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Beyond the charge radius: The information content of the fourth radial moment
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Measurements of atomic transitions in different isotopes offer key information on the nuclear charge radius.
The anticipated high-precision experimental techniques, augmented by atomic calculations, will soon enable
extraction of the higher order radial moments of the charge density distribution. To assess the value of such
measurements for nuclear structure research, we study the information content of the fourth radial moment 〈r4〉
by means of nuclear density functional theory and a multiple correlation analysis. We show that 〈r4〉 can be
directly related to the surface thickness of nuclear density, a fundamental property of the atomic nucleus that is
difficult to obtain for radioactive systems. Precise knowledge of these radial moments is essential to establish
reliable constraints on the existence of new forces from precision isotope shift measurements.
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Introduction. A precise knowledge of the electron-nucleus
interaction in atoms can provide access to physical phenom-
ena relevant to a wide range of energy scales. High-precision
measurements of atomic transitions, for example, offer com-
plementary information to our understanding of the atomic
nucleus, the study of fundamental symmetries, and the search
for new physics beyond the standard model of particle physics
[1–4].

Varying the number of neutrons induces changes in the
charge density distribution along the isotopic chain, causing
tiny perturbations in the energies of their atomic electrons,
known as isotope shifts. Measurements of the corresponding
frequencies, typically of the order of MHz, allow changes
in the root-mean-squared (rms) nuclear charge radii to be
extracted [5,6]. Extending these measurements for isotopes
away from stability is of marked and growing interest for
low-energy nuclear physics, as the data on the nuclear size
are essential for our understanding of the nuclear many-body
problem [5,7–10]. In recent years, the interest in precision iso-
tope shift measurements has increased significantly. Perform-
ing measurements across long isotope chains that are readily
available at state-of-the-art radioactive ion beam facilities has
the potential to constrain the existence of new forces and
hypothetical particles with unprecedented sensitivity [2–4,11–
14]. This has motivated the rapid progress of experimental
techniques which are continuously pushing the frontiers of
precision measurements. Quantum logic detection schemes
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have achieved sub-MHz precision [15], and recent develop-
ments such as spin squeezing [16] and quantum entanglement
[17] are now able to reach sub-Hz precision. This level of
precision offers sensitivity not only would allow us to explore
new physics but would also provide access to nuclear observ-
ables that have so far been elusive, such as the higher order
radial moment 〈r4〉 [18,19] and the nuclear dipole polarizabil-
ity [13]. Precise knowledge of these nuclear properties will
open up exciting opportunities in nuclear structure research
and hence is essential to establish reliable constraints in the
exploration of new physics [13,14]. In addition to the progress
of high-precision experiments, the continued development of
atomic and nuclear theory has played a crucial role in extract-
ing nuclear structure and fundamental physics observables
from measurements [18–20].

The isotope shift, �νi, between an isotope with mass, A,
and an isotope A′, can be expressed by a product of nuclear
and atomic factors as

�νAA′
i = KMS,i

A − A′

AA′ +
∑

k

Fi,kδ〈r2k〉AA′
, (1)

where δ〈r2k〉AA′
is the difference between the nuclear radial

moments of order 2k. The atomic part is factorized in the
constants KMS,i and Fi, referred to as the mass shift and the
field shift, respectively. Assuming a negligible contribution
from k > 1 moments, isotope shifts from different atomic
transition i and j, �νAA′

i versus �νAA′
j , should follow a linear

relation known as the King plot [21]. The nonlinearity of the
King plot can be due to the contribution from k > 1 moments.
It can also indicate the presence of new phenomena [2–4,11–
13]. Therefore, the estimation of the effect higher order terms
is important to provide bounds on physics beyond the standard
model. As discussed in Refs. [18,19], taking advantage of the
improved experimental precision and atomic calculations with
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well-controlled uncertainty quantification for atomic states
will enable us to extract highly accurate atomic line field shifts
and higher order radial moments. To assess the impact of the
anticipated data on our understanding of atomic nuclei, in this
Rapid Communication, we employ density functional theory
to study the k = 2 moment 〈r4〉 of nuclear charge distribution.

