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Neutron stars are among the densest known objects in the universe and an ideal laboratory for the strange
physics of supercondensed matter. While the simultaneous measurements of mass and radius of nonrotating
neutron stars may impose constraints on the properties of the dense nuclear matter, the observation and study
of maximally rotating ones, close to the mass-shedding limit, may lead to significantly further constraints.
Theoretical predictions allow neutron stars to rotate extremely fast (even more than 2000 Hz). However, until
this moment, the fastest observed rotating pulsar has a frequency of 716 Hz, much lower compared to the
theoretical predictions. There are many suggestions for the mechanism which lead to this situation. In any
case, the theoretical study of uniformly rotating neutron stars, along with accurate measurements, may offer
rich information concerning the high-density part of the equation of state. In addition, neutron stars through their
evolution may provide us with a criterion to determine the final fate of a rotating compact star. Sensitivity of bulk
neutron stars properties on the equation of state at the mass-shedding limit are the main subject of the present
study.
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I. INTRODUCTION

Neutron stars are considered extraordinary astronomical
laboratories for the physics of nuclear matter because, from
an astrophysical point of view, they are objects with the
most fascinating constitution of energy and matter in the
Universe [1–3]. To be more specific, the observation of mass,
as well as the radius, of slowly rotating (or nonrotating)
neutron stars may provide us with useful constraints on the
equation of state (EoS) of nuclear matter. In addition, neutron
stars, due to their compactness, may rotate very fast compared
to other astrophysical objects [4]. Henceforth, measurements
of specific properties (including mainly the mass and radius,
frequency, moment of inertia, quadrupole moment, etc.) of
maximally rotating neutron stars, close to the mass-shedding
limit (hereafter maximally rotating corresponds to the config-
uration close or at the Keplerian frequency) may lead to robust
constraints on the EoS as well as on the constitution of nuclear
matter at high densities.

The determination of the maximum neutron star mass
is a long-standing issue in astrophysics since it is directly
related with the identification of black holes and the un-
known behavior of the nuclear matter at high densities.
Until this moment, the most massive neutron stars mea-
surements (in solar masses, M�) include (a) PSR J1614-
2230 (M = 1.97 ± 0.04 M�) [5] (or from recent elaboration
of the observation M = 1.928 ± 0.017 M� [6] and M =
1.908 ± 0.016M� [7]), (b) PSR J0348+0432 (M = 2.01 ±
0.04 M�) [8], (c) PSR J0740+6620 (M = 2.14+0.10

−0.09 M�) [9],
and (d) PSR J2215+5135 (M = 2.27+0.17

−0.15 M�) [10]. In addi-
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tion, there is a detailed study concerning the spin frequency
of rotating neutron stars (for a review see Refs. [11]). The
fastest rotating pulsar that has been found is the J1748-244ad
with a spin frequency of 716 Hz [12]. However, the issue is
still open: Why we have not observed pulsars with higher
values of frequency which are predicted from the majority of
theoretical models? Moreover, what limits the spin frequencies
of millisecond pulsars and why? [13]. Future measurements
of moment of inertia [14] and Keplerian frequency may be
the answer to these questions by improving considerably our
knowledge on the properties of maximally rotating neutron
stars.

The effects of the EoS on the properties of rotating neu-
tron stars (see Refs. [15,16] for an introduction and relevant
bibliography) had begun to gain ground in the late 1980s
with Shapiro and Teukolsky and their colleagues [17–21].
A significant contribution on these issues had been also
made from Friedman and his colleagues [22–26], Haensel
and coworkers [27–32], as well as Glendenning and his col-
leagues [33–36]. Rapid rotation and its effects on the EoS
had been studied also in Refs. [37–42] and most recently in
Refs. [43–58]. Moreover, in nuclear astrophysics hot neutron
stars in correlation with rapid rotation had been studied in
Refs. [59,60]. In addition, maximally rotating neutron stars
in modified gravity theories have been studied in detail by
Kokkotas and his colleagues [61,62].

In this work we extend the previous fundamental work
of Cook, Shapiro, and Teukolsky [20], as well as the most
recent work of Cipolletta et al. [52]. In particular, we em-
ploy a large number of modern EoSs (combined with a few
previous ones) which all of them, at least marginally (few
of them), predict the upper bound of the maximum neutron
star mass of M = 1.908 ± 0.016 M� [7], while also repro-
ducing accurately the bulk properties of symmetric nuclear
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matter (for more details see Ref. [63]). The models of these
EoSs are phenomenological, field theoretical, and micro-
scopic. In the category of phenomenological models, there are
the momentum-dependent interaction model (MDI) [64,65],
Heiselberg-Hjorth Jensen model (HHJ) [66], Skyrme model
type a and type I4 (Ska, SkI4) [67,68], Douchin-Haensel
model (DH) [69]; in field-theoretical category, there are the
non-linear derivative model (NLD) [70,71], and Walecka
model (W) [72]; and in the microscopic category, there are the
Hebeler-Lattimer-Pethick-Schwenk model (HLPS) (based on
nuclear interactions derived from chiral effective field theory)
[73], Sharma-Centelles-Vinas-Baldo-Burgio model (SCVBB)
(using the Argonne v18 potential plus three-body forces
computed with the Urbana model) [74], Balberg-Shapiro
model (BS) [75], Bowers-Gleeson-Pedigo model (BGP) (rel-
ativistic pion exchange) [76], Bombaci-Logoteta model (BL)
[77], Wiringa-Fiks-Fabrocini model (WFF1, WFF2) [78], and
Pandharipande-Smit model (PS) [79]. It has to be stressed that
the majority of the mentioned EoSs have been constructed in
order to reproduce the bulk properties of uniform symmetric
nuclear matter and also to extend to pure neutron matter. The
extension to neutron star matter is performed with respect to
β equilibrium. As far as concerns the leptonic degree of free-
dom, in most of them it is considered that the main contribu-
tion of leptons is due to electrons. All of the used EoSs prop-
erly describe the fluid core of a neutron star. It should be noted
also that few of them have been applied first for the study of
finite nuclei. Among the number of equations that we use,
we have constructed two EoSs, the Akmal-Pandharipande-
Ravenhall model (APR-1, APR-2) (Microscopic model) [80],
predicted by the MDI model. This model reproduces the re-
sults of microscopic calculations of symmetric nuclear matter
and neutron star matter at zero temperature with the advantage
of its extension to finite temperature. For the solid crust
region of all the EoSs we employed the EoS of Feynman,
Metropolis, and Teller [81] and also of Baym, Bethe, and
Sutherland [82].

An effort was made to systematically study most of the
bulk properties of uniformly rotating neutron stars at the
Keplerian sequence (the sequence in which the maximum
mass configuration corresponds to the Keplerian frequency),
including the mass, polar and equatorial radius; angular veloc-
ity; moment of inertia; Kerr parameter; eccentricity; braking
index; and so on. Additionally, for reasons of completeness
and comparison, because all EoSs that we use are hadronic
ones, we present also an EoS with appearance of hyperons at
high densities (Florida State University model, FSU2H) [83]
and one suitable to describe quark stars based on MIT bag
model (quark star model, QS57.6) [2,3].

