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Impact of electron capture rates for nuclei far from stability on core-collapse supernovae
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The impact of electron-capture (EC) cross sections for neutron-rich nuclei on the dynamics of core collapse
during infall and early post-bounce is studied by performing spherically symmetric simulations in general
relativity using a multigroup scheme for neutrino transport and full nuclear distributions in extended nuclear
statistical equilibrium models. We thereby vary the prescription for EC rates on individual nuclei, the nuclear
interaction for the equation of state, the mass model for the nuclear statistical equilibrium distribution, and the
progenitor model. In agreement with previous works, we show that the individual EC rates are the most important
source of uncertainty in the simulations, while the other inputs only marginally influence the results. A recently
proposed analytic formula to extrapolate microscopic results on stable nuclei for EC rates to the high densities
and temperatures and the neutron-rich region, with a functional form motivated by nuclear-structure data and
parameters fitted from large scale shell-model calculations, is shown to lead to a sizable (16%) reduction of the
electron fraction at bounce compared to more primitive prescriptions for the rates, leading to smaller inner core
masses and slower shock propagation. We show that the EC process involves ≈170 different nuclear species
around 86Kr, mainly in the N = 50 shell closure region, and establish a list of the most important nuclei to be
studied in order to constrain the global rates.
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I. INTRODUCTION

Much effort has been devoted for decades to numerical
simulations of core-collapse supernovae (CCSN), and a lot of
progress has been achieved toward understanding the complex
physics of these spectacular events (see, e.g., [1,2]). But even
if the main processes have been elucidated, many details still
deserve attention.

It was first pointed out by Bethe et al. [3] and confirmed
by many subsequent studies that electron capture (EC) on
nuclei plays an important role during the late stages of stellar
evolution and the prebounce phase of CCSN [4–8]. For very
close CCSN, the Deep Underground Neutrino Experiment
(DUNE) [9] might even be able to detect neutrinos from the
prebounce phase, as an indicator of EC reactions [10]. Most
sophisticated simulations of CCSN evolution thereby model
EC in inhomogeneous nuclear matter typically by considering
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a nuclear statistical ensemble (NSE) distribution of nuclei
together with microscopically calculated EC rates [11].

Different recent works have, however, pointed out that
our understanding of these processes under relevant thermo-
dynamic conditions is still insufficient and has an impact
on the dynamics of core collapse [12–17]. In particular, the
systematic study by Sullivan et al. [12] has shown that the
uncertainties on the EC rates on individual nuclei induce
stronger modifications to the mass of the inner core at bounce
and the maximum of the neutrino luminosity peak than the
progenitor model or the equation of state (EoS).

The results of Ref. [12] and the subsequent study [18]
clearly indicate that the simulations are most sensitive to the
EC rates for neutron-rich nuclei near the N = 50 closed
shell and, to less extent, near the next closed shell at N =
82. The main difficulty is that for the relevant nuclei not
much information is available, either experimental or from
microscopic calculations. The situation is nevertheless ex-
pected to improve in the near future due to dedicated research
programs and theoretical efforts (e.g., [19,20]). Several other
works have highlighted other aspects. First of all, total EC
rates are influenced as much by the nuclear distribution given
by the EoS as by the rates on individual nuclei, with both
suffering from uncertainties. Uncertainties in matter com-
position mainly stem from the definition of clusters in a
hot nuclear environment and nuclear properties far from the
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stability valley. Uncertainties in rates on individual nuclei are
mainly due to nuclear structure and finite temperature effects.
The sensitivity of EC rates to the former was addressed in
Refs. [13,14,16]. Raduta et al. [13] showed that the unknown
binding energies of nuclei far beyond the stability valley
and a possible shell quenching might increase the total EC
rate by up to 30%. Nuclear abundances also influence the
neutrino opacity via neutrino-nucleus scattering [14]. Future
experiments with exotic beams might improve the situation in
that respect, but further work is necessary. Nagakura et al. [17]
point out that a consistent treatment of nuclear abundances in
the EoS and for calculating weak interaction rates is important
to correctly study the EoS dependence of both the dynamics
and neutrino signals.

Concerning the individual rates, mostly values from micro-
scopic calculations—where available [11,21–25]—have been
used. By far the richest collection of microscopically cal-
culated EC rates is discussed by Juodagalvis et al. [11]. In
particular, in order to be able to extend the calculations to
heavier and more neutron-rich nuclei populated abundantly in
the later stages of collapse, the authors define a strategy to
describe electron captures by a hierarchy of nuclear models.
However, although this seminal work of Juodagalvis et al. [11]
is used by some groups performing CCSN simulations, the
data are not publicly available. The analytic parametrization
of Ref. [26] is designed to complement microscopic data for
high electron densities and temperatures and is extensively
used in simulations and also to calculate rates for nuclei not
present in the databases.

It has to be emphasized that the nuclei identified in
Refs. [12,18] as having the highest impact lie outside the re-
gion where—apart from the work by Juodagalvis et al. [11]—
microscopic calculations exist. Although we await more
microscopic calculations and additional information from
charge-exchange experiments (which, e.g., should correctly
include additional Pauli blocking effects [18]), in Ref. [15]
an extended analytic parametrization has been proposed in-
corporating different physical effects at high electron density,
temperature, and isospin ratio with the aim of improving
the reliability of the extrapolation to regions not covered by
microscopic calculations. It has been shown that the improved
parameterization leads to a systematic reduction of the total
EC rate, in agreement with expectations [18], which can reach
one order magnitude for some thermodynamic conditions.

In Refs. [13,15], the impact of a potential shell quenching
and of the improved EC rate parametrization on the prebounce
evolution of core collapse has been illustrated using some
typical thermodynamic conditions with EC rates added pertur-
batively. Here we will perform self-consistent core-collapse
simulations investigating the effect of modified EC rates and
the mass model on the evolution. In contrast to Ref. [12],
where individual EC rates were globally scaled by arbitrary
factors ranging from 2 to 10 with respect to the fiducial values,
we show here the effect of a physically motivated reduction
of EC on nuclei. For easier use of our improved model in
simulations, we will provide total EC rates and neutrino-
nucleus scattering opacities for the employed EoS within the
CompOSE database [27], with a numerically efficient format
easily adaptable to any EoS.

The paper is organized as follows. We start by specifying
the setup of our simulations in Sec. II. In Sec. III we discuss
the influence of different ingredients on the infall and early
post-bounce evolution. In addition to comparing the different
prescriptions for the EC rates on individual nuclei, we investi-
gate the dependence on the progenitor model and on the EoS,
including different nuclear interaction models and different
mass models for determining binding energies of neutron-rich
nuclei. Section IV is devoted to a determination of the most
relevant nuclei for EC in order to specify the nuclei for which
microscopic and/or experimental studies are the most needed.
We conclude in Sec. V.

