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Electromagnetic form factors of the transition from the spin-3/2 � to the � hyperon
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The three electromagnetic form factors for the transition from a 3/2+ �∗ hyperon to the ground-state �

hyperon are studied. At low energies, combinations of the transition form factors can be deduced from Dalitz
decays of the �∗ hyperon to � plus an electron-positron pair. It is pointed out how more information can be
obtained with the help of the self-analyzing weak decay of the �. In particular, it is shown that these transition
form factors are complex quantities already in this kinematical region. Such measurements are feasible at
hyperon factories such as, for instance, the Facility for Antiproton and Ion Research (FAIR). At higher energies,
the transition form factors can be measured in electron-positron collisions. The transition form factors are related
to decay distributions and differential cross sections. Using dispersion theory, the low-energy electromagnetic
form factors for the �∗-to-� transition are related to the pion vector form factor. The additionally required input,
i.e., the two-pion–�∗–� amplitudes, is determined from relativistic next-to-leading-order (NLO) baryon chiral
perturbation theory, including the baryons from the octet and the decuplet. A poorly known NLO parameter
is fixed to the experimental value of the �∗ → �γ decay width. Pion rescattering is taken into account by
using dispersion theory and solving a Muskhelishvili-Omnès equation. Subtracted and unsubtracted dispersion
relations are discussed. However, in view of the fact that the transition form factors are complex quantities, the
current data situation does not allow for a full determination of the subtraction constants. To reduce the number
of free parameters, unsubtracted dispersion relations are used to make predictions for the transition form factors
in the low-energy space- and timelike regions.

DOI: 10.1103/PhysRevC.101.015206

I. INTRODUCTION AND SUMMARY

Electromagnetic form factors have become an important
tool to study the structure of strongly interacting objects; see,
e.g., Refs. [1–12] and references therein. Depending on the
invariant mass of the virtual photon, one achieves different
resolutions and different degrees of freedom become relevant.
At very large energies, one “sees” the minimal quark content
of the probed object [6,13,14]. Asymptotic freedom causes
a suppression of the influence of any nonminimal quark
or gluon content of the probed state. At low energies, the
dynamics of pions has an important influence on the shape
of form factors. Dynamical chiral symmetry breaking causes
the appearance of Goldstone bosons [15], the pions. Because
they are much lighter than any other hadron, pions can be
excited with energies so low that all other degrees of freedom
are still frozen. Both aspects, dominance of minimal quark
content at high energies and universal pion dynamics at low
energies, are model-independent consequences of quantum
chromodynamics (QCD). A complete description of a form
factor must include both of these aspects.
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The purpose of Ref. [11] and of the present work is to
provide the low-energy input for such a complete description
of form factors in the hyperon sector. Here we extend the pre-
vious work of the Uppsala group [11,16], in which dispersion
theory is used to relate in a model-independent way isovector
form factors of baryons to pion-baryon scattering amplitudes.
In a second step, these scattering amplitudes are approximated
by relativistic chiral perturbation theory (χPT) including the
baryon octet and decuplet as active degrees of freedom. Con-
ceptually, this is close in spirit to Refs. [12,17–19]. On a more
technical level, the rescattering of pions is treated differently
in Refs. [12] and [11]. In Ref. [12], an N/D method1 is used;
in Ref. [11] a Muskhelishvili-Omnès (MO) equation is solved.
As has been demonstrated in Ref. [16] for the nucleon case,
solving an MO equation with input from χPT up to next to
leading order leads to better results when compared to a fully
dispersive calculation [20,21]. For the case of hyperons, the
use of dispersively reconstructed pion-baryon amplitudes is
not an option because there are no direct data on pion-hyperon
scattering. Therefore, we rely also in the present work on input
from χPT [7,22–25] and solve an MO equation. A combined
use of dispersion theory and χPT has been pioneered in
Ref. [26]; see also Ref. [27] for a brief review.

A general motivation for studying hyperon form factors has
been provided in Ref. [11] in great detail. With the present

1We think that literally N/D just refers to “numerator over denomi-
nator,” see Ref. [12] for details and further references.
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work, we extend the approach of Ref. [11] to electromagnetic
form factors of hyperons with spin 3/2. Our framework is
suited for the determination of isovector form factors. There-
fore, we focus in the present work on the only electromagnetic
form factors of hyperons that are purely isovector (and involve
a spin-3/2 state). These are the form factors for the transition
of the lowest lying spin-3/2 decuplet state �∗0 to the spin-1/2
ground state �.

In the timelike region, these transition form factors (TFFs)
can be measured at low energies via the Dalitz decay �∗0 →
� e+e−. It can be expected that these Dalitz decays will be
addressed in the near future by the collaborations HADES
[28] and PANDA [29] at the Facility for Antiproton and Ion
Research (FAIR). Therefore, we regard our present work as
very timely.

Concerning the �∗-� transition, two distinct qualitative
aspects are noteworthy; one is more case specific, one is
universal. We start with the latter. Whenever pions are excited,
they rescatter. In the isovector channel, the p-wave pion phase
shift shows a relatively broad, essentially elastic resonance,
the ρ meson [30,31]. Thus, the universal pion dynamics gives
rise to the coupling of the virtual photon to the ρ meson.
Phenomenologically, this is covered by the concept of vector
meson dominance [32]. In the dispersive framework, this is
covered by the pion phase shift and the pion vector form
factor. We will explore the quantitative importance of these
effects in the present paper.

There is a second aspect, however, which is also covered by
our dispersive framework, but is typically missing in a vector
meson dominance approach. This is the aspect that we called
“more case specific.” Being resonances, the �∗ hyperons are
unstable. In particular, the �∗0 can decay to �± π∓. This pair
can rescatter into a � and a real or virtual photon. Therefore,
the TFFs are complex quantities in all kinematically allowed
regimes: in the spacelike scattering region of �∗0 e− ↔ � e−;
at the photon point �∗0 → �γ ; in the low-energy timelike
Dalitz decay region of �∗0 → � e+e−; and in the high-energy
production region of e+e− → �∗0 �̄. This is in contrast to
TFFs for hadrons that are stable with respect to the strong
interaction. For stable hadrons, the TFFs are essentially real
in all regimes except for the production region.

Complex form factors allow for nontrivial interference
patterns between them. Those can be measured, e.g., with
the help of the self-analyzing weak decays of the “stable”
hyperons. In practice, this means that in the succession of
the two decays �∗0 → � e+e− and � → pπ−, the angular
distribution of the second decay contains interesting infor-
mation about the interference of the TFFs. This information
is accessible without involving the production process or the
spin orientation of the �∗0 and without determining the spin
orientation of the proton [33,34]. On the other hand, in a
strict vector meson dominance scenario, the �∗0 couples just
via a pointlike interaction to ρ �. There, a form factor can
only become complex where the ρ becomes unstable. This
happens essentially only above the two-pion threshold. But
in the Dalitz decay region of �∗0 → � e+e−, the maximally
possible dielectron invariant mass (“ρ-meson invariant mass”)
is m�∗ − m� < 2mπ [35]. Thus, in reality, the TFFs are com-
plex but in a simple vector meson dominance approach they

are real in the Dalitz decay region. We will also explore the
quantitative importance of these effects. One peculiarity we
observe is that even if the imaginary part of a TFF at the pho-
ton point is very small, it gets larger for the transition radius.

Ideally we would like to use subtracted dispersion re-
lations, but the available experimental input is too scarce
to allow for it. For the case at hand, there are three TFFs
and therefore three complex-valued subtraction constants. For
the time being, we choose to use unsubtracted dispersion
relations; being aware of the large uncertainties they carry, we
still expect to obtain results of the correct order of magnitude.

In the first part of the paper, we define the �∗0-� TFFs
and relate them to several observables, accessible in different
kinematical regions. Directly after we enter the core of the the-
oretical work, we derive the appropriate dispersion relations
for pion-hyperon scattering amplitudes and TFFs. Finally,
the results are presented. There are several Appendixes with
various purposes. Appendix A clarifies how the individual
contributions of meson and baryon dynamics influence the
final results. The others complement the main text with tech-
nical details.

II. TRANSITION FORM FACTORS AND OBSERVABLES

Following essentially Ref. [5], we define three TFFs via

〈0| jμ|�∗�̄〉 = e v̄�(p�, λ) 	μν (p�∗ , p�) uν
�∗ (p�∗ , σ ) (1)

with

	μν (p�∗ , p�) := −(γ μqν− �q gμν ) m�∗ γ5 F1(q2)

+ (
pμ

�∗qν − p�∗ · q gμν
)
γ5 F2(q2)

+ (qμqν − q2 gμν ) γ5 F3(q2) (2)

and q := p�∗ + p�. Conventions for the spin-3/2 spinor uμ

are provided in Appendix B. The neutral spin-3/2 � hyperon
is denoted by �∗. The helicities (not spins!) of �∗ and �̄ are
called σ and λ, respectively.

The TFFs defined via (1) are appropriate for a dispersive
representation where we study formally the reaction �∗�̄ →
π+π− → γ ∗. Physically, however, we study the reactions
e+e− → γ ∗ → �̄∗� and �∗ → �γ ∗ → � e+e−. In addi-
tion, if one wants to compare the results of the electromagnetic
form factors for the transition �∗ → � with the ones for � →
N , it is convenient to adapt to the conventions used in the
� sector where mostly electroproduction is studied [6,7] and
not Dalitz decays. Thus, one should also look at the reaction
e−� → e−�∗ or more formally �γ ∗ → �∗. Therefore, we
present the transition form factors also for other kinematical
regimes.

In principle, the reactions �∗�̄ → γ ∗, γ ∗ → �̄∗� and
�∗ → �γ ∗ are related by crossing symmetry. For �γ ∗ →
�∗, one might involve charge conjugation and then again
crossing symmetry.