Furthermore, we explore the possibility to update the previ-
ous empirical universal relations which connect the Keplerian
frequency with the mass and radius at the maximum mass
configuration. We systematically study the Kerr parameter
dependence on the EoS and also provide the evolution of the
angular momentum of a neutron star in order to examine the
case where neutron stars considered to be progenitors of black
holes. In particular, we examine (according to the terminology
of Ref. [20]) two equilibrium sequences of rotating neutron
stars, normal and supramassive. While normal evolutionary

sequences have a spherical, nonrotating (stable) end point,
supramassive ones, which by definition have masses higher
than the maximum mass of the nonrotating neutron star, they
do not have a stable end point and, as a consequence, the
collapse to a black hole is inevitable. However, the con-
struction of normal and mainly supramassive sequences is a
complicated procedure in the framework of general relativity
(GR) [20].

In addition, we systematically study the moment of inertia,
a quantity which plays an important role in the properties
of rotating neutron stars, and eccentricity, which can inform
us about their deformation. Following the previous work of
Lattimer and Prakash [84], we also provide an absolute upper
limit of the higher density of cold baryonic matter in the
Universe, based on the upper limit imposed by the maximum
mass of a neutron star. In fact, we try to improve the bound
which was introduced in Ref. [84] by using updated EoSs and
including also the case of maximally rotating neutron stars.
Finally, we study the effects of the EoS on the braking index
of pulsars. We mainly focus on values near the Keplerian
frequency (70% and more) where the braking index begins
to be affected by the rest mass (definition has been given in a
proper section).

The article is organized as follows. In Sec. II we briefly
review the properties of nuclear matter, the computational
hypothesis and the models for the nuclear EoSs. In Sec. III
we present the rotating configuration for neutron stars. In
particular, we introduce the effects of the Keplerian frequency
on the bulk properties of neutron stars and we also describe
two properties of the EoS, moment of inertia and eccentricity.
In addition, we provide a discussion for the Kerr parameter
and the fully described rest mass sequences. The upper bound
for density of cold baryonic matter and the effects of the
braking index on the EoS are also obtained. Section IV
contains the discussion and main conclusions of the present
study. Finally, useful expressions and clarifications are given
in the Appendix.

II. THE NUCLEAR EQUATION OF STATE

In the present study we have suitably selected and em-
ployed a large number of hadronic EoSs [63]. Moreover, we
have constructed two additional EoSs, the APR-1 and APR-2,
by using the MDI model (for more details see Appendix A)
and data from Akmal et al. [80]. Except the hadronic EoSs,
an EoS with appearance of hyperons at high densities and one
suitable to describe quark stars have been used for complete-
ness [2,3,83].

There are many reasons to support the reliability of the
MDI model. In particular, (a) it reproduces with high accuracy
the properties of symmetric nuclear matter at the saturation
density, (b) the theoretical prediction of the value and slope
of symmetry energy at the saturation density are close to the
experimental predictions, (c) it reproduces other properties of
symmetric nuclear matter (SNM) (including isovector quan-
tities K0 and Q0) inside the limiting area of the experimental
data, (d) it reproduces correctly the microscopic calculation
of the Chiral model [85] for pure neutron matter (PNM) (for
low densities) and the results of state-of-the-art calculations
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of Akmal et al. [80] (for high densities), (e) it has the
flexibility that the energy per particle depends not only on
the density but also on the momentum, (f) it can be easily
extended to include temperature dependence (which is needed
to study core-collapse supernova, protoneutron stars, neutron
stars merger, etc.), and (g) it predicts a maximum neutron star
mass that is higher than the observed ones [5–10].

A. Properties of nuclear matter and the construction
of the APR-1 and APR-2 EoSs

Assuming that the neutron-proton asymmetry is character-
ized by the parameter [86,87]

I = nn − np

n
= 1 − 2x, (1)

where np, nn and n = np + nn are the proton, neutron, and
total densities and x = np/n is the proton fraction, the total
energy per particle can be expanded as follows:

E (n, I ) = E (n, 0) +
∑

k=2,4,···
Esym,k (n)Ik, (2)

where

Esym,k (n) = 1

k!

∂kE (n, I )

∂Ik

∣∣∣∣
I=0

. (3)

We studied two cases in this paper, the parabolic (symbolized
as pa) and the full (symbolized as f ) approximations. In the
case of the parabolic approximation we considered that the
symmetry energy is given through

Esym,pa(n) = E (n, I = 1) − E (n, I = 0), (4)

while in the full approximation it is given through

Esym, f (n) = Esym,2(n) = S2(n). (5)

The properties of nuclear matter at the saturation density
are defined as [86,87]

L = 3ns
dS2(n)

dn

∣∣∣∣
ns

, K = 9n2
s

d2S2(n)

dn2

∣∣∣∣
ns

, (6)

Q = 27n3
s

d3S2(n)

dn3

∣∣∣∣
ns

, K0 = 9n2
s

d2E (n, 0)

dn2

∣∣∣∣
ns

, (7)

Q0 = 27n3
s

d3E (n, 0)

dn3

∣∣∣∣
ns

, (8)

where L, K , Q are related to the first, second, and third
derivatives of the symmetry energy S2(n), respectively. K0

is the compression modulus and Q0 is related to the third
derivative of E (n, 0). The ns is the saturation density of
symmetric nuclear matter and its equal to 0.16 fm−3. The last
property is the ratio of the Landau effective mass to mass in

TABLE I. Properties of nuclear matter (NM) for APR-1 and
APR-2 EoSs.

Properties of NM APR-1 APR-2

Lpa (MeV) 63.18 57.43
Qpa (MeV) 482.34 568.91
Kpa (MeV) −103.70 −118.78
Esympa

(MeV) 33.61 33.59
Lf (MeV) 63.31 57.40
Qf (MeV) 450.50 538.44
Kf (MeV) −88.26 −99.81
Esym f

(MeV) 32.74 32.53
Q0 (MeV) −581.27 −581.27
K0 (MeV) 256.40 256.40
m∗

τ /mτ 0.72 0.72

vacuum for the MDI model [64,86–89] and given by

m∗
τ (n, I )

mτ

=
⎛
⎝1 − 2nmτ

nsh̄
2

∑
i=1,2

1

�2
i

Ci ± Ci−8Zi
5 I{

1 + ( k0
F

�i

)2[
(1 ± I ) n

ns

]2/3}2

⎞
⎠

−1

,

(9)

where τ corresponds to neutrons or protons.
Although we studied two cases, the parabolic and full

approximation, the one that is used in the detailed study is
the full approximation. Both of them lead to similar results.
However, the parabolic approximation is referenced for future
studies.

The parametrization of the MDI model [Eq. (A1)] is per-
formed by using data originated from the work of Akmal
et al. [80]. In particular, we employed the data concerning
the energy per particle of symmetric and pure neutron matter
(in the area 0.04 fm−3 � n � 0.96 fm−3) and for models
A18 + UIX (hereafter APR-1) and A18 + δv + UIX∗ (here-
after APR-2). In order to achieve the best fitting to Akmal’s
data using Eq. (A1), we divided our region of study into three
sections: (a) low-density region (0.04 fm−3 � n � 0.2 fm−3),
(b) medium-density region (0.2 fm−3 � n � 0.56 fm−3), and
(c) high-density region (0.56 fm−3 � n � 0.96 fm−3). With
this method we have calculated the coupling constants and the
parameters for the asymmetric nuclear matter.