II. SETUP OF THE SIMULATIONS

A. General description

In order to perform self-consistent numerical simulations
of CCSN, we use two different hydrodynamic codes in gen-
eral relativity. Most results are obtained with the spherically
symmetric version of the COCONUT code [28]. It solves
the general-relativistic (GR) hydrodynamics, with a 3 + 1
decomposition of spacetime. High-resolution shock-capturing
schemes are used for hydrodynamic equations, whereas the
Einstein equation for the gravitational field is solved with
spectral methods [29]. In addition to the five evolution equa-
tions solved for hydrodynamics (coming from the conserva-
tion of baryon current and energy-momentum tensor), this
model considers the advection equation for the electron frac-
tion Ye = ne/nB, where ne and nB are the electron and baryon
number densities, respectively.

The source terms for neutrino energy losses and delep-
tonization are computed using the “fast multigroup transport”
scheme developed by Müller and Janka [30]. This scheme
solves the stationary neutrino transport in the ray-by-ray
approximation, with a closure relation for the first Eddington
factor. In the collapse phase the first Eddington factor is set
to 1, which is equivalent to a free-streaming condition. In
the post-bounce phase the closure in obtained from a two-
stream approximation as in [30]. We switch between these
two closures relations at neutrinosphere detection (when the
central optical depth becomes larger than 0.66).

The analyses of the mass model and the most relevant
nuclei in Secs. III B 4 and IV require the use of a very flexible
input for the EoS and the matter composition. This is most
easily achieved by employing the perturbative approach of
Ref. [31]. For simplicity, this has not been implemented in
the COCONUT code, which works with tabulated versions
of the EoS, but is in an improved version of the code de-
veloped in Refs. [32–34], called ACCEPT in the following.
This spherically symmetric code uses the same techniques
for solving GR hydrodynamics as COCONUT. The differences
between the codes in solving Einstein equations are negligible
within our CCSN prebounce context. Neutrinos are treated in
a simple leakage-type scheme with a multigroup treatment:
they are considered either fully trapped (inside the neutri-
nosphere) or freely streaming (outside the neutrinosphere), the
neutrinosphere being defined by a trapping density parame-
ter. This parameter has been adjusted such that both codes

015803-2



IMPACT OF ELECTRON CAPTURE RATES FOR NUCLEI … PHYSICAL REVIEW C 101, 015803 (2020)

produce compatible results for all observables shown in this
paper, except the neutrino luminosity, leading to a value of
1012 g cm−3. Due to the obvious limitations of the leakage
scheme in ACCEPT, the neutrino luminosity cannot be well
reproduced within this scheme. This does, however, not affect
the results of Secs. III B 4 and IV. We have checked that
the limitation of the neutrino source terms to charged-current
reactions in ACCEPT is irrelevant for the results presented in
those sections, too. Finally, in all the simulations presented
here, initial models (progenitor star) come from publicly
available data computed by Woosley et al. [35].

B. Equations of state

During the different stages of the core-collapse evolution,
wide domains of density (10−12 � nB � 1 fm−3), temperature
(0.1 � kBT � 50 MeV), and charge fraction (0.01 � Ye �
0.6) are explored. Matter consists of baryons, leptons (elec-
trons, positrons, neutrinos, and antineutrinos) and photons,
and it has a homogeneous/inhomogeneous structure at supra-
/subsaturation densities. Leptons and photons interact weakly
and are usually treated as ideal Fermi and, respectively, Bose
gases. Composition and thermodynamics of baryonic matter
is still under study, because of the uncertainties related to the
effective interactions and difficulties in the modeling.

The most intensively used EoS models so far [36,37]
employ the so-called single nucleus approximation (SNA).
It describes baryonic matter at subsaturation densities as a
mixture of a uniform distribution of self-interacting nucleons,
a free gas of α particles, and a unique cluster of nucle-
ons, all of which are in thermal and chemical equilibrium
with respect to the strong interaction. Interactions between
unbound nucleons and nuclear clusters are included via the
classical excluded volume approximation and in-medium
modifications of cluster surface energy. The shortcoming of
this approach becomes obvious at high temperature, where
the macroscopic thermal equilibrium state corresponds to a
collection of distinct microscopic states. The SNA is known
to have only a negligible impact on thermodynamic quantities
[38], but it could affect the weak interaction rates, which are
highly sensitive to structure effects, and thus finally impact the
astrophysical evolution [39].

A more sophisticated approach consists of employing an
extended nuclear statistical equilibrium (NSE) model which
accounts for the entire nuclear distribution. Several NSE
models and resulting EoS have been proposed in the last
decade; see, e.g., [39–45]. For the interaction between nucle-
ons, different relativistic mean field models, Skyrme effective
interactions, or variational approaches have been employed
that span significant ranges of nuclear matter parameters in
both isovector and isoscalar channels, accounting well for
present day uncertainties in the nuclear matter EoS. Here
we are mainly interested in the infall phase, i.e., matter at
subsaturation densities and with moderate isospin asymme-
tries. Consequences of the above uncertainties in the nuclear
interactions on stellar matter are small in this regime, since
a significant amount of matter is bound in clusters and, by
construction, all effective interactions offer a fair description
of ground state nuclei. More important differences among

the different NSE models arise from the modeling of nuclear
clusters via the treatment of (i) (thermally) excited states, (ii)
maximum allowed isospin asymmetry, (iii) nuclear level den-
sity, and (iv) nuclear binding energies away from the valley of
stability, where no experimental data exist. It has been shown
that the last point strongly influences the nuclear abundances
under the thermodynamic conditions during collapse [13,14].
Additional differences exist in the identification of the bound
and unbound parts of nuclear clusters to define abundances,
but this point did not sizably modify the EoS [42]. For further
details, the reader is referred to [40,42].

For this work, as a fiducial case we will consider the NSE
model of [40] with DD2 [46] relativistic mean field effective
interaction; see Hempel et al. [39]. This model takes into
account the ensemble of nuclei whose masses have been cal-
culated within the finite range droplet model by Moller et al.
[47]. To get an idea of EoS effects, we will consider a second
model, the NSE EoS of [41]. It employs the SLy4 [48] Skyrme
effective interaction. Nuclear clusters have 2 < A < 300 and,
in principle, any value of the isospin asymmetry. Their bind-
ing energies are complementarily given by experimental data
[49,50], the predictions of the ten-parameter model by Duflo
and Zuker [51], and a liquid drop model parameterization
[52], with parameters harmonized with SLy4.

