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Domain walls in neutron 3P2 superfluids in neutron stars
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We work out domain walls in neutron 3P2 superfluids realized in the core of neutron stars. Adopting the
Ginzburg-Landau (GL) theory as a bosonic low-energy effective theory, we consider configurations of domain
walls interpolating ground states, i.e., the uniaxial nematic (UN), D2-biaxial nematic (D2-BN), and D4-biaxial
nematic (D4-BN) phases in the presence of zero, small and large magnetic fields, respectively. We solve the
Euler-Lagrange equation from the GL free energy density, and calculate surface energy densities of the domain
walls. We find that one extra Nambu-Goldstone mode is localized in the vicinity of a domain wall in the UN
phase while a U(1) symmetry restores in the vicinity of one type of domain wall in the D2-BN phase and all
domain walls in the D4-BN phase. Considering a pile of domain walls in the neutron stars, we find that the most
stable configurations are domain walls perpendicular to the magnetic fields piled up in the direction along the
magnetic fields in the D2-BN and D4-BN phases. We estimate the energy released from the deconstruction of the
domain walls in the edge of a neutron star, and show that it can reach an astrophysical scale such as glitches in
neutron stars.
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I. INTRODUCTION

Domain walls or kinks are solitonic objects separating two
discrete vacua or ground states of a system [1–3] and play
important roles in various subjects of physics from condensed
matter physics [4] to cosmology [5] and supersymmetric
field theories [6]. They are often created in phase transitions
associated with symmetry breakings [7]. In cosmology, if they
appear at a phase transition in the early Universe, then the
so-called domain wall problem occurs [5]: The domain wall
energy dominates Universe to make it collapse. In helium su-
perfluids, such domain walls are created in a similar manner,
thereby simulating cosmological phase transitions [8]. Here
we focus on domain walls in neutron stars, more precisely
those in nuclear matter.

Neutron stars are compact stars under extreme conditions,
thereby serving as astrophysical laboratories for studying
nuclear matter at high density, under rapid rotation and with
a strong magnetic field (see Refs. [9,10] for recent reviews).
The recent progresses in astrophysical observations promote
us to study the neutron stars more precisely, such as the recent
reports on massive neutron stars whose masses are almost
twice as large as the solar mass [11,12] and the gravitational
waves from a binary neutron star merger [13].

Inside neutron stars, one of the most important key in-
gredients for understanding the inner structure is neutron
superfluidity and proton superconductivity (see Refs. [14–16]
for recent reviews). Since the superfluid and superconducting
components can alter excitation modes at low energy from
the normal phase, their existence can affect several properties
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in neutron stars, such as neutrino emissivities and specific
heats relevant to the long relaxation time after in the sudden
speed-up events (glitches) of neutron stars [17–19], and the
enhancement of neutrino emission around the critical point of
the superfluid transition [20–25]. Glitches in pulsars may also
be explained by quantized vortices in superfluids [26,27]. The
neutron superfluids are realized by the attraction between two
neutrons at the low density in the 1S0 channel. This channel
becomes, however, repulsive in the high-density regime.1

Instead, at higher density, neutron 3P2 superfluids, in which
neutron pairs possess the total angular momentum J = 2 with
spin-triplet and P wave, become more relevant [30–47].2 The
3P2 interaction originates from a strong spin-orbit (LS) force
at large scattering energy, and thus the neutron 3P2 superfluids
are expected to be realized in the high-density regions in
the inner cores of neutron stars. The neutron 3P2 superfluids
can survive in the neutron stars with strong magnetic fields,
such as in the magnetars with the magnetic field 1015–1018

G, because the spin ↑↑ or ↓↓ pairs in the spin-triplet pairing
cannot be broken by the Zeeman effects and hence the neutron
3P2 superfluids are tolerant against the strong magnetic field.3

The possible existence of neutron 3P2 superfluids inside

1Although the 1S0 superfluidity at low density was proposed in
Ref. [28], it was shown in Ref. [29] that this channel turns to be
repulsive due to the strong short-range repulsion at higher densities.

2It is noted that the interaction in the 3P0 and 3P1 channels
are repulsive at high density, and hence they are irrelevant to the
formation of superfluidity [48].

3The origin of the strong magnetic fields in neutrons stars or
in magnetars is still an open problem although there are many
theoretical works: spin-dependent interactions [49–52], pion domain
walls [53,54], spin polarizations in quark-matter in the neutron star
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the neutron stars are pursued in astrophysical observations.
It has been recently pointed out that the rapid cooling of
the neutron star in Cassiopeia A may be explained by the
enhancement of neutrino emissivities which is caused by
the formation and dissociation of neutron 3P2 Cooper pairs
[23–25]. In the theoretical studies, it is known that neutron
3P2 superfluids have rich structures in the condensates due to
a variety of combinations of spin-triplet and P-wave angular
momentum in the Cooper pairs. The superfluid states with
J = 2 are classified into nematic, cyclic, and ferromagnetic
phases [59], among which the nematic phase is the ground
state in the weak coupling limit of 3P2 superfluids [35,36,60–
65]. The nematic phase is continuously degenerated and con-
sists of the three subphases: the uniaxial nematic (UN) and
dihedral-two and dihedral-four biaxial nematic (D2-BN and
D4-BN) phases according to the continuous/discrete symme-
tries of the 3P2 order parameter: the U(1) symmetry in the UN
phase and the D2 and D4 symmetries in the D2-BN and D4-BN
phases, respectively.4

In terms of fermion dynamics, all these phases are accom-
panied by the Bogoliubov quasiparticles. The phase diagram
on the plane spanned by the temperature and the magnetic
field was drawn by solving the Bogoliubov de-Gennes (BdG)
equation self-consistently with the Fermi liquid corrections,
and it was shown that the UN phase exists at zero magnetic
field, and the D2-BN and D4-BN phases appear in the weak
and strong magnetic fields, respectively [68]. There are the
first- and second-order transitions at the boundary between
the D2-BN and D4-BN phases, and those two transitions
meet at the (tri)critical endpoint (CEP). The existence of the
CEP is important because the fluctuations can significantly
affect the thermodynamical properties and the transport co-
efficients in neutron stars. The Bogoliubov quasiparticles in
neutron 3P2 superfluids are protected topologically against
the perturbation. In terms of the general classifications, the
nematic phase in the neutron 3P2 superfluids is a class-DIII
topological superconductor in the periodic table, inducing
Majorana fermions on the edge of the superfluids [68]. The
cyclic and ferromagnetic phases are nonunitary states, in
which the time-reversal symmetry is broken, and they serve
to host Weyl fermions in the bulk [68,69].

The 3P2 superfluids allow also bosonic excitations as
collective modes [70–82], which are considered to be relevant
to cooling process by neutrino emissions from neutron
stars.5 Bosonic excitations can be best discussed in terms
of the Ginzburg-Landau (GL) theory as a bosonic effective
theory around the critical point from the normal phase to the
superfluid phase [35,36,60–67,84–86]. The GL equation can
be obtained by a systematic expansion of the functional with

core [55–57], and so on. It may be worthwhile to mention that
a negative result for the generation of strong magnetic fields was
recently announced in a study in terms of the nuclear many-body
calculations [58].

4See, e.g., Appendix B in Refs. [66,67] for more information on the
definitions of the UN, D2-BN, and D4-BN phases.