For the amplitude relevant for the Dalitz decay, �∗ →
�γ ∗, one finds

〈�| jμ|�∗〉 = e ū�(p�, λ) 	μν (p�∗ ,−p�) uν
�∗ (p�∗ , σ ). (3)

In practice, this leads to the very same expression as on the
right-hand side of (2) but with q := p�∗ − p�.
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For the production amplitude γ ∗ → �̄∗�, one has to specify the meaning of the two-fermion bra state:

〈�̄∗�| := |�̄∗�〉†. (4)

The structure corresponding to (2) would be 	μν (−p�∗ ,−p�), but it is not convenient to define q as −p�∗ − p�. Therefore, we
rather provide a fully explicit version of the TFFs adapted to the production process:

〈�̄∗�| jμ|0〉 = −eū�(p�, λ)	̃μν (p�∗ , p�)vν
�∗ (p�∗ , σ ), (5)

	̃μν (p�∗ , p�) := (γ μqν− �q gμν ) m�∗ γ5 F1(q2) + (
pμ

�∗qν − p�∗ · q gμν
)
γ5 F2(q2) + (qμqν − q2 gμν ) γ5 F3(q2) (6)

with q := p�∗ + p�.
Finally, we obtain for the excitation process

〈�∗| jμ|�〉 = −e ūν
�∗ (p�∗ , σ ) 	̃μν (p�∗ ,−p�) u�(p�, λ). (7)

Here the pertinent expression for 	̃μν agrees with the right-hand side of (6) provided one defines q := p�∗ − p�.
Next, we introduce linear combinations of F1, F2, and F3, which correspond to TFFs with fixed helicity combinations. We

denote them by Gm (m = σ − λ = 0,±1) and find

G−1(q2) := [−m�(m� + m�∗ ) + q2] F1(q2) + 1
2

(
m2

�∗ − m2
� + q2

)
F2(q2) + q2 F3(q2) for σ = − 1

2 , λ = + 1
2 , (8)

G0(q2) := m2
�∗ F1(q2) + m2

�∗ F2(q2) + 1
2

(
m2

�∗ − m2
� + q2

)
F3(q2) for σ = + 1

2 , λ = + 1
2 , (9)

and

G+1(q2) := m�∗ (m� + m�∗ ) F1(q2) + 1
2

(
m2

�∗ − m2
� + q2

)
F2(q2) + q2 F3(q2) for σ = + 3

2 , λ = + 1
2 . (10)

In the following, we adopt the reference frame from Ref. [11] where the virtual photon is at rest, i.e., the �∗-�̄ center-of-mass
system, and where the �∗ is moving in the z direction. In this frame, the three-momentum of the �∗ is given by 	p�∗ = pz 	ez with

pz =
√

λ
(
q2, m2

�∗ , m2
�

)
2
√

q2
(11)

where we have introduced the Källén function

λ(a, b, c) := a2 + b2 + c2 − 2(ab + bc + ac). (12)

We find

v̄�(−pz, 1/2) 	3 ν uν
�∗ (pz,+1/2) = v̄�γ5u3

�∗
2 q2

m2
�∗ − m2

� + q2
G0(q2), (13)

v̄�(−pz, 1/2) 	1 ν uν
�∗ (pz,−1/2) = v̄�γ5u1

�∗ G−1(q2), (14)

v̄�(−pz, 1/2) 	1 ν uν
�∗ (pz,+3/2) = v̄�γ5u1

�∗ G+1(q2). (15)

The spinors on the right-hand side are evaluated with the same arguments as on the respective left-hand side. Note that in these
relations the explicit “photon” indices 3 and 1 are covariant, not contravariant as is the case for the corresponding relations in
Ref. [11]. This will lead to a sign change in Eq. (44) below as compared to the conventions of Ref. [11].

To make further contact with the existing literature, we relate our TFFs to the ones introduced in Ref. [6]. Therein, the
transition from nucleon to � is considered. We replace � → �∗ and N → � to obtain our case at hand. The conventions for
this process are provided in Eq. (7). It is convenient to define Q2 := −q2. Since one studies now reactions with Q2 > 0, it is
meaningful to introduce also Q :=

√
Q2. The TFFs of Carlson [6] (in the following labeled with “Ca”) are related to our TFFs by2

GCa
− = Q−

2 m�

G+1, GCa
+ = Q−

2
√

3 m�

G−1, GCa
0 = Q Q−√

6 m� m�∗
G0 (16)

with Q− :=
√

Q2 + (m� − m�∗ )2.
In Ref. [7], various conventions for the TFFs are related to each other, including the ones from Ref. [6]. With the help of (16)

and Ref. [7], our TFFs can be easily related to any other TFF combinations and conventions.

2There is a mismatch between the conventions used in Ref. [6] and here. This is essentially based on the fact that we introduce our TFFs
via the coupling of a virtual timelike photon to a spin-3/2 baryon and a spin-1/2 antibaryon where the latter has helicity +1/2; see (13)–(15).
In Ref. [6], the TFFs are introduced via the coupling of a virtual spacelike photon to an incoming spin-1/2 baryon and an outgoing spin-3/2
baryon. The former has helicity +1/2. If one translates our case to the one in Ref. [6], our antibaryon turns to a baryon with helicity −1/2 and
not +1/2. This sign change relates our TFF Gm to Carlson’s TFF GCa

−m for all m = 0, ±1.
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At large spacelike momenta, i.e., for large Q2, one finds the following asymptotic behavior from perturbative QCD [6]:

G−1(−Q2) ∼ 1

Q4
, G0,+1(−Q2) ∼ 1

Q6
,

F1(−Q2) ∼ 1

Q6
, F2,3(−Q2) ∼ 1

Q8
. (17)

Since we will provide only a low-energy representation for the various TFFs, one cannot expect to reproduce this asymptotic
behavior without involving physics beyond the low-energy region. In general, this requires too much modeling. Nonetheless, it
might be reasonable to aim for a representation where the TFFs fall off with 1/Q4 at least. We will come back to this point below.

Pion-loop contributions to the TFFs can be most easily addressed for fixed helicity combinations. This favors the use of
the TFFs (8)–(10). However, these combinations are subject to kinematical constraints; i.e., there is a kinematical point where
these TFFs are not independent from each other. This happens at q2 = (m� + m�∗ )2, where G+1 = G−1 = G0 (m� + m�∗ )/m�∗ .
Dispersion relations should be formulated for constraint-free quantities [36,37]; otherwise, one might have to involve additional
subtractions. The construction procedure of Refs. [36,37] leads to the TFFs of (2). Therefore, it can be useful to invert the
relations (8)–(10), which yields

F1(q2) = G+1(q2) − G−1(q2)

(m�∗ + m�)2 − q2
,

F2(q2) = 2

λ
(
m2

�∗ , m2
�, q2

) [−2q2 G0(q2) + (
m�∗ m� − m2

� + q2)G+1(q2) + (
m2

�∗ − m�∗ m�

)
G−1(q2)

]
, (18)

F3(q2) = 2

λ
(
m2

�∗ , m2
�, q2

) [(m2
�∗ − m2

� + q2
)

G0(q2) − m2
�∗ (G+1(q2) + G−1(q2))

]
with the Källén function given in Eq. (12).

Let us turn now to observable production and decay processes. In terms of the TFFs, the decay width of �∗ → �γ is given by

	 = e2
(
m2

�∗ − m2
�

)
96πm3

�∗
(m�∗ − m�)2(3|G+1(0)|2 + |G−1(0)|2). (19)

For the differential cross section of the reaction e+e− → �̄∗� (see also [5]) we obtain in the center-of-mass (c.m.) frame and
neglecting the electron mass(

dσ

d

)
c.m.

(q2, θ ) = e4

96π2q6
pz

√
q2

2
[q2 − (m�∗ − m�)2]

{
(1+ cos2 θ )[3|G+1(q2)|2+|G−1(q2)|2] + 4q2

m2
�∗

sin2 θ |G0(q2)|2
}

(20)

with the center-of-mass momentum pz given in Eq. (11).
For the Dalitz decay distribution of �∗ → � e+e−, we provide one version, keeping the electron mass and one where only

the kinematical velocity factor is kept. We introduce the electron velocity by

βe :=
√

1 − 4m2
e

q2
(21)

with the electron mass me. The doubly differential decay rate is given by

d	

dq2 d cos θ
= e4

(2π )3 96m3
�∗q2

pz

√
q2

2
βe ((m�∗ − m�)2 − q2)

×
{(

1 + cos2 θ + 4m2
e

q2
sin2 θ

)
[3|G+1(q2)|2 + |G−1(q2)|2] + 4

(
sin2 θ + 4m2

e

q2
cos2 θ

)
q2

m2
�∗

|G0(q2)|2
}

≈ e4

(2π )3 96m3
�∗q2

pz

√
q2

2
βe ((m�∗ − m�)2−q2)

{
(1+ cos2 θ )[3|G+1(q2)|2+|G−1(q2)|2]+ 4q2

m2
�∗

sin2 θ |G0(q2)|2
}
.

(22)

Here θ denotes the angle between electron and � in the rest frame of the electron-positron pair. If one calculates the integrated
decay rate, the integration in θ ranges from π to 0 such that the cos θ integration ranges from −1 to +1.