The main properties of nuclear matter at the saturation den-
sity ns, calculated with Eq. (4) through Eq. (9) for the APR-1
and APR-2 EoSs, including also isovector quantities, are pre-
sented in Table I. It should be noted that the parametrization
of pure neutron matter leads to results in agreement with
the predictions of chiral effective field theory [85] for low
densities. For high-density values, the parametrization leads
to the prediction of Akmal et al. [80]. The main drawback
of these two EoSs is related with the violation of causality;
the speed of sound becomes greater than the speed of light
at high densities. However, the parametrization of the MDI
model has the advantage that prevents the onset from violating
the causality.
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FIG. 1. Symmetric nuclear matter and pure neutron matter fits
for APR EoSs using Akmal’s [80] data and the MDI model. The
SNM is presented with the circles and the solid line, the APR-1 PNM
is presented with the triangles and the dashed line, and the APR-2
PNM is presented with the squares and the dashed-dotted line.

The schematic presentation of Eq. (A1) for APR EoSs and
the data from Akmal et al. [80] are presented in Fig. 1.

B. The selected equations of state

The EoSs that we used [63–80] are consistent with the
current observed limits of neutron star mass [5–10] and also
with the one for frequency [12]. In Fig. 2 we present the
gravitational mass versus the corresponding equatorial radius
(hereafter radius) for the 23 EoSs at the nonrotating configu-
ration, where the current observed limits are also presented.

FIG. 2. Mass-radius diagram for the 23 EoSs at the nonrotating
configuration. The observed limits of neutron star mass are presented
with the horizontal dotted lines (1.908M�, 2.01M�, 2.14M�, and
2.27M�). The observed limit of 716 Hz, from Lattimer and Prakash
(L&P) [90] and from the present work (PW) (for more details see
Appendix B), is presented with the curved dashed-dotted lines. The
two indicated solid lines correspond to the EoS with appearance of
hyperons at high densities (FSU2H) and the one suitable to describe
quark stars (QS57.6).

Moreover, the EoS with appearance of hyperons at high
densities (FSU2H) and the one suitable to describe quark stars
(QS57.6) are also indicated.

III. ROTATING NEUTRON STARS

In the framework of general relativity rotating neutron stars
can be described (a) by the stationary axisymmetric space-
time metric [4,16]

ds2 = −e2νdt2 + e2ψ (dφ − ωdt )2 + e2μ(dr2 + r2dθ2),
(10)

where the metric functions ν, ψ , ω, and μ depend only on
the coordinates r and θ and (b) the matter inside the neutron
star. If we neglect sources of nonisotropic stresses, as well
as viscous ones and heat transport, then the matter inside the
neutron star can be fully described by the stress-energy tensor
and modeled as a perfect fluid [4,16],

T αβ = (ε + P)uαuβ + Pgαβ, (11)

where uα is the fluid’s four-velocity. The energy density and
pressure is denoted as ε and P.

For the numerical integration of the equilibrium equa-
tions we used the public RNS code [91] by Stergioulas and
Friedman [92] (this code is based on the method developed
by Komatsu, Eriguchi, and Hachisu [93] and modifications
introduced by Cook, Shapiro and Teukolsky [19]).

A. Keplerian frequency

The derivation of the Keplerian frequency, in which a
rotating star would shed matter at its equator, is a complicated
problem. In Newtonian theory, it has its origin on the balance
between gravitational and centrifugal forces and takes a very
simple form. However, in GR it exhibits a more complicated
dependence on the structure of the star through the interior
metric as it is expressed as a self-consistency condition that
must be satisfied by the solution to Einstein’s equations.

It has been shown by Friedman et al. [24] that the turning-
point method, which leads to the points of secular insta-
bility, can also be used in the case of uniformly rotating
neutron stars. With this consideration, in a constant angular
momentum sequence, the turning-point of a sequence of
configurations with increasing central density separates the
secular stable from unstable configuration and, consequently,
the condition

∂M(εc, J )

∂εc

∣∣∣∣
J=constant

= 0, (12)

where εc is the energy density in the center of the neutron
star and J is the angular momentum, defines the possible
maximum gravitational mass. In general, gravitational (gr)
and rest mass (rm) are defined as [3]

Mgr =
∫ R

0
4πr2ε(r)dr, (13)

Mrm = mA

∫ R

0
4πr2 n(r)[

1 − 2GM(r)
c2r

]1/2 dr, (14)
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FIG. 3. Keplerian frequency dependence on the quantity xst
max

for the 23 EoSs [for more details see Eq. (16)]. Blue dashed line
corresponds to the best linear trend that fits the data. The data from
23 hadronic EoSs are also presented with red circles. The hyperonic
EoS is indicated with the blue square and the quark star EoS with the
green star. The black solid line marks the work of Haensel et al. [48].

where mA is the baryonic mass and n(r) is the baryon number
density.

The absence of analytical solutions for rotating neutron
stars leads to numerical estimations for the Keplerian fre-
quency. A significant number of empirical formulas for the
Keplerian frequency had been produced along the years. The
formula is given by [48,57]

fk = Cα

(
Mα

max

M�

)1/2(10km

Rα
max

)3/2

= Cαxα
max (Hz), (15)

where

xα
max =

(
Mα

max

M�

)1/2(10km

Rα
max

)3/2

(16)

and α (st : static, rot : rotating, rm; rot : rest mass at
rotating configuration) takes the form of the correspond-
ing configuration. Although this relation is well established,
the unknown parameter (Cα) depends highly on the various
approximations and of course the selected EoSs.

It is worth pointing out that while the maximum rotation
rate is an increasing function of the EoS’s softness, the max-
imum mass is a decreasing one (considering a fixed mass).
Therefore, for a fixed gravitational mass M the softer EoS
predicts the lower value of the radius R and, consequently,
leads to higher values for fk . The latter had been already
noticed by Lattimer et al. [39]. These two constraints restrict
the EoS in a narrow region. The above statement is one of the
main subjects of the present work.

1. The Keplerian frequency, the maximum mass, and the
corresponding radius of nonrotating neutron stars

We studied the Keplerian frequency in correlation with the
bulk properties of a nonrotating neutron star and specifically
on its gravitational mass and the corresponding radius at the
maximum mass configuration, using Eq. (15) and α = st.

TABLE II. Parametrization of Eq. (15) for the different config-
urations. The relative error (r.e.) between the data and fits is also
presented.

α Cα r.e.% CHaensel

st 1266.68 5.6 1220
rot 1781.90 �1 –
rm;rot 1644.75 2.2 –

In Fig. 3 we present the relation (15) with the correspond-
ing parametrization, which can be found in Table II, updating
the work of Haensel et al. [48]. The value of the parameter Cst

is in very good agreement with the current EoSs to a linear
term.