5It is discussed that the cooling process is related not only to low-
energy excitation modes but also to quantum vortices [83].

respect to the order parameter field and magnetic field, where
the fermionic degrees of freedom are integrated out. We notice
that, in the GL expansion up to the fourth order in terms of
the order parameter, the ground state cannot be determined
uniquely, because there exists a continuous degeneracy
among the UN, D2-BN, and D4-BN phases.6 Instead, the
ground state is determined uniquely in the GL expansion up
to the sixth order [64]. However this is still not sufficient for
the expansion order, because it is stable only locally and there
exists the instability for a large value of the order parameter
in the variational calculation. It was found recently that the
eighth-order terms of the condensates ensure the stability of
the ground state [66]. As a by-product, it was also shown that
the eighth-order terms in the GL equation induce the CEP
in the phase diagram, although the position of the CEP in
the GL theory is different from that in the BdG equation
[68]. With the GL expansion in Ref. [66], we can adopt the
GL equation to investigate the position dependence of the
order parameter in the nonuniform system, and topological
defects can be discussed. So far, the theoretical studies
have been conducted in depth: spontaneously magnetized
vortices [35,61,62,64], solitonic excitations on a vortex
[84], and half-quantized non-Abelian vortices [65] and
topological defects on the boundary of 3P2 superfluids [67].
Interestingly, the topological states in the 3P2 share common
properties in the condensed matter systems, such as D-wave
superconductors [59], P-wave superfluidity in 3He liquid
[4,88], chiral P-wave superconductivity, e.g., in Sr2RuO4
[89], spin-2 Bose-Einstein condensates [90], and so on. For
instance, topological defects on the boundary of the spin-2
Bose-Einstein condensate have been discussed [91], as similar
to those in 3P2 superfluids in Ref. [67].7

In the present study, we consider domain walls, i.e., kinks
or one-dimensional solitons, which connect two different
vacua in the bulk phase in the neutron 3P2 superfluids. They
are also called textures in analogy to those in crystal liq-
uids, because the order parameter changes not only in the
amplitude but also in the directions [92,93]. In the case of
3P2, orientations of domain walls are supplied by the spin
and the angular momentum. They can be created via a phase
transition and stay as quasistable states when the lifetime
is longer than the typical timescale in the systems.8 In the
literature, the studies of domain walls have been extensively
accomplished in the 3He superfluidity [94–98] (see also
Refs. [4,88] and the references therein).9 In analogy to the

6At the fourth order, there happens to exist an SO(5) symmetry in
the potential term. This is an extended symmetry, which is absent
in the original Hamiltonian. It is known that, in this case, the
spontaneous breaking eventually generate a quasi-Nambu-Goldstone
(NG) modes. However, such NG modes should be regarded as being
irrelevant to the excitations in the true ground state [87]. This is
nothing but the origin of the continuous degeneracy.

7See Ref. [92] as a recent review for the topological defects in the
boundary in liquid crystals.

8If the configurations of the solitons are protected topologically,
then they keep to be the stable states against perturbation.

9The domain walls in in the 3He superfluidity were called also the
composite soliton instead of textures in Refs. [94–97].
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3He superfluids, we can expect that domain walls exist also
in the neutron 3P2 superfluids, because there are degenerate
vacua which are separated by a barrier potential. Because the
domain walls are the excited states which do not appear in
the ground state, the domain walls can be produced through
defect formations at a phase transition [7,8]. By adopting the
GL theory, we consider domain walls in the bulk UN, D2-BN,
and D4-BN phases in the zero, weak, and strong magnetic
fields, respectively. We obtain the spatial configurations of the
domain walls by solving the Euler-Lagrange (EL) equation
from the GL effective potential. With those solutions, we
estimate the energy of domain walls, i.e., the surface energy
density, for supposing several different configurations and
directions. We show that the domain wall configurations pass
thorough different phases, and unbroken symmetries inside
the domain walls are different from those in the bulk. As a
result, for instance, one Nambu-Goldstone mode is trapped
inside the domain wall in the bulk UN phase. We also find
that the domain walls piled along the magnetic fields are more
stable than those in the other directions. Such domain walls
are likely to exist as quasistable states in the neutron stars.
As a simple situation, we consider that a pile of domain walls
may be deconstructed by moving to the north or south pole of
the neutron star, and in the end they can release huge energy
which can be detectable in the astrophysical observations.

The paper is organized as the followings. In Sec. II, we
introduce the GL equation as the low-energy effective theory
of the neutron 3P2 superfluids and show the EL equations
for describing the domain walls. In Sec. III, we show the
numerical results of the configurations of the domain walls
in the one-dimensional directions for solving the EL equa-
tions by adopting appropriate boundary conditions. We also
estimate the surface energy density for each domain wall and
show that the domain walls piled along the magnetic field
exist at the most stable states. In Sec. IV, we will consider
the situation that a pile of domain walls exist in the neutron
stars, and they can release a huge energy as the astrophysical
phenomena. The final section is devoted to our conclusion. In
Appendix A, we present the explicit forms of the EL equations
for the domain walls. In Appendix B, we show the numerical
results of the configurations of the domain walls.

II. FORMALISM

A. Ginzburg-Landau equation

The condensate of the neutron 3P2 superfluidity can
be expressed by a symmetric and traceless three-by-three-

dimensional tensor A as an order parameter which triggers
the symmetry breaking. The components of A are denoted
by Aab with the indices a = 1, 2, 3 for the spin and b = 1,
2, 3 for three-dimensional momentum degrees of freedom.
The GL theory is introduced by integrating out the neutron
degrees of freedom as a loop expansion, supposing the small
coupling strength in the 3P2 interaction for two neutrons
[35,36,60–66,85]. The GL equation is valid in the region in
which the temperature T is close to the critical temperature
Tc0, |1 − T/Tc0| � 1, where the value of Tc0 is determined at
zero magnetic field. The concrete form of the GL free energy
reads

f [A] = f0 + fgrad[A] + f (0)
8 [A] + f (�4)

2 [A]

+ f (�2)
4 [A] + O(BmAn)m+n�7, (1)

as an expansion in terms of the condensate A and the magnetic
field B with the magnitude B = |B|. Each term is explained as
follows. The first term f0 is the sum of the free part and the
spin-magnetic coupling term, given by

f0 = −T
∫

d3 p
(2π )3

ln[(1 + e−ξ−
p /T )(1 + e−ξ+

p /T )], (2)

with ξ±
p = ξp ± |μn||B| and ξp = p2/(2m) − μ for the neu-

tron three-dimensional momentum p, the neutron mass m and
the neutron chemical potential μ. The bare magnetic moment
of a neutron is μn = −(γn/2)σ with the gyromagnetic ratio
γn = 1.2 × 10−13 MeV/T (in natural units, h̄ = c = 1) and
the Pauli matrices for the neutron spin σ. The following
terms include the condensate A: fgrad[A] is the gradient term,
f (0)
8 [A] consists of the terms including the field A up to the

eighth order with no magnetic field, f (�4)
2 [A] consists of the

terms including the field A up to the second order with the
magnetic field up to |B|4, and f (�2)

4 [A] consists of the terms
including the field A up to the fourth order with the magnetic
field up to |B|2. Their explicit expression can be given as
follows:

fgrad[A] = K (0)
3∑

a,i, j=1

(∇iA
ja∗∇iA

a j + ∇iA
ia∗∇ jA

a j

+∇iA
ja∗∇ jA

ai ), (3)

for the gradient term and

f (0)
8 [A] = α(0)(trA∗A) + β (0)[(tr A∗A)2 − (tr A∗2A2]) + γ (0)[−3(tr A∗A)(tr A2)(tr A∗2) + 4(tr A∗A)3 + 6(tr A∗A)(tr A∗2A2)

+ 12(tr A∗A)(tr A∗AA∗A) − 6(tr A∗2)(tr A∗A3) − 6(tr A2)(tr A∗3A) − 12(tr A∗3A3) + 12(tr A∗2A2A∗A)

+ 8(tr A∗AA∗AA∗A)] + δ(0)[(tr A∗2)2(tr A2)2 + 2(tr A∗2)2(tr A4) − 8(tr A∗2)(tr A∗AA∗A)(tr A2)

− 8(tr A∗2)(tr A∗A)2(tr A2) − 32(tr A∗2)(tr A∗A)(tr A∗A3) − 32(tr A∗2)(tr A∗AA∗A3) − 16(tr A∗2)(tr A∗A2A∗A2)

+ 2(tr A∗4)(tr A2)2 + 4(tr A∗4)(tr A4) − 32(tr A∗3A)(tr A∗A)(tr A2) − 64(tr A∗3A)(tr A∗A3) − 32(tr A∗3AA∗A)(tr A2)