One should note that in the given decay the invariant mass q2 of the photon is limited in the kinematical region

4m2
e � q2 � (m�∗ − m�)2 (23)

and so the factor (m�∗ − m�)2 − q2 will always be non-negative. If one blindly neglected the electron mass, one would obtain a
divergent integrated decay rate. The phase-space factor βe and the proper integration range (23) ensure a physical, finite result.
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For later use, we also introduce a QED version of (22), which is supposed to describe the situation where the structure of
hyperons is not resolved. In practice, we replace the TFF combinations by their q2 = 0 expressions and make in this way also
contact with the real photon case (19):

d	QED

dq2 d cos θ
:= e4

(2π )3 96m3
�∗q2

pz

√
q2

2
βe ((m�∗ − m�)2 − q2)

(
1 + cos2 θ + 4m2

e

q2
sin2 θ

)
[3|G+1(0)|2 + |G−1(0)|2]. (24)

Conceptually, small momenta go along with small q2 and with treating the mass difference m�∗ − m� as small. By inspecting
(22), we see that at small momenta the decay rate is dominated by the combination 3|G+1|2 + |G−1|2. In turn, (8) and (10) show
that for low momenta the dominant contribution to G+1 and G−1 originates from F1. At high momenta, G−1 is dominant, as can
be read off from (17); see also [6]. We deduce from (8) and (17) that it is again F1 that dominates G−1. Thus, in both limiting
cases, low and high momenta, the TFF F1 plays the dominant role.

More detailed access to the TFFs can be obtained by determining the angular distribution of the subsequent weak decay of
the �; see also Ref. [34]. To this end, consider the decay � → pπ− governed by the amplitude [35]

Mweak = GF m2
π ūp(p1)(A − Bγ5)u�(p). (25)

It is useful to introduce the asymmetry parameter

α� := 2Re(T ∗
s Tp)

|Ts|2 + |Tp|2 (26)

with the s-wave amplitude Ts := A, the p-wave amplitude Tp := pf B/(Ep + mp), and mass mp, energy Ep, and momentum pf of
the proton in the rest frame of the decaying � hyperon; i.e.,

Ep = m2
� + m2

p − m2
π

2m�

(27)

and

pf = λ1/2
(
m2

�, m2
p, m2

π

)
2m�

(28)

with the Källén function (12).
For the differential decay width of the whole four-body decay �∗ → � e+e− → pπ− e+e−, one finds (neglecting again the

electron mass where meaningful)

d	

dq2 d cos θ dp
≈ e4

(2π )4 192m3
�∗q2

pz

√
q2

2
βe ((m�∗ − m�)2 − q2) Br�→pπ−

×
{

(1 + cos2 θ )[3|G+1(q2)|2 + |G−1(q2)|2] + 4q2

m2
�∗

sin2θ |G0(q2)|2

+4
√

q2

m�∗
α� Im[G0(q2) G∗

−1(q2)] cos θ sin θ sin θp sin φp

}
. (29)

Here Br�→pπ− denotes the branching ratio while θp and φp are the angles of the proton three-momentum measured in the rest
frame of �. The coordinate system in this frame is defined by 	q pointing in the negative z direction (i.e., in the rest frame of
the virtual photon the �∗ and � direction defines the positive z axis) and the electron moves in the x-z plane with positive
momentum projection on the x axis. In this frame, θp is the angle of the proton momentum relative to the z axis and φp is the
angle between the x axis and the projection of the proton momentum on the x-y plane, i.e.,

	pp = pf (sin θp cos φp, sin θp sin φp, cos θp),

	q = |	q| (0, 0,−1), (30)

	pe− · 	ey = 0, 	pe− · 	ex > 0, 	ey = 	pe− × 	q
| 	pe−| | 	q | .

Note the subtlety that θ is measured in the rest frame of the virtual photon while p denotes angles in the rest frame of the �

hyperon. In terms of Lorentz invariant quantities, the angles are related to

p� · ke = − 1
2 λ1/2(m2

�∗ , m2
�, q2) cos θ,

εμναβ kμ
e pν

� pα
p qβ = − 1

2

√
q2 λ1/2

(
m2

�∗ , m2
�, q2

)
pf sin θ sin θp sin φp (31)
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with ke := pe− − pe+ , q = pe− + pe+ = p�∗ − p� and the
convention [38] for the Levi-Civita symbol:

ε0123 = −1. (32)

A peculiar feature of (29) is the presence of the combina-
tion Im(G0G∗

−1), which is nonzero even below the two-pion
threshold. This is a consequence of the �∗ being unstable with
respect to the strong interaction. This property plays a crucial
role throughout the development of this paper and constitutes
the main difference from the analogous �-� case [11].

III. DISPERSIVE MACHINERY

Essentially this goes along the same lines as described in
Refs. [11,16]. In particular, we use the same Omnès function,

(s) = exp

{
s
∫ ∞

4m2
π

ds′

π

δ(s′)
s′ (s′ − s − iε)

}
, (33)

where δ denotes the pion p-wave phase shift [30,31]. The
pion vector form factor FV

π is taken from Ref. [16] (see also
Refs. [21,39,40]):

FV
π (s) = (1 + αV s) (s). (34)

For the pion phase shift from Ref. [31], a value of

αV = 0.12 GeV−2 (35)

yields an excellent description of the data on the pion vector
form factor from τ decays [41] for energies below 1 GeV; see
Ref. [16].

A. Dispersion relations

Based on the asymptotic behavior (17), the three TFFs
introduced in Eq. (2) satisfy unsubtracted dispersion relations

Fj (q
2) =

∫
ds

2π i

discFj (s)

s − q2
(36)

for j = 1, 2, 3. Here “disc” denotes the discontinuity of the
function Fj .

How does this translate to the TFFs Gm introduced in
Eqs. (8)–(10)? We can discuss this rather generally: If one
defines two new TFFs, A and B, via

A(q2) := F1(q2) + F2(q2),

B(q2) := F1(q2) + q2

s0
F2(q2), (37)

one sees that they are subject to the kinematical constraint

A(s0) = B(s0). (38)

The dispersion relation for A can be formulated without
problems. For B, one obtains

B(q2) =
∫

ds

2π i

1

s − q2

[
discF1(s) + q2

s0
discF2(s)

]

=
∫

ds

2π i

1

s − q2

[
discB(s) + q2 − s

s0
discF2(s)

]

=
∫

ds

2π i

discB(s)

s − q2
− 1

s0

∫
ds

2π i
discF2(s). (39)

This shows that in general one has to deal with an additional
constant in a dispersive calculation of B. It is this constant
that ensures that (38) holds. In addition, we have implicitly
assumed that the dispersive integral over discB actually con-
verges.

For the TFFs Fj that show the high-energy behavior (17),
the situation is actually simpler. This high-energy behavior
provides conditions for the integrals over disc Fj . In partic-
ular, the condition

lim
Q2→∞

Q2 Fj (−Q2) = 0 (40)

leads to ∫
ds

2π i
discFj (s) = 0. (41)

Thus, the additional constant in Eq. (39) vanishes. One obtains
standard unsubtracted dispersion relations for A and for B. In
view of the relations (8)–(10), one can therefore conclude that
also all the Gm’s satisfy unsubtracted dispersion relations

Gm(q2) =
∫

ds

2π i

discGm(s)

s − q2
(42)

for m = 0,±1.

B. General considerations about the analytic structure

At low energies, it can be expected that the q2 behavior of
the TFFs is determined by the lowest-energy states that can
be excited. For the isovector TFFs that we study here, the
lowest energetic states are pion pairs. Therefore, we can write
in complete analogy to [11]

Gm(q2) = 1

12π

∫ ∞

4m2
π

ds

π

Tm(s) p3
c.m.(s) FV ∗

π (s)

s1/2 (s − q2 − iε)

+ Ganom
m (q2) + · · · , (43)

where the ellipsis denotes other intermediate states such
as, for instance, four-pion or baryon-antibaryon states. The
“anomalous” piece will be determined later. It is related to
anomalous thresholds.

The pion-hyperon scattering amplitudes Tm are obtained in
a two-step procedure: In line with (13)–(15), we define first
the reduced amplitudes

K±1(s) := −3

4

∫ π

0
dθ sin2 θ

× M(s, θ, 1/2 ± 1, 1/2)

v̄�(−pz, 1/2) γ5 u1
�∗ (pz, 1/2 ± 1) pc.m.

,

K0(s) := −3

2

m2
�∗ − m2

� + s

2 s

∫ π

0
dθ sin θ cos θ

× M(s, θ, 1/2, 1/2)

v̄�(−pz,+1/2) γ5 u3
�∗ (pz,+1/2) pc.m.

. (44)

Here pc.m. denotes the modulus of the momenta of the pions in
the center-of-mass frame. We have introduced M(s, θ, σ, λ)
as the approximation to the Feynman amplitude for the re-
action �∗ �̄ → π+π−. In practice, M(s, θ, σ, λ) does not
include the rescattering effect of the pions. This will be taken
care of in the second step. In addition, we want to distinguish
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conceptually between processes with left-hand cut structures
and purely polynomial terms. In practice, the reduced am-
plitudes K originate from the left-hand cut structures only,
while we denote the polynomial terms by P. All the formulas
presented explicitly for K apply also to P.

Pion rescattering is taken into account by solving a
Muskhelishvili-Omnès equation [42,43]. The result is

Tm(s) = Km(s) + (s) Pm + T anom
m (s)

+ (s) s
∫ ∞

4m2
π

ds′

π

Km(s′) sin δ(s′)
|(s′)| (s′ − s − iε) s′ . (45)

As already spelled out, Km takes care of the left-hand cut
structures. Pm is a constant (per channel) that can be obtained
ideally from a fit to data or estimated from χPT. We have
used here a once-subtracted dispersion relation. In principle,
one could use more subtractions, which brings in a polynomial
instead of a constant, but this would worsen the high-energy
behavior. In the following, we will occasionally suppress the
index m when presenting generic formulas.