Nuclear charge distribution characteristics. The gross fea-
tures of the nuclear charge distribution ρ(r) and its charge
form factor F (q) can be described by form parameters: radial
moments

rn ≡ n
√

〈rn〉 =
(∫

d3r rn ρ(r)∫
d3r ρ(r)

)1/n

, (2)

diffraction radius R, and surface thickness σ . The latter char-
acterizes the density diffuseness around the nuclear surface.
The rms charge radius is given by the second moment r2.
The diffraction radius is determined from the first zero of
the form factor F (q) (the diffraction minimum). It represents
a box-equivalent radius. The surface thickness is determined
from the height of the first maximum of F (q). The relations
between spatial geometrical parameters and the form factor
are provided by the Helm model [22], which represents the
nuclear density profile by a folding of a box distributions
(having radius R) with a Gaussian of width σ . For details,
see Refs. [23–26] and the Supplemental Material [27]. Within
the Helm model, r2 can be expressed in terms of R, and σ :

r (H)
2 =

√
3
5 R2 + 3σ 2. In practice, this relation is not exactly

fulfilled and the deviation characterizes the halo of the charge
distribution [28–30]:

h = r2 − r (H)
2 . (3)

In practice, the halo is a small positive quantity [28]. Diffused
charge distributions associated with loosely bound protons
in proton-rich isotopes produce appreciable values of h. To
give an idea about the typical values and trends, we show
in Fig. 1 the charge density form parameters for the chain
of Sn isotopes calculated with two nuclear energy density
functionals: the Skyrme parametrization SV-min [31] and the
Fayans functional Fy(�r,HFB) [10,27,32]. (For the treatment
of pairing in natural orbital representation in Fy(�r,HFB)
see Refs. [33–35].) Both functionals have been optimized
with respect to the pool of empirical data from [31], with
some additional charge radii data used in the optimization of
Fy(�r,HFB). The fits allow us also to deduce the statistical
uncertainties on the predicted observables by standard linear
regression methods [36]. The uncertainties are consistent with
the adopted errors for the observables, which are ±0.04 fm
for R and σ and ±0.02 fm for r2. These errors do not contain
the experimental uncertainties but reflect the capability of the
model to reproduce observables. A measurement is expected
to provide new information if the experimental uncertainty
is safely below the model error. The values of the form
parameters show the expected trends [28]. Namely, the proton
radii shrink systematically with increasing neutron number
because of the increasing proton binding. The pronounced
kink at the N = 82 shell closure seen in all form parame-
ters is due to reduced neutron pairing [9]. The two density
functionals used deliver similar results in the domain of
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FIG. 1. Form parameters along the Sn chain (Z = 50) computed
with energy density functionals SV-min and Fy(�r) together with
their statistical uncertainties. Shown are radial moments r2 and r4 (a),
surface thickness σ (b), and diffraction radii R (c). To better visualize
the local trends, radial moments and diffraction radii are scaled by
A1/3. The magic neutron number N = 82 is marked.

well-bound nuclei while developing slight differences at ex-
otic proton-rich nuclei close to N = 50 and neutron-rich
nuclei with N > 82. This is entirely anticipated: Form param-
eters of stable nuclei, being part of the optimization data pool,
are bound to be well reproduced. The differences between
SV-min and Fy(�r,HFB) in neutron-rich isotopes are almost
exclusively generated by the gradient-pairing term of the
Fayans functional. At the neutron-rich side, the difference for
the diffraction radii R can amount up to about 0.1 fm, clearly
above the error bars.

