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Neutrino-deuteron scattering: Uncertainty quantification and new L1,A constraints
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We study neutral- and charged-current (anti)neutrino-induced dissociation of the deuteron at energies from
threshold up to 150 MeV by employing potentials, as well as one- and two-body currents, derived in chiral
effective field theory (χEFT). We provide uncertainty estimates from χEFT truncations of the electroweak
current, dependences on the χEFT cutoff, and variations in the pool of fit data used to fix the low-energy
constants of χEFT. At 100 MeV of incident (anti)neutrino energy, these uncertainties amount to about 2–3%
and are smaller than the sensitivity of the cross sections to the single-nucleon axial form factor, which amounts
to 5% if one varies the range of the nucleon axial radius within the bands determined by recent lattice quantum
chromodynamics evaluations and phenomenological extractions. We conclude that a precise determination of
the nucleon axial form factor is required for a high-precision calculation of the neutrino-deuteron cross sections
at energies higher than 100 MeV. By matching our low-energy χEFT results to those of pionless effective field
theory (�π EFT), we provide new constraints for the counterterm L1,A that parametrizes the strength of the axial
two-body current in�π EFT. We obtain a value of 4.9+1.9

−1.5 fm3 at renormalization scale set to pion mass, which is
compatible with, albeit narrower than, previous experimental determinations, and comparable to a recent lattice
quantum chromodynamics calculation.
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I. INTRODUCTION

Many fundamental questions in particle physics, astro-
physics, and cosmology are inextricably linked with neutrino
properties and their interactions with nuclei. With the entry of
neutrino experiments into an era of precision measurements,
a reliable theoretical treatment of the scattering of neutrinos
with nuclei that constitute the detector material is one of the
most important challenges for nuclear physicists [1]. Precise
theoretical calculations were first performed for light nuclei.
Predictions for the (anti)neutrino-deuteron (ν̄/ν-d) scattering
cross sections by Nakamura et al. [2,3] marked a significant
improvement over prior works (reviewed in Ref. [4]) and
played a crucial role in the analysis of experiments that led
to the confirmation of neutrino oscillations [5,6]. These phe-
nomenological calculations were based on the conventional
meson-exchange model of nuclear interactions and weak cur-
rents. Shen et al. [7] refined the modeling of the currents and
extended the approach of Nakamura et al. to neutrino energies
up to the GeV scale. Efforts to extend these calculations
to heavier nuclei are also under way. Breakup reactions of
3H and 3,4He were calculated in coordinate space using the
method of hyperspherical harmonics in Refs. [8–10], and
2,3H and 3He were treated in the momentum-space Faddeev
formalism in Refs. [11,12]. The neutral weak responses of
4He [13] and 12C [13–15] were studied using the Green’s
function Monte Carlo method. Inclusive ν- 12C and ν- 16O
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cross sections have been calculated using the correlated basis
functions and self-consistent Green’s function methods in
Ref. [16]. These studies have generally been motivated by the
composition of the detector in past, present and future neu-
trino experiments such as SNO (heavy water), MiniBooNE
(mineral oil), T2K/T2HK (water), and DUNE (liquid 40Ar).

The ν̄/ν-d cross sections have also been calculated in
effective field theories, which provide a description of the
scattering at low energies that correspond to a typical momen-
tum scale Q which is smaller than a breakdown momentum
scale, �b. The nuclear Hamiltonian and couplings to external
electroweak sources are systematically constructed as pertur-
bative expansions in Q/�b with controlled uncertainties. The
expansion coefficients are functions of undetermined param-
eters called low-energy constants (LECs) which are usually
fixed by fitting to experimental data. Pionless effective field
theory (�π EFT), which has the nucleons as the only hadronic
degrees of freedom, was applied to ν̄/ν-d scattering in
Ref. [17]. The results of prior phenomenological calculations
were well reproduced for neutrino energies within the domain
of convergence of the�π EFT expansion, modulo fitting of a
single undetermined LEC which is conventionally referred to
as L1,A. Recently, Baroni and Schiavilla [18] performed the
first calculation of ν̄/ν-d scattering in chiral effective field
theory (χEFT), which uses nucleons and pions as effective
degrees of freedom. Employing currents and interactions up
to high orders in the χEFT expansion, Ref. [18] obtained
results that were consistent with, albeit 1–2% larger than, the
phenomenological calculations of Refs. [2,7].

In this work, we study the inelastic ν̄/ν-d scattering
process in χEFT with several goals that are different from
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previous works. We set up an independent framework to
express the χEFT operators as multipole expansions and
then compare the various sources of uncertainties in the
ν̄/ν-d cross section calculation. In addition to the approach
in Ref. [18] of fixing the potentials at a high χEFT order and
examining the order-by-order contributions of the electroweak
current operator, we also employ the NNLOsim family of
interactions [19,20] comprising 42 different χEFT potentials.
These potentials are all derived up to the third order in the
χEFT expansion but span seven different values of regulator
cutoffs and six different truncations of the maximum scatter-
ing energy in the world database of nucleon-nucleon (NN)
scattering cross sections that were used to partly constrain
the LECs. This allows for a more complete treatment of
uncertainties. Furthermore, we investigate the sensitivity of
the cross sections to variations in the nucleon axial radius
within the uncertainties of recent lattice quantum chromo-
dynamics (lattice QCD) evaluations and model-independent
extractions, which are much larger than conventional error
estimates obtained by assuming a dipole form factor, and
compare this to χEFT uncertainties. Finally, by using our
χEFT results as input, we constrain the value of the LEC L1,A,
which is a major source of uncertainty in�π EFT calculations
of nuclear weak processes such as the proton-proton fusion
reaction occurring in our sun.