2. The Keplerian frequency, the maximum mass, and the
corresponding radius of maximally rotating neutron stars

An interesting relation is also the one between the Keple-
rian frequency and the macroscopic properties of maximally
rotating neutron stars (maximum gravitational mass and the
corresponding radius). Using Eq. (15) and α = rot, it is re-
markable that in this scenario, as Fig. 4(a) shows, the linear
fit between these quantities ( fk , xrot

max) leads to nearly perfect
results. The parametrization can be found in Table II.

3. The Keplerian frequency, the maximum rest mass, and the
corresponding radius of maximally rotating neutron stars

In the macroscopic properties of a neutron star, rest mass
plays an important role. In order to understand the effects
of the rest mass on the Keplerian sequence, we studied the
Keplerian frequency dependence on the rest mass and the
corresponding radius using Eq. (15) and α = rm; rot.

In Fig. 4(b) we can see the almost linear relation that holds
between these two quantities ( fk , xrm;rot

max ), enhancing the exis-
tence of a relation between rest mass and gravitational mass in
neutron stars at the Keplerian frequency. The parametrization
can be found in Table II.

4. Rest mass and gravitational mass at the maximum mass
configuration of maximally rotating neutron stars

As a follow-up to Sec. III A 3, we studied the rest mass
dependence on the gravitational mass at the maximum mass
configuration for the Keplerian frequency. In Fig. 5, we can
see the almost linear relation between these two quantities, as
expected from Sec. III A 3.

The relation which describes our data is given via the form(
Mrm;rot

max

M�

)
= 1.17

(
Mgm;rot

max

M�

)
(17)

(the maximum possible error is less than 3.3%), concluding
that the percentage difference between these quantities is
around 17%.

B. Moment of inertia and eccentricity

Rotating neutron stars can provide us with more quantities
than nonrotating ones that we could study. Among them, there

015805-5



P. S. KOLIOGIANNIS AND CH. C. MOUSTAKIDIS PHYSICAL REVIEW C 101, 015805 (2020)

(a) (b)

FIG. 4. Keplerian frequency dependence on the quantity (a) xrot
max and (b) xrm;rot

max for the 23 EoSs [for more details see Eq. (16)]. Blue dashed
lines correspond to the best linear trend that fits the data. The data from 23 hadronic EoSs are also presented with red circles. The hyperonic
EoS is indicated with the blue square and the quark star EoS with the green star.

is the moment of inertia and eccentricity. Both these quantities
can give us information about the deformation of the mass
while its spinning.

The moment of inertia [52,94], which have a prominent
role in pulsar analysis, is defined as

I = J

�
, (18)

where J is the angular momentum and � is the angular
velocity. This property of neutron stars quantifies how fast an
object can spin with a given angular momentum.

We studied the moment of inertia dependence on the
gravitational mass for the Keplerian sequence. From Fig. 6(a)
we can see that all EoSs present similar behavior. For this
reason, inside Fig. 6(a), we plotted the moment of inertia
values corresponding to maximum mass configuration versus

FIG. 5. Rest mass dependence on the gravitational mass of a
maximally rotating neutron star at the maximum mass configuration.
Blue dashed line corresponds to the best linear trend that fits the data.
The data from 23 hadronic EoSs are also presented with red circles.
The hyperonic EoS is indicated with the blue square and the quark
star EoS with the green star.

the corresponding gravitational mass. A relation, given by the
formula

I rot
max = −1.568 + 0.883 exp

[
0.7

(
Mgm;rot

max

M�

)]
(1045 gr cm2),

(19)
describes with high accuracy our data, concluding that mo-
ment of inertia, at the maximum mass configuration for the
Keplerian frequency, can provide us with a universal relation
between moment of inertia and the corresponding gravita-
tional mass.

We also studied the dimensionless moment of inertia de-
pendence on the corresponding compactness parameter [95],
which, in general, it is defined as

β = GM

Rc2
, (20)

where R corresponds to the equatorial radius of neutron star.
In Fig. 6(b) we present a window where moment of inertia

and compactness parameter can lie [shadowed (gray) region],
constraining both these quantities. There is an empirical rela-
tion, derived from the data, that can describe this window. The
form of this empirical relation is

I/MR2 = α1 + α2β + α3β
2 + α4β

3 + α5β
4, (21)

where the coefficients for the two edges are shown in Table III.
It is clear from Fig. 6(b) and Eq. (21) that if we have a
measurement of moment of inertia, or compactness parameter,
then we could extract the interval where the other parameter
can lie.

As a consequence, by constraining simultaneously these
two quantities, we could impose constraints on the radius of
neutron stars, which still remains an open problem.

From Fig. 6(b) we can see that all EoSs present simi-
lar behavior. For this reason, inside Fig. 6(b), we plotted
the dimensionless moment of inertia values corresponding
to maximum mass configuration versus the corresponding
compactness parameter. A relation, given by the formula

(I/MR2)max = −0.006 + 1.379βmax, (22)
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(a) (b)

FIG. 6. Moment of inertia dependence (a) on the gravitational mass and (b) on the compactness parameter of a maximally rotating neutron
star for the 23 EoSs. Blue dashed lines in the inside figures correspond to the best fit in each case. The data at the maximum mass configuration
are also presented with blue circles in the inside figures.

describes with high accuracy our data, concluding that di-
mensionless moment of inertia, at the maximum mass con-
figuration for the Keplerian frequency, can provide us with a
universal relation between dimensionless moment of inertia
and the corresponding compactness parameter.

Eccentricity is the main quantity that is related to the
deformation of the star. Rapid rotation deforms the models
of equilibrium and in order to see how these models change
we calculate the eccentricity, which is given by the form [52]

ε =
√

1 −
(

rpol

req

)2

, (23)

where the rpol and req are the polar and equatorial radius of the
star, respectively.

For a schematic presentation of the energy inside a neutron
star, in Fig. 7 we present the contours of constant den-
sity of a neutron star model with central density equals to
1015 gr cm−3, both in the nonrotating case and in the rotating
one with frequency equals to the Keplerian frequency. For the
sake of example we used the APR-1 EoS.

Performing the same analysis as for moment of inertia,
we studied the eccentricity dependence on the gravitational
mass for the Keplerian sequence and the eccentricity values
corresponding to maximum mass configuration on the corre-
sponding gravitational mass, as Fig. 8 shows. A relation, given
by the formula

εmax = 0.799 + 0.01

(
Mmax

M�

)
, (24)

TABLE III. Coefficients of the empirical relation (21) for the two
edges of the window presented in Fig. 6(b).

Edges α1 α2 α3 α4 α5

Upper 0.005 4.01 −24.79 86.66 −110.33
Lower 0.005 3.38 −17.45 49.68 −55.36

describes with high accuracy our data, concluding that eccen-
tricity, at the maximum mass configuration for the Keplerian
frequency, is an EoS-independent property.

C. The Kerr parameter

The Kerr space-time provided from Einstein’s field equa-
tions give us the so-called Kerr black holes [49,52]. These ro-
tating black holes can be fully described from the gravitational
mass (M) and the angular momentum (J). In order to have
a meaningful Kerr black hole, the relation J � GM2/c (Kerr
bound) must hold, or otherwise, we have a naked singularity.
A naked singularity is a black hole without a horizon and
can be considered as closed timelike curves, where causality
would be violated. While there is no rigorous proof from
Einstein’s field equations, the cosmic-censorship conjecture
implies that a generic gravitational collapse cannot form a
naked singularity [96–99]. This is why the astrophysical black
holes should satisfy the Kerr bound [49,52].