Statistical analysis. The information content of r4 is eval-
uated using standard statistical correlation analysis as in
Refs. [9,37]. The question we ask is to what extent r4 is
already determined by the other form parameters and, vice
versa, to what extent information on r4 improves our knowl-
edge of R and σ . The answer can be quantified in terms of
statistical correlations. Those between two observables A and
B are described by the coefficient of determination CoD(A, B)
deduced from the covariance measure. Furthermore, we
inspect multiple correlation coefficients MCC(A1, ..., An; B),
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FIG. 2. Top: CoD and MCC coefficients between the standard
form parameters and r4 for a selection of spherical nuclei. Bottom:
information content of r2 and r4 in terms of MCCs between r and r4

with the form parameters R or σ .

which characterize the correlations between a group of ob-
servables A1, ..., An with B [38]. The MCC is reduced to the
CoD if n = 1. The CoDs and MCCs range from 0 to 1, where
0 implies that the observable B is uncorrelated with the group
of observables Ai and the value of 1 means full correlation.

The results of our correlation analysis are shown in Fig. 2.
The upper panel explores the prediction of r4 for known R,
σ , and r2 for a set of spherical nuclei, which have very small
halo. The diffraction radius alone has little predictive value
for r4. This is not surprising as R carries no information on
surface diffuseness, which strongly impacts the fourth radial
moment. The combination of R and σ provides a very good
95% estimate of r4. Finally, the group of R and σ , and r2 (or
h) manages to determine r4 fully.

The lower panel of Fig. 2 explores whether a simultaneous
measurement of r2 and r4 can determine R or σ . The MCCs
show that the diffraction radius is indeed very well determined
by r2 and r4, especially for heavy nuclei. The surface thickness
is also well predicted, although not as perfectly as R, typically
at a 90% level.

Helm model analysis. Statistical analysis, although well
defined and extremely useful, remains largely a black box. To
gain more physics insights, we study interrelations between
the form parameters as mediated by the Helm model, which is
commonly used to inform nuclear energy density functionals
about experimental charge form factor. We checked some al-
ternative models with more realistic exponential asymptotics
[25], and after finding no significant differences in the context
of our work, we decided to stick to the Helm model as the
simplest one. Given r2 and r4, we deduce closed approximate
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FIG. 3. Helm-model SV-min predictions (4)–(7) for σ (top) and
R (bottom) for the chain of Sn isotopes. The values of σ and R
extracted from the charge density form factor are also shown together
with their uncertainties.

expression for σ and R, again denoted by an upper index
(H) to distinguish them from the exact values; see Ref. [27]
for details. For more compact expressions, we introduce the

rescaled geometric radii as R(g)
n = n

√
n+3

3 rn
n [28].

In terms of R(g)
2 and R(g)

4 the Helm-model values of diffrac-
tion radius and surface thickness are [27]

R(H) = 4

√
7

2
R(g)

2

4 − 5

2
R(g)

4

4
, (4)

σ (H) =

√√√√√1

5
R(g)

2

2

⎛
⎝1 −

√√√√1 − 5

2

R(g)
4

4 − R(g)
2

4

R(g)
2

4

⎞
⎠. (5)

Another set of useful relations can be obtained by noticing
that σ 2/R2 is a small parameter, which is around 0.02–0.03
(see Fig. 1). By linearizing the above relations with respect to
σ 2/R2, one obtains the following approximate relations:

R(H),lin ≈ R(g)
2 + 7

2

(
R(g)

4 − R(g)
2

)
, (6)

σ (H),lin ≈
√(

R(g)
4 − R(g)

2

)
R(g)

2 , (7)

R(g)
4 − R(g)

2

R(g)
2

≈
(

σ (H),lin

R(H),lin

)2

. (8)

Figure 3 compares the Helm model values of R and σ given
by Eqs. (4)–(7) to the exact values directly obtained form
the charge density form factor in the Sn isotopic chain (for
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FIG. 4. Relative difference of Helm-model predictions (4)–(7) from the form factor values of R (lower) and σ (upper) for the isotopic
chains of Ca (a), Sn (b), and Pb (c) computed with SV-min.