− 64(tr A∗3A2A∗A2) − 64(tr A∗3A3)(tr A∗A) − 64(tr A∗2AA∗2A3) − 64(tr A∗2AA∗A2)(tr A∗A) + 16(tr A∗2A2)2

+ 32(tr A∗2A2)(tr A∗A)2 + 32(tr A∗2A2)(tr A∗AA∗A) + 64(tr A∗2A2A∗2A2) − 16(tr A∗2AA∗2A)(tr A2) + 8(tr A∗A)4
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+ 48(tr A∗A)2(tr A∗AA∗A) + 192(tr A∗A)(tr A∗AA∗2A2) + 64(tr A∗A)(tr A∗AA∗AA∗A)

− 128(tr A∗AA∗3A3) + 64(tr A∗AA∗2AA∗A2) + 24(tr A∗AA∗A)2 + 128(tr A∗AA∗AA∗2A2) + 48(tr A∗AA∗AA∗AA∗A)],

F (�4)
2 [A] = β (2)Bt A∗AB + β (4)|B|2Bt A∗AB,

f (�2)
4 [A] = γ (2)[−2 |B|2(tr A2)(tr A∗2) − 4 |B|2(tr A∗A)2 + 4 |B|2(tr A∗AA∗A) + 8 |B|2(tr A∗2A2) + Bt A2B(tr A∗2)

− 8 Bt A∗AB(tr A∗A) + Bt A∗2B(tr A2) + 2 Bt AA∗2AB + 2 Bt A∗A2A∗B − 8Bt A∗AA∗AB − 8 Bt A∗2A2B], (4)

for the potential and interaction terms. The trace (tr) is taken
over the indices of spin and three-dimensional momentum in
A. The coefficients are given by

K (0) = 7 ζ (3)N (0)p4
F

240m2(πTc0)2
,

α(0) = N (0)p2
F

3

T − Tc0

Tc0
,

β (0) = 7 ζ (3)N (0)p4
F

60 (πTc0)2
,

γ (0) = −31 ζ (5)N (0)p6
F

13440 (πTc0)4
,

δ(0) = 127 ζ (7)N (0)p8
F

387072 (πTc0)6
,

β (2) = 7 ζ (3)N (0)p2
F γ 2

n

48(1 + F a
0 )2(πTc0)2

,

β (4) = − 31 ζ (5)N (0)p2
F γ 4

n

768(1 + F a
0 )4(πTc0)4

,

γ (2) = 31 ζ (5)N (0)p4
F γ 2

n

3840(1 + F a
0 )2(πTc0)4

. (5)

We denote N (0) = m pF /(2π2) for the state-number density
at the Fermi surface and |μ∗

n| = (γn/2)/(1 + F a
0 ) for the

magnitude of the magnetic momentum of a neutron modified
by the Landau parameter F a

0 .10 Notice that μ∗
n is different

from the bare magnetic moment of the neutron μn due to
the Fermi-liquid correction. We notice that the Landau pa-
rameter stems from the Hartree-Fock approximation which
are not taken into account explicitly in the present mean-field
approximation. Finally, in all the expressions, ζ (n) is the zeta
function.

We comment the physical meanings of each term in Eq. (4).
The α(0) term is the leading order, and the β (0) term is the next-
to-leading order. However, those terms are not sufficient to
determine uniquely the ground state, because the free energies
in the UN, D2-BN, and D4-BN phases are degenerate at this
order. The degeneracy is resolved by the γ (0) term which leads
to only the local stability of the ground state, but the global
stability is lost at this order. Finally, the global stability is
restored by the δ(0) term which was recently calculated in
Ref. [66]. Therefore, the eighth order is minimally required to

10The interaction Hamiltonian between the neutron and the mag-
netic field (B) is modified to −μ∗

n ·B.

have the globally stable and unique ground state. Concerning
the magnetic field, the β (2) term is the leading order, and the
β (4) and γ (2) terms are the higher-order corrections. The effect
of the latter terms was examined for investigating the phase
diagrams in strong magnetic fields in magnetars, and it was
shown that those terms supply the change of the transition
line in the phase diagram by a few percentages at most
[85].

B. Euler-Lagrange equation of domain walls

We consider domain walls as nonuniform solutions in
the GL equation. The domain wall is an extended object
in the two-dimensional space, and it is regarded as a one-
dimensional solution, i.e., a kink along the direction perpen-
dicular to the plane of the domain wall. We assume that
the geometrical shape of the surface is flat by neglecting
the curvature of the domain walls. For the direction of the
domain wall, we denote the normal vector perpendicular to
the surface: n = (x1, x2, x3)/|x| = (n1, n2, n3) with the coor-
dinate x = (x1, x2, x3) as shown in Fig. 1. We use a polar-
angle parametrization n1 = sin θ cos ϕ, n2 = sin θ sin ϕ, and
n3 = cos θ with the angles θ and ϕ. We also introduce the
coordinate d (−∞ < d < ∞) in the direction along n per-
pendicular to the domain wall.11 Then the condensate A can
be expressed by a matrix whose components are functions of
d and n:

A(d; n) =
⎡
⎣−F1(d; n) G3(d; n) G2(d; n)

G3(d; n) −F2(d; n) G1(d; n)
G2(d; n) G1(d; n) F1(d; n) + F2(d; n)

⎤
⎦,

(6)

where Fα (d; n) (α = 1, 2) are the diagonal components and
Gβ (d; n) (β = 1, 2, 3) are off-diagonal components with
Fα (d; n) and Gβ (d; n) being complex numbers in general. We
consider that static domain walls, neglecting the dynamical
fluctuation on the surface. Thus, we regard that d is only
the coordinate on which the configurations in A depend and
that the angles θ and ϕ are simply the external parameters
for fixing the direction of the domain wall. In the following
discussion, setting n as a constant vector, we will investigate
the angles which are favored to minimize the energy of the
domain walls, for which the magnetic field is applied to the
x2 direction. For the short expression, instead of the above
notations, we will use the simpler notations A(d ) = A(d; n),

11It should be noticed that d defined in the present discussion is
different from d used in the previous study [67].
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d=x1

x2

x3

( , )=( /2, 0)

magnetic field B

W1

n

d=x2

x3

magnetic field B

x1

( , )=( /2, /2)

W2

n

magnetic field B

d=x3

x1

x2

( , )=(0, 0)

W3
n

FIG. 1. The directions of the domain walls W α
i (i = 1, 2, 3) for several types α = 1, 2, 3, and 13 are displayed. Left: W α

1 (x1 direction).
Middle: W α

2 (x2 direction). Right: W α
3 (x3 direction). The corresponding polar angles (θ, ϕ) are shown. The magnetic field is applied along the

x2 direction.

Fα (d ) = Fα (d; n), and Gβ (d ) = Gβ (d; n) by omitting the nor-
mal vector n. With the above setup, we express the gradient
terms in Eq. (3) as

fgrad[A] = K (0)

4
[(2 − sin2 θ sin2 ϕ)(∇d F1)2

+ (2 − sin2 θ cos2 ϕ)(∇d F2)2

+ (1 + 2 cos2 θ )(∇dF1)(∇dF2)

+ 2 cos θ sin θ sin ϕ(∇d F1)(∇dG1)

+ 2 cos θ sin θ cos ϕ(∇d F2)(∇d G2)

− 2 sin2 θ cos ϕ sin ϕ(∇d F1 + ∇d F2)(∇d G3)

+ (2 − sin2 θ cos2 ϕ)(∇d G1)2

+ (2 − sin2 θ sin2 ϕ)(∇d G2)2+(1+sin2 θ )(∇dG3)2

+ 2 sin2 θ cos ϕ sin ϕ(∇d G1)(∇dG2)

+ 2 cos θ sin θ (cos ϕ∇d G1 + sin ϕ∇d G2)∇d G3],

(7)

with ∇d = ∂/∂d . We notice that the derivatives with respect to
θ and ϕ are absent because n is a constant vector. By adopting
the stationary condition with respect to Fα (d ) and Gβ (d ) in
Eq. (1) together with Eq. (7), we then obtain the EL equations
for A,

−∇d
δ f [A]

δ(∇d Fα )
+ δ f [A]

δFα

= 0, (8)

−∇d
δ f [A]

δ(∇dGβ )
+ δ f [A]

δGβ

= 0, (9)

which provide the solutions of the domain walls.12 As for
the boundary condition for Eqs. (8) and (9), we require that
the domain wall approaches the bulk state at d → ±∞.
This means that the condensate values in A should satisfy
Fα (d ) → F bulk

α and Gβ (d ) → 0, where F bulk
α are the values

in the ground state in the bulk space. We will consider that
the values F bulk

α for d → ∞ are not necessarily the same as
those for d → −∞, because the domain walls are supposed

12The concrete expressions of the left-hand sides are presented in
detail in Appendix A.

to connect degenerate vacua that are considered to be different
to each other.