Finally, in order to assess the effect of shell closures
far from stability, we will compare different models for the
nuclear masses, using the perturbative method described by
Grams et al. [31] build upon on the EoS by Lattimer and
Swesty [36]. Specifically, the already mentioned phenomeno-
logical Duflo and Zuker mass model [51] (DZ10), which
imposes the same magic numbers irrespective the isospin
asymmetry, will be compared with the Brussels-Montreal
microscopic mass model1 HFB-24 [55]. The latter, based on
the self-consistent Hartree-Fock-Bogoliubov method, uses a
16-parameter generalized Skyrme effective nucleon-nucleon
interaction with a realistic contact pairing force, and predicts
a considerable quenching of the N = 50 shell gap far from
stability [55]. Both DZ10 and HFB-24 provide an excellent
reproduction of measured masses, with a root-mean-square
deviation of about 0.5 MeV with respect to the 2012 Atomic
Mass Evaluation [50]. We will consider, too, as an extreme
case, masses as described by the compressible liquid drop
model (CLDM) of the Lattimer-Swesty EoS [36], which
completely neglects shell effects.

C. Electron capture rates

The rate of a generic weak interaction reaction (electron
and positron capture and β decays) depends—apart from
physical constants—on the nuclear transition strength and
a phase space factor. At finite temperature weak reactions
involve several states in the parent and daughter nuclei, such
that nuclear structure effects enter the transition strength via
both nuclear energy levels and transition matrix elements.
Different reaction channels can contribute to the latter. In most

1The mass table for this model is available in the BRUSLIB
database [53]; see also Ref. [54].
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cases, it is dominated by Fermi (vector) and Gamow-Teller
(axial) contributions. The phase space factor depends on the
electron capture reaction kinematics and takes the form of in-
tegrals over the momenta of incoming and outgoing particles
[56]. As such, it shows strong dependence on thermodynamic
conditions.

The first systematic calculation under stellar conditions is
due to Fuller, Fowler, and Newman [21,56–58], who have
also made available [21] the first weak interaction rate table
for nuclei with masses between 21 and 60 for a large grid
of temperature T and electron density ne: 10−3 � kBT �
10 MeV and 10−14 � ne � 10−3 fm−3.

The fact that astrophysical simulations require high-
accuracy weak interaction rates motivated further extensive
microscopic calculations optimized on experimental data,
considering in general the same T -ne grid as Fuller et al.
[21]. Different techniques have been employed, ranging from
large scale shell-model (LSSM) calculations [22,24,59] to
the random-phase approximation [60,61] and quasiparticle
random-phase approximation (QRPA) [62,63]. By accounting
for all possible correlations among valence nucleons in a
major shell, LSSM calculations offer the most accurate micro-
scopic description available to date, as testified by their ability
to reproduce the measured Gamow-Teller (GT) distributions,
lifetimes, and low energy spectroscopy [64]. They exist for
sd- (17 � A � 39) [24] and f p-shell nuclei (45 � A � 65)
[22,59]. The mass domain 65 � A � 80 is covered by the
table of Ref. [25], which employs an empirical approach.
Finally, weak interaction rate tables for sd-, f p-, and f pg-
shell nuclei with 18 � A � 100 are given in [62,63], which
employ QRPA. QRPA was also recently employed in [19] for
calculating EC rates of neutron-rich nuclei with 26 � Z � 41
and 75 � A � 93, which correspond to the high-sensitivity
region of Ref. [18]. Hybrid models which use shell-model
Monte Carlo (SMMC) [65] or Fermi-Dirac parametrizations
[11] to determine the population of excited states and RPA
techniques for weak interaction rates have also been proposed
and exploited to extend the existing data to heavier and more
neutron-rich nuclei. In this way, the work by Juodagalvis
et al. [11] contains information for nuclei with 66 � A �
120 (250 nuclides) and with 28 � Z � 70 and 40 � N � 160
(2200 nuclides). In particular, cross-shell correlations which
are important to overcome the N = 40, 50, and 82 shell gaps
are accounted for, in agreement with the results of finite
temperature SMMC. Moreover, based on the observation that
the electron Fermi energy grows faster with core density than
the nuclear Q value, Juodagalvis et al. [11] define a strategy to
describe electron captures by a hierarchy of nuclear models.
They provide NSE-averaged EC rates along two collapse
trajectories. These rates are not appropriate for other studies
where the nuclear distribution is calculated consistently from
the employed EoS.

It is easy to see that the available databases cover a finite
mass domain and an isospin asymmetry range close to the
valley of stability. Although strong structure effects translate
into EC rates that, for low temperatures and electron density,
can vary by more than one order of magnitude between
neighboring nuclei in the isotopic chart, the need for estimates
for other nuclei, including the neutron-rich ones copiously

populated during the late collapse stages, and/or thermody-
namic conditions out of the grids, lead to the use of extrapola-
tions and approximations within simulations.

The first parametrization, proposed by Bruenn [66], relies
on the independent particle model and estimates the GT ma-
trix element by the number of protons in the π1 f7/2 shell and
the number of neutron holes in the ν1 f 5/2 one. The reaction
Q value entering the phase space factor is approximated by the
difference between proton and neutron chemical potentials.
This prescription results in the total suppression of EC on both
light and/or neutron-rich nuclei, which is certainly unrealistic.

An improved parametrization, which is presently the most
extensively used in CCSN simulations, was proposed in Lan-
ganke et al. [26]. It is based on results of SMMC calculations
at finite temperature in the full p f -sdg shell with residual
pairing plus quadrupole interactions and RPA calculations
of EC for nuclei with 65 � A � 112. At variance with the
independent particle model, all nuclei studied by Langanke
et al. [26] manifest holes in the p f shell and, for Z > 30,
nonvanishing proton occupation numbers in the sdg orbitals.
This means that GT transitions are unblocked and EC rates
take place. This new parametrization reads

jEC = ln 2B
K

(
kBT

mec2

)5

[F4(η) − 2χF3(η) + χ2F2(η)]. (1)

In this expression, χ = (Q − �E )/kBT , η = χ + μe/kBT ,
where Q denotes the EC reaction heat, Q = M(A, Z ) c2 −
M(A, Z − 1) c2, with M(A, Z ) the nuclear mass and �E =
E f − Ei. me and μe stand for electron rest mass and chemical
potential, respectively. Fi(η) denotes the relativistic Fermi
integral, Fi(η) = ∫ ∞

0 dx xk/[1 + exp(x − η)]. B represents an
average value for the nuclear matrix element and K is a
characteristic time. The constant values proposed in Ref. [26],
B = 4.6, �E = 2.5 MeV, and K = 6146 s, are obtained from
a fit of SMMC + RPA calculations for nuclei with 65 � A �
112, and are shown to correctly reproduce their gross features
for the thermodynamic conditions explored for the central
element before bounce [26]. For lower values of temperature
and electron density, Eq. (1) may nevertheless lead to both
underestimations and overestimations of microscopic calcula-
tions, as shown in Refs. [26,67]. Note that the parameter �E
accounts for possible transitions from and to excited states
in the parent/daughter nucleus, so that it is not necessary to
introduce an effective Q value such as that by Sullivan et al.
[12].