This paper is organized as follows. Section II briefly
reviews the theory that relates the ν̄/ν-d cross section to
electroweak response functions calculated from χEFT inter-
actions and currents in a multipole-decomposition framework.
In Sec. III, we present the numerical results for the disso-
ciation cross sections and discuss their implications. A brief
summary and outlook are presented in Sec. IV.

II. THEORY

The cross section for ν̄/ν-d scattering off the deuteron
follows from Fermi’s golden rule (in natural units) as

σ =
∑

h

∫
�

|〈 f |ĤW |i〉|2 2π δ(E f − Ei ), (1)

where the sum runs over the neutrino helicites h, the inte-
gration is over the phase space volume �; |i〉 and | f 〉 are,
respectively, the initial and final states consisting of leptons
and nucleons, and Ei, f are their energies [21]. At energy scales
well below the masses of the W ± and Z0 bosons, the nuclear
weak interaction Hamiltonian ĤW can be written as a contact
interaction between the leptonic and nuclear current operators,

ĤW = G√
2

∫
d3x jlept

μ (x) jμ(x), (2)

where G is the coupling constant. While the matrix elements
of the leptonic operator jlept

μ are well approximated by free-
space Dirac currents, the derivation of the nuclear operator
jμ and the calculation of its matrix element for nuclear
states present challenges. The current operator jμ and the
nuclear wave functions have traditionally been obtained from
phenomenological models with hadronic degrees of freedom.
Over the last few decades, χEFT has emerged as a successful

theory that connects properties of nucleons and mesons to
the underlying dynamics of quarks and gluons in a model-
independent and systematically improvable way [19,22–27].
The nuclear wave functions are obtained from the χEFT
interactions arranged as a hierarchy of Feynman diagrams
with interacting pion and nucleon (N) fields. The weak current
operator jμ is similarly expressed as couplings of the external
sources to the π and N fields and their interaction vertices
within the same formalism and indeed shares several LECs
with the strong-interaction Hamiltonian. χEFT thus provides
a consistent theoretical framework in which both the inter-
actions and the currents are organized in Q/�b expansions,
where Q is of the order of the pion mass mπ and �b is
the chiral symmetry-breaking scale which is roughly of the
order of 1 GeV. We note, however, that a fully consistent
treatment of interactions and current requires the use of the
same regularization scheme, which is still under development
[28] and is beyond the scope of this work.

A. The neutrino dissociation cross section

The differential cross section for the disintegration of the
deuteron by an antineutrino or a neutrino of energy ε, which
follows from Eqs. (1) and (2), can be written in terms of the
nuclear electroweak response functions Rαβ as

d2σ

d� dω

∣∣∣∣
ν/ν̄

= G2

8π2

k′

ε
F (Z, k′) [v00R00 + vzzRzz − v0zR0z

+ vxx+yyRxx+yy ∓ vxyRxy]. (3)

The coupling constant G is equal to the Fermi coupling GF for
the neutral current (NC) process and to GFVud , where Vud is
the Cabibbo-mixing matrix element, for the charge-changing
(CC) process; k′ (ε′) is the momentum (energy) of the scat-
tered lepton in the rest frame of the deuteron, and the function
F (Z, k′), whose expression is given in Ref. [29], accounts for
the distortion of the wave function of the final-state lepton due
to the electric field of the nucleons. The expressions for the
lepton tensors vμν , which can be obtained from Dirac algebra,
are

v00 = 2εε′
(

1 + k′

ε′ cos θ

)
,

vzz = ω2

q2

(
m2

l + v00
) + m2

l

q2

[
m2

l + 2ω(ε + ε′) + q2
]
,

v0z = ω

q

(
m2

l + v00
) + m2

l

ε + ε′

q
,

vxx+yy = Q2 + Q2

2q2

(
m2

l + v00
) − m2

l

q2

[
m2

l

2
+ ω(ε + ε′)

]
,

vxy = Q2 ε + ε′

q
− m2

l

ω

q
, (4)

where the final-state lepton mass ml is equal to the electron
mass for the CC process and zero for the NC process. The
energy transfer is

ω = ε − ε′, (5)
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and the magnitude of the three-momentum transfer is

q = (ε2 + k′2 − 2 ε k′ cos θ )1/2, (6)

where θ is the scattering angle. The squared four-momentum
transfer Q2 is defined as Q2 = −qμqμ = q2 − ω2 > 0. For a
monochromatic ν̄/ν beam of incident energy ε, the differen-
tial cross section in Eq. (3) is, therefore, a function of only two
kinematic variables: ε′ and θ .

We choose the z axis along the direction of q and the
zx plane along the plane of q and the relative momentum p
between the final-state nucleons. The magnitude of p is given
up to corrections of O(p2q2/m4) by

(ω + md )2 − q2 = 4(p2 + m2), (7)

where md and m are the masses of the deuteron and nucleon,
respectively. In case of the deuteron, the response functions
Rαβ , which depend on ω and q, can be written as

R00(ω, q) = p2

24π2

∑
Md

∑
S′S′

z

∑
T ′

∫ 1

−1
dx

∣∣〈ψp,S′S′
z,T

′T ′
z

∣∣ρ|ψd,Md

〉∣∣2∣∣ p+xq/2
E+

+ p−xq/2
E−

∣∣ , (8)

Rzz(ω, q) = p2

24π2

∑
Md

∑
S′S′

z

∑
T ′

∫ 1

−1
dx

∣∣〈ψp,S′S′
z,T

′T ′
z

∣∣ j0
∣∣ψd,Md

〉∣∣2∣∣ p+xq/2
E+

+ p−xq/2
E−

∣∣ , (9)