In the following discussion, we restrict the configuration in
the order parameter (6) to the diagonal form by setting the off-
diagonal components to be zero.13 In this setting, we introduce
the dimensionless forms by expressing the order parameter
A(d ) by

A(d ) = Tc0

pF
Ã(d̃ ), (10)

with Ã(d̃ ) is the dimensionless function parametrized by

Ã(d̃ ) =

⎡
⎢⎣− f1(d̃ ) 0 0

0 − f2(d̃ ) 0

0 0 f1(d̃ ) + f2(d̃ )

⎤
⎥⎦

=

⎡
⎢⎣− f1(d̃ ) 0 0

0 − f2(d̃ ) 0

0 0 − f3(d̃ )

⎤
⎥⎦, (11)

with d = [pF /(mTc0)]d̃ for the dimensionless coordinate d̃
(−∞ < d̃ < ∞). fi(d̃ ) (i = 1, 2) is related to Fi(d ) through
Fi(d ) = (Tc0/pF ) fi(d̃ ). In the last equation in Eq. (11), we
have introduced f3(d̃ ) ≡ − f1(d̃ ) − f2(d̃ ) for convenience of
the calculation. Furthermore, we parametrize fi(d̃ ) (i = 1, 2,
3) by

f1(d̃ ) =
(

cos φ(d̃ )√
2

− sin φ(d̃ )√
6

)
f0(d̃ ),

f2(d̃ ) =
√

2

3
[sin φ(d̃ )] f0(d̃ ), (12)

f3(d̃ ) =
[
−cos φ(d̃ )√

2
− sin φ(d̃ )√

6

]
f0(d̃ ),

13We call an attention to the assumption that the off-diagonal com-
ponents are set to be zero in the present analysis. In this case, the two
different degenerate vacua can be distinguished. However, those two
degenerate states can be connected by a symmetry transformation
once the off-diagonal components are taken into account. See more
discussions below.
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where f0(d̃ ) and φ(d̃ ) are introduced for the amplitude and the
angle as functions of d̃ (for a fixed n) as a new parametrization
of the condensate A. The range of the values are constrained
to f0(d̃ ) � 0 and −π � φ(d̃ ) � π . In the following discus-
sions, we will use either the three-dimensional vector f (d̃ ) ≡
( f1(d̃ ), f2(d̃ ), f3(d̃ )) or the polar parametrization f0(d̃ ) and
φ(d̃ ) to express the order parameter A. We also introduce the
dimensionless forms:

f [A] = N (0)T 2
c0 f̃ [Ã], xi = pF

mTc0
x̃i (i = 1, 2, 3),

t = T

Tc0
, B =

(
1 + F a

0

)
Tc0

γn
b, (13)

for the thermodynamical potential, the coordinate in the real
space, the temperature, and the magnetic field, respectively.

Before going to numerics, let us emphasize that the domain
walls that we are considering are described only by the
diagonal components in A(d; n). Because of this restriction,
configuration may be unstable or metastable in the full analy-
sis including of the off-diagonal components. See Sec. IV for
a discussion in more detail.

III. NUMERICAL RESULTS

First, we present the UN, D2-BN, and D4-BN phases in the
phase diagram in the bulk space. In the next, with noting that
there exist several minima in the effective potential in each
phase, we give the definitions of the domain walls connecting
the different minima. Finally, we show the solution of the
configurations of the domain walls, estimate their surface
energy density, and discuss that multiple domain walls which
are piled along the magnetic field can stably exist.

A. Phase diagram in bulk space

In the bulk space, the order parameter (6) can be diagonal-
ized as

A → UdiagAU −1
diag = A0

⎛
⎝r 0 0

0 −1 − r 0
0 0 1

⎞
⎠, (14)

with an appropriate symmetry transformation Udiag of U(1) ×
SO(3), where A0 � 0 is the amplitude and r is a real param-
eter which can be restricted to −1 � r � −1/2 without loss
of generality by the U(1) × SO(3) symmetry. The different
values of r induce the different symmetries in the ground
state: the UN phase for r = −1/2, the D2-BN phase for −1 <

r < −1/2, and the D4-BN phase for r = −1. Substituting
Eq. (14) into Eq. (1), we perform the variational calculation
with respect A0 and r and obtain the phase diagram as shown
in Fig. 2. Roughly, there exist the UN phase at zero magnetic
field, the D2-BN at weak magnetic field, and D4-BN phases at
strong magnetic field.14

14We may notice that the D4-BN phase is also extended at low
temperature and small magnetic field. There, the first-order phase
transition exists at small magnetic field, and there appears the CEP
at the meeting point between the first-order and second-order phase

D4-BN

D2-BN

UN

first order
transition

FIG. 2. We show the phase diagram on the plane spanned by the
dimensionless temperature t and the dimensionless magnetic field b.
We will consider the three examples for the bulk phases at t = 0.9:
b = 0 for the bulk UN phase (circle), b = 0.1 for the bulk D2-BN
phase (square), and b = 0.2 for the bulk D4-BN phase (triangle).
The phase boundary by the cyan line indicates the first-order phase
transition [66]. The other phase boundaries are the second-order
phase transition.

For convenience in the analysis, instead of Eq. (14), we
may express the order parameter in terms of f0 and φ,

f1 =
(

cos φ√
2

− sin φ√
6

)
f0, f2 =

√
2

3
(sin φ) f0,

f3 =
(

−cos φ√
2

− sin φ√
6

)
f0, (15)

by dropping d̃ and n in Eq. (12). This is the parametrization
that the three-dimensional vector f ≡ ( f1, f2, f3) is confined
on the plane by f1 + f2 + f3 = 0, and φ is the rotation angle
on this plane. We notice that the restriction of the range
for φ to 0 � φ � π/6 recovers the parametrization in the
diagonal form in Eq. (14). We show the GL potential with
the coordinate ( f0 cos φ, f0 sin φ) in Fig. 3, where we set the
temperature t = 0.9 and the magnetic field b = 0 (the UN
phase), b = 0.1 (the D2-BN phase), and b = 0.2 (the D4-BN
phase). In each phase, there are several degenerate states in
the ground state: six degenerate states in the UN phase, four
degenerate states in the D2-BN phase, and two degenerate
states in the D4-BN phase. Those degenerate states are more
clearly seen by defining the GL free energy only with φ,

f̃min(φ) = min
f0�0

f̃ ( f0, φ), (16)

where the right-hand side means that a minimum value of
f̃ ( f0, φ) is chosen in the variational calculation with respect

transitions. The first-order phase transition and the CEP is induced
by the eighth-order term (δ(0) term) in the GL equation [66].
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FIG. 3. Upper panels: We show the examples of the GL free energy on the plane with axes f0 cos φ and f0 sin φ for the bulk UN, D2-BN,
and D4-BN phases. The degenerate vacua are shown by the colorful points in each bulk phase (orange for the bulk UN phase, magenta for the
bulk D2-BN phase, and blue for the bulk D4-BN phase), and they are connected by the domain walls W α (α = 1, 2, 3, 13). Lower panels: The
three-dimensional vectors ( f1, f2, f3) with f1 + f2 + f3 = 0 are shown by the colorful arrows for the bulk UN, D2-BN, and D4-BN phases.
The domain walls are indicated by the arrows, W 2, W 1, and W 3, for the bulk UN phase, W 2 and W 13 for the bulk D2-BN phase, and W 13 for
the bulk D4-BN phase. The arrows lies on the plane for the traceless condition: f1 + f2 + f3 = 0.

to f0. We show the result of f̃min(φ) in Fig. 4. We confirm
that the degenerate states: φ/π = ±1/6, ±1/2, ±5/6 in the
UN phase; φ/π = ±0.129, ±0.870 in the D2-BN phase; and
φ/π = 0, 1 in the D4-BN phase.