Ca and Pb chains, see Ref. [27]). The predictions based on
r2 and r4 are fairly accurate. Indeed, for both R and σ , the
deviations of the Helm estimates from the form factor values
are close to the computed uncertainties. Particularly good is
the agreement for R as the deviation between R(H) and R,
around 0.02 fm is smaller than the adopted error of diffraction
radii (0.04 fm). Interestingly, the linearized σ (H),lin performs
exceptionally well except for the most proton-rich isotopes, in
which the appreciable halo feature appears.

Figure 4 shows the relative differences (in %) between
form parameters R and σ and the Helm-model predictions for
three different magic chains: Ca, Sn, and Pb [see Ref. [27] for
the absolute differences in fm, and for additional information
on (σ/R)2]. It is seen that the quality of the Helm-model
predictions improves significantly with increasing system size
(see Ref. [39]). The density distributions of Ca isotopes
are strongly impacted by surface effects and thus harder to
describe by the simple Helm parametrization, while the Pb
isotopes are volume dominated; hence, they are well approx-
imated by the Helm model. But the general features observed
before for the Sn chain remain: R is better predicted than
σ , and the linearized prediction for σ performs unexpectedly
well for all isotopic chains (though at different levels of
overall quality).

Altogether, we see that the Helm-model analysis nicely
corroborates the findings from statistical analysis. Figure 4
contains one more piece of information: It compares the
differences with multiples of the halo parameter (3). It is
interesting to see that the differences R(H) − R and σ (H) − σ

are proportional to h. This observation is fairly consistent
within the model. Zero halo means that the exact distribu-
tion is described fully by the Helm model. In this case,
the differences would be zero. A mismatch leads to a finite
halo and the same mismatch propagates to the predictions.
This suggests a way to develop model-corrected predictions
for R and σ from rn measurements. For a given isotopic
chain, the halos follow regular trends which can be tracked in

density-functional calculations. Namely, one can correct the
Helm-model predictions by predicted halo values to obtain
the form parameters R and σ in exotic nuclei from rn mea-
surements with well-defined uncertainties that are well below
those of the Helm model.

Conclusions. In this study, we assessed the impact of
precise experimental determination of 〈r4〉 on nuclear struc-
ture research. By means of statistical correlation analysis,
we demonstrated that the diffraction radius R and surface
thickness σ are well determined by 〈r2〉 and 〈r4〉, especially
for heavy nuclei. Using the Helm model for the charge density,
we could develop simple and robust relations for predicting R
and σ from given 〈r2〉 and 〈r4〉. A higher predictive power
is obtained when using 〈r2〉 and 〈r4〉 as input to fits of self-
consistent model and retrieving R and σ from them. This re-
sult was obtained by studying a broad selection of semimagic
spherical nuclei. We expect that our conclusions apply for
moderately deformed nuclei because it is a spherically aver-
aged (monopole) charge density that is used in the analysis
of the isotope shifts. The situation is less clear, however, for
exotic topologies of charge density as, e.g., in nuclei with
an appreciable spherical depression. In such cases, the Helm
model needs to be modified to account for new effects [37,40].

It is to be noted that for the nuclei for which the charge
density/form factor is experimentally known in the large
range of r, the values of r4 are well constrained by electron
scattering data. In this context, we note that the values of R
and σ , and often also r2, are determined from the charge form
factor at low momentum transfer q, typically q < 6/A1/3 fm−1

[23].
Our findings are well aligned with the recent experimental

progress [1,5,15–18,41–43]. We hope these results will pro-
vide a strong motivation for the next generation of precision
experiments at radioactive beam facilities worldwide. Exper-
imental determination of 〈r4〉 would be extremely valuable
for nuclei where the form factor data are not available. Since
electron scattering experiments on unstable nuclei are highly
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demanding, if not impossible, precise measurements of
atomic transitions would offer an alternative path to surface
properties of unstable nuclei. Finally, as shown in Fig. 1, in-
formation on 〈r4〉 would be very useful for better constraining
current energy density functionals.