R0z(ω, q) = p2

24π2

∑
Md

∑
S′S′

z

∑
T ′

∫ 1

−1
dx

2 Re
{〈

ψp,S′S′
z,T

′T ′
z

∣∣ρ∣∣ψd,Md

〉〈
ψp,S′S′

z,T
′T ′

z

∣∣ j0
∣∣ψd,Md

〉∗}∣∣ p+xq/2
E+

+ p−xq/2
E−

∣∣ , (10)

Rxx+yy(ω, q) = p2

24π2

∑
Md

∑
S′S′

z

∑
T ′

∫ 1

−1
dx

∣∣〈ψp,S′S′
z,T

′T ′
z

∣∣ j1
∣∣ψd,Md

〉∣∣2 + ∣∣〈ψp,S′S′
z,T

′T ′
z

∣∣ j−1

∣∣ψd,Md

〉∣∣2∣∣ p+xq/2
E+

+ p−xq/2
E−

∣∣ , (11)

and

Rxy(ω, q) = p2

24π2

∑
Md

∑
S′S′

z

∑
T ′

∫ 1

−1
dx

∣∣〈ψp,S′S′
z,T

′T ′
z

∣∣ j1
∣∣ψd,Md

〉∣∣2 − ∣∣〈ψp,S′S′
z,T

′T ′
z

∣∣ j−1

∣∣ψd,Md

〉∣∣2∣∣ p+xq/2
E+

+ p−xq/2
E−

∣∣ . (12)

Here the operator ρ is the zeroth component of the four-vector weak current and jλ are the spherical components of the three-
vector weak current operator j. The integration variable x is the cosine of the angle between q and p. The initial nuclear state is
the deuteron ground state, denoted here by |ψd,Md 〉, where Md is the projection of the total angular momentum, while the final
nuclear state is denoted by |ψp,S′S′

z,T
′T ′

z
〉, where T ′, T ′

z , S′, S′
z are, respectively, the total isospin, isospin projection, total spin,

and spin projection of the scattering two-body state. Finally, E± =
√

(q/2 ± p)2 + m2 are their energies in the rest frame of the
deuteron.

At this point, it is convenient to perform a multipole decomposition of the operators ρ and jλ. This can be used for the
deuteron calculations presented in this paper, but it is also applicable to computations in heavier nuclei, where one typically
uses a spherical basis. Within this formalism, the matrix elements of the charge/current operators can be expanded in terms of
reduced matrix elements of spherical tensor operators, i.e., the multipoles of ρ and jλ, as〈

ψp,S′S′
z,T

′T ′
z

∣∣ρ∣∣ψd,Md

〉 = (4π )3/2
√

2
∑

�J ′Ld LL′
i�−L(−1)1+S′+�−L [�] [J ′]Y

Md −S′
z

L ( p̂)

×
(

L S′ J ′
Lz S′

z −Md

)(
1 � J ′

Md 0 −Md

)
L〈p; (L′S′)J ′; T ′T ′

z ‖C�‖(Ld 1)1; 00〉 (13)

and〈
ψp,S′S′

z,T
′T ′

z

∣∣ jλ
∣∣ψd,Md

〉 = −(4π )3/2
∑

�J ′Ld LL′
i�−L(−1)1+S′+�−L [�] [J ′]Y

Md +λ−S′
z

L ( p̂)

×
(

L S′ J ′
Lz S′

z −Md − λ

)(
1 � J ′

Md λ −Md − λ

)

× [
√

2 L〈p; (L′S′)J ′; T ′T ′
z ‖L�‖(Ld 1)1; 00〉 δ0λ+ L〈p; (L′S′)J ′; T ′T ′

z ‖λM� + E�‖(Ld 1)1; 00〉 δ±1λ].

(14)

Here we have used the three- j symbol [30]; Y μ
L is a spherical

harmonics of generic multipolarity L and projection μ, while
[�] denotes

√
2� + 1.

In these expressions, CM
� , LM

� , EM
� , and MM

� are, respec-
tively, the Coulomb, longitudinal, transverse electric, and
transverse magnetic multipole operators [21] defined in terms
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of ρ and j as

CM
� = (−i)�

4π

∫
d�q̂ Y M

� (q̂) ρ, (15)

LM
� = i

(√
�

[�]
DM

�,�−1 +
√

� + 1

[�]
DM

�,�+1

)
, (16)

EM
� = i

(√
� + 1

[�]
DM

�,�−1 −
√

�

[�]
DM

�,�+1

)
, (17)

LM
� = i

(√
�

[�]
DM

�,�−1 +
√

� + 1

[�]
DM

�,�+1

)
, (18)

MM
� = DM

�,�, (19)

where

DM
�,K = (−i)K

4π

∫
d�q̂ YM

�(K1)(q̂) · j. (20)

The deuteron ground state |ψd,Md 〉 can be written in coordinate
representation as an expansion in partial waves:〈

r
∣∣ψd,Md

〉 =
∑

Ld =0,2

〈r|(Ld 1)1Md ; 00〉

=
∑

Ld =0,2

uLd (r)

r
YMd

1(Ld 1)(r̂) |T = 0, Tz = 0〉, (21)

where YM
�(K1)(q̂) are vector spherical harmonics [30] and

u0,2(r) are the deuteron radial wave functions. The NN scat-
tering state |p; (L′S′)J ′; T ′T ′

z 〉 is similarly given by〈
ψp,S′S′

z,T
′T ′

z

∣∣r〉 = 4π
√

2
∑

J ′J ′
zL′LLz

i−L YJ ′
z
∗

J ′(L′S′ )(r̂)