If there is an anomalous threshold, there might be an extra
piece T anom(s) that is added to the amplitude. Such a situation
can occur if the mass mexch of the exchanged state in the t/u
channel is “too light.” For our reaction, the condition to have
an anomalous threshold is [44]

m2
exch < 1

2

(
m2

�∗ + m2
� − 2m2

π

)
. (46)

For the formal reaction �∗�̄ → 2π , one has to deal with the
exchange of states carrying strangeness. In practice, we will
take into account the exchange of � and �∗ hyperons. The
condition (46) does not hold for the �∗ exchange,3 but is sat-
isfied for the � exchange. In the latter case, the logarithm ob-
tained from the partial-wave projection (44) requires a proper
analytic continuation. If one takes the partial-wave projection
literally (straight-line integral) as given in Eq. (44), then the
obtained logarithm has a cut in the complex s plane that inter-
sects with the right-hand cut (unitarity cut), i.e., part of this cut
lies on the physical Riemann sheet. To disentangle the cuts,
one can define the cut of the logarithm such that it connects
the branch point to the start of the unitarity cut by a straight
line. The additional contribution T anom(s) takes care of the
extra cut. A general discussion is provided in Appendix C.

To be more concrete, we note that the p-wave partial-wave
projection of type (44) for a t- or u-channel exchange process
produces a term

K (s) = g(s) − 2 f (s)

Y (s) κ2(s)
+ f (s)

1

κ3(s)
log

Y (s) + κ (s)

Y (s) − κ (s)
(47)

3It does not hold for any exchange of a many-particle state that
contains a hyperon. The lightest such state would be a � and one
pion. Using that the �∗ is lighter than a � and two pions, it is easy to
check that the condition (46) is not satisfied for mexch � m� + mπ .

with the functions Y , κ , and σ defined in Appendix C for
m1 → m�∗ , m2 → m�. In addition, we have introduced f (s),
g(s) as functions without cuts. These functions might have
poles at kinematical thresholds, but they conspire such that
no poles show up for K as given in Eq. (47). If one expands
the log function in powers of κ/Y , one sees that there are no
poles for κ → 0. Concrete formulas are given in Sec. V.

If one considers the standard logarithm with a cut along the
real negative axis, then (47) is ill defined for Y (s) = 0. This
point lies on the unitarity cut if (46) is satisfied. To disentangle
the two cuts, one starts with a proper analytic continuation of
the logarithm along the unitarity cut. To this end, we introduce
the following four points:

(1) At s4 := (m�∗ + m�)2 we have κ = 0. Above this
point, i.e., for s real and larger than s4, there is the true
scattering region. There, κ is real and Y is positive and
larger than κ . The logarithm in Eq. (47) can be de-
fined as the real-valued standard logarithm of positive
numbers.

(2) At s3 := m2
�∗ + m2

� + 2m2
π − 2m2

exch we have Y = 0.
For s real and between s3 and s4, the function κ is
purely imaginary and Y is still positive.

(3) At s2 := 4m2
π we have κ = 0. For s real and between

s2 and s3, the function κ is purely imaginary and Y is
negative.

(4) At s1 := (m�∗ − m�)2 we have κ = 0. For s real and
between s1 and s2, the function κ is real (and Y is
negative).

For the case of a � exchange, we have 0 < s1 < s2 < s3 <

s4. The function K in Eq. (47) that enters finally (45) is then
defined on the relevant part of the real axis by

K (s) := g(s) − 2 f (s)

Y (s) κ2(s)
+ f (s)

κ3(s)
log

Y (s) + κ (s)

Y (s) − κ (s)
(48)

for s > s4,

K (s) := g(s) − 2 f (s)

Y (s) κ2(s)
+ 2 f (s)

κ2(s) |κ (s)| arctan
|κ (s)|
Y (s)

(49)

for s3 < s < s4, and

K (s) := g(s) − 2 f (s)

Y (s) κ2(s)

+ 2 f (s)

κ2(s) |κ (s)|
(

arctan
|κ (s)|
Y (s)

+ π

)
(50)

for s2 < s < s3. Here the standard logarithm for positive real
numbers is used and the arctan function with values between
−π/2 and π/2. Note that at the two-pion threshold s = s2

the quantity K (s) of (50) diverges ∼2π f (s)/(κ2(s) |κ (s)|) ∼
1/σ 3(s), but the product K (s) sin δ(s) in Eq. (45) remains
finite due to sin δ(s) ∼ σ 3(s) for the p-wave pion phase shift
[30,31]. K (s) also appears in the combination K (s) p3

c.m.(s) in
Eq. (43), which remains also finite.
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The second issue is the definition of T anom; see also the discussion in Appendix C. The branch points of the logarithm in
Eq. (47) are defined by Y 2(s) = κ2(s). They are located at

s± = −1

2
m2

exch + 1

2

(
m2

�∗ + m2
� + 2m2

π

)− m2
�∗ m2

� − m2
π

(
m2

�∗ + m2
�

)+ m4
π

2m2
exch

∓ λ1/2
(
m2

�∗ , m2
exch, m2

π

)
λ1/2

(
m2

exch, m2
�, m2

π

)
2m2

exch

.

(51)

We take s+ as the solution that has a positive imaginary part for small values of m2
�∗ . If one replaces m2

�∗ by m2
�∗ + iε and

follows the motion of s+ for increasing values of m2
�∗ , then s+ moves towards the real axis and intersects with the unitarity cut

where (46) turns to an equality. For larger values of m2
�∗ one finds s+ in the lower half plane of the first Riemann sheet. This is

the situation for the physical value of m2
�∗ for the case m2

exch = m2
� . Thus, we have

s+ = −1

2
m2

� + 1

2

(
m2

�∗ + m2
� + 2m2

π

)− m2
�∗ m2

� − m2
π

(
m2

�∗ + m2
�

)+ m4
π

2m2
�

− i
λ1/2

(
m2

�∗ , m2
�, m2

π

) [− λ
(
m2

�, m2
�, m2

π

)]1/2

2m2
�

(52)

with positive square roots.
The anomalous contribution that enters (45) is then given by

T anom(s) = (s) s
∫ 1

0
dx

ds′(x)

dx

1

s′(x) − s

2 f (s′(x))[− λ
(
s′(x), m2

�∗ , m2
�

)]1/2
κ2(s′(x))

t (s′(x))
(s′(x)) s′(x)

(53)

with the straight-line path

s′(x) := (1 − x)s+ + x 4m2
π (54)

that connects the branch point (52) of the logarithm of (47) and the branch point 4m2
π of the unitarity cut.

One also needs the scattering amplitude t (s) in the complex plane. Following Ref. [45], one could use an analytic continuation
of the amplitude as constructed from χPT and unitarized by the inverse amplitude method. This representation does not show
a decent high-energy behavior. Therefore, we will use it only for the anomalous part. There the whole integration region is
rather close to the two-pion threshold. Therefore, an expression from χPT or a unitarized version thereof should be sufficiently
close to the true scattering amplitude. We take from Ref. [45] the following expressions (extended to the complex plane). The
approximation from χPT is given by

tχPT(s) ≈ t2(s) + t4(s) (55)

and its unitarized version is

tIAM(s) = t2
2 (s)

t2(s) − t4(s)
(56)

with

t2(s) = sσ 2

96πF 2
0

, (57)

t4(s) = t2(s)

48π2F 2
0

{
s

(
l̄ + 1

3

)
− 15

2
m2

π − m4
π

2s

[
41 − 2Lσ (73 − 25σ 2) + 3L2

σ (5 − 32σ 2 + 3σ 4)
]}− σ̂ (s) t2

2 (s), (58)

Lσ = 1

σ 2

(
1

2σ
log

1 + σ

1 − σ
− 1

)
. (59)

The functions σ (s) and σ̂ (s) are defined in Eqs. (C6) and (C9),
respectively. Note that there is no square root ambiguity in the
definition of σ since all expressions are even in σ → −σ . The
square root appearing in the definition of the function σ̂ has
its cut on the negative real axis. Then the function σ̂ has the
unitarity cut (and also a cut along the negative real axis).

The value for the pion decay constant in the chiral limit
F0 is taken from the ratio Fπ/F0 = 1.064(7), where Fπ =
92.28(9) MeV is the pion decay constant at the physical point.
In the original paper [45], the low-energy constant l̄ = 5.73(8)
has been adjusted such as to reproduce the position of the
pole of the ρ-meson resonance on the second Riemann sheet.
In this work, instead we use l̄ = 6.47, which is obtained by

requiring agreement between the pion p-wave phase shifts
from (56) and from Ref. [31] around the two-pion threshold.

Finally, we provide the anomalous piece of the TFFs. As
described in Appendix C, one can relate the anomalous piece
of the TFF to the anomalous piece of T − K . Therefore, we
obtain

Ganom
m (q2) = 1

12π

∫ 1

0
dx

ds′(x)

dx

1

s′(x) − q2

× fm(s′(x)) s′(x) FV
π (s′(x))

−4
[− λ

(
s′(x), m2

�∗ , m2
�

)]3/2 . (60)
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Note that the Omnès function (33) that enters the pion
vector form factor (34) is defined everywhere on the
first Riemann sheet via the pion phase shift along the
right-hand cut. Therefore, (60) can be calculated without
problems.

Note that without any anomalous piece the TFF integral in
(43) would be real below the two-pion threshold. However,
the TFF should be complex because the �∗ is unstable. The
imaginary part emerges from the following process: Irrespec-
tive of the invariant mass of the photon, the �∗ can decay
to a pion and a �. These states can rescatter into a � and a
real or virtual photon. The anomalous pieces take care of this
physical process.