The gravitational collapse of a massive rotating neutron
star, constrained to mass-energy and angular momentum con-
servation, creates a black hole with almost the same mass
and angular momentum as the prior neutron star. In this case,
an important quantity to study, directly related with black
holes as well as neutron stars, is the dimensionless angular
momentum [51], which is defined as

j = cJ

GM2�
(25)

and it is known as dimensionless spin parameter. As a con-
sequence of this parameter, we can define a new one, starting
from the parameter α, which is the angular momentum in units
of mass and it is given by the form [16]

α ≡ J

M
= j

GM2
�

c

1

M
. (26)
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(a) (b)

FIG. 7. Contours of constant density of a neutron star model with central density equals 1015 gr cm−3 both (a) in the nonrotating case
and (b) in the rotating one with frequency equals to the Keplerian frequency for the APR-1 EoS. The axis had been scaled in a way that the
maximum radius corresponds to 0.5.

Next, using Eq. (26), the well-known Kerr parameter takes
the form

K = α

M

c

G
= j

(
M�
M

)2

. (27)

The dependence of this parameter on the gravitational mass
at the Keplerian sequence can be seen in Fig. 9.

Although the meaning of this parameter at black-holes
physics is so interesting and fundamental (there is a maximum
value at 0.998 [100]), that is also the case for other compact
objects such as neutron stars. In order to find a way to
constrain the value of the Kerr parameter in neutron stars,
we studied the dependence of this parameter on the total
gravitational mass for the Keplerian sequence. From Fig. 9,
we can see that the maximum value of the Kerr parameter
for neutron stars is around 0.75. While there is a number
of EoSs that hold on near this value, the maximum value
achieved from HLPS-3. This EoS is the stiffest equation that
we have and produces maximum mass greater than all the
others. Strictly speaking, if we consider this EoS as the one

FIG. 8. Eccentricity dependence on the gravitational mass of a
maximally rotating neutron star. Inset: The eccentricity values as a
function of the corresponding gravitational mass at the maximum
mass configuration. Blue dashed line in the inside figure corresponds
to the best fit. The data at the maximum mass configuration are also
presented with blue circles in the inside figure.

that produces the maximum possible mass in the maximum
mass configuration at the Keplerian sequence, then we could
constrain the maximum value of the Kerr parameter in neutron
stars.

In Fig. 9 we present also a window [shadowed (gray) re-
gion] where the Kerr parameter can lie. There is an empirical
relation, derived from the data, that can describe this window.
The form of this empirical relation is

K = d1 + d2 coth

[
d3

(
Mmax

M�

)]
, (28)

where the coefficients for the two edges are shown in Ta-
ble IV. It is clear from Fig. 9 and Eq. (28) that if we have a
measurement of gravitational mass, or spin parameter, then we
could extract the interval where the other parameter can lie.

As a consequence, by measuring accurately and simulta-
neously these two quantities, we could impose constraints on
the EoS.

FIG. 9. Kerr parameter dependence on the gravitational mass
of a maximally rotating neutron star. Inset: The Kerr parameter
values as a function of the corresponding gravitational mass at the
maximum mass configuration. The blue dashed line in the inside
figure corresponds to the best linear trend. The data at maximum
mass configuration for the 23 hadronic EoSs are presented with
blue circles in the inside figure. FSU2H and QS57.6 EoSs are also
indicated with the two solid lines.
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TABLE IV. Coefficients of the empirical relation (28) for the two
edges of the window presented in Fig. 9.

Edges d1 d2 d3

Upper 0.86 −0.12 1.54
Lower 0.86 −0.21 2.67

In addition, in Fig. 9, we plotted the maximum values
of the Kerr parameter versus the corresponding gravitational
mass. It seems that a linear relation holds between these two
quantities, given by the equation

Kmax = 0.488 + 0.074

(
Mmax

M�

)
. (29)

There are two important reasons for constraining the Kerr
parameter at neutron stars: First, the existence of a maxi-
mum value at the Kerr parameter can lead to possible limits
for the compactness on neutron stars; strictly speaking, the
maximum value of the Kerr parameter for neutron stars
implies a maximum value on the possible maximum mass
of rotating neutron stars in the universe and, second, can be
a criteria for determining the final fate of the collapse of a
rotating compact star [49].

Finally, it is clear from Fig. 9 that the Kerr parameter
dependence on the gravitational mass of a quark star is quite
different than the one on neutron stars. The Kerr parameter of
quark stars can be significantly larger than the maximum value
of this parameter on neutron stars. In case of the hypeonic
EoS, the dependence between gravitational mass and the Kerr
parameter exhibits similar behavior with the hadronic ones. A
detail study in this direction is in progress.

D. Constant rest mass sequences

The rest mass sequences, also called as time evolutionary
sequences, based on an EoS, are roughly horizontal lines that

extend from the Keplerian sequence to the nonrotating end
point or at the axisymmetric instability limit [19–21]. The
latter depends only on the rest mass value of the selected EoS.
For a given EoS, the sequences that are below the rest mass
value that corresponds to the maximum mass configuration at
the nonrotating model, they have a nonrotating member, and
as a consequence, are stable and terminate at the nonrotating
model sequence. Above this value, none of the sequences
have a nonrotating member. Instead, they are unstable and
terminate at the axisymmetric instability limit. The onset that
extends from the maximum mass point on the nonrotating
limit sequence to the one on the mass-shedding limit sequence
is the quasiradial stability limit. The total region that models
are unstable is defined via the rest mass sequence that corre-
sponds to the maximum mass configuration of the nonrotating
model, as Fig. 10 shows [shadowed (gray) region]. Above
this value, the models have masses larger than the maximum
mass of the nonrotating model and in that case are called
supramassive models [4]. It should be noted that models
to the axisymmetric area of the shadowed (gray) region,
which is not shown at the corresponding figures, are also
unstable.

To be more specific, if a neutron star spin-up by accretion
and becomes supramassive, then it would subsequently spin-
down along the constant rest mass sequence until it reaches
the axisymmetric instability limit and collapse to a black
hole. There is a case where some relativistic stars could be
born as supramassive ones, or even more, become one as
a result of a binary merger. In this case, the star would be
initially differentially rotating and collapse would be triggered
by a combination between spin-down effect and viscosity (the
force that driving the star to uniform rotation) [4].