The above parametrization, Eq. (1), being integrated over
neutrino energies, cannot actually be implemented directly
into our multigroup neutrino treatments. Instead we use the
following expression for the neutrino creation rate (	 is the
usual Heaviside step function and fe− the electron distribution
function):

j(ε) = 	(ε − χkBT )
ln 2B

K

(
1

mec2

)5 (hc)3

4πc

× (ε − χkBT )2 fe− (ε − χkBT ), (2)

which, once integrated over neutrino energy ε assuming a
vanishing neutrino distribution function, exactly reproduces
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Eq. (1). Throughout this work this parametrization will be
denoted LMP (Langanke–Martínez-Pinedo).

Equation (1) was recently generalized by Raduta et al. [15],
allowing for temperature, electron density, and isospin I =
(N − Z )/A dependence as well as for odd-even effects in �E .
The temperature dependence contains two competing effects:
the increasing number of excited states in the daughter nucleus
with increasing temperature, leading to a larger �E ; and the
decreasing electron chemical potential, μe, for fixed electron
density, which shows the opposite trend. With increasing ne,
more excited states and higher energies can be populated
and thus �E increases, too. Finally the isospin dependence
and odd-even effects of �E are introduced to account for
nuclear structure effects in the centroid of the GT resonance,
as computed within LSSM for p f -shell nuclei [59].

As shown in Ref. [15] for a wide range of thermodynamic
conditions typical of late stage evolution of core collapse, the
most important improvement of Eq. (1) arises from isospin
and odd-even effects, i.e., nuclear structure properties. These
features are particularly useful in accounting for the large
dispersion of jEC in a given Q-value bin—as shown by the
data in [22,24,25,62,63]—and for the extrapolation to large
negative Q, typical of intermediate mass neutron-rich nuclei
[15]. In relation to the latter effect we point out that, for
kBT � 1 MeV and the highest ne values considered in the
grid, the improvements discussed by Raduta et al. [15] lead
to EC rates lower by two orders of magnitude or more than
those produced assuming Eq. (1). Given the overall neutron
enrichment of stellar matter before bounce, reduction of two
orders of magnitude of the individual rates on neutron-rich
nuclei entails a reduction of up to one order of magnitude
for the average EC rate summed over the complete nuclear
distribution [15]. Further developments, which are out of the
scope of present work, should also account for isospin effects
on the GT strength [59] and temperature-dependent Pauli
blocking.

Out of the different improved versions of Eq. (1) proposed
in [15] we shall here consider only one, model 3, which
best reproduces microscopic data. To be more precise, instead
of employing a global value �E , for each grid point of
ne(i), T ( j) in the microscopic calculations we write

�E (AB)(ne(i), T ( j)) = b(AB)
i, j I + c(AB)

i, j , (3)

and intermediate values of ne, T are obtained by linear in-
terpolation. The coefficients b, c were determined by Raduta
et al. [15] by a least-squares fit to LSSM calculations. Equa-
tion (3) assumes a linear isospin dependence and odd/even
effects are included by employing different coefficients
{(AB)} = {(OO), (OE ), (EE )} for odd-odd, odd-even, and
even-even nuclei, respectively. For details and in particular
values of the coefficients, see the Appendix of Raduta et al.
[15]. Hereafter this isospin dependant parametrization, imple-
mented in its energy dependent form Eq. (2), will be referred
to as ISO.

During the advanced stage of the collapse, before β equi-
librium is reached at the center of the star, T and ne exceed the
values covered by the weak rate tables and thus �E cannot
be fitted in that region. We have used two different ways to
extrapolate �E in this case: (i) first-order extrapolation or (ii)

TABLE I. Progenitor models taken from Woosley et al. [35].
Mass at collapse denotes the mass present on the numerical grid at
the beginning of simulation.

Progenitor name Metallicity ZAMS mass Mass at collapse

s15 Solar 15M� 2.1M�
s25 Solar 25M� 2.9M�
s40 Solar 40M� 2.6M�
u15 10−4 × Solar 15M� 2.0M�
u25 10−4 × Solar 25M� 2.3M�
u40 10−4 × Solar 40M� 4.6M�

constant value fixed to the last available T, ne grid point. The
predicted EC rate (and subsequently the evolution of Ye) differ
by less than 3.5 % between these two procedures, indicating
that EC rates under those extreme conditions are of little
relevance and that the extrapolation procedure for �E is not
of great influence.

A word of caution has to be added. Being based on fits
of p f -shell nuclei, the approximation proposed in Ref. [15]
might not be appropriate for EC rates of heavy nuclei, which,
due to cross-shell correlations, manifest suppression of Pauli
blocking effects [68]. This unblocking of the GT transition
was predicted by theoretical models for nuclei with Z < 40
and N > 40, and confirmed by experiments.

III. EVOLUTION OF THE COLLAPSE

All simulations start from an unstable stellar model as
mentioned in Sec. II A. Except for Sec. III B 3, where we study
the influence of the progenitor model on the results, a 15M�
progenitor from Woosley et al. [35], the s15 model, will be
used; see Table I. We then follow the collapse of the iron
core, with establishment of β equilibrium at the center, and
finally stop the simulation a few milliseconds after bounce.
Simulations in Secs. III A to III B 2 were performed with the
COCONUT code, whereas those in Secs. III B 4 and IV were
done with the ACCEPT code.