A remark on why we include only the pions as intermediate
states and not the kaons is in order. When writing down a
dispersion relation, thresholds and anomalous cuts have to
be identified and ranked according to their relevance. The
dispersive representation ensures that the influence of high-
energy inelasticities is suppressed, provided that we limit
ourselves to low values of q2. The two-pion threshold, which
starts at (2mπ )2 ≈ 0.08 GeV2, is the most important. The
branch point of the anomalous cut for the �-pion-pion triangle
lies in the vicinity, i.e., at s+ ≈ (0.07 − 0.03 i) GeV2. To
increase the validity of our approach, we include the full pion
rescattering with the ρ-meson appearing in the phase shift,
but this does not mean that one should trust the calculations
up to the ρ-meson mass. But since the ρ meson has such a
large impact, one cannot neglect its influence, not even at low
energies. This is very different from the triangle including
kaons. As already pointed out in Ref. [44], hyperon scattering
with nucleon exchange leads to an anomalous threshold. We
have checked that for the reaction �∗�̄ → KK̄ with nucleon
exchange, the anomalous threshold lies at ≈0.7 GeV2, i.e.,
significantly lower than the two-kaon threshold, but rather
far away from the thresholds of the pion triangles that we
have considered. There is one possibility that would spoil our
argument, namely if the strength of the kaon triangle would
be much larger than the pion triangle. To compare these two,
one can look at the strengths of the vertices for the scattering
processes �∗�̄ → π+π− with �− exchange versus �∗�̄ →
K+K− with proton exchange. The vertices containing the �∗
have the very same strength. The vertex for �−�̄π+ yields a
strength of D = 0.8 while the corresponding one for p�̄K−
contributes with (D + 3F )/2 = 1.09. Thus, the kaon triangle
has similar strength as the pion triangle but much higher lying
thresholds. Therefore, we leave out the diagrams with the
kaons.

C. Subtracted dispersion relations

Though the intermediate states not explicitly considered in
Eq. (43) might have a minor influence on the shape of the
TFFs at low energies, it is likely that they have an impact on
the overall size; see, e.g., the discussion in Refs. [11,16,21].
A way to enhance the importance of the low-energy region
in a dispersive integral is the use of a subtracted disper-
sion relation. The most conservative approach that does not
make use of any high-energy input is to start again from
the unconstrained TFFs Fi. A subtracted dispersion relation

reads

Fi(q
2) = Fi(0) + q2

12π

∫ �2

4m2
π

ds

π

Ti(s) p3
c.m.(s) FV ∗

π (s)

s3/2 (s − q2 − iε)

+F anom
i (q2) (61)

for i = 1, 2, 3. The last, “anomalous” piece will be specified
below.

In principle, the scattering amplitudes Ti are again given by
(45) but now we need the amplitudes Ki, i = 1, 2, 3 as input.
They are obtained from K+1,0,−1 in the same way as the TFFs
Fi are obtained from G+1,0,−1, i.e.,

K1(s) = K+1(s) − K−1(s)

(m�∗ + m�)2 − s
, (62)

K2(s) = 2

λ
(
m2

�∗ , m2
�, s

) [−2s K0(s)

+(m�∗ m� − m2
� + s

)
K+1(s)

+(m2
�∗ − m�∗ m�

)
K−1(s)

]
,

K3(s) = 2

λ
(
m2

�∗ , m2
�, s

) [(m2
�∗ − m2

� + s
)

K0(s)

−m2
�∗ (K+1(s) + K−1(s))

]
.

We have introduced a cutoff � in Eq. (61). Since we have
only the low-energy part under control where the two-pion
state dominates, it is not reasonable to extend the integral into
the uncontrolled high-energy region. In practice, the two-pion
state dominates the isovector channel up to about 1 GeV. To
explore the uncertainties of our low-energy approximation, we
will vary the cutoff between 1 and 2 GeV.

Finally, we come back to the anomalous piece in Eq. (61):

F anom
i (q2) = q2

12π

∫ 1

0
dx

ds′(x)

dx

1

s′(x) − q2

× fi(s′(x)) FV
π (s′(x))

−4
[− λ

(
s′(x), m2

�∗ , m2
�

)]3/2 . (63)

The drawback of Eq. (61) is that one needs experimen-
tal input for the three complex-valued subtraction constants
Fi(0). This is on top of the constants Pm in Eq. (45), which
are ideally also fitted to experimental data. At the moment,
such an amount of experimental information is not available.
Therefore, we will explore an alternative in the next subsec-
tion.

D. Unsubtracted dispersion relations

At large energies, the TFFs Fi determined via (61) ap-
proach a constant, in sharp contrast to the correct scaling
behavior (17). The TFFs Gm obtained from (8)–(10) even di-
verge. All this is not a fundamental problem since by construc-
tion the representation (61) is designed to be accurate at low
energies only. Nonetheless, the representation (61) requires
the knowledge of several subtraction constants, all of them in
principle complex, because the �∗ is unstable. Thus, it might
be of advantage to explore the predictive power of an unsub-
tracted dispersion relation. As shown, e.g., in Refs. [11,16,21],
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one cannot expect to obtain completely correct values for
the subtraction constants from the unsubtracted dispersion
relations, if one uses only the two-pion intermediate states.
However, it might be reasonable to use a simple effective pole
to approximate the impact of all the other, higher lying inter-
mediate states on the low-energy quantities [21,46,47]. The
pole position might be varied in a reasonable range of masses
of excited vector mesons [35] while the residue can be chosen
such that a more reasonable high-energy behavior is achieved.

Enforcing a more realistic high-energy behavior provides
an additional advantage. As already pointed out, one can then
formulate simple dispersion relations also for the TFFs Gm,
m = 0,±1. In practice, we write

Gm(q2) = 1

12π

∫ �2

4m2
π

ds

π

Tm(s) p3
c.m.(s) FV ∗

π (s)

s1/2 (s − q2 − iε)

+ Ganom
m (q2) + cm

M2
V

M2
V − q2

, (64)

which is only valid for q2 � M2
V . The anomalous part is given

in Eq. (60). The dimensionless constant cm is adjusted such
that

lim
Q2→∞

Q2 Gm(−Q2) = 0. (65)

This leads to

cmM2
V = − 1

12π

∫ �2

4m2
π

ds

π

Tm(s) p3
c.m.(s) FV ∗

π (s)

s1/2

− 1

12π

∫ 1

0
dx

ds′(x)

dx

fm(s′(x)) s′(x) FV
π (s′(x))

−4
[−λ

(
s′(x), m2

�∗ , m2
�

)]3/2 .

(66)

To explore the uncertainties of this approach, one might vary
the effective pole between the masses of the excited vector
mesons [35], 1.4 GeV < MV < 1.7 GeV.

In practice, comparison to experimental results for �∗ →
�γ and �∗ → � e+e− must show if (64) and (65) is a
reasonable approach or if one has to resort to the subtracted
dispersion relations (61). So far, there are no Dalitz decay data
available. In Sec. V, we present numerical results utilizing
(64) and (66).

IV. INPUT FROM CHIRAL PERTURBATION THEORY

The leading-order (LO) chiral Lagrangian including the
decuplet states is given by [7,22,24,25]

L(1)
baryon = tr(B̄ (i /D − m(8) ) B)

+T̄ μ

abc (iγμναDα − γμν m(10)) (T ν )abc

+D

2
tr(B̄ γ μ γ5 {uμ, B}) + F

2
tr(B̄ γ μ γ5 [uμ, B])

+ hA

2
√

2

[
εade T̄ μ

abc (uμ)b
d Bc

e + εade B̄e
c (uμ)d

b T abc
μ

]
− HA

4mR
εμναβ

[
T̄ μ

abc (DνT α )abd (uβ )c
d

+(Dν T̄ α )abd (T μ)abc (uβ )d
c

]
(67)

with tr denoting a flavor trace.

We have introduced the totally antisymmetrized products
of two and three γ matrices4 [38],

γ μν := 1
2 [γ μ, γ ν] (68)

and

γ μνα := 1
6 (γ μγ νγ α + γ νγ αγ μ + γ αγ μγ ν

−γ μγ αγ ν − γ αγ νγ μ − γ νγ μγ α )

= 1
2 {γ μν, γ α}

= +iεμναβγβγ5, (69)

respectively. Our conventions are: γ5 := iγ 0γ 1γ 2γ 3 and (32),
the latter in agreement with Ref. [38] but opposite to
Refs. [7,48]. If a formal manipulation program is used to
calculate spinor traces and Lorentz contractions, a good check
for the convention for the Levi-Civita symbol is the last
relation in Eq. (69).

The octet baryons are collected in (Ba
b is the entry in the

ath row, bth column)

B =

⎛
⎜⎝

1√
2
�0 + 1√

6
� �+ p

�− − 1√
2
�0 + 1√

6
� n

�− �0 − 2√
6
�

⎞
⎟⎠. (70)

The decuplet is expressed by a totally symmetric flavor tensor
T abc with

T 111 = �++, T 112 = 1√
3

�+,

T 122 = 1√
3

�0, T 222 = �−,

T 113 = 1√
3

�∗+, T 123 = 1√
6

�∗0, (71)

T 223 = 1√
3

�∗−, T 133 = 1√
3

�∗0,

T 233 = 1√
3

�∗−, T 333 = .

The Goldstone bosons are encoded in

� =

⎛
⎜⎜⎝

π0 + 1√
3
η

√
2 π+ √

2 K+
√

2 π− −π0 + 1√
3
η

√
2 K0

√
2 K− √

2 K̄0 − 2√
3
η

⎞
⎟⎟⎠,

u2 := U := exp(i�/Fπ ), uμ := i u† (∇μU ) u† = u†
μ. (72)

The fields have the following transformation properties
with respect to chiral transformations [15,22]:

U → L U R†,

u → L u h† = h u R†,

uμ → h uμ h†,

4Throughout this work, when using the phrase “γ matrices” we
have the four γ matrices γ μ, μ = 0, 1, 2, 3, in mind, not γ5.
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B → h B h†,

T abc
μ → ha

d hb
e hc

f T de f
μ ,

T̄ μ

abc → (h†)d
a (h†)e

b (h†) f
c T̄ μ

de f . (73)

In particular, the choice of upper and lower flavor indices is
used to indicate that upper indices transform with h under
flavor transformations while the lower components transform
with h†.