Although the sequence with rest mass corresponding to
the maximum mass configuration of the nonrotating model
extends to the right area of the quasiradial stability limit, the
unstable one, it is the last one that has a stable part (half

(a) (b)

FIG. 10. Normal and supramassive evolutionary sequences of constant rest mass are presented as the dependence of the (a) gravitational
mass on the central energy density and (b) gravitational mass on the corresponding radius for the APR-1 EoS. The nonrotating case is presented
with the blue solid curve while the maximally rotating one is presented with the red dashed-dotted curve. Constant rest mass sequences
are presented with the fuchsia dashed lines, where the rest mass value is also noted. The 716-Hz limit is also presented with the brown
dashed-dotted-dotted curve. The quasiradial stability limit is presented with the purple dotted line.
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(a) (b)

FIG. 11. (a) Normal and supramassive evolutionary sequences of constant rest mass are presented as the dependence of the angular velocity
on the Kerr parameter for the APR-1 EoS. Maximally rotating case is presented with the red dashed-dotted curve while the constant rest mass
sequences are presented with the fuchsia dashed curves, where the rest mass values are also noted. The quasiradial stability limit is presented
with the purple dotted curve. (b) Last stable rest mass sequences for the 23 EoSs as the dependence of angular velocity on the Kerr parameter.
Supramassive and normal area are shown to guide the eye. The maximum value of the Kerr parameter is also noted.

of the sequence terminates at the maximum mass configura-
tion of the nonrotating model). While, below this sequence,
all the remaining ones are unconditionally stable against
gravitational collapse, above this sequence, all sequences
would evolve toward catastrophic collapse to a black hole.
In Fig. 10, we can see that if we have a neutron star with
rest mass in the white region, it would evolve toward stable
configuration at the nonrotating sequence, but if we have a
star in the shadowed (gray) region, it would subsequently
spin-up and evolve toward catastrophic collapse to a black
hole [101–103]. The direction of evolution for constant rest
mass sequences is noted with the existence of an arrow on
them.

In all cases, neutron stars which evolve along normal
evolutionary sequences, never spin-up, as they lose angu-
lar momentum. In contradiction to neutron stars on normal
evolutionary sequences, neutron stars on supramassive ones,
because their unstable portion is always at higher angular
velocity than the stable portion, at the same value of angular
momentum, must spin-up with angular momentum loss in the
neighborhood of the stability limit. If the neutron star is mas-
sive enough, then the evolutionary sequence (supramassive)
exhibit an extended region where spin-up is allowed. This
effect may provide us an observable precursor to gravitational
collapse to a black hole [49,52]. The latter is shown clearly in
Fig. 11(a).

Following the concept from Fig. 11(a), we have con-
structed the last stable rest mass sequence (LSRMS) for the
23 hadronic EoSs, as shown in Fig. 11(b). This sequence
is the one that divides the stable from unstable region, or
in other words, the normal from supramassive evolutionary
sequences. In Fig. 11(b), we present a window [shadowed
(gray) region] where the last stable rest mass sequence can
lie and in fact, because the last stable rest mass sequence is
the one that corresponds to the maximum mass configuration
at the nonrotating model, this is also the region where the EoS
can lie, constraining, simultaneously, the spin parameter and

the angular velocity. There is an empirical relation, derived
from the data, that can describe this window. The form of this
empirical relation is

� = (b1K + b2K2 + b3K3)104 (s−1), (30)

where the coefficients for the two edges are shown in Table V.
It is clear from Fig. 11(b) and Eq. (30) that if we have a
measurement of angular velocity, or spin parameter, then we
could extract the interval where the other parameter can lie.

As a consequence, by constraining simultaneously these
two quantities, we could significantly narrow the existing area
of EoS.

E. Upper bound for density of cold baryonic matter

Although we employ realistic EoSs to solve numerically
equilibrium equations in neutron stars, analytical solutions
are far from being insignificant. Useful information can be
gained by the comparison between solutions of the Einstein’s
field equations with numerical solutions for different models
of EoSs and the analytical solutions [84]. Two classes derive
from analytical solutions: (a) normal neutron stars and (b)
self-bound neutron stars. In the first case, the energy density
vanishes at the surface where the pressure vanishes and, in the
second one, the energy density is finite at the surface.

In this work only the first case scenario will be studied. It is
most natural to solve numerically the Tolman-Oppenheimer-
Volkoff [(TOV) Einstein’s equations for a nonrotating spher-

TABLE V. Coefficients of the empirical relation (30) for the two
edges of the window presented in Fig. 11(b).

Edges b1 b2 b3

Upper 1.94 0.117 −1.058
Lower 1.35 −0.305 −0.449
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ical symmetric object] equations [1–3] by introducing an
EoS describing the relation between pressure and density
which is expected to describe the fluid interior. The other
possibility is trying find out analytical solutions of TOV
equations with the risk of obtaining solutions without physical
interest. Actually, there are hundreds of analytical solutions of
TOV equations [104,105]. However, just few of them are of
physical interest. Moreover, there are only three that satisfy
the criteria that the pressure and energy density vanish on the
surface of the star and also that they both decrease mono-
tonically with increasing radius. These three solutions are
the Tolman VII, the Buchdahl, and the Nariai IV [106]. The
main difference between these analytical solutions is related
with the maximum value of compactness at which they took
effect. For example, the Buchdahl solution is applicable only
for neutron stars with compactness up to the value β = 0.17
and in general produces soft EoSs. The Tolman VII solution
leads to even stiffer EoSs and, consequently, is suitable to
describe compact objects with compactness value up to β =
0.34 (for more details see Ref. [106]). The Nariai IV solution
exhibits similar behavior with the Tolman VII. In particular,
the Tolman VII is of great interest since it has the specific
property that the pressure and density vanish at the surface
of the star. It has been extensively employed to neutron star
studies and the details of this analytical solution had been
given in Appendix C.

It has been shown by Lattimer et al. [84] that the Tolman
VII solution forms an absolute upper limit, which is confirmed
empirically by using a large number of EoSs, in density inside
any compact star (see also Refs. [107,108]). This is also the
case for rotating stars with rotation rates up to the Keplerian
(mass-shedding) rate.

At that time, the maximum masses of the existed EoSs
were fully included in the region under the Tolman VII
solution; the same holds for the rotating models. In re-
cent years, new EoSs have been introduced and old ones,
that could not describe the maximum observed neutron star
mass [5–10], have been rejected. In this work, using a total of
23 hadronic EoSs that predict the observed maximum neutron
star mass [5–10], we have confirmed that the Tolman VII
curve marks the upper limit to the energy density inside a
star but without taking into account the rotation (Tolman VII
can describe the majority of them). If we add rotation to our
models, then this curve is no longer able to describe the new
data as they shift, concerning the plotted area, up and left.
For this reason, we propose here that if there is a curve, like
the Tolman VII solution, shifted to the right, then that would
be a suitable solution to fully describe the maximum energy
density inside a star. In other words, the existence of this curve
can help to form an absolute upper limit in density inside any
compact object.

The proposed expression, described by the form

M

M�
= 4.25

√
1015 gr cm−3

εc/c2
, (31)

can fully describe both the nonrotating and maximally rotating
configuration. The advantages of having this relation are that
(a) it can describe the nonrotating configuration having as a

FIG. 12. Gravitational mass dependence on the central energy
density and the central baryon density at the maximum mass con-
figuration for the 23 EoSs at the nonrotating and maximally rotating
case. Red circles correspond to the nonrotating case, blue squares to
the maximally rotating one, green stars to Cook’s [21] data, and gray
triangles to Salgado’s [28] data. The red horizontal dashed lines cor-
respond to the observed neutron star mass limits (1.908M�, 2.01M�,
2.14M�, and 2.27M�). For comparison, the Tolman-VII analytical
solution with the black dashed-dotted curve and the Eq. (31) with the
purple dotted one are shown.

guide the corresponding maximally rotating one (the Tolman
VII analytical solution cannot describe all of them, as dis-
played in Fig. 12) and (b) it can also describe the maximally
rotating configuration.