×Y Lz
L ( p̂) 〈LLz; S′S′

z|(LS′)J ′J ′
z〉 zJ ′S′T ′

L′L
∗
(pr)

≡ 4π
√

2
∑

J ′J ′
zL′LLz

i−L〈LLz; S′S′
z|(LS′)J ′J ′

z〉

×Y Lz
L ( p̂) L〈p; (L′S′)J ′J ′

z; T ′T ′
z |r〉, (22)

where 〈LLz; S′S′
z|(LS′)J ′J ′

z〉 is a Clebsch-Gordan coefficient
[30]. The radial wave functions of the scattering state,
zJ ′S′T ′

L′L (pr), have the asymptotic form

zJ ′S′T ′
L′L (pr) → 1

2

[
δL′L h(2)

L (η; pr)

+ h(1)
L′ (η; pr) SJ ′S′T ′

L′L (p, p)
]
, (23)

where SJ ′S′T ′
L′L (p, p) is the scattering matrix and h(1,2)

L (η; pr) are
outgoing and incoming Coulomb wave functions at Sommer-
feld parameter η. For the nn and pn systems, η = 0 and the
functions h(1,2)

L (η = 0; pr), therefore, reduce to spherical Han-
kel functions. The radial wave functions u0,2(r) and zJ ′S′T ′

L′L (pr)
are obtained by solving the partial wave Lippmann-Schwinger
equation as outlined in Refs. [7,31,32]. The reduced multipole
matrix elements in Eqs. (13) and (14) are numerically evalu-
ated by truncating the summation over multipolarity � and are
then used to obtain the nuclear electroweak response functions
Rαβ (ω, q) for a discrete mesh of ω and q. The number of
multipoles required depends on the value of q. We find that

converged results are obtained for the range of kinematics
considered in this work with � up to 10.

The total cross section σ (ε) can be obtained by integrating
Eq. (3) over θ and ε′. The limits on the ε′ integrals are set
by the kinematical constraints ml � ε′ � ε′

+ for 0 � θ � π/2
and ml � ε′ � ε′

− for π/2 � θ � π . Here the upper limits ε′
±

are given by

ε′
± = ε̄ ± [

ε̄2 − (1 − β2 cos2 θ )
(
ε̄2 + m2

l β
2 cos2 θ

)]1/2

1 − β2 cos2 θ
,

(24)
where

β = ε

ε + md
(25)

and

ε̄ = md (ε − εth) + ml (ml + 2m)

ε + md
. (26)

The threshold energy of the incident neutrino is

εth = (ml + 2m)2 − m2
d

2md
, (27)

where m is (mp + mn)/2 for NC processes, mp for CC ν

scattering, and mn for CC ν̄ scattering.

B. The current operators in χEFT

The electroweak current operators were first derived within
the context of χEFT in Refs. [33–35]. More general and
complete derivations were later performed using the unitary
transformation method [28,36–39] and in many-body pertur-
bation theory [40–43]. The operators we use in this work
are consistent with both of these sets of studies because
the differences that exist between them do not appear up
to the chiral order at which we work. As in Ref. [44], we
count the inverse nucleon mass (1/m) factors that arise from
Gordon decomposition of the Dirac current as one chiral order
and relativistic 1/m2 corrections as four chiral orders. This is
different from both Refs. [28,36–39] that count m as O(�2

b/Q)
and Refs. [40–43] that count it as O(�b), but does not lead to
inconsistencies with the power counting of operators in the
strong-interaction Hamiltonian.

We now provide a brief overview of the forms of
the current operators that we will implement. The neu-
tral weak current is given by jμNC = −2 sin2 θW jμγ ,S +
(1 − 2 sin2 θW ) jμγ ,z + jμ5

z , where θW is the Weinberg angle,
jμγ ,S and jμγ ,z are the isoscalar and isovector electromagnetic
currents, and jμ5

z is the weak axial current, whereas the
charge-changing weak current operator, jμCC, can be written as
the sum of the vector and the axial vector pieces, jμ± + jμ5

± .
Each of these terms can be expressed as a sum of one-
body (1B) and two-body (2B) operators that act on nucleonic
degrees of freedom as

jμ =
∑

n

jμ(n) +
∑
m<n

jμ(mn), (28)

where the sums run over the nucleons.
We consider all electroweak operators at orders

(Q/�b)−3,−2,−1,0 in the χEFT power counting. The leading
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1B vector charge operator occurs at (Q/�b)−3. Its expression
is

j0
γ ,S/z(n) = GS/V

E (Q2)
1√

1 + Q2

4m2

eiq·rn τ S/V
n , (29)

where rn is the position of the nth nucleon. The isoscalar
isospin operator τ S

n is one-half times the identity operator
whereas the isovector isospin operator τV

n is τn,z/2.
The isoscalar and isovector electric form factors can be

written in terms of the proton and neutron electric form
factors as GS/V

E = Gp
E ± Gn

E . At least up to the chiral order at
which we work, the nucleon structure corrections that occur
for the 1B parts of the current operator calculated between
two-body states are exactly the same as those for free pro-
tons and neutrons. These nucleon-structure corrections have
been derived in chiral effective field theory [45]. However,
several orders of calculations are needed to obtain converged
results. It has therefore become a common practice to use
phenomenological form factors to represent the sum of the
nucleon structure diagrams, which makes the calculations of
nuclear systems less sensitive to inaccuracies in the single-
nucleon sector [44]. We use the dipole parametrization of
the electromagnetic form factors with a vector mass factor of
833 MeV as in Refs. [7,18].