A. Influence of electron capture rates

Our fiducial simulation starts from a 15M� progenitor
(zero-age main sequence) labeled s15 in the catalog by
Woosley et al. [35]. As a first test we plot in Fig. 1 averaged
EC rates in the central cell of our numerical grid, as functions
of the baryon density in that cell during infall, for all three
approaches detailed in Sec. II C: the original one by Bruenn
[66], LMP [26], and ISO [15]. To average the rates, we assume
a Fermi-Dirac equilibrium distribution for neutrinos,

jav =
∫ ∞

0
j(ε)ε3 f (eq)

ν (ε)dε. (4)

The density where β equilibrium is achieved with the
different EC prescriptions is shown by dashed lines. From
this figure it is obvious that, up to a baryon density of nB �
2 × 10−5 fm−3, EC rates given by Bruenn’s model are higher
than the LMP and ISO ones. The behavior gets inverted at
densities between 2 × 10−5 fm−3 and 7 × 10−4 fm−3 because,
within this density interval, many neutron-rich nuclei are
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FIG. 1. EC rate evolution (labeled by baryon density) in the
central grid cell during infall using different prescriptions for the EC
rate on nuclei; see text for details. The vertical dashed lines show the
density above which β equilibrium sets in.

populated with vanishing EC rates in the simplified Bruenn
approach. This density region is located close to the onset
of β equilibrium with the highest EC rates, such that it is to
be expected that the difference in EC rates between the three
models is relevant for the evolution. The importance of EC on
neutron-rich nuclei has already been noted in Ref. [7], where
the predictions of simulations employing Bruenn’s rates have
been compared with those obtained by simulations in which
EC rates have been implemented according to shell-model and
hybrid shell-model–RPA calculations (for about 200 nuclei
with 45 � A � 112) and the LMP formula.

The electron fraction Ye is directly linked to the EC rates.
Its time evolution at the center of the star is plotted in Fig. 2.
During infall, the model with Bruenn’s rates shows a different
behavior with respect to the LMP and ISO models. This can be
understood as follows: during most of the collapse, the central
baryon density is lower than 2 × 10−5 fm−3 and EC rates by
Bruenn are higher than the other ones (see Fig. 1), which im-
plies a lower Ye for the model using Bruenn’s EC rates before
t � 210 ms. As shown in Fig. 1, for higher densities until the
onset of β equilibrium, the situation is inverted and EC rates
by LMP and ISO models are higher, leading to a stronger
decrease of Ye after t � 210 ms. This behavior shows again the
importance of EC rates in the density range 2 × 10−5 � nB �
7 × 10−4 fm−3 for the evolution of the collapse, where EC on
neutron-rich nuclei occurs. At bounce, differences of about
(30%) in Ye(r = 0) are observed, which can be explained by
the fact that EC in this density region occurs predominantly
on nuclei for which no microscopic calculations exist [12].
Regarding the predictions of the LMP and ISO models, one
notes that differences occur only for t � tbounce − 30 ms and
they are less than 20%, with LMP providing the strongest
decrease of Ye.

The study by Sullivan et al. [12]—where, in order to
account for uncertainties in EC rates, these are scaled by a
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FIG. 2. Time evolution of the electron fraction Ye(r = 0) for the
central element of the numerical grid for all three EC models during
the late prebounce phase.

constant factor of 10—indicates differences of up to ±30%
in the central Ye at bounce. The nuclear physics considera-
tions (mainly isospin dependence and odd-even effects; see
Sec. II C) entering the improved model ISO considerably
reduce the EC rates in the late stages of collapse and thus
clearly point to a higher Ye at bounce than LMP.

In Figure 3 we display the radial Ye profiles at bounce for
the three EC rate models. These results indicate that differ-
ences appear mostly in the central region of the collapsing star,
i.e., for r � 50 km at bounce, where neutron-rich nuclei are
most abundant. As the three EC rate models presented in this
paper mostly differ on these exotic nuclei, the overall behavior
displayed in Fig. 3 is understandable.
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FIG. 3. Radial profiles of the electron fraction at bounce employ-
ing the three different EC rate prescriptions.
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FIG. 4. Comparison of shock propagation at different instants during the early post-bounce phase with the three different EC rate
prescriptions.

Going further, we now look at the influence of our EC
rate models on the collapse and bounce dynamics. Since the
collapse can be seen essentially as a free fall, it is clear
that the collapse time shows only little difference between
the models: it is about 4% larger with the LMP and ISO
models than with Bruenn’s rates. This small difference can
be understood from the fact that, in the early collapse phase,
electron degeneracy pressure is dominant. The lower electron
fraction for the model with Bruenn’s rates (see Fig. 2) in this
phase thus explains the accelerated collapse.

Radial velocity profiles at bounce, and at two instants after
bounce (1 and 3 ms) are shown in Fig. 4. Although the radius
at which the shock is formed is the same for all three EC
rate models (left panel), the situation is different 3 ms after
bounce (right panel), where the shock is seen to have reached
the largest distance from the center for the Bruenn case, and
is closest to the center with the LMP rates. This can be
interpreted in terms of the inner core mass, i.e., the mass of
the matter inside the shock formation radius: the higher the
mass of this inner core, the larger the kinetic energy given
to the shock. Additionally, if the inner core mass is larger,
the iron layers that must be crossed by the shock are thinner,
thus making the shock lose less energy. Values of the inner
core mass at bounce are computed to be 0.31M�, 0.4M�,
and 0.45M�, for models with EC rates from LMP, ISO, and
Bruenn, respectively, confirming the above reasoning. Please
note that, if we had shown the shock position as a function
of the enclosed mass and not as a function of the radius (left
panel of Fig. 4), the difference in the inner core mass at bounce
would have induced visible differences; see, e.g., Fig. 7 of
Sullivan et al. [12].

The ordering of the inner core mass can in turn be un-
derstood as a consequence of the electron fraction evolution
discussed above: The mass of the inner core at bounce is
roughly proportional to 〈Y 2

L(e)〉, the mean fraction of trapped
leptons squared [69], which is fixed and given by Ye at the
moment when neutrino trapping sets in.

Finally, Fig. 5 illustrates the time evolution of electron
neutrino luminosity a few ms before and after bounce. For
all considered EC rate models two peaks are obtained. The
first peak corresponds to roughly 1 ms before bounce, while

the second corresponds to 2–4 ms after bounce. The steep
electron neutrino luminosity increase before bounce is due to
the increase of electron captures on protons bound in nuclei,
whose fraction is augmented as the density increases. At about
1 ms before bounce the core density reaches the neutrino
trapping density. As a consequence, the luminosity decreases.
The process lasts about 2 ms, until the shock reaches the
neutrinosphere and the neutrino flux increases again. Regard-
ing the peak amplitudes, a significant dependence on the
EC rate model is to be noticed. The relative ordering of the
peaks—the same before and after bounce—is nevertheless
counter-intuitive: the smallest (Bruenn)/largest (LMP) EC
rates produce the highest/lowest amplitudes. According to
Ref. [12], where this dependence was noticed for the first
time, the explanation relies on two effects. First, low opacities,
caused by low EC rates, allow the neutrinosphere to move to
inner radii. Second, large inner cores favored by low EC rates
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FIG. 5. Time evolution of electron neutrino luminosity around
bounce, for the three different EC rate prescriptions.
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FIG. 6. Neutrino inverse mean free path as functions of baryon density in the central numerical cell with reactions computed either on a
single mean nucleus (SNA) or on a statistical ensemble of nuclei (NSE): contribution of electron capture effects only (left panel) and scattering
effects only (central panel). Electron fraction time evolution for both models (right panel).

are more efficient in transferring energy to the shock which
consequently propagates outwards faster. The velocity profiles
given in Fig. 4 confirm this interpretation.