B. Domain walls: W α
i (UN), W α

i (D2BN), and W α
i (D4BN)

We consider the domain walls that connect the vacua in
the GL free energy, i.e., Ã(+∞; n) and Ã(−∞; n), where

Ã(±∞; n) are the different (dimensionless) condensates in
the degenerate ground states in the bulk space at d̃ → ±∞,
respectively, along the line with the direction n [see Eq. (11),
and also Figs. 3 and 4]. We denote the domain wall by W α ,
where α indicates the label to classify the domain walls,
and explain our definitions of W α in each bulk phase in the
followings.

In the bulk UN phase (relevant for zero magnetic
field), we consider the domain walls W α (α = 1, 2, 3)

FIG. 4. The GL free energy f̃min = f̃min(φ) as functions of the angle φ. The gray regions (0 � φ/π < 1/6) corresponds to the diagonal
form parametrized in the right-hand side of Eq. (14). The arrows indicate the domain walls connecting the different minima. The horizontal
solid and dashed lines indicate the angle for the UN and D4-BN phases, respectively, and the regions between them correspond to the D2-BN
phase.
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which connect the neighboring degenerate states in the
angles (φ mod 2π )/π = −1/6, 1/6, 1/2, 5/6, 7/6, 3/2,

and 11/2 = −1/6 and denote them in the following
way:

W 1(UN) :
f0√
6

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ ←→ f0√

6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠,

f0√
6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ ←→ f0√

6

⎛
⎝1 0 0

0 −2 0
0 0 1

⎞
⎠, (17)

between (φ mod 2π )/π = 1/6 and 1/2 and between (φ mod 2π )/π = 7/6 and 3/2, respectively;

W 2(UN) :
f0√
6

⎛
⎝2 0 0

0 −1 0
0 0 −1

⎞
⎠ ←→ f0√

6

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠,

f0√
6

⎛
⎝−2 0 0

0 1 0
0 0 1

⎞
⎠ ←→ f0√

6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠, (18)

between (φ mod 2π )/π = 1/6 and 1/2 and between (φ mod 2π )/π = 7/6 and 3/2, respectively; and

W 3(UN) :
f0√
6

⎛
⎝−1 0 0

0 2 0
0 0 −1

⎞
⎠ ←→ f0√

6

⎛
⎝−2 0 0

0 1 0
0 0 1

⎞
⎠,

f0√
6

⎛
⎝1 0 0

0 −2 0
0 0 1

⎞
⎠ ←→ f0√

6

⎛
⎝2 0 0

0 −1 0
0 0 −1

⎞
⎠, (19)

between (φ mod 2π )/π = 1/2 and 5/6 and between (φ mod 2π )/π = 3/2 and 11/6 = −1/6, respectively. We notice that W α

(α =1, 2, 3) leaves the αth diagonal components unchanged and exchange the other two diagonal components up to the overall
minus sign.

In the bulk D2-BN phase in setting b = 0.1, we consider the domain walls connecting the neighboring degenerate states in
the angles (φ mod 2π )/π = 0.129, 0.870, 1.129, and 1.870 and denote them in the following way:15

W 13(D2BN) : f0

⎛
⎝0.506 0 0

0 0.302 0
0 0 −0.808

⎞
⎠ ←→ f0

⎛
⎝−0.808 0 0

0 0.302 0
0 0 0.506

⎞
⎠,

f0

⎛
⎝−0.506 0 0

0 −0.302 0
0 0 0.808

⎞
⎠ ←→ f0

⎛
⎝0.808 0 0

0 −0.302 0
0 0 −0.506

⎞
⎠, (20)

between (φ mod 2π )/π = 0.120 and 0.870 and between (φ mod 2π )/π = 1.120 and 1.870, respectively, and

W 2(D2BN) : f0

⎛
⎝0.808 0 0

0 −0.302 0
0 0 −0.506

⎞
⎠ ←→ f0

⎛
⎝0.506 0 0

0 0.302 0
0 0 −0.808

⎞
⎠,

f0

⎛
⎝−0.808 0 0

0 0.302 0
0 0 0.506

⎞
⎠ ←→ f0

⎛
⎝−0.506 0 0

0 −0.302 0
0 0 0.808

⎞
⎠, (21)

between (φ mod 2π )/π = −0.120 and 0.120 and between (φ mod 2π )/π = 0.870 and 1.120, respectively. We notice that
W α (D2BN) (α = 13 and 2) leaves the second diagonal components unchanged and exchange the other two diagonal components
up to the overall minus sign.

In the bulk D4-BN phase, we consider the domain walls connecting the neighboring degenerate states in the angles
(φ mod 2π )/π = 0 and 1 and denote them in the following way:

W 13(D4BN) :
f0√
2

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ ←→ f0√

2

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠,

f0√
2

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠ ←→ f0√

2

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, (22)

between (φ mod 2π )/π = 0 and 1 and between
(φ mod 2π )/π = 1 and 2, respectively. W 13(D4BN) leaves

15We notice that different values for φ in the degenerate states will
be realized for different strengths of the magnetic field in the D2-BN
phase. In contrast, the values of φ in the degenerate states in the UN
and D4-BN phases have no dependence on the magnetic field.

the second diagonal components unchanged and exchanges
the other two diagonal components.

Several comments are in order. In the above definitions,
we remark that W α (UN) (α = 1, 2, 3), W α (D2BN) (α = 13,
2), and W α (D4BN) (α = 13) leave the (absolutely) minimum
components unchanged up to the minus sign at the left and
right infinities: ± f0/

√
6 in the case of W α (UN) (α = 1, 2,

3), ±0.302 f0 in the case of W α (D2BN) (α = 13, 2), and 0
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in the case of W α (D4BN) (α = 13). We also notice that the
domain wall configuration passes through various different
phases. To see more details, in Fig. 4, we show the angles
φ/π = 1/6 + (3/2)n corresponding to the UN phase by the
horizontal solid lines, and the angles φ/π = (3/2)n corre-
sponding to the D4-BN phase by the horizontal dashed lines (n
an integer). The regions between the solid lines and the dashed
lines correspond to the D2-BN phase. From them, we then find
that the domain walls go across several phases as follows: For
example, the domain wall W α (α = 1, 2, 3) connecting the two
vacua in the bulk UN phase pass through the D2-BN phase and
the D4-BN phase in the following order:

W α (UN) : UN·D2BN·D4BN·D2BN·UN, (23)

where the boundary is fixed by the UN phase by definition.
In the bulk D2-BN phase, W 2(D2BN) passes through only the
D4-BN phase, while W 13(D2BN) passes through the UN and
D4-BN phases in the following order:

W 2(D2BN) : D2BN·D4BN·D2BN, (24)

W 13(D2BN) : D2BN·UN·D2BN·D4BN·D2BN·UN

·D2BN·D4BN · D2BN·UN·D2BN, (25)

where the boundary is fixed by the D2-BN phase by definition.
Finally, in the bulk D4-BN phase, W 13(D4BN) passes through
the UN and D2-BN phases in the following order

W 13(D4BN) : D4BN·D2BN·UN·D2BN·D4BN·D2BN

·UN·D2BN·D4BN·D2BN·UN·D2BN·D4BN,

(26)

where the boundary is fixed by the D4-BN phase by definition.
Accompanied by those internal phases, the number of the
Nambu-Goldstone modes induced by the symmetry breaking
can change locally at each internal phase inside the domain
walls.16 In particular, the UN phase has less number of the NG
modes. Therefore, the domain wall W α (UN) in the UN phase
contains one NG mode localized in its vicinity. On the other
hand, the continuous U(1) symmetry that the UN phase pre-
serves restores in the cores of the domain walls W 13(D2BN)
and W 13(D4BN) in the D2-BN and D4-BN phases.