For a (baryon) octet, the chirally covariant derivatives are
defined by

DμB := ∂μB + [	μ, B], (74)

for a decuplet T by

(DμT )abc := ∂μT abc + (	μ)a
a′T a′bc

+ (	μ)b
b′T ab′c + (	μ)c

c′T abc′
, (75)

for an antidecuplet by

(DμT̄ )abc := ∂μT̄abc − (	μ)a′
a T̄a′bc

− (	μ)b′
b T̄ab′c − (	μ)c′

c T̄abc′ , (76)

and for the Goldstone boson fields by

∇μU := ∂μU − i(vμ + aμ)U + iU (vμ − aμ) (77)

with

	μ := 1
2 [u†(∂μ − i(vμ + aμ))u + u(∂μ− i(vμ− aμ))u†], (78)

where v and a denote external sources.
in Eq. (67), m(8) (m(10)) denotes the mass of the baryon

octet (decuplet) in the chiral limit. For the next-to-leading-
order (NLO) calculation that we perform in the present work,
we use the physical masses [35] of all states. Indeed, for the
octet and decuplet, the flavor-breaking terms that appear at
NLO, cf. (81) and (82) below, are capable of splitting up
the baryon masses such that they are sufficiently close to the
physical masses; see, e.g., the corresponding discussion in
Refs. [9,25].

For the coupling constants, we use D = 0.80, F = 0.46,
which implies for the pion-nucleon coupling constant gA =
F + D = 1.26. The value for hA can be determined from the
partial decay width �∗ → π � or �∗ → π �, yielding hA =
2.3 ± 0.1 [11]. For a large number of colors, Nc, one obtains
the following relations for two or three flavors, respectively:
hA = 3gA/

√
2 ≈ 2.67 according to Refs. [7,48,49] or hA =

2
√

2D ≈ 2.26 according to Refs. [23,50]. Finally, one has to
specify HA. In the absence of a simple direct observable to
pin it down, we take estimates from large-Nc considerations:
HA = 9

5 gA ≈ 2.27 [7,48] or HA = 9F − 3D ≈ 1.74 [23,50].
Numerically, we explore the range HA = 2.0 ± 0.3. We have
checked explicitly that the sign of HA is in agreement with
Refs. [7,48] and also with Ref. [50]. For quark-model es-
timates of these coupling constants, see Refs. [51,52]. As
mentioned previously, the current data situation does not allow
for a comparison between results obtained from unsubtracted
and subtracted dispersion relations. This implies that it would
be premature to conduct a full-fledged error analysis at the

moment. We estimate instead how our results are sensitive to
variations in the parameters and collect this information in the
tables of Sec. V.

For our purposes, the interaction term proportional to HA

effectively reduces to

+ HA

2mR Fπ

εμναβ T̄ μ

abc ∂ν (T α )abd ∂β�c
d . (79)

Working with relativistic spin-3/2 Rarita-Schwinger fields is
plagued by ambiguities as to how to deal with the spurious
spin-1/2 components. In the present context, the interaction
term ∼hA not only causes the proper exchange of spin-3/2
resonances but also induces an additional contact interaction.
This unphysical contribution can be avoided by construct-
ing interaction terms according to the Pascalutsa description
[7,48,49,53]. It boils down to the replacement

T μ → − 1

mR
ενμαβ γ5 γν ∂αTβ, (80)

where mR denotes the resonance mass. Strictly speaking,
this procedure induces an explicit flavor breaking, but such
effects are anyway beyond leading order. In practice, we
take the mass of the �∗ resonance. The HA term of (79) is
already constructed such that only the spin-3/2 components
contribute.

We will explore both the standard interaction term ∼hA

from (67) and the corresponding one obtained by (80). We
will show explicitly that differences can be accounted for
by contact interactions of the chiral Lagrangian at NLO and
beyond. Quantitatively, it is interesting to see how much the
contact terms Pm in Eq. (45) are changed when switching from
the standard to the Pascalutsa interaction. This provides an
uncertainty estimate if Pm is not determined from a fit to form
factor data. In principle, we could do the same for the HA term
and start instead with a simpler Lagrangian ∼T̄ μ

abc[/u]c
dγ5T abd

μ ,
but we refrain from this exercise.

Now we turn to the Lagrangian of second order in the chiral
counting. A complete and minimal NLO Lagrangian has been
presented in Ref. [25]. For our present purpose, we need terms
that lift the mass degeneracies that hold at LO and we need
terms that provide interactions for �∗π → �π (or formally
�∗�̄ → 2π ) with the two pions in a p wave.

The relevant part of the NLO Lagrangian for the baryon
octet sector reads [25,54,55]

L(2)
8 = bχ,D tr(B̄ {χ+, B}) + bχ,F tr(B̄ [χ+, B]) (81)

with χ± = u†χu† ± uχ†u and χ = 2B0 (s + ip) obtained
from the scalar source s and the pseudoscalar source p. The
low-energy constant B0 is essentially the ratio of the light-
quark condensate and the square of the pion-decay constant;
see, e.g., Refs. [15,56–58]. While at LO all baryon octet
states are degenerate in mass, the NLO terms of (81) lift this
degeneracy and essentially move all masses to their respective
physical values. Technically, this is achieved if one replaces
the scalar source s by the quark mass matrix. Numerical
results for the octet mass m(8) in Eq. (67) and the splitting
parameters bχ,D/χ,F in Eq. (81) are given, for instance, in
Ref. [9]. In practice, we use the physical masses. Therefore,
we do not specify these parameters here.

015206-11



JUNKER, LEUPOLD, PEROTTI, AND VITOS PHYSICAL REVIEW C 101, 015206 (2020)

The relevant part of the NLO Lagrangian for the baryon decuplet sector reads [25]

L(2)
10 = −dχ,(8)T̄

μ

abc (χ+)c
d γμν (T ν )abd . (82)

It provides a mass splitting for the decuplet baryons such that m − m�∗ = m�∗ − m�∗ = m�∗ − m�, in good agreement with
phenomenology [35]. In the present work, we only deal with the �∗. In practice, we use the physical mass of the neutral �∗. In
that way the physical thresholds are exactly reproduced.

More concretely, we use the following masses (in GeV): mπ = 0.13957, m� = 1.116, m� = 1.193, and m�∗ = 1.384.
For the formal reaction �∗�̄ → 2π , the relevant part of the NLO Lagrangian [25] is given by

L(2)
8−10 → cF

2F 2
π

�̄γμγ5�
∗0
ν (∂μπ+ ∂νπ− − (μ ↔ ν)). (83)

A vector-meson-dominance estimate for cF is provided in Appendix D.

V. RESULTS

A. Matrix elements

The first step is the calculation of the pion-hyperon tree-level amplitudes, i.e., χPT amplitudes up to (including) NLO. In
practice, the extraction of the reduced amplitudes is simplified and systemized by a projector formalism presented in Appendix
B. Note that these amplitudes constitute the leading, i.e., dominant contribution; the notation NLO refers to the underlying chiral
Lagrangian, whose tree-level contribution is equally important to that coming from the LO Lagrangian.

The Feynman matrix element for the reaction �∗0�̄ → π+π− up to (including) NLO is given by

− DhA

6
√

2F 2
π

1

t − m2
� + iε

pμ

π+gμα v̄� /pπ−γ5 (/p�∗ − /pπ+ + m� ) uα
�∗

+ DhA

6
√

2F 2
π

1

u − m2
� + iε

pμ

π−gμα v̄� /pπ+γ5 (/p�∗ − /pπ− + m� ) uα
�∗ + hAHA

6
√

2m�∗F 2
π

iελ
ναβ pν

�∗ pβ

π+ pμ

π− v̄�Sμλ(p�∗ − pπ+ ) uα
�∗

− hAHA

6
√

2m�∗F 2
π

iελ
ναβ pν

�∗ pβ

π− pμ

π+ v̄�Sμλ(p�∗ − pπ− ) uα
�∗ + cF

2F 2
π

(
pμ

π+ pα
π− − pα

π+ pμ

π−
)

gαβ v̄�γμγ5uβ

�∗ . (84)

Here Sμν denotes the spin-3/2 propagator given in Eq. (B7).
Using FeynCalc [59,60], we obtain the following amplitudes from the � and �∗ exchange diagrams:

K+1 = DhA

6
√

2F 2
π

(
C+1 + D+1 Roct.

s

)+ hAHA

6
√

2F 2
π

(
E+1 + F+1 Rdec.

s

)
,

K−1 = DhA

6
√

2F 2
π

(
C−1 + D−1 Roct.

s

)+ hAHA

6
√

2F 2
π

(
E−1 + F−1 Rdec.

s

)
, (85)

K0 = DhA

6
√

2F 2
π

(
C0 + D0 Roct.

d

)+ hAHA

6
√

2F 2
π

(
E0 + F0 Rdec.

d

)
with

Roct.
s = −2Y�

κ2

{
1 −

(
1 − Y 2

�

κ2

) |κ|
Y�

[
arctan

( |κ|
Y�

)
+ π�(s3 − s)

]}
,

Roct.
d = 4

κ2

{
1 − Y�

|κ|
[

arctan

( |κ|
Y�

)
+ π�(s3 − s)

]}
,

Rdec.
s = −2Y�∗

κ2

[
1 −

(
1 − Y 2

�∗

κ2

) |κ|
Y�∗

arctan

( |κ|
Y�∗

)]
,

Rdec.
d = 4

κ2

[
1 − Y�∗

|κ| arctan

( |κ|
Y�∗

)]
(86)

and

Y� = 2m2
� − m2

�∗ − m2
� − 2m2

π + s, (87)