The total energy taken away by electron neutrinos, up to 15
ms after bounce, can be computed and is roughly independent
of the EC rate model: 4.58 × 1051 erg with Bruenn’s model,
4.90 × 1051 erg with LMP, and 4.99 × 1051 erg with ISO.

B. Influence of other parameters

1. SNA vs NSE

We study here the influence of other parameters on the
infall evolution, starting with a comparison between NSE or
SNA approaches within the EoS (see Sec. II B for details)
when computing neutrino reactions. To that end, we simulate
infall using EC rates computed with the ISO model, the
s15 progenitor model, as well as the HS(DD2) EoS. SNA
calculations thereby extract the average nucleus from the
entire available NSE distribution. Thermodynamic quantities
are thus unchanged between SNA and NSE and we can more
easily isolate neutrino reaction effects. In the SNA case, the
Q value needed for both LMP and ISO models is computed
using the nucleus obtained by rounding off the average (A, Z )
to the closest integers.

This approach differs from previous studies comparing
SNA and NSE presciptions. Studies focusing on thermody-
namic quantities of course recalculate the full EoS in the
SNA or NSE approach, but employ in general simplified neu-
trino treatments; see, e.g., Hempel et al. [39], who calculate
the NSE weak reactions extracting two average nuclei from
the full distribution with Bruenn rates. They confirm that
considering the full nuclear distribution for thermodynamic
quantities has only a minor impact [39,70] on core collapse. In
contrast, the importance of taking into account the full nuclear
distribution for calculating weak rates is well known; see, e.g.,
[7]. Our approach allows us to properly investigate the issue
since we consistently compute weak rates from the nuclear
distribution of the underlying EoS.

The left panel of Fig. 6 shows a comparison of averaged
neutrino inverse mean free paths from EC processes in the

central cell,

1

λa
=

∫ ∞

0
κ∗

a (ε)ε3 f (eq)
ν (ε)dε

/∫ ∞

0
ε3 f (eq)

ν (ε)dε, (5)

as a function of baryon density. κ∗
a denotes here the ab-

sorption opacity corrected for stimulated absorption given by
j(ε)/ f (eq)

ν [66]. This Fermi-Dirac weighted average yields the
correct mean free path for gray energy transport in an optically
thin medium. As expected, most important differences appear
in the density ranges above nB � 10−4 fm−3, where the nu-
clear distribution is large and potentially dominated by more
than one peak.

The middle panel of Fig. 6 shows a comparison of NSE
and SNA for the averaged inverse neutrino mean free path
obtained from scattering off nuclei. We assume isoenergetic
scattering and include corrections due to ion correlations
and electron screening; see Horowitz [71] and Bruenn and
Mezzacappa [72] for detailed expressions. The right panel
shows the time evolution (labeled by baryon number density)
of Ye in the central cell for both cases.

It is obvious that, although differences between SNA and
NSE occur mainly in the region where the nuclear distribu-
tion is large, the overall effect is much smaller than when
using different prescriptions for EC rates. We should stress,
however, that Bruenn’s rates as well as both LMP and ISO
parametrizations average over nuclear structure effects, and
the difference between NSE and SNA might become more
important when employing microscopic rates all over the
nuclear chart, which are presently not available.

2. EoS dependence

The EoS model can have some influence on the electron
fraction, too. To check this, we compare simulations obtained
with both extended NSE EoS models described in Sec. II B:
HS(DD2) from Hempel et al. [39] and the SLy4 from Raduta
and Gulminelli [42] using model ISO for the EC rate. Ye at
the star’s center shows little differences during the collapse,
and almost no difference in the resulting value at onset of β

equilibrium and at bounce. For the evolution of the central
density after bounce, only small differences between the two
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models were noted, too. The only noticeable discrepancy
between the two EoS models could be seen in the temperature
evolution at the center of the star: the EoS by Raduta and
Gulminelli [42] always leads to slightly lower values than the
one by Hempel et al. [39], but these differences have little
influence on the overall dynamics during prebounce and early
post-bounce.

The EoS dependence of the CCSN evolution be-
fore and after bounce was previously considered in
Refs. [12,17,39,73,74], which employed a relatively wide
collection of models in both SNA and NSE frameworks.
The unanimous conclusion is that a certain, though limited,
dependence is observed for practically all considered thermo-
dynamic and dynamic quantities in all stages of the evolution
as well as for the deleptonization rate, Ye, and neutrino signals.
Fischer et al. [74] reached the conclusion that Ye of the
protoneutron star and its evolution depend on the symmetry
energy.

3. Progenitor dependence

We have also explored the role of the progenitor model in
the determination of electron fraction at bounce by consider-
ing six different models from Woosley et al. [35]; see Table I.
The simulations employ ISO EC rates and the HS(DD2) EoS.
Although the overall collapse time may noticeably depend
on the type of progenitor, with differences of up to 25%, the
electron fraction at bounce varies only from 0.23 to 0.27, with
the exception of the model u40, for which it drops down to
0.2. This last point can be understood from the large mass
present on the numerical grid at the beginning of the collapse
(see Table I). We thus confirm conclusions from Sullivan
et al. [12], who showed that the detailed progenitor model can
have less influence on the electron fraction at bounce than the
precise EC rate prescription.

4. Influence of the nuclear mass model

Finally, we have examined the influence of the nuclear
mass model on the dynamics of the collapse. Previous works
[13,14,31] have shown that the composition of matter in
the thermodynamic conditions of core collapse considerably
varies according to the functional used for extrapolating nu-
clear masses beyond known ones. In particular, since the com-
position is dominated by magic nuclei [12], it was reported in
Refs. [13,14,31] that a potential modification of magicity far
from stability would strongly affect the distribution of matter.

For the present study, we have used the perturbative
method introduced in Ref. [31] to compute the NSE distri-
bution starting from a given density functional for the EoS.
As mentioned in Sec. II B, the Lattimer-Swesty functional has
been applied for that purpose and simulations have been per-
formed with the ACCEPT code using the LMP parametrization
for the EC rates.