The 1B vector current operator first contributes at
O(Q/�b)−2. It consists of the so-called convection and spin-
magnetization currents,

jγ ,S/z(n) =
(

GS/V
E (Q2)

p̄n

m
− i GS/V

M (Q2)
q × σn

2m

)
eiq·rn τ S/V

n ,

(30)

where GS/V
M = Gp

M ± Gn
M are the isoscalar and isovector mag-

netic form factors. The momentum of the nth nucleon, p̄n =
(p′

n + pn)/2 = pn + q/2 is the average of its initial and final
momenta.

The 1B axial current is given at O(Q/�b)−3 by

j5
z (n) = −GA(Q2) σn eiq·rn τV

n , (31)

and the 1B axial charge at O(Q/�b)−2 by

j05
z (n) = −GA(Q2) σn · p̄n

m
eiq·rn τV

n . (32)

Here σn is the Pauli operator acting on the nucleon spin and
GA(Q2) is the axial form factor. It was recently claimed that
the dipole parametrization of GA(Q2) yields large systematic
deviations from the z expansion [46]. Therefore, in addition to
a dipole parametrization with axial mass MA = 1 GeV, we also
use a model-independent expansion of the axial form factor,
GA(Q2) = gA[1 − 〈r2

A〉 Q2/6] + O(Q4), where gA is the axial
coupling constant and 〈r2

A〉 is the mean-square axial radius of
the nucleon. It is to be noted that the O(Q4) corrections enter
at an order beyond the maximum χEFT order we consider for
our electroweak operators.

The charge-changing operator jμCC(n) = jμ±(n) + jμ5
± (n)

can be obtained from jμγ ,z(n) + jμ5
z (n) by the substitution

τV
n = τn,z

2
→ τn,x ± i τn,y

2
= τn,±, (33)

along with the inclusion of induced pseudoscalar contribu-
tions, for which we use the expression given in terms of the
axial form factor,

jμ5
± (n; PS) = GA(Q2)

qμ σn · q
m2

π + Q2
eiq·rn τn,±, (34)

using the parametrization obtained from chiral Ward identity
[47].

The 2B vector current operator is purely isovector up to
the order we consider. The one-pion-exchange operators enter
at O(Q/�b)−1. They are given by the sum of the so-called
seagull and pion-in-flight terms, which can be written in
momentum space as

jγ ,z(mn) = −i
g2

A

4 f 2
π

(
σm − km

σm · km

m2
π + k2

m

)

× σn · kn

m2
π + k2

n

(τm × τn)z + (m ↔ n), (35)

where kn = p′
n − pn, fπ is the pion-decay constant and gA is

the axial coupling constant. The 2B axial charge,

j05
z (mn) = −i

gA

4 f 2
π

σm · km

m2
π + k2

m

(τm × τn)z + (m ↔ n), (36)

enters at the same order. At the third chiral order, i.e., at
O(Q/�b)0, we have the 2B axial current. These include the
one-pion exchange operators, some of which contain the
dimensionless πN couplings ĉ1,3,4, and the 2B contact current
with LECs d̂1,2. These can be combined into the expression

j5
z (mn) = gA

2m f 2
π

σn · kn

m2
π + k2

n

[
i

2
p̄m(τm × τn)z + 4ĉ3 kn

τn,z

2

+
(

ĉ4 + 1

4

)
σm × kn(τm × τn)z

+ μV

4
σm × q(τm × τn)z

]
+2d̂1

(
σm

τm,z

2
+σn

τn,z

2

)

+ d̂2 σm × σn(τm × τn)z + (m ↔ n). (37)

The forms of the contact operators are such that their matrix
elements can only contain the linear combination d̂1 + 2d̂2 +
ĉ3/3 + 2ĉ4/3 + 1/6 for antisymmetric wave functions. This
combination is conventionally referred to as d̂R. It is related to
the LEC cD [48], which features in the leading three-nucleon
interaction along with the LEC cE and ĉ1,3,4, by

d̂R = − m

4gA�b
cD + 1

3
ĉ3 + 2

3
ĉ4 + 1

6
. (38)

To date, two-nucleon weak processes have not been measured
with sufficient precision to allow an extraction of d̂R. There
is an ongoing effort to measure the rate of muon capture on
the deuteron [49], which might address this issue [50]. In
this work, we use the values of d̂R obtained by following
two different approaches: (i) Calculations that employ the
NN interactions of Refs. [25,27] use the value obtained by
performing a fit of the counterterms cD and cE in the leading
3N potential [27] to experimental values of binding energies
of 3H and 3He as well as the comparative β-decay half-life of
3H with predetermined πN and NN couplings [48]. (ii) The
NNLOsim calculations fix d̂R by performing a simultaneous
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TABLE I. Inclusive ν̄/ν-d cross sections. The values are for energy ε MeV in units of 10−x fm2 with ε and x values given in the
corresponding columns. EM500/1B/(Q/�b)m [EM500/1B+2B/(Q/�b)m] stands for a calculation that employs the EM500 interaction to
generate the wave functions and includes all 1B [1B and 2B] currents up to the order (Q/�b)m. The AV18/1B calculation of Ref. [7] uses
the same current operators as the EM500/1B/(Q/�b)−2 calculation. The EM500/1B+2B calculation of Ref. [18] also includes currents up to
(Q/�b)1.