Acknowledgments. This material is based upon work sup-
ported by the US Department of Energy, Office of Science,
Office of Nuclear Physics under Awards No. DE-SC0013365
(Michigan State University) and No. DE-SC0018083 (NU-
CLEI SciDAC-4 Collaboration).

[1] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball,
A. Derevianko, and C. W. Clark, Rev. Mod. Phys. 90, 025008
(2018).

[2] J. C. Berengut, D. Budker, C. Delaunay, V. V. Flambaum, C.
Frugiuele, E. Fuchs, C. Grojean, R. Harnik, R. Ozeri, G. Perez,
and Y. Soreq, Phys. Rev. Lett. 120, 091801 (2018).

[3] Y. V. Stadnik, Phys. Rev. Lett. 120, 223202 (2018).
[4] C. Delaunay, C. Frugiuele, E. Fuchs, and Y. Soreq, Phys. Rev.

D 96, 115002 (2017).
[5] R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N.

Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G.
R. Jansen et al., Nat. Phys. 12, 594 (2016).

[6] P. Campbell, I. Moore, and M. Pearson, Prog. Part. Nucl. Phys.
86, 127 (2016).

[7] M. Hammen, W. Nörtershäuser, D. L. Balabanski, M. L.
Bissell, K. Blaum, I. Budincevic, B. Cheal, K. T. Flanagan,
N. Frömmgen, G. Georgiev, C. Geppert, M. Kowalska, K.
Kreim, A. Krieger, W. Nazarewicz, R. Neugart, G. Neyens, J.
Papuga, P.-G. Reinhard, M. M. Rajabali, S. Schmidt, and D. T.
Yordanov, Phys. Rev. Lett. 121, 102501 (2018).

[8] B. A. Marsh, T. Day Goodacre, S. Sels, Y. Tsunoda, B. Andel,
A. N. Andreyev, N. A. Althubiti, D. Atanasov, A. E. Barzakh,
J. Billowes et al., Nat. Phys. 14, 1163 (2018).

[9] C. Gorges, L. V. Rodríguez, D. L. Balabanski, M. L. Bissell,
K. Blaum, B. Cheal, R. F. Garcia Ruiz, G. Georgiev, W. Gins,
H. Heylen, A. Kanellakopoulos, S. Kaufmann, M. Kowalska,
V. Lagaki, S. Lechner, B. Maaß, S. Malbrunot-Ettenauer, W.
Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, P.-G.
Reinhard, S. Sailer, R. Sánchez, S. Schmidt, L. Wehner, C.
Wraith, L. Xie, Z. Y. Xu, X. F. Yang, and D. T. Yordanov, Phys.
Rev. Lett. 122, 192502 (2019).

[10] A. J. Miller, K. Minamisono, A. Klose, D. Garand, C. Kujawa,
J. D. Lantis, Y. Liu, B. Maaß, P. F. Mantica, W. Nazarewicz
et al., Nat. Phys. 15, 432 (2019).

[11] C. Delaunay, R. Ozeri, G. Perez, and Y. Soreq, Phys. Rev. D 96,
093001 (2017).

[12] C. Frugiuele, E. Fuchs, G. Perez, and M. Schlaffer, Phys. Rev.
D 96, 015011 (2017).

[13] V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, Phys. Rev.
A 97, 032510 (2018).

[14] K. Mikami, M. Tanaka, and Y. Yamamoto, Eur. Phys. J. C 77,
896 (2017).

[15] F. Gebert, Y. Wan, F. Wolf, C. N. Angstmann, J. C. Berengut,
and P. O. Schmidt, Phys. Rev. Lett. 115, 053003 (2015).

[16] B. Braverman, A. Kawasaki, E. Pedrozo-Peñafiel, S. Colombo,
C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu,
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