In Fig. 7 the evolution of the most probable nucleus as
a function of time in the central element is shown, compar-
ing the predictions from a CLDM prescription (by Lattimer
and Swesty, LS [36]), with that of two microscopic mass
models, DZ10 [51] and HFB-24 [55]. In very good qualitative
agreement with Refs. [13,31], we can see that the presence (in
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FIG. 7. Baryonic number of the most probable nucleus in the
central element during infall as a function of time (labeled by the
baryon number density). Three different mass models are considered.

DZ10 and HFB-24) or absence (in LS) of shell effects impacts
in a considerable way the composition of matter. The HFB-24
model, which predicts a stronger quenching of the shell gaps
far from stability than the DZ10 model, naturally predicts a
faster evolution towards heavier nuclei. This is expected, since
a quenching of the shell gap reduces the waiting-point effect
due to magicity, well known in the framework of r-process
calculations [75].

However, the differences between the mass models only
marginally affect the global dynamical evolution of the col-
lapse. This is demonstrated in Fig. 8, which gives as an
example the radial profile at bounce of different representative
quantities. The behavior of the most probable cluster (left
part) follows the trends already observed in Fig. 7. Since
a potential magicity quenching does not change the global
pattern of nuclei produced, but only the time at which they
appear, it is not surprising that the profiles at bounce of
the different models are very similar. Less expected is the
fact that the electron fraction and entropy profile (central
and right parts of Fig. 8) of the different models are indis-
tinguishable, meaning that the time integrated effect of the
different compositions is very small. This is true even for the
simplistic liquid drop model (LS), which does not account
for any structure effect, and even if the global distribution
of nuclei is very different between the LS and the other
models at all times (see Fig. 6 of Ref. [31]). This is clearly
noticeable in Fig. 9 (see also Fig. 6 of Ref. [31]),2 where

2The nuclear distributions shown in Fig. 9 appear to be quite
different from those shown in Fig. 6 of Ref. [31]. This is because
in Ref. [31] the cluster probabilities have been calculated on a fixed
core-collapse trajectory using Bruenn’s rates and with a trapping
density fixed to 3 × 1011 g cm−3, while here the calculations have
been consistently done in the core-collapse simulations using LMP
rates and a trapping density fixed at 1012 g cm−3, thus yielding
different thermodynamic conditions.
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FIG. 8. Radial profile at the time of bounce of the baryonic number of the most probable nucleus (left), the entropy (central), and the
electron fraction (right), using three different mass models.

we plot the distribution of nuclei for a given thermodynamic
condition reached during the collapse in the center of the star
(kBT = 1 MeV, ρB = 6.02 × 1011 g cm−3, Ye = 0.27) for the
LS model (oval-shaped contours) and the HFB-24 mass model
(bimodal contours). While for the LS model the most probable
nucleus is located around N ≈ 86 and Z ≈ 37, for the HFB-24
mass model the most probable nucleus is still located around
the magic number N = 50 and Z = 28, and the probabilities
show a bimodal distribution with a second peak close to the
magic number N = 82.

This might be at least partially explained by the fact
that for this simulation we have used an analytic continuous
parametrization (LMP) for the EC rates, washing out nuclear
structure effects observed in microscopic rate calculations
[22]. Some dependence on the different mass models might
therefore be recovered if microscopic rates consistent with the
mass model were used. Unfortunately, this cannot be tested
presently since, as we show in the next section, the number
of nuclear species present in the tabulated microscopic rates
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FIG. 9. Distribution of nuclei (N, Z ) for a chosen thermody-
namic condition during the collapse before trapping: kBT = 1 MeV,
ρB = 6.02 × 1011 g cm−3, Ye = 0.27. Contour lines correspond to the
cluster normalized probabilities (red to blue, more to less probable)
for the original LS model (oval-shaped contour) and for the HFB-24
nuclear mass model. See text for details.

is largely insufficient to cover the NSE distribution and in
particular the relevant nuclei for EC during collapse. However,
even if a final quantitative conclusion cannot be drawn at
present, it is clear from Fig. 8 that the details of the mass
model have much less influence on the dynamics of core
collapse than precise EC rates.

IV. DETERMINATION OF THE MOST RELEVANT NUCLEI

In the previous section we showed that the most influential
microscopic ingredient entering a core-collapse simulation is
the expression of the individual EC rates, particularly their
behavior at low Q values, which corresponds to very neutron-
rich nuclei and which is still largely unknown. The improved
parametrization ISO, providing a better fit to the microscopic
calculations by Langanke and Martinez-Pinedo [22], suggest a
considerable average reduction of the rates in the neutron-rich
region with respect to the original parameterization LMP.
Still, the difference observed in the collapse dynamics arises
from the extrapolation of those fits to unknown regions where
neither data nor microscopic calculations are available. It is
therefore clear that additional constraints are needed at low
Q values before a parametrization can be considered fully
reliable. For this reason, here we try to identify the most
important nuclei for the deleptonization process. Experiments
and/or microscopic calculations on these key nuclei could
provide benchmarks for future improved parametrizations.

The simulations of this section were performed with the
same settings as in Sec. III B 4, employing the HFB-24 [55]
mass model.

An estimation of the number of nuclear species that should
be taken into account to have a realistic core-collapse sim-
ulation can be inferred from Fig. 10. In the upper part we
display the deleptonization rate obtained by considering only
the k most abundant nuclei in the NSE distribution, as a
function of the number k of considered nuclei. The reason
why we prefer to rank nuclei according to their abundances
rather than the more relevant product between abundance and
capture rate is that the latter quantity is strongly affected by
the assumed EC rate model. The different curves are labeled
by their instantaneous EC rate, which is a monotonically
rising function of time, and the different curves correspond
thus to different times during collapse, before reaching β
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FIG. 10. Upper panel: the instantaneous capture rate evaluated
on a limited number k of nuclei, normalized to the rate obtained
taking the 200 most probable ones, as a function of the size of the
sample. Nuclei are ordered according to their abundance. The labels
give the instantaneous rate on the whole distribution, with lower rates
corresponding to earlier times. Lower panel: the number of nuclei
accounting for 50% of the total instantaneous rate is plotted as a
function of the EC rate (dashed line). The number of species which
are not included in the tabulated microscopic EC rates [21,22,24,25]
is plotted with a solid line.

equilibrium. The rate is normalized to the value obtained by
summing the contribution of the 200 most abundant nuclei,
considering that k = 200 is sufficient at all times to recover
the total rate.

