10 is

p0 = 1
2 (p10 − p20) = x10Ep − 1

2W (F3)

so that

x0 = 2x10Ep − W

2Ep − W
. (F4)

This correspondence can be used quite successfully in many
places, but for the discussion of the angular integrals it is best
to work directly with x10.

As an example, consider how the treatment of the direct
terms must be modified when the both nucleons are off shell.
Now the the momentum transfer depends on x10

q2(x10) = (x10Ep − Ep′ )2 − p2 − p′2 + 2pp′z

= 2pp′(z0 − z), (F5)

where I assume that the initial state (with momentum p′) has
particle 1 on shell. This momentum transfer is zero at the
critical cosine

z0 = p2 + p′2 − (x10Ep − Ep′ )2

2pp′ . (F6)

The angular integrals are strongly peaked at z = z0. When
x10 = 1, z0 � 1 and approaches 1 only when p → p′. This
singularity can be handled by the methods used in Ref. [15].
However, for x10 �= 1, z0 can be less than 1 and the angular
integrals can peak inside of the region of integration. This
requires a mapping of the type used for the exchange terms,
described in Appendix B3, Eq. (B9) of Ref. [15].

TABLE XV. These vector products used in the definitions of the Cn,i traces, originally defined in Table VI in Ref. [2], are redefined as a
consequence of the transformation (E3).

a’s n = 1
(
J0

00

)
n = 2 (J0

+−) n = 3+ (J+
+0) n = 3− (J−

0−)

a+ (EkQ − 2kCzD0 )/(2md ) 1√
2
(kx − iky ) 1√

2
(kx − iky ) (EkQ − 2kCzD0)/(2md )

→ (E+Q − (2kz + Q)D0)/(2md ) → (E+Q − (2kz + Q)D0 )/(2md )
a− −(EkQ + 2kCzD0 )/(2md ) 1√

2
(kx + iky ) −(EkQ + 2kCzD0 )/(2md ) 1√

2
(kx + iky )

→ −(E+Q + (2kz + Q)D0 )/(2md ) → −(E+Q + (2kz + Q)D0 )/(2md )
a0 Ek → E+ Ek → E+ 1√

2
(kx + iky ) − 1√

2
(kx − iky )
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APPENDIX G: ERRATA IN REF. II

There are errors in the magnetic moment results reported in Ref. II [4]. As I did in Ref. II, here I present the difference between
the expansion of the relativistic calculation and μs = 0.880 = 1 + κs to obtain the “corrections” to the magnetic moment
coming from the relativistic calculation. Multiplying the normalization condition by 0.880, written in the form (approximating
Ek − Md → −m and Md → 2m in the a(p2) terms)

0.880 = (1 + κs)
∫ ∞

0
k2dk

{
u2 + w2 + v2

t + v2
s + 4a(p2)m

[
δk (u2 + w2) − 2m(v2

t + v2
s )
]

− u[δ+û]k0 − w[δ+ŵ]k0 + vt [δ−v̂t ]k0 + vs[δ−v̂s]k0 − uu(2) − ww(2) − vtv
(2)
t − vsv

(2)
s

}
. (G1)

and subtracting this from the predictions of the (A) + (A(2)) + (B) diagrams (multiplied by 1/2) gives the following corrections
to the magnetic moment:

	μd =
∑

X=A,B

∫ ∞

0
k2dk

1

2

{
δμX

NR + δμX
Rc

+ δμX
h′ + δμA

V2
+ δμB

V1
+ δμA

int + δμX
P

}
, (G2)

where the expression reflects the fact that the only nonzero contributions to δμV1 (δμV2 ) come from the (B) [(A)(2))] diagrams
and δμB

int, while not zero, is of lower order and can be dropped. The nonzero contributions are therefore

δμA
NR = δμB

NR = −3

4
(1 + 2κs)w2,

δμA
Rc

= −
[

Ek − m

6Ek

]
[2(1 + κs)u2 +

√
2(1 − 2κs)uw − (2 − κs)w2],

δμB
Rc

= −κs

[
Ek − m

6Ek

]
(2u2 + w2 − 2

√
2uw),

δμA
h′ = −a(p2)m

{
(1 + 2κs)

(
3δkw

2 − 4m v2
s

)− 4κsmv2
t + 6

√
2m vtvs

}
,

δμB
h′ = −a(p2)m

{
(1 + 2κs)

[
3δkw

2 − 2m
(
v2

t + 2v2
s

)]− 8m
√

2(1 + κs)vtvs
}
,

δμA
V2

= 3

2
(1 + 2κs)ww(2) + 1

2
(5 + 6κs)vtv

(2)
t + (3 + 2κs)vsv

(2)
s +

√
2κs
(
vtv

(2)
s + vsv

(2)
t

)
− m√

6

{
u(2)(v′

t −
√

2v′
s) + w(2)(

√
2v′

t + v′
s) − v

(2)
t (u′ +

√
2w′) + v(2)

s (
√

2u′ − w′)