ν, NC ν, CC ν̄, NC ν̄, CC

ε (MeV) 10 50 100 150 10 50 100 150 10 50 100 150 10 50 100 150
x 16 15 14 14 16 14 14 13 16 15 14 14 16 15 14 14

EM500/1B/(Q/�b)−3 1.04 5.11 2.08 4.27 2.50 1.05 4.38 0.92 1.04 5.11 2.08 4.27 1.25 9.28 4.02 8.53
EM500/1B/(Q/�b)−2 1.07 5.80 2.61 5.81 2.62 1.32 6.46 1.53 1.02 4.47 1.61 3.01 1.20 7.33 2.61 4.81
EM500/1B+2B/(Q/�b)−1 1.07 5.82 2.62 5.85 2.62 1.33 6.53 1.55 1.02 4.46 1.60 3.00 1.20 7.30 2.60 4.79
EM500/1B+2B/(Q/�b)0 1.10 6.01 2.71 6.07 2.70 1.36 6.69 1.59 1.05 4.62 1.67 3.17 1.23 7.57 2.71 5.07

EM500/1B+2B (Ref. [18]) 1.12 6.03 2.74 6.18 2.73 1.39 6.85 1.65 1.07 4.63 1.68 3.21 1.27 7.52 2.68 4.98

AV18/1B (Ref. [7]) 1.08 5.75 2.58 5.72 2.63 1.31 6.42 1.51 1.03 4.45 1.60 3.00 1.22 7.26 2.57 4.69
AV18/1B+2B (Ref. [7]) 1.10 5.89 2.66 5.94 2.68 1.35 6.63 1.57 1.05 4.55 1.64 3.08 1.24 7.40 2.61 4.75

fit of all of the LECs up to the third χEFT order to πN and
selected NN scattering data, the binding energies and charge
radii of 2,3H and 3He, the quadrupole moment of 2H, as well
as the β-decay half-life of 3H [19,20].

Finally, the 2B charge-changing weak current (CC) op-
erator, jμCC(mn) = jμ±(mn) + jμ5

± (mn), can be obtained from
jμγ ,z(mn) + jμ5

z (mn) by the substitution

τn,z

2
→ τn,±,

(τm × τn)z → (τm × τn)x ± i (τm × τn)y, (39)

along with the addition of the pion-pole contribution,
qμ[qν jν5

± (mn) + j5
±(mn; PS)]/(m2

π + Q2), where

j5
±(mn; PS) = 4gAm2

π

m f 2
π

ĉ1
σm · km

m2
π + k2

m

τm,± + (m ↔ n). (40)

Coordinate space expressions are obtained by Fourier
transformations using the Gaussian regulators of the form
exp[−1/2 (k1,2/�)2]. While these are different from the reg-
ulators used in the interactions [19,25,27] which are Gaussian
functions of the nucleon momenta, this regularization is com-
mon in the literature and is consistent with the one used in the
currents for the extraction of cD from tritium β decay.

III. RESULTS

A. Benchmark with previous work

We first benchmark our results with previous works. To
this end, we use wave functions obtained from the nonlocal
χEFT interaction of Refs. [25,27] (referred to as “EM500”
hereafter). This interaction is calculated up to the fourth chiral
order with a regulator cutoff of 500 MeV and reproduces the
NN scattering data up to 290 MeV laboratory-frame energy
with very high precision. Fixing the potential to a high chiral
order facilitates the comparison with Refs. [18] and [7] and
helps one to assess of the size of the contributions of the
various terms in the current operator.

In Table I, we show the CC- and NC-induced inclusive
ν̄/ν-d cross sections obtained using the EM500 interaction

and current operators of various χEFT orders. The EM500
interactions contain all effects that are suppressed by fac-
tors of up to (Q/�b)4 compared to the leading order χEFT
Hamiltonian. With wave functions obtained by solving the
partial wave Lippmann-Schwinger equations for this inter-
action, we vary the order of the weak current operator at
(Q/�b)−3,−2,−1,0 to study the order-by-order convergence of
the current in the ν̄/ν-d cross sections. With increasing en-
ergy, the 1B Fermi and Gamow-Teller operators, which con-
tribute at the leading (Q/�b)−3 order, underpredict (overpre-
dict) the ν-d (ν̄-d) cross sections compared to values obtained
with operators up to (Q/�b)0 order. The contributions of the
1B convection and spin-magnetization currents, which enter
at order (Q/�b)−2, amount to about 30% in the ε ≈ 100 MeV
region. The pion-exchange 2B contributions to the vector cur-
rent and axial charge operators, which formally enter at order
(Q/�b)−1, are smaller than the axial 2B current contributions
at (Q/�b)0. While this is contrary to expectations from χEFT
power counting, a similar convergence pattern was also found
by Ref. [18]. Overall, the inclusion of 2B currents increases
the cross section in all of the four reaction channels by about
3–4% at ε ≈ 100 MeV, which is consistent with the results of
Ref. [18].

Agreement is seen between our 1B results and those of
Ref. [7]. The slight difference of about 1% or less is due to the
AV18 [51] wave functions used by Ref. [7], since the
χEFT 1B operators used in this work are the same as
the phenomenological operators employed in that study. We
agree also within approximately 1% with Ref. [18], which
uses the same interactions for the wave functions but also
includes the (Q/�b)1 current operators not considered in this
work.

B. Uncertainty estimates

We now estimate, for the first time on this observable,
the uncertainty from the potential by using the NNLOsim

family of 42 interactions calculated up to the third chiral order
[19,20]. These have been fitted at seven different values of
the regulator cutoff � in the 450–600 MeV interval to six
different Tlab ranges in the NN scattering database. The LECs
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FIG. 1. The NC and CC ν̄/ν-d inclusive cross sections with the
EM500 (black, dashed) and NNLOsim (light band) interactions.

in this family of interactions were fitted simultaneously to
πN and selected NN scattering data, the energies and charge
radii of 2,3H and 3He, the quadrupole moment of 2H, as well
as the β-decay width of 3H. All of these interactions have
the correct long-range properties, and the differences between
them provide a conservative estimate of the uncertainty due to
the short-distance model ambiguity of χEFT.