When a magnetic field b is continuously changed, there
happen phase transitions at some magnetic fields, among the
UN phase, the D2-BN phase, and the D4-BN phase, as shown
in Fig. 2. Here we discuss how the domain walls in each phase
is connected to those of the other phases, see Fig. 4. When we
gradually increase a magnetic field from zero to some finite
value, the phase changes from the UN to D2-BN phase. In
this process, the two domain walls W 1(UN) and W 3(UN)
in the UN phase are bound together as a coalescence to be-
come a single domain wall W 13(D2BN) in the D2-BN phase:
W 1 + W 3 → W 13. This is because the potential minimum
at (φ mod 2π )/π = ±1/2 existing between the two walls
W 1(UN) and W 3(UN) is lifted in the D2-BN phase and they
are confined. Therefore, the domain wall W 13(D2BN) can be

16See, e.g., Ref. [64] for the Nambu-Goldstone modes appearing in
the UN, D2-BN, and D4-BN phases.

W2
13 W2

13

W2
1

W2
3

W1
2 orW3

2W1
2 orW3

2

0.1353keV/fm20.0616keV/fm20.0308keV/fm2

0.0082keV/fm20.0154keV/fm2

bulk UN phase bulk D2BN phase bulk D4BN phase
zeromagnetic field weak magnetic field strongmagnetic field

disappearance

x2 direction

x1 or x3 direction

(vertical axis)

(horizontal axis)

x1

x2

x3

magnetic
field B

FIG. 5. The metamorphism of the domain walls with the fixed
directions, with depending on the strength of the magnetic field. The
magnetic fields in the D2-BN and D4-BN phases (b = 0.1 and 0.2)
are applied to the x2 (vertical) direction.

regarded as a composite domain wall. If we further increase
the magnetic field so that the phase becomes the D4-BN phase,
then the domain wall W 13(D2BN) is changed to W 13(D4BN),
which can be regarded as a genuine elementary domain wall
since the local energy minimum completely disappears finally
in the D4-BN phase. On the other hand, returning back the
zero magnetic field, the domain wall W 2(UN) in the UN
phase is transformed to the domain wall W 2(D2BN) in the
D2-BN phase without causing coalescence or fragmentation
of domain walls. Further increasing the magnetic field to
the D4-BN phase, it disappears completely in the D4-BN
phase because the two degenerate ground states connected
by W 2(D2BN) merge to one ground state (φ mod 2π )/π = 0
or 1 in the D4-BN phase. In Fig. 5, we summarize a part of
the metamorphism of domain walls under the change of the
strength of the magnetic field.

We consider that the direction of the domain walls is
defined by the normal vector perpendicular to the surface.
In order to show the simple example, we consider that the
domain walls are directed in the three special cases: (i) the
x1 direction, i.e., n = (1, 0, 0), (θ, ϕ) = (π/2, 0); (ii) the x2

direction, i.e., n = (0, 1, 0), (θ, ϕ) = (π/2, π/2); and (iii) the
x3 direction, i.e., n = (0, 0, 1), (θ, ϕ) = (0, 0). At the end of
the discussion, we will investigate the stability of the domain
walls against small changes of the directions. When we need
to specify the directions of the domain wall, we use the
notation W α

i for i = 1, 2, and 3 for the x1, x2, and x3 directions:
W α

i (α = 1, 2, 3) in the UN phase, W α
i (α = 13, 2) in the

D2-BN phase, and W α
i (α = 13) in the D4-BN phase.

C. Configurations of domain walls

For the domain walls defined in the previous subsection,
we consider their configurations in the three-dimensional
space and calculate the energy per unit area (surface tension)
on the surface of the domain walls. We solve the EL equation
(8) for the domain walls by introducing the boundary condi-
tions in the bulk space. The boundary conditions are given in
Eqs. (17), (18), and (19) in the bulk UN phase, Eqs. (20) and
(21) in the bulk D2-BN phase, and Eq. (22) in the bulk D4-BN
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TABLE I. The surface energy densities by the domain walls with the directions along x1, x2, and x3 directions. φ is defined in Eq. (15) (cf.
Fig. 4). The bulk UN, D2-BN, and D4-BN phases have (t, b) = (0.9, 0), (0.9,0.1), and (0.9,0.2), respectively.

Bulk UN phase W 2(UN) W 1(UN) W 3(UN)

Angle −1/6 � (φ mod π )/π < 1/6 1/6 � (φ mod π )/π < 1/2 1/2 � (φ mod π )/π < 5/6

Direction W 2
1 W 2

2 W 2
3 W 1

1 W 1
2 W 1

3 W 3
1 W 3

2 W 3
3

σ (keV/fm2) 0.0154 0.0199 0.0154 0.0199 0.0154 0.0154 0.0154 0.0154 0.0199

Bulk D2-BN phase W 2(D2BN) W 13(D2BN)

Angle −0.129 � (φ mod π )/π < 0.129 0.129 � (φ mod π )/π < 0.870
Direction W 2

1 W 2
2 W 2

3 W 13
1 W 13

2 W 13
3

σ (keV/fm2) 0.0082 0.0107 0.0082 0.0722 0.0616 0.0722

Bulk D4-BN phase – W 13(D4BN)

Angle – 0 � (φ mod π )/π < 1

Direction – W 13
1 W 13

2 W 13
3

σ (keV/fm2) – 0.1533 0.1353 0.1533

phase. For the analysis, we consider the three-dimensional
vector as functions of d̃ for a fixed n,

f (d̃ ) ≡ ( f1(d̃; n), f2(d̃; n), f3(d̃; n)), (27)

whose components have been introduced in Eq. (11) in the
three-dimensional space with the coordinate (x̃1, x̃2, x̃3). The
schematic figures are presented in the bottom panels in Fig. 3.
The numerical results of f (d̃ ) are shown in Figs. 10, 11, and
12 in Appendix B.

With the solutions of f (d̃ ), we consider the surface energy
density per unit area of the domain walls surface directed
along n, which are expressed as

σ (n) ≡
∫ ∞

−∞
[ f (d; n) − fbulk]dd, (28)

for with the GL free energy densities f (d; n) in the domain.
Here fbulk is the GL free energy density in the bulk space
(|d| → ∞).17 We show the numerical results of the surface
energy density for W α

i (UN) with α = 1, 2, 3, W α
i (D2BN)

with α = 13, 2 and W 13
i (D4BN) (i = 1, 2, 3) in Table I. From

the table, we observe the following properties of the domain
walls, depending on the strengths of the magnetic field:

(i) In the zero magnetic field, i.e., in the bulk UN phase,
the domain walls W α

i (UN) with the condition α �= i

17For the convenience of the calculation, we can express the surface
energy density as

σ (n) = p2
F Tc0

2π 2
σ̃ (n), (29)

where we have defined the dimensionless surface energy density by

σ̃ (n) ≡
∫ ∞

−∞
[ f̃ (d̃; n) − f̃bulk]dd̃, (30)

for the dimensionless GL free energy densities, f̃ (d̃; n) in the domain
wall, and f̃bulk in the bulk space (|d̃| → ∞).

satisfied are the most stable ones, while W α
i (UN) with

α = i have higher energy. The directions x1, x2, and x3

of the domain walls yield essentially the same results
by cyclic transformations, because the rotational sym-
metry exists in the absence of a magnetic field.

(ii) In the weak magnetic fields, i.e., in the bulk D2-BN
phase, the domain walls in the bulk UN phase are
transformed as follows: the domain walls W 1

i and W 3
i

in the bulk UN phase merge to the single domain wall
W 13

i in the bulk D2-BN phase: W 1
i + W 3

i → W 13
i ,

while the domain wall W 2
i in the bulk UN phase

becomes the one W 2
i in the bulk D2-BN phase. We

notice that, in the bulk D2-BN phase, W 13
i has higher

energy than W 2
i , because of the composite nature

of W 13
i .