+1

k

[
2u(2)(vt −

√
2vs) − w(2)(

√
2vt + vs) − 3w

(√
2v

(2)
t + v(2)

s

)]}
,

δμB
V1

= (1 + κs)
[
3w[δ+w]k0 − vt [δ−vt ]k0 − 2vs[δ−vs]k0 −

√
2(vt [δ−vs]k0 + vs[δ−vt ]k0 )

]
,

δμA
int = − m√

6

[
u′(vt −

√
2vs) + w′(

√
2vt + vs) + 3

k
w(

√
2vt + vs)

]
,

δμA
P = −1

4
(5 + 6κs)v2

t − 1

2
(3 + 2κs)v2

s −
√

2κsvtvs,

δμB
P = 1

4

[− (3 + 2κs)
(
v2

t + 2v2
s

)+ 2
√

2(1 − 2κs)vtvs
]
. (G3)

Combining these terms allows us to compare then with Eq. (5.6) of Ref. II. The sums (divided by 2) are

μRc =
∫ ∞

0
k2dk

[
Ek − m

Ek

]{
−1

3
μs

(
u2 −

√
2uw + 1

2
w2

)
+ 1

6
u2 − 5

6
√

2
uw + 1

3
w2

}
,

μh′ =
∫ ∞

0
k2dk a(p2)m

{
2μs
[−3δkw

2 + 2m
(
v2

t +
√

2vtvs + 2v2
s

)]+ 3δkw
2 − 3m

(
v2

t +
√

2vtvs + 4

3
v2

s

)}
,

μV2 =
∫ ∞

0

k2dk

2

{
(2μs − 1)

3

2
ww(2) + μs

(
3vtv

(2)
t + 2vsv

(2)
s

)+ (μs − 1)
√

2
(
vtv

(2)
s + vsv

(2)
t

)− 1

2
vtv

(2)
t + vsv

(2)
s − m′(2)

}
,

μV1 =
∫ ∞

0
k2dk μs

{
3

2
w[δ+w]k0 − 1

2
vt [δ−vt ]k0 − vs[δ−vs]k0 − 1√

2
(vt [δ−vs]k0 + vs[δ−vt ]k0 )

}
,
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μint = − m

2
√

6

∫ ∞

0
k2dk

{
u′(vt −

√
2vs) − w(

√
2vt + vs)′ + 1

k
w(

√
2vt + vs)

}
,

μP =
∫ ∞

0
k2dk

{
−μs

(
9

8
v2

t +
√

2vtvs + 5

4
v2

s

)
+ 1

4
vt (vt + 5

√
2vs)

}
. (G4)

Note that μNR, μV2 , and μint agree with Ref. II, but the others
do not. The μχ terms have been found to be negligible and
were not recalculated.

In the process of computing the form factors, the fol-
lowing errata were discovered in the equations reported in
Ref. II:

(1) Eq. (C3) should read Z̃± = Z̃ − (Ek − k0)Z̃k0 .
(2) In Eq. (B1),

(i) the coefficient of the D+D− term should be di-
vided by an additional factor of 2 and

(ii) the coefficient of the C+C− term should be divided
by an additional factor of 2m2.

(3) In Eq. (B2),
(i) in the coefficient of C+A−, the term −2b0a+b+

should be replaced by −2b0a−b+,
(ii) a closing parenthesis,), is missing from the coef-

ficient of the C+D− term; it belongs just before
−z+, so that the coefficient of b0 includes the b+
and a+ terms but not the z+ term,

(iii) a similar closing parenthesis,), is missing from
the coefficient of the D+C− term; it belongs just
before −z−,

(iv) in the coefficient of C+C−, the coefficient of
(4m2 + m2

d ) is (b+z− + b−z+), and not (b+z− +
b−c+).

(4) In Eq. (B.7),
(i) the HI terms are divided by m4 (not m2) and

(ii) in the coefficient of the F̃+F̃− term replace (2X4 −
X5) by (X4 − X5) and in the coefficient of the
H̃+H̃− term replace X1X5 by X1(X5 + X4).

(5) In Eq. (B10),
(i) the GK2 terms should be divided by m2 and

(ii) divide the entire trace by an extra factor of 2m (so
the coefficient in front is ζB/(4m2), not ζB/(2m).

These errors arose when the original MATHEMATICA formu-
las were transcribed into text. Fortunately, the results of Refs.
II and III were derived directly from the correct MATHEMAT-
ICA formula and are therefore unaffected by these errors.
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