In Fig. 1 we show, along with the EM500 curves, the cross
sections calculated using the NNLOsim interactions as bands.
The widths of the bands are estimates of the uncertainties due
to the sensitivity to the χEFT cutoff and variations in the
pool of fit data used to constrain the LECs, including ĉ1,3,4

and d̂R in the currents. These widths grow with ε and amount
to about 3% at ε ≈ 100 MeV for all of the four processes.
They are thus similar in size to the effect of 2B currents. The
interactions and currents in the NNLOsim results are of the
same chiral order, i.e., both of them include all corrections
that are suppressed by factors of up to (Q/�b)3 compared to
the leading order. Based on the observed convergence of the
cross sections in Table I, and on the results of Ref. [18] for
higher-order current contributions, we anticipate the size of
neglected terms in the chiral expansion of the weak current
operator to be 1% at ε ≈ 100 MeV. This is smaller than
the NNLOsim uncertainties, which are—in principle as well
as in practice—similar in size to the (Q/�b)0 current con-
tributions which we have included in our calculations. We
therefore assign a conservative estimate of 3% to the nuclear
structure uncertainties in the cross section at 100 MeV ν̄/ν

energy. We now turn to the question of the sensitivity of

FIG. 2. The 1B NC and CC ν̄/ν-d inclusive cross sections with
dipole form factor for MA = 1 GeV (dotted) along with uncertainty
bands from variation of 〈r2

A〉 within the uncertainties of Ref. [54]
(light band) and over the range of lattice QCD values (dark band).

these results to the single-nucleon axial form factor. Ref. [52]
analyzed the world data for νd scattering by employing the
calculations of Refs. [7,53] to obtain 〈r2

A〉 = 0.46 ± 0.22 fm2.
Combining this with a reanalysis of the muon-proton capture
data, Ref. [54] constrained the mean-squared axial radius
to 0.46 ± 0.16 fm2. The nucleon axial radius has also been
calculated in lattice QCD [55–58]. However, these calcula-
tions suffer from different systematic errors and even adopt
different methodologies to extract their uncertainties. A best
estimate and a prescription for combining the errors from
different studies, such as those performed by Ref. [59] for
several other hadronic quantities, is still lacking. Therefore,
for the following analysis, we take 〈r2

A〉 = [0.19, 0.45] fm2,
which covers the entire span of values along with the quoted
uncertainties in Refs. [55–58], as the lattice QCD result.
In Fig. 2, we show the ν̄/ν-d cross sections with only 1B
currents. For the range of kinematics shown here, the dipole
parametrization with MA = 1 GeV gives cross sections that
practically coincide with the model-independent expansion
with 〈r2

A〉 = 0.46 fm2. Variations in the axial radius within the
range of lattice QCD evaluations lead to 3–4% uncertainty in
the cross sections at ε ≈ 100 MeV. The uncertainty estimates
of Ref. [54] lead to 4–5% variation in the cross sections
at ε ≈ 100 MeV, which are larger compared to the nuclear
structure corrections discussed above and also compared to
the size of the 2B current contributions. At ε � 20 MeV on the
other hand, the NNLOsim bands, which are larger than those
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from variation of the nucleon axial radius, provide a better
estimate of the total uncertainty of the calculation.

C. The �π EFT counterterm L1,A

The low-energy regime lies well within the domain of
validity of �π EFT, which uses nucleons as the only dy-
namical degree of freedom. In contrast to χEFT, it can be
applied in processes where the characteristic momentum Q
follows the scale hierarchy Q ≈ p, γ , 1/as 
 mπ , where
γ = 45.701 MeV is the deuteron binding momentum and
as ≈ −20 fm is the NN s-wave scattering length in the spin-
singlet channel. The EFT expansion is, therefore, in Q/mπ . At
leading order in this expansion,�π EFT provides ν̄/ν-d cross
sections at ε � 20 MeV with a precision of 5–20% in terms
of GF , Vud , gA and NN scattering observables. The �π EFT
2B currents which enter and next-to-leading order, however,
contain three counterterms, L1, L2, and L1,A, which need to
be fixed by fitting to electroweak data. While L1 and L2 can
be determined to high precision by fitting, for example, to
experimental values of np → dγ rate and deuteron magnetic
moment respectively, L1,A requires data from the weak sector.
Theoretical uncertainties of�π EFT calculations of low-energy
ν̄/ν-d scattering, like several other important weak processes
such as proton-proton fusion, are typically larger than the
truncation error of their�π EFT expansions due to the fact that
the LEC L1,A has not been well determined.

Reference [17] performed a next-to-next-to-leading order
calculation of the ν̄/ν-d cross sections in terms of a(ε) and
b(ε), where σ (ε) = a(ε) + L1,A b(ε), with the renormaliza-
tion scale μ set equal to the pion mass. Even though a(ε) and
b(ε) were each calculated to better than 3% precision for ε up
to 20 MeV, σ (ε) could not be well constrained because L1,A

was unknown. It was shown in Ref. [60] that the μ dependence
of L1,A can be factorized out by writing

L1,A = l1,A 2π gA

√
ρs ρt

(μ − γ )
(
μ − 1

as

) , (41)

where ρs = 2.73 fm is the NN effective range in the spin-
singlet channel, whereas the spin-triplet (deuteron) channel
effective range ρt is 1.765 fm in the effective-range-expansion
parametrization [61], but is 2.979 fm in the zed parametriza-
tion [62]. The dimensionless coupling constant l1,A is inde-
pendent of the renormalization scale.