(iii) In the strong magnetic fields, i.e., in the bulk D4-
BN phase, the domain wall W 2

i in the D2-BN phase
disappears while the domain wall W 13

i survives to
become an elementary domain wall, which is the
unique domain wall in the D4-BN phase.

So far we have fixed the directions of the domain walls
to be along the coordinate axes x1, x2, and x3, by setting the
normal vector as n = (1, 0, 0), (0,1,0), and (0,0,1). Now we
discuss the stability of the domain walls against a continuous
rotation of n. For example, we pick up W 13

2 as the most stable
domain wall in the bulk D4-BN phase, and investigate the
angle dependence in the surface energy density of W 13

2 . For
this purpose, we substitute the profile solution for W 13

2 , which
has been solved for n = (0, 1, 0) (θ = π/2 and ϕ = π/2),
into Eq. (28), where the direction of n in Eq. (28) is set to
be arbitrary in the vicinity of n = (0, 1, 0). We then calculate
approximately the surface energy density for the domain wall
whose normal vector n is different from n = (0, 1, 0). The
result is shown in Fig. 6. It is found that θ = π/2 and ϕ =
π/2, i.e., the x2 direction, still gives the minimum point. It
is also found that the values of σ̃ for the x1 direction and for
the x3 direction are reproduced approximately, while the true
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bulk D4- BN phase (t=0.9, b=0.2); φ=π/2
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FIG. 6. The approximate values of the surface energy density
σ = σ (n) for the domain wall W 13

2 in the bulk D4-BN phase. Left:
The function of θ for ϕ = π/2 fixed. Right: The function of ϕ for
θ = π/2 fixed. The horizontal thick-dotted lines indicate the value
σ = 0.1353 keV/fm2, i.e., the value at the x2 direction (θ = π/2
and ϕ = π/2). The horizontal thin-dotted lines indicate the value
σ = 0.1533 keV/fm2, i.e., the value at the x1 direction (θ = π/2 and
ϕ = 0) or at the x3 direction (θ = 0). See the text for more details.

solution (points in the figure) of course has less energy (see
also Table I).

D. Piling domain walls

Here we discuss piling multiple domain walls. We display
the schematic image for a pile of domain walls which is
the most stable for the given direction in Fig. 7. We notice
that, when the domain walls are piled up, the phase func-
tion φ(d̃; n) defined in Eq. (12) should change continuously
throughout the piled domain walls. From the continuity of
φ(d̃; n) modulo 2π , the ordering of the domain walls is
determined uniquely (see also the upper panels of Fig. 3):

· · · − (
W 1

i − W 3
i − W 2

i

) − (
W 1

i − W 3
i − W 2

i

) − · · · , (31)

FIG. 7. The schematic figures for the metamorphism of the do-
main walls with the fixed directions (i = 1, 2), depending on the
strength of the magnetic field. The magnetic fields in the D2-BN
and D4-BN phases (b = 0.1 and 0.2) are applied to the x2 (vertical)
direction. The configurations W 1

2 , W 3
2 , and W 13

2 are the most stable
states in the x2 direction along the magnetic field, and the configu-
rations W 2

1 or W 2
3 are the most stable states in the x1 or x3 direction

perpendicular to the magnetic field. The surface energy densities in
the unit cells are shown. See Table I.

in the bulk UN phase,

· · · − (
W 13

i − W 2
i

) − (
W 13

i − W 2
i

) − · · · , (32)

in the bulk D2-BN phase, and

· · · − (
W 13

i

) − (
W 13

i

) − · · · , (33)

in the bulk D4-BN phase, along the directions of the xi axis
(i = 1, 2, 3).18 We have introduced the unit cells by brackets
as (W 1

i − W 3
i − W 2

i ) in the bulk UN phase, (W 13
i − W 2

i ) in the
bulk D2-BN phase, and (W 13

i ) in the bulk D4-BN phase, and
the piled domain walls are regarded as a repetition of the unit
cell.

Let us discuss the surface energy density per a unit cell
for the pile along the x1 (or x3) direction and along the x2

direction. It is

σ
(
W 1

i − W 3
i − W 2

i

) = σ
(
W 1

i

) + σ (W 3
i ) + σ

(
W 2

i

) + σint

= 0.0507 keV/fm2 for i = 1, 2, 3 (34)

for the UN phase,

σ
(
W 13

i − W 2
i

) = σ
(
W 13

i

) + σ
(
W 2

i

) + σint

=
{

0.0727 keV/fm2 for i = 2

0.0804 keV/fm2 for i = 1, 3
(35)

for the D2-BN phase, and

σ
(
W 13

i − W 2
i

) = σ
(
W 13

i

) + σ
(
W 2

i

) + σint

=
{

0.1353 keV/fm2 for i = 2

0.1535 keV/fm2 for i = 1, 3
(36)

for the D4-BN phase, where we have ignored the interaction
energy σint. We summarized the situation in Fig. 7. Thus, at
finite magnetic field, we conclude that a pile of the domain
walls perpendicular to the magnetic field (the x2 direction) is
realized as the most stable states. As we did for a single do-
main wall, we can rotate the piled domain wall configurations
with an arbitrary angle.

IV. ESTIMATION OF DOMAIN WALL ENERGY
RELEASED FROM A NEUTRON STAR

We estimate the energy released from domain walls when
they exist inside neutron stars. As an example, we consider
W 13

2 in the bulk D4BN phase, which is the most stable state
along the x2 direction perpendicular to the applied magnetic
field (cf. Table I). We suppose simply that domain walls are
disks at constant x2 inside a spherical condensation of a 3P2

superfluid of the radius R ≈ 10 km of a neutron star. Utilizing
the surface energy density σ = 0.1353 keV/fm2 for W 13

2 in
Table I, we obtain the total energy of W 13

2 , EDW = σ × πR2 =
0.85 × 1029 erg.19 Here we suppose that the domain walls

18We can define the “chirality” for right-winding and left-winding
for the traveling direction of the domain walls in the bulk UN phase.
We may assign the left-winding for a pile of domain walls W 1

i −
W 3

i − W 2
i . As the opposite chirality, we may also assign the right-

winding for a pile of domain walls W 1
i − W 2

i − W 3
i .

19We use the unit conversion 1 keV ≈ 2.0 × 10−9 erg.
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1

2

x3

domain wall W2
13

neutron starmagnetic field B

x

x

FIG. 8. The schematic figure of the bunch of the domain walls
W 13

2 in the bulk D4-BN phase in the neutron star.

are densely piled in the neutron star as shown schematically
in Fig. 8. In order to estimate the maximum number of
the domain walls in the neutron stars, we suppose that the
domain walls are packed maximally, where the interdistance
between two domain walls will reach the healing distance
as expected from defect formations at a phase transition
[7,8]: ξ ≈ pF /mTc0 = 355 fm for pF = 338 MeV and T =
0.9Tc0 (t = 0.9). This is obtained from d = [pF /(mTc0)]d̃ by
substituting d̃ ≈ 1, where the value of d̃ can be read from
Fig. 12 in Appendix B. Then, roughly speaking, the num-
ber of the domain walls will reach N ≈ R/ξ = 2.8 × 1016.
Therefore, the energy stemming from the piled domain walls
can be estimated as EDWN ≈ 2.4 × 1045 erg. In reality, the
number N would be smaller than the present estimation, and
hence the energy EDWN would be reduced also. Neverthe-
less, we consider that a huge energy can be released from
the domain walls, leading to a possibility that the domain
walls can be found in the astrophysical phenomena such as
glitches as sudden speed-up events of the rotation of neutron
stars.

We may consider the following situation that the domain
wall trapped around the equator of the neutron star will not be
the static objects, but they move to the north or south poles by
releasing the energy of the domain wall. This is because the
smaller radius should be favored energetically, and therefore
the domain walls will try to reduce the radius. In this process,
the domain walls would finally disappear when they reach the
north or south poles, see Fig. 9. We may consider that the
released energy by the domain walls, which will be emitted
from the surface of the neutron stars, can be detected in
astrophysical observation.