Y�∗ = m2
�∗ − m2

� − 2m2
π + s, (88)

κ2 = 1

s

(
s − 4m2

π

)
λ
(
s, m2

�∗ , m2
�

)
, (89)

s3 = m2
�∗ + m2

� + 2m2
π − 2m2

�. (90)
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Note that κ2 is negative in the range 4m2
π < s < (m�∗ + m�)2, i.e. |κ| = √−κ2. Only for negative κ2 the expressions (86) are

correct. For positive κ2 one has log’s instead of arctan’s.
Finally, the coefficient functions in Eq. (85) are given by

C+1 = −2 (m�∗ − m�) (m� + m� )

s − (m�∗ − m�)2
, (91)

C−1 = −6 (m�∗ − m�) (m� + m� )

s − (m�∗ − m�)2
, (92)

C0 = (m�∗ + m�)(m�∗ + m� )

s
− 3m�∗ (m� + m� )

s − (m�∗ − m�)2
, (93)

D+1 = 3m� (m� + m� ) + 3 (m�∗ − m�) (m� + m� )
(
m2

π + m�∗m� − m2
�

)
s − (m�∗ − m�)2

, (94)

D−1 = 3

m�∗
(m� + m� )

(
m2

π − m2
�∗ + m�∗m� − m2

�

)+ 9 (m�∗ − m�) (m� + m� )
(
m2

π + m�∗m� − m2
�

)
s − (m�∗ − m�)2

, (95)

D0 = 3m� (m� + m� )
(
m2

�∗ − m�∗m� − m2
π + m2

�

)− 9m�∗ (m� + m� )
(
m�∗m� + m2

π − m2
�

)2

s − (m�∗ − m�)2

+ 3(m�∗ + m�)(m� + m�)

s

[
m3

�∗m� − m� (m�∗ − m�)
(
m2

�∗ + m2
π

)+ 2m2
�∗m2

π

− m2
�

(
m�∗ (m�∗ + m�) + 2m2

π

)+ 2m�∗m�m2
π − m3

� (m� − m�∗ ) + m4
π + m4

�

]
, (96)

E+1 = (m�∗ − m�)
[
(m�∗ + m�)2 − m2

π

]
3m�∗ [s − (m�∗ − m�)2]

, (97)

E−1 = (m�∗ − m�)
[
(m�∗ + m�)2 − m2

π

]
m�∗ [s − (m�∗ − m�)2]

, (98)

E0 = − (m�∗ + m�)
(
2m2

�∗ + 2m�∗m� − m2
π

)
6m�∗ s

+ (m�∗ + m�)2 − m2
π

2[s − (m�∗ − m�)2]
, (99)

F+1 = −3s

2
− m2

π (2m�∗ + 3m�)

2m�∗
+ 5(m�∗ + m�)2

2
+ (m�∗ − m�)

[
(m�∗ + m�)2 − m2

π

](
m2

�∗ − m�∗m� − m2
π

)
2m�∗ [s − (m�∗ − m�)2]

, (100)

F−1 = 3s

2
+ m2

π

(
m2

�∗ + m�∗m� − m2
�

)+ m4
π

2m2
�∗

− 5(m�∗ + m�)2

2

+ 3(m�∗ − m�)
[
(m�∗ + m�)2 − m2

π

](
m2

�∗ − m�∗m� − m2
π

)
2m�∗ [s − (m�∗ − m�)2]

, (101)

F0 = 3m2
�∗ s

2
− m2

π

(
7m2

�∗ − 2m�∗m� + 2m2
�

)+ m2
�∗ (m�∗ + m�)2

2
+ m4

π

+ 4m2
�∗m2

π (m�∗ − 2m�)(m�∗ + m�)2 − m4
π

(
2m3

�∗ + m2
�∗m� + m3

�

)+ m6
π (m�∗ + m�)

2m�∗ s

+ 3
[
(m�∗ + m�)2 − m2

π

][
m�∗ (m� − m�∗ ) + m2

π

]2

2[s − (m�∗ − m�)2]
. (102)

The explicit expressions for the polynomial terms are

P+1 = DhA

6
√

2F 2
π

2 + hAHA

6
√

2F 2
π

5 (m�∗ + m�)

6m�∗
,

P−1 = DhA

6
√

2F 2
π

2 (m�∗ − m� − m� )

m�∗
+ hAHA

6
√

2F 2
π

s − 2m2
π − (m�∗ + m�)(6m�∗ − m�)

6m2
�∗

≈ DhA

6
√

2F 2
π

2 (m�∗ − m� − m� )

m�∗
+ hAHA

6
√

2F 2
π

−(m�∗ + m�)(6m�∗ − m�)

6m2
�∗

,

P0 = DhA

6
√

2F 2
π

+ hAHA

6
√

2F 2
π

3m�∗ − m�

6m�∗
. (103)
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For P−1 we dropped terms which are suppressed by two orders
in the chiral counting.

The �∗�π+π− contact diagram produces the following
polynomials:

PNLO χPT
+1 = cF

m�∗ + m�

2F 2
π

,

PNLO χPT
0 = cF

m�∗

2F 2
π

,

PNLO χPT
−1 = cF

s − m�(m�∗ + m�)

2F 2
π m�∗

≈ −cF
m�(m�∗ + m�)

2F 2
π m�∗

. (104)

At this point, it is worth commenting on the power count-
ing, i.e., on the relative importance of contributions from
the LO and from the NLO Lagrangian. In principle, the
succession in baryonic χPT is such that the LO Lagrangian
produces reaction amplitudes of order O(p), where p denotes
a generic momentum. The NLO Lagrangian produces reaction
amplitudes of order O(p2). Each new Lagrangian is down by
one power of momentum. However, the partial-wave projected
amplitudes provide a twist to this reasoning. They are analytic
functions in s, not in

√
s. Thus, suppressed contributions are

down by at least two powers of momenta. This has important
consequences for the importance of contributions from the LO
and NLO Lagrangians.

As expected, the Feynman amplitudes of hyperon-pion
scattering emerging from the NLO Lagrangian are of order
O(p2). The proper partial-wave projection and rescaling in-
troduced in Eq. (44) takes away two powers of momenta.
The reduced amplitudes are then of order O(p0), i.e., they
are constants, and this is exactly what we see in the previous
equations for all three helicity amplitudes.

The Feynman amplitudes of hyperon-pion scattering
emerging from the LO Lagrangian are at most of order
O(p). The reduced amplitudes are then at most of order
O(p−1). But this is not possible for analytic functions in s.
Therefore, also the helicity amplitudes emerging from the
LO Lagrangian are of order O(p0). They have the same
importance as the corresponding amplitudes emerging from
the NLO Lagrangian. This actually resembles the situation
found already in Ref. [11] in the magnetic sector.

As a consequence of this finding, it turns out that it does not
make sense to compare a calculation stemming solely from
the LO Lagrangian to an LO + NLO calculation. The labels
of the Lagrangians are somewhat misleading when it comes
to the helicity amplitudes. Yet, we have to stress that this does
not mean that the labels of the Lagrangians are completely
useless. Quite the contrary, the next-to-next-to-leading-order
(NNLO) Lagrangian yields only subleading contributions, as
its name suggests. The Feynman amplitudes are at most of
order O(p3). The reduced amplitudes are then at most of order
O(p). But this is again not possible (analyticity in s). Thus,
the reduced amplitudes emerging from the NNLO Lagrangian
are at most of order O(p2), i.e., suppressed relative to the
contributions from the LO and NLO Lagrangians that we take
into account in the present work.

Here we will not calculate tree-level hyperon-pion scat-
tering amplitudes based on the NNLO Lagrangian and the
corresponding loops based on the LO Lagrangian. Our present
input for the dispersion relations—tree-level hyperon-pion
amplitudes from LO and NLO—corresponds already to a one-
loop calculation in χPT for the TFFs, additionally improved
by the full pion scattering phase shift, which accounts for the
physics of the ρ meson. For the present work, we stick to
this level of sophistication. Unfortunately, this implies that
we cannot offer chiral corrections to our results, because
the contributions from the LO and NLO Lagrangians are
both dominant contributions. The absence of the possibility
to compare dominant and subdominant chiral contributions
implies also that one cannot point out very well for which
photon virtuality the whole expansion does not work any
more. But it should be clear that one should stay sufficiently
lower than the 1-GeV scale given by 4πFπ and the typical
hadron masses.

The amplitudes (84) become slightly different when the
Pascalutsa prescription is used: New contact terms pop up
but the pole terms and therefore (85) are not affected. In
particular, we have

PP
+1 = P+1 + hAHA

18
√

2F 2
π m2

�∗
[(m� + m�∗ )(2m�∗ + 3m�) − 3s],

PP
0 = P0 − hAHA

18
√

2F 2
π

,

PP
−1 = P−1 − hAHA

18
√

2F 2
π m2

�∗
[(m� + m�∗ )(3m�∗ + 2m�) − 2s].

(105)

As expected, the � exchange diagrams do not get any contri-
bution since the external �∗ hyperon is on shell.

It is illuminating to translate these contact interactions to
the i = 1, 2, 3 amplitudes defined in Eq. (62). One obtains

PNLO χPT
1 = cF

2m�∗ F 2
π

, PNLO χPT
2,3 = 0 (106)

and

PP
1 = P1 + 5

hAHA

18
√

2F 2
π m2

�∗
,

PP
2 = P2 − 6

hAHA

18
√

2F 2
π m2

�∗
, (107)

PP
3 = P3.