By fitting the calculations of ν̄/ν-d scattering cross sec-
tions of Ref. [17] to reactor antineutrino data, L1,A = 3.6 ±
5.5 fm3 was obtained [63], whereas fitting with solar neutrino
data at SNO gave L1,A = 4.0 ± 6.3 fm3 [64]. The large un-
certainties in both of these fits were due to statistical errors
in the experiments. Apart from fitting to experimental data,
LECs in EFTs can alternatively be determined by calculating
them in the corresponding high-energy theory [26]. L1,A was
recently computed directly in lattice QCD and the value
3.9(0.1)(1.0)(0.3)(0.9) fm3 was obtained [65].

In this work, we fit the calculations of Ref. [17] to our
χEFT results for σ (ε), which we treat as input data. To
this end, we first update the �π EFT results of Ref. [17] for
a(ε) ∝ g2

A and b(ε) ∝ gA to account for the updated value of
the axial coupling constant from 1.26 used in Ref. [17] to

FIG. 3. The L1,A values determined from ν NC (green/dark
grey), ν̄ NC (white), ν CC (red/light grey), and ν̄ NC (black)
processes. The vertical spreads of the bands are the NNLOsim un-
certainties. The L1,A values were calculated at 1 MeV intervals in the
5–20 MeV range of ν̄/ν energies, but have been slightly displaced
along the horizontal axis for visibility.

1.2723 [66] used in this work. It is important to note that
the�π EFT counterterm L1,A subsumes the effects of the pion-
exchange axial currents and of the χEFT LEC d̂R. Therefore,
the NNLOsim constraints on the value of L1,A, in essence,
emerge from the fitting of ĉ1,3,4 and cD along with all other
χEFT LECs to selected πN and NN scattering data, energies
and charge radii of 2,3H and 3He, the quadrupole moment of
2H, as well as β-decay width of 3H. This determination of
L1,A is more systematic compared to the approach of Ref. [17]
that fitted L1,A to phenomenological calculations in which the
short-distance part of the axial 2B current was fixed by using
3H β decay as input and that of Ref. [67] where it was fitted to
calculations that modeled 2B currents as exchanges of pions
and heavy bosons.

Figure 3 shows the L1,A values for the four reaction chan-
nels given by the NNLOsim family of interactions. Calcula-
tions are done on a grid of 1 MeV in energy and are shown as
bands that encompass the different values obtained with the
42 interactions for each of the four processes. One can clearly
see that we get compatible constraints from all four processes.
Averaging over the cross sections of all four channels, 16
energy values, and the 42 interactions, and using the spread of
these values as a conservative uncertainty estimate, we obtain
L1,A = 4.9+1.9

−1.5 fm3. Although, in principle, one has to also add
the EFT truncation uncertainties on σ , a, and b in quadra-
ture, their impact is negligible since they are much smaller
(≈3% each).

Our value for L1,A is consistent with all of the above-
mentioned determinations. Our constraint is narrower than
those from ν̄/ν-d scattering experiments and is comparable
with the lattice QCD result. The value L1,A = 4.9+1.9

−1.5 fm3 cor-
responds to renormalization scale μ = mπ . Using Eq. (41), we
obtain l1,A = 0.097+0.037

−0.029 using the effective-range-expansion
parametrization of the NN scattering matrix in the deuteron
channel and l1,A = 0.074+0.029

−0.023 in zed parametrization. The
latter agrees with the value 0.051 obtained recently by
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Ref. [68] using a�π EFT fit to 3H β-decay half-life, but the
former does not agree with their corresponding value of 0.312.

IV. SUMMARY AND OUTLOOK

We have developed an independent multipole decomposi-
tion framework to compute all of the four reaction channels
of ν̄/ν-d inelastic scattering in χEFT. Our results agree
with prior phenomenological and χEFT calculations. We then
perform an uncertainty quantification analysis of the four
processes. Based on the observed convergence pattern of the
χEFT expansion of the electroweak current operator and on
the width of the NNLOsim band which quantifies the short-
distance model ambiguity of χEFT interactions, we estimate a
nuclear structure uncertainty of about 3% on the cross sections
in the 100 MeV ν̄/ν energy region.

The large uncertainty in the recent lattice QCD calculations
and phenomenological extractions of the axial radius renders
it the dominant source of uncertainty compared to nuclear
structure uncertainties. This makes a precise determination
of the axial nucleon form factor crucial for a high precision
calculation of the deuteron cross section above 100 MeV in
energy. We expect the situation to be reversed in the neutrino
cross section of heavier nuclei, where nuclear structure uncer-
tainty are typically larger due to the inherent complexity of
the nuclear many-body problem and due to the presence of
3N forces.

By matching our low-energy χEFT results to those of
pionless effective field theory (�π EFT) [17], we provide a new
constraint of the counterterm L1,A = 4.9+1.9

−1.5 fm3 at μ = mπ .
Our result is consistent with a recent lattice QCD evaluation
and narrower than prior experimental determinations from re-
actor antineutrino and solar neutrino data. The uncertainty on
L1,A is a major source of theory error on�π EFT calculations
of, e.g., the S factor for the proton-proton fusion reaction,
which is important in astrophysics [69]. Our determination
can therefore provide useful input for �π EFT studies until
a high precision experimental measurement [49] becomes
available.
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