We comment that the healing distance ξ is the temperature-
dependent quantity as the order parameter. Because the heal-
ing distance should be very large near the critical temperature
and it should become divergent just at the critical temperature,
the number of domain walls in the neutron stars decreases
accordingly. On the other hand, when the temperature be-
comes lower, the healing distance becomes smaller, and hence
the number of domain walls in the neutron stars increases.
Therefore, the released energies of the domain walls from
the neutron stars are sensitive to the temperature inside the
neutron stars.

V. SUMMARY AND DISCUSSION

We have worked out the domain walls in a neutron 3P2

superfluid in neutron stars. As an effective theory, we have
adopted the GL equation for describing the domain walls as
the nonuniform systems. Considering the bulk UN, D2-BN,
and D4-BN phases in the neutron 3P2 superfluids, we have
constructed the configurations of the domain walls and have
calculated the surface energy densities. As examples, we
have discussed the domain walls denoted by W α

i (α = 1, 2, 3)
in the bulk UN phase, W α

i (α = 13, 2) in the bulk D2-BN
phase, and W α

i (α = 13) in the bulk D4-BN phase for the
fixed direction xi (i = 1, 2, 3) in space. As for symmetry
structures, domain wall configurations pass thorough different
phases in their vicinities. Consequently, unbroken symmetries
around their cores are different from those in the bulk. For
instance, the phases of domain walls in the bulk UN phase

1

x2

x3

diappearance of domain wall

domain wall W2
13

neutron star

moving of domain wall

magnetic field B
energy emission

x

FIG. 9. The schematic figure for the domain walls W 13
2 in the bulk the D4-BN phase, moving toward the north and south poles. The

orientation of the domain walls is along the magnetic field (the x2 direction). After arriving at the poles, the domain walls will disappear in the
end.
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are either D2-BN or D4-BN phase. As a result, there appears
one extra Nambu-Goldstone mode localized in the vicinity
of the domain walls in the UN phase. On the other hand, in
the D2-BN phase, a U(1) symmetry restores in the vicinity
of the domain wall W 13(D2BN) but not of the other case
W 2(D2BN). The same symmetry restoration occurs in the
vicinities of all domain walls W 13(D4BN) in the D4-BN
phase. Considering a pile of domain walls, we have found that
the domain walls are lined up perpendicular to the magnetic
field. We have estimated the energy released from a pile of the
domain walls existing inside neutron stars and have shown
that the emitted energy can reach a huge amount which may
be found in signals from the neutron stars, such as glitches, in
the astrophysical observation.

In this paper, we have restricted ourselves to the diagonal
components in A(d; n). Taking into the off-diagonal com-
ponents, the configuration may be unstable or metastable.
This is because a set two different ground states that we
were considering in this paper can be connected by a global
transformation of U(1) × SO(3), and therefore they are not
disconnected in the full space. Physically, the configurations
should decay to a ground state by emitting Nambu-Goldstone
modes because symmetry transformation exchange diagonal
components through off-diagonal components. In spite of the
limitation in the present research, we expect that the domain
walls can give an impact on the astrophysical observation
of the neutron stars as long as the domain walls survive
within the timescale of the decay. It will be a next subject
to study the lifetime of the domain walls, for which we
have to consider the off-diagonal components in the order
parameter. It is also important to study the interaction be-
tween two domain walls which will be caused by the ex-
change of massive particles or sometimes Nambu-Goldstone
modes. Although the interaction is expected to be repulsive,
it is still an open problem to discuss carefully the strength
of the interaction, the dependence on the bulk phases, and
so on.

Since the phases in the vicinities of domain walls are
different from those in the bulk, unbroken symmetries are
also different. This may allow topological defects living inside
domain walls. For instance, the U(1) symmetry unbroken in
the bulk UN phase is further broken to D2 or D4 in the vicinity
of the domain wall, admitting vortices inside domain walls.20

What do such composite configuration represent will be one
of future directions.21

We also will need to study the edge effect of the domain
walls, because the domain walls realistically should be af-
fected by the surface of the neutron stars. The surface of

20This situation is similar to the boundary surface of superfluid
studied recently [67].

21See, for instance, Refs. [99] and [100], for composite soliton
configurations in dense QCD and supersymmetric gauge theories,
respectively.

the neutron 3P2 superfluids has the topological property [67].
The properties of the domain walls in the rotating system
are also interesting subjects, in which the interaction between
the domain walls and the quantum vortices may become
important.22 Beyond the description by the GL theory, it is an
interesting question whether fermion (quasi-)gapless modes
are present inside domain walls, by investigating fermionic
degrees of freedom in terms of the BdG equation [68], in
which 3P2 surface was shown to allow gapless Majorana
fermions.

There exist superfluid vortices in 3P2 superfluids and they
form a lattice under a rotation [35,36,61,62,64,65,84]. How
these vortices interact with domain walls is an important
question. Also, vortices may terminate on a domain wall with
forming so-called a D-brane soliton, which is known to exist
in two-component Bose-Einstein condensates [101–104] and
supersymmetric field theory [105,106], where the endpoint
of the vortex is called as a boojum. Another possibility is
that a domain wall may terminate on a vortex, or in other
words, a vortex is attached by a domain wall as axion
strings.

Domain walls also exist in color superconductivity in the
quark matter considered to exist deeply inside of neutron stars,
see, e.g., Ref. [99]. Then a similar situation occurs in this case.
It is also an interesting question how domain walls interact
with other topological defects. It has been known that, in a
rotating neutron star, Abelian quantum superfluid vortices are
created along the rotation axis in the hadron matter as well
as non-Abelian quantum vortices (color magnetic flux tubes)
in the quark matter [107–111]. Recently, the presence or
absence of boojums have been discussed, which are defects at
endpoints (or junction points) of these vortices at the interface
[112–116]. The interactions between the domain walls and the
boojum may influence the dynamics of neutron stars. Those
problems are left for future works.
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APPENDIX A: EULER-LAGRANGE EQUATIONS

We show the concrete expressions of the terms in the left-hand sides in the EL equations (8) and (9):
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δ f
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+ δ f

δF1
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4
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APPENDIX B: PLOTS OF THE THREE-DIMENSIONAL VECTOR f (d̃ ) OF THE DOMAIN WALLS

We present the plots of the three-dimensional vector f (d̃ ) = ( f1(d̃; n), f2(d̃; n), f3(d̃; n)) in Eq. (11), as functions of d̃ for a
fixed n, in the three-dimensional coordinate (x̃1, x̃2, x̃3) as the solutions of the EL equation (8) for the domain walls: W α

i (UN)
with α = 1, 2, 3 in Fig. 10, W α

i (D2BN) with α = 13, 2 in Fig. 11, and W 13
i (D4BN) in Fig. 12. The subscripts i = 1, 2, 3 denote

the direction of the domain walls, x̃1, x̃2, and x̃3 directions, respectively.

FIG. 10. The plots of the profile functions as the three-dimensional vectors f (d̃ ) = ( f1(d̃; n), f2(d̃; n), f3(d̃; n)) with f1(d̃; n) + f2(d̃; n) +
f3(d̃; n) = 0 for the domain walls W 2

i , W 1
i , and W 3

i (i = 1, 2, 3 the directions along x̃1, x̃2, and x̃3 directions) in the bulk UN phase.
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FIG. 11. The plots of the profile functions as the three-dimensional vectors f (d̃ ) = ( f1(d̃; n), f2(d̃; n), f3(d̃; n)) with f1(d̃; n) + f2(d̃; n) +
f3(d̃; n) = 0 for the domain walls W 2

i and W 13
i (i = 1, 2, 3 the directions along x̃1, x̃2, and x̃3 directions) in the bulk D2-BN phase.

FIG. 12. The plots of the profile functions as the three-dimensional vectors f (d̃ ) = ( f1(d̃; n), f2(d̃; n), f3(d̃; n)) with f1(d̃; n) + f2(d̃; n) +
f3(d̃; n) = 0 for the domain walls W 13

i (i = 1, 2, 3 the directions along x̃1, x̃2, and x̃3 direction) in the bulk D4-BN phase.
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