In Fig. 12 we present the results of the 23 hadronic EoSs,
for the nonrotating and maximally rotating case, Cook’s [21]
and Salgado’s [28] data, the Tolman VII analytical solution,
and the proposed solution (31). The observed neutron star
mass limits are also presented to guide the eye.

The knowledge of the central density at the maximally
rotating case is important for studying the pulsar’s time
evolution. In particular, following the spin-down trail of a
millisecond pulsar, the central density increases and the highly
compressible quark matter will replace the existed nuclear
matter. This effect is directly connected to the reduction of
moment of inertia. Henceforth, the central density can inform
us on the appearance of a phase transition in its interior. The
latter can leads to the important back-bending phenomenon in
pulsars [109].

Another interesting effect presented in Fig. 12 is the con-
nection that is established between gravitational mass at the
maximum mass configuration and the corresponding central
energy density. Besides the fact that it can provide us with the
absolute upper limit in density inside any compact star, it can
also directly connect the macroscopic properties of neutron
star with the microscopic ones.

F. Equation-of-state effects on the braking index of pulsars

It is well known that the angular velocity � of an isolated
pulsar decreases very slowly with time. Various energy-loss
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(a) (b) (c)

FIG. 13. Constant rest mass sequences as the dependence of moment of inertia on the angular velocity for five representative EoSs and
with rest mass corresponding to (a) Mgr

max = 1.45M�, (b) Mgr
max = 2M�, and (c) Mgr

max = 2.2M�. The data and fits for each EoS are presented
with the circles and the solid curve for the APR-1, the squares and the dashed curve for the BGP, the triangles and the dashed-dotted curve for
the BS, the stars and the dashed-dotted-dotted curve for the PS, and the diamonds and the dotted curve for W.

mechanisms are responsible for this effect, including mainly
dipole radiation, charged particles ejections, and gravitational
wave radiation [2,110–116]. In this case, and in the most
simple model, the evolution of the angular velocity is given
by the power law

�̇ ≡ d�

dt
= −J�n. (32)

The braking index, n, of a pulsar, which describes the
dependence of the braking torque on the rotation frequency,
is a fundamental parameter of pulsar electrodynamics. Simple
theoretical arguments, based on the assumption of a constant
dipolar magnetic field, predict n = 3. It is easy to show that
Eq. (32) leads to the fundamental relation

n(�) = ��̈

�̇2
= 3 − 3�I ′ + �2I ′′

2I + �I ′ , (33)

where a dot corresponds to the derivative with time, I ′ =
dI/d�, and I ′′ = d2I/d�2. Now, considering the simple
power-law dependence I ∼ �λ, the braking index takes the
simple and transparent value

n(�) = 3 − λ. (34)

While for λ = 0 (moment of inertia independent from
angular velocity) we recover the well-known result n = 3, in
general we expect that the inequality n(�) � 3 must hold.
There is a special case where for some reasons when the
denominator of Eq. (33) goes to zero, and then the braking
index exhibits a singularity which leads to increasing of
� with time [2,110,117–120]. This is an interesting effect
(which may be caused due to a phase transition in the interior
of a pulsar) but we are not going to study it further in this
work. Instead, we studied the effects of the EoS on the braking
index as well as on the evolution of the angular velocity of a
pulsar, especially for very young ones, at their birth, with their
angular velocity being at the mass-shedding limit.

In particular, we studied the moment of inertia dependence
on the angular velocity for five representative EoSs and for
three different values of rest mass. In each case, we produced
a fit as shown in Fig. 13, according to the formula

I = g1 + g2 exp(g3�), (35)

where g1 and g2 are in units of moment of inertia
(1045 gr cm2) and g3 is in units of time (s).

In order to see how the rest mass effects the braking index,
we present in Fig. 14 the five representative EoSs for the
different rest masses.

From Fig. 14, it is clear that the rest mass plays an impor-
tant role on the braking index, i.e., by increasing the rest mass
value, the braking index decreases more sharply. This effect
will remain valid for all EoSs studied in this paper.

IV. DISCUSSION AND CONCLUSIONS

Different sequences of uniformly rotating neutron stars
have been constructed for a large number of hadronic EoSs
based on various theoretical nuclear models. In this paper we
have studied the bulk properties of neutron stars in correla-
tion with the mass-shedding limit (Keplerian frequency). To
be more specific, we have calculated their gravitational and
rest mass, equatorial and polar radii, dimensionless angular
momentum, angular velocity, moment of inertia, and eccen-
tricity. Relations between the Keplerian frequency and the

FIG. 14. Braking index dependence on the angular velocity
for the five representative EoSs (APR-1, BGP, BS, PS, and W)
with constant rest masses. The solid curves correspond to Mgr

max =
1.45M�, the dashed curves to Mgr

max = 2M�, and the dotted curves
to Mgr

max = 2.2M�.
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bulk properties of neutron stars have been found and shown
in the corresponding figures. These universal relations may
help to impose constraints on the radius of a neutron star
when its mass and Keplerian frequency is well fixed simulta-
neously. For example, this is the case of a millisecond pulsar
(in a binary system) which acquired angular momentum by
accretion and becoming a maximally rotating one with mea-
sured mass [121].

The dependence of moment of inertia, eccentricity, and
Kerr parameter on the total gravitational mass at the Keplerian
sequence, is also obtained. In all cases, the EoSs presented
similar behavior, so as a follow up, we have studied the
dependence of these parameters on the gravitational mass at
the maximum mass configuration. We have concluded that
moment of inertia and Kerr parameter can provide us with uni-
versal relations as a function of the gravitational mass at the
maximum mass configuration for the Keplerian frequency. It
is also interesting the effect of the eccentricity at the maximum
mass configuration for the Keplerian frequency on the corre-
sponding gravitational mass, where it seems that eccentricity
behaves as an EoS-independent property. Moreover, we have
found that the Kerr parameter reaches a maximum value at
around 0.75 (stiffest EoS) for neutron stars. The importance of
this result falls under the fact that the gravitational collapse of
a uniformly rotating neutron star, constrained to mass-energy
and angular momentum conservation, cannot lead to a naked
singularity, or in other words, a maximally rotating Kerr black
hole [49].

As a limiting case in our study, we presented also an EoS
suitable to describe quark stars and one with appearance of
hyperons at high densities. In the nonrotating case the results
are in good agreement with the hadronic EoSs, whereas in
the maximally rotating one, the difference from linearity is
obvious. Moreover, as far as concerning the Kerr parameter,
it is undeniable that its study on quark stars requires a dif-
ferent approach. Although that a thorough study is needed,
we can see that the values of Kerr parameter of quark stars
are significantly larger, not only of neutron stars, but also
of black holes. The latter can be useful indicator to identify
maximally rotating quark stars [49]. However, a detail study
must be done in order to acquire the possible effects of the
EoS on quark stars and their similarities with neutron stars.
Concerning the hyperonic EoS, while its consistent with our
23 hadronic EoSs allows it to be studied with them, a de-
tailed study mainly based on hyperonic EoSs would be more
suitable.