Thus, the NLO contact term can be used to compensate
for the difference between naive and Pascalutsa interaction
concerning the i = 1 amplitude structure, but not for i = 2.
In fact, there is a one-to-one correspondence between the
contact terms of the pion-hyperon scattering amplitudes and
the constraint-free TFFs introduced at the very beginning in
Eq. (2). Chiral power counting shows that in χPT, the TFF
Fi receives tree-level contributions starting at chiral order
i + 1. At an NLO accuracy, one has only full access to F1.
Correspondingly, the NLO contact interaction for the pion-
hyperon amplitudes contributes only to P1 as shown explicitly
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TABLE I. Comparison of the results for various observables
using tIAM, cF = −6.33 GeV−1, central values for hA, HA, and MV

and varying the cutoff �.

Quantity � = 1 GeV � = 2 GeV

G0(0) −3.5 − 0.0 i −3.7 − 0.0 i
〈r2

0 〉 [GeV−2] 21.5 + 7.1 i 21.0 + 6.8 i
G+1(0) −4.5 − 0.0 i −4.8 − 0.0 i
〈r2

+1〉 [GeV−2] 16.9 + 1.3 i 16.7 + 1.3 i
G−1(0) 3.2 − 0.0 i 3.5 − 0.0 i
〈r2

−1〉 [GeV−2] 16.8 − 1.2 i 16.5 − 1.2 i
	�∗→�e+e− [keV] 3.0 3.4
	�∗→�γ [MeV] 0.39 0.45

in Eq. (106). To compensate the difference between naive
and Pascalutsa interaction concerning the i = 2 amplitude
structure, one needs a contact term from the next-to-next-to-
leading-order Lagrangian. This is beyond the scope of the
present work.

B. Numerical results

The results below have been obtained using Pascalutsa
amplitudes. They consist in unsubtracted dispersion relations
for the TFFs Gm (64), evaluated at the photon point (q2 = 0),
followed by the corresponding radii:

〈
r2

m

〉
:= 6

Gm(0)

dGm(q2)

dq2

∣∣∣∣
q2=0

. (108)

Other quantities of interest are the integrated decay rate for
�∗ → �e+e− and the decay width for �∗ → �γ .

We start by fixing the input parameters hA, HA, and MV

to the respective central value. We will explore later the
impact of their uncertainties on the final results, while we
will not vary D nor the pion phase shift since they are better
constrained. We also want to investigate the dependence on
the cutoff �, which we will take equal to 1 and 2 GeV,
respectively. Furthermore, recall that in order to account for
the anomalous contribution (53) to the scattering amplitudes,
one needs to know the pion scattering amplitude t (s) in the
complex plane. We will explore two options: an approxima-
tion from χPT (55), denoted by tχPT, and its unitarized version
(56), tIAM.

Our strategy is to adjust the dimensionless constants cm’s
according to (66) and fix the NLO low-energy constant cF

to the experimental value of the decay width �∗ → �γ

which is (0.45 ± 0.05) MeV [35]. When matching to the
central value (0.45 MeV), one finds two possible solutions:
cF = −6.33 GeV−1 and cF = 2.39 GeV−1. We pick the first,5

being closer to the VMD estimate (D4). The chosen value of
cF is kept unchanged throughout the whole analysis, while
the constants cm’s are adjusted by (66) each time any other
parameter is varied. As explained in Sec. IV, not all sources

5The results corresponding to the other choice for cF reflect the
fact that the two possible values have opposite signs. Otherwise, the
results are qualitatively similar.

TABLE II. Same as Table I for the comparison between tχPT and
tIAM using � = 2 GeV, cF = −6.33 GeV−1, central values for hA,
HA, and MV .

Quantity tχPT tIAM

G0(0) −3.7 − 0.0 i −3.7 − 0.0 i
〈r2

0 〉 [GeV−2] 20.8 + 6.7 i 21.0 + 6.8 i
G+1(0) −4.8 − 0.0 i −4.8 − 0.0 i
〈r2

+1〉 [GeV−2] 16.7 + 1.3 i 16.7 + 1.3 i
G−1(0) 3.5 − 0.0 i 3.5 − 0.0i
〈r2

−1〉 [GeV−2] 16.5 − 1.2 i 16.5 − 1.2 i
	�∗→�e+e− [keV] 3.4 3.4
	�∗→�γ [MeV] 0.45 0.45

of uncertainties are at present under control, in particular due
to the scarce data situation. Therefore, we refrain from taking
into account additional uncertainties coming from cF . When
enough data will allow for an experimental determination of
cF (and corresponding error), there will be no need to fix it
to the partial decay width. For completeness, we report the
cm values obtained when choosing � = 2 GeV, tIAM, cen-
tral values for hA, HA, and MV : c−1 = −0.59 − 0.04 i, c0 =
1.05 − 0.10 i, c+1 = 0.96 − 0.05 i. This scenario gives rise to
the results of Table I, right column.

From Table I, we get the encouraging message that varying
the cutoff has a rather small impact. In Table II, we com-
pare the choice of using tχPT versus tIAM. As expected, both
approaches lead essentially to the same results. Finally, we
study the changes of the Gm(0)’s, the radii, the partial widths
	�∗→�e+e− and 	�∗→�γ when varying hA, HA, and MV , one
at a time, as shown in Table III. The uncertainties related to
hA, HA, and MV turn out to be moderate and comparable. It
is satisfying to observe that the Gm(0) values are not subject
to large changes and the radii are even less sensitive to these
variations. In fact, the dispersive machinery is supposed to
work better for the radii since by definition they receive a
suppressed contribution from the high-energy region.

The scarce amount of data does not allow for a better
estimation of the uncertainties, a crucial task that is left for
the future. Tables I–III are meant to cope with this temporary
deficiency, showing how the results are affected by broad
variations in some of the parameters.

As previously stated, we stick to Pascalutsa amplitudes
here, but the very same analysis can be carried out using the
naive couplings instead. Note that it would then be necessary
to refit cF since the meaning of the contact interaction changes
based on which three-point coupling is used.6

Still using tIAM, central values for hA, HA, and MV and
cutoff � = 2 GeV, we plot the real and imaginary part of
the TFFs Gm(q2) (64) in the space- and timelike regions,
up to q2 = (m�∗ − m�)2. As shown in Figs. 1–3, all three
functions are complex, already below the two-pion threshold.
Technically, this is a consequence of the additional anomalous

6Again, the final results show similar qualitative behavior as in the
Pascalutsa case.
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TABLE III. Same as Table I using tIAM, � = 2 GeV, cF = −6.33 GeV−1 and varying hA, HA, and MV one at a time.

Quantity hA = 2.2 hA = 2.4 HA = 1.7 HA = 2.3 MV = 1.4 GeV MV = 1.7 GeV

G0(0) −3.7 − 0.0 i −3.6 − 0.0 i −3.7 − 0.0 i −3.6 − 0.0 i −3.4 − 0.0 i −3.8 + 0.0 i
〈r2

0 〉 [GeV−2] 20.6 + 6.5 i 21.3 + 7.1 i 21.1 + 6.8 i 20.9 + 6.8 i 22.1 + 7.2 i 20.2 + 6.6 i
G+1(0) −4.9 − 0.0 i −4.7 − 0.0 i −5.1 − 0.0 i −4.6 − 0.0 i −4.6 − 0.0 i −5.0 + 0.0 i
〈r2

+1〉 [GeV−2] 16.5 + 1.2 i 16.9 + 1.3 i 16.3 + 1.2 i 17.1 + 1.3 i 17.2 + 1.3 i 16.3 + 1.2 i
G−1(0) 3.6 − 0.0 i 3.4 − 0.0 i 3.8 − 0.0 i 3.2 − 0.0 i 3.4 − 0.0 i 3.6 + 0.0 i
〈r2

−1〉 [GeV−2] 16.3 − 1.1 i 16.8 − 1.3 i 16.0 − 1.1 i 17.2 − 1.3 i 17.0 − 1.2 i 16.2 − 1.2 i
	�∗→�e+e− [keV] 3.5 3.3 3.8 3.0 3.1 3.6
	�∗→�γ [MeV] 0.47 0.43 0.51 0.40 0.41 0.48

cut located on the first Riemann sheet. The dashed lines
correspond to q2 values beyond the range of validity of χPT.
Moreover, our dispersion relations do not include any high-
energy inelasticity, meaning that the TFF predictions can only
be trusted at low q2. Still, it can be illuminating to plot up to
q2 = −1 GeV2. To accurately determine up to which q2 the
results are reliable, we would need a better knowledge about
all the uncertainties involved, in order to be able to quantify
where the errors start spreading beyond the desired precision.
In particular, we would need to calculate the chiral corrections
to the input pion-hyperon scattering amplitudes.

We plot the single differential decay width d	/dq2 for the
Dalitz decay �∗ → �e+e−, i.e., the angular integral of (22),
in the Dalitz region 4m2

e < q2 < (m�∗ − m�)2. In particular,
in Fig. 4 we show a comparison with the corresponding QED
case (24), for which the q2 dependence of the TFFs is not
resolved. The two curves show a slight offset in the central
region, but essentially coincide over the whole range. This
implies that high resolution is needed from the experimental

FIG. 1. Real and imaginary parts of G0(q2).

side in order to appreciate this discrepancy and gain new
insight on the internal structure of hyperons.

In the Dalitz region, it is also meaningful to plot the three
combinations of TFFs that appear in front of the trigonometric
functions in the four-body decay expression (29), in order to
compare their magnitude. Figure 5 shows that one of them, the
linear combination of |G+1|2 and |G−1|2, is dominant, making
it very challenging to extract information on the individual
TFFs. Yet with sufficient statistics and angular resolution for
the four-body decay �∗ → � e+e− → pπ− e+e− one might
get access to the smaller form factor combinations.

The situation might be compared to the history of the
experimental determination of the pion-to-photon TFF and
the corresponding radius from Dalitz decays π0 → γ e+e−
as documented in the citations of