The SNA approximation, obtained considering k = 1 in
Fig. 10 (upper part), obviously leads to a systematic underesti-
mation of the rate by a factor between 2 and 10, depending on
the time. As observed in Fig. 6, this underestimation leads to
roughly 5% overestimation of the electron fraction at bounce,
meaning that a larger pool of nuclei has to be considered at
each time step to have a complete picture of the collapse.

To get an idea of how many different nuclei have to be
considered, we display in the lower part of Fig. 10 the number
of nuclei responsible for half of the total EC rate as function
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FIG. 11. Time integrated relative deleptonization rate (color
scale) associated to the different nuclear species identified by their
proton Z and neutron N number. The black contour indicates the
most relevant nuclei for EC identified by Sullivan et al. [12] and
Titus et al. [18]. The red, blue, and green contours indicate the
nuclei for which microscopic rates are available from Langanke and
Martinez-Pinedo [22], Oda et al. [24], and Pruet and Fuller [25],
respectively. Nuclei with experimentally known masses are situated
between the gray lines.

of time (labeled by the total instantaneous rate). It shows that
at each time one-half of the total rate is due to the capture on
not more than 20 nuclei, which decreases to less than 5 in the
later stages before β equilibrium is reached and EC and its
inverse β decay become irrelevant.

We show in the same figure the number of those relevant
nuclei for which microscopic calculations [21,22,24,25] are
not available (solid line). Evidently, for many nuclei contribut-
ing in a dominant way to EC during collapse, no microscopic
rates exist. In particular in the later stages, most relevant for
the dynamics of the collapse, the rates on all those nuclei
have to be estimated by extrapolations. Note, however, that the
number of relevant unconstrained rates is relatively limited.
The corresponding isotopes are represented in Fig. 11, where
the color scale represents the relative contribution to the
time integrated rate associated with the different nuclei. The
ensemble of nuclei represented in this figure account for 89%
of the total time integrated EC rate, and can therefore be
considered as the relevant pool of nuclei for the EC process
during infall. In the same figure, the gray lines delimit the
isotopic region where experimental values are known for the
nuclear masses, and the closed red/blue/green surfaces repre-
sents the region where microscopic calculations are available
[22,24,25]. The nuclei relevant for EC are essentially located
close to the N = 50 shell closure, in good qualitative agree-
ment with the results of the sensitivity study by Sullivan et al.
[12] and Titus et al. [18] (shown by the black contour).

It should be stressed that for most of the 170 different
nuclei represented in Fig. 11 no microscopic calculation ex-
ists. Dedicated microscopic calculations for all these nuclei
represent still an enormous challenge, but it is interesting
to observe that these nuclei are concentrated in a relatively
reduced zone of the nuclear chart. This means that some
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extra experimental and/or theoretical information on weak
processes even on a few of the most important ones would
greatly help to constrain analytic forms such as ISO, for a
systematic application to the whole nuclear pool.

One remark of caution is needed at his point. For our
calculations here, we have used the LMP parametrization for
all nuclei. This is at variance with Sullivan et al. [12], where
the LMP was used only for nuclei that are not contained in
any of the three tables of Refs. [22,24,25]. The exact list of
relevant nuclei for EC might thus be slightly different from
those shown in Fig. 11 if the microscopic rates were used
where they are known. We expect this effect, however, to be
small since most of the relevant nuclei lie outside the range of
the tables with microscopic rates. Please note that the absolute
rates reported in Fig. 11 are anyway model dependent. For
instance, if we had employed the ISO parametrization instead
of LMP they would clearly be reduced.

V. CONCLUSIONS

Within this study we have performed simulations of the
prebounce evolution of core-collapse supernovae, investigat-
ing the effect of improved EC rates on nuclei developed
in Raduta et al. [15]. As pointed out already by Langanke
et al. [26], Bruenn’s EC rates commonly used break down
as soon as neutron-rich nuclei become populated abundantly
in the later stages of the prebounce evolution. Although
some attempts have been made to extent LSSM calculations
to heavier and more neutron-rich nuclei using hybrid ap-
proaches [11,65], microscopically calculated rates for these
nuclei are still not the most convenient to be directly applied
in large CCSN simulations. Therefore, for the most exotic
and neutron-rich nuclei EC rates are extrapolated [26] and
are thus subject to large uncertainties. Sullivan et al. [12]
have therefore performed a systematic sensitivity study, where
individual EC rates were thereby globally scaled by arbitrary
factors ranging from 2 to 10 with respect to the fiducial values,
showing that the uncertainties on nuclear EC rates have a
stronger influence on prebounce evolution than other inputs,
such as progenitor model or EoS.

Here, we confirm qualitatively the findings as well of the
pioneering work of Hix et al. [7], Langanke et al. [26], as
well as that of Sullivan et al. [12] and the subsequent studies
of Titus et al. [18]. Electron captures occur predominantly on
neutron-rich nuclei during the last stages of prebounce, and
enhanced captures reduce central Ye at bounce with differ-

ences of up to 30% between the different prescriptions for
EC on heavy neutron-rich nuclei. Lower Ye at bounce leads
to smaller inner core mass and slower shock propagation after
bounce. The effect of different EC rates is clearly predominant
with respect to the EoS, the nuclear mass model, or the pro-
genitor model. However, the improved parametrization ISO
motivated by nuclear physics considerations clearly points to
a reduction of EC on neutron-rich nuclei with respect to the
work by Langanke et al. [26]. Although the impact of EC on
neutron-rich nuclei is thus attenuated, we emphasize that still
the results are considerably different from those employing
Bruenn’s rates and it is important to include EC on those
nuclei.

The sensitivity to the different prescriptions for EC rates
clearly indicates the importance of clarifying the rates on
those nuclei, either by theoretical calculations or experiments.
Indeed, the parametrization ISO is certainly improved by nu-
clear physics considerations with respect to the basic extrap-
olation proposed in LMP, but still it is just an improved fit to
complete LSSM calculations, and the differences with respect
to the simpler LMP prescription arise from the extrapolation
of the fit to the low Q-value region where no microscopic cal-
culations are available. We have therefore provided a list of the
most relevant nuclei, accounting for the 89% of the total time
integrated deleptonization rate. Although the details of this list
are certainly model dependent (EoS, mass model, progenitor,
EC rate parametrization, etc.), there is a large overlap with the
74 most important nuclei for EC identified in Refs. [12,18]
with different settings, such that the identification is robust.

Our approach to the computation of EC rates in CCSN
simulations presented here possesses the advantages of being
numerically efficient and applicable to any EoS. We plan to
make public in the near future these rates as well as neutrino-
nucleus scattering opacities.
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