Normal and supramassive sequences of constant rest mass
for a specific EoS have been constructed. In the corresponding
figures, we present the stability and instability region of a neu-
tron star. This is possible by plotting the evolution of a neutron
star along the constant rest mass sequences. The extraordinary
effect of supramassive ones is that they can inform us about
the gravitational collapse to a black hole. The gravitational
collapse of a rotating neutron star to a black hole creates a
black hole with almost the same mass and angular momentum
as the initial star (small amount of total mass and angular
momentum carried away by gravitation radiation [122]) and
therefore the same Kerr parameter. Henceforth, this effect
may provide us an observable precursor to gravitational col-

lapse to a black hole. It is important to add here that this
effect will remain valid for all the EoSs studied in this
paper.

In order to imply possible constraints on the EoS, we
have constructed the LSRMS for the variety of the EoSs and
the dimensionless moment of inertia. In particular, we have
presented them in a figure of the angular velocity as a function
of the Kerr parameter and the dimensionless moment of inertia
as a function of the compactness parameter, respectively. In
both cases, we have extracted a window where these proper-
ties can lie. In the first case, concerning the LSRMS, because
this sequence is the one that corresponds to the maximum
mass configuration at the nonrotating model, this is also the
window where the EoS can lie, constraining, simultaneously,
the angular velocity and spin parameter (or Kerr parameter) on
neutron stars. In the second case, the window that is formed
can help us to constrain moment of inertia and compacteness
parameter. The latter can impose strong constraints in radius
of neutron stars, which is one of the open problems in nuclear
astrophysics.

Afterward, we have updated the work of Lattimer and
Prakash [84] by using EoSs which are consistent with the cur-
rent observed limits of neutron star mass [5–10]. In this work
we propose the possible existence of an empirical solution,
similarly to the Tolman VII analytical solution, for neutron
stars, using as a guide the maximally rotating configuration
in order to describe both the nonrotating and the maximally
rotating configurations. The existence of this solution can
help to define the ultimate density of cold baryonic matter by
setting an absolute upper limit at the central energy density.
The latter can be a useful insight because it can inform about
the appearance of a phase transition in the interior of the star
and its leading to the back-bending phenomenon in pulsars.

Finally, we have studied the effects of the EoSs on the
braking index of pulsars. Braking index, as an intrinsic prop-
erty of neutron star’s structure, can inform us about the rate
of change of angular velocity. Although we know it is very
slow, after 70% of the Keplerian angular velocity, the braking
index is undergoing significant changes through the influence
of the rest mass. This specific area, from 70% to 100% of
the Keplerian angular velocity, may provide us with useful
insights on the constitution of the dense nuclear matter.

In the near future, neutron stars mergers and measurements
of gravitational waves, besides the fact that are a powerful
tool to study compact objects, such as neutron stars and black
holes, will be able to provide us with the Keplerian frequency
of these objects. In fact, the remnant formed in the immediate
aftermath of the GW170817 merger, although believed to
have been differentially rotating and not uniformly, contains
sufficient angular momentum to be near its mass-shedding
limit [123]. The observational measurement of Keplerian fre-
quency, along with the theoretical predictions, would provide
us with strong constraints on the high-density part of the
EoS.
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APPENDIX A: THE MDI MODEL

In order to study specific properties and evolutionary pro-
cess of neutron stars we employed the MDI model. The energy
per particle, according to MDI, is given by [64,88]

Eb(n, I ) = 3

10
E0

F u2/3[(1 + I )5/3 + (1 − I )5/3] + 1

3
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− tan−1 [(1 − I )u]1/3

�i

k0
F

}
, (A1)

where I = (nn − np)/n, X0 = x0 + 1/2, and X3 = x3 +
1/2.

In Eq. (A1), the ratio u is defined as u = n/ns, with ns

denoting the equilibrium symmetric nuclear matter density (or
saturation density) and equals 0.16 fm−3. The parameters A,
B, σ , C1, C2, and B′, which are called coupling constants and
appear in the description of symmetric nuclear matter (SNM),
are determined so that the relation Eb(ns, 0) = −16 MeV
holds. The finite-range parameters are �1 = 1.5k0

F and �2 =
3k0

F with k0
F being the Fermi momentum at the saturation

density ns. By suitably choosing the rest parameters x0, x3,
Z1, and Z2, which appear in the description for asymmetric
nuclear matter, it is possible to obtain different forms for the
density dependence of symmetry energy as well as the value
of slope parameter L and the value of symmetry energy at
the saturation density [64,88]. Actually, for each value of
L, the density dependence of symmetry energy is adjusted
so that the energy of pure neutron matter is comparable with
those of the existing state-of-the-art calculations [64,88].

APPENDIX B: OBSERVED FREQUENCY LIMIT

Lattimer and Prakash derived a relation in Ref. [90], which
gives the Keplerian frequency of a rotating neutron star, in
terms of radius R and mass M of the corresponding nonrotat-
ing neutron star. The relation is

fk = 1045

(
M

M�

)1/2(10km

R

)3/2

(Hz), (B1)

which can be written as fk ≈ 0.5701 fS , where fS is the
Keplerian rate for a rigid Newtonian sphere is given by the
equation

fS = 1833

(
M

M�

)1/2(10km

R

)3/2

(Hz). (B2)

Following the work of Riahi et al. [58], in order to find a
more accurate relation, we have constructed a relation, based
on a three order polynomial fit in terms of mass and radius of

the corresponding nonrotating neutron star, given by the form

fk/ fS =0.559 + 2.69

(
M

M�

)(
km

R

)

− 20.28

[(
M

M�

)(
km

R

)]2

+ 55.74

[(
M

M�

)(
km

R

)]3

,

(B3)

with error up to 4%, in comparison with Lattimer and Prakash
where the error was up to 30%.

For the observed frequency of the fastest known pulsar,
PSR J1748-2446ad, which rotates with a frequency of 716 Hz,
we obtained the relation (B3) and its schematic presentation is
presented in Fig. 2.

APPENDIX C: TOLMAN VII ANALYTICAL SOLUTION

The basic ingredients of the Tolman VII analytical solution
of Einstein’s equations for a nonrotating spherical symmetric
object, which in this case is neutron star, are presented below.

The metric functions are defined as follows:

e−λ = 1 − βx2(5 − 3x2), eν =
(

1 − 5β

3

)
cos2 φ, (C1)

where

x = r

R
, φ = w1 − w

2
+ φ1, φ1 = tan−1

√
β

3(1 − 2β )

and

w = ln

⎛
⎝x2 − 5

6
+

√
e−λ

3β

⎞
⎠, w1 = ln

(
1

6
+

√
1 − 2β

3β

)
.
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The energy density and the pressure read as

E (x)

Ec
= (1 − x2), Ec = 15Mc2

8πR3
, (C2)

P(x)

Ec
= 2

15

√
3e−λ

β
tan φ − 1

3
+ x2

5
. (C3)

There are some constraints related with the validity of the
Tolman VII analytical solution. In particular, the central value
of pressure becomes infinite for β = 0.3862, while the speed
of sound remains less than the speed of light only for β <

0.2698 [106]. This solution leads to a stable configurations
only for β < 0.3428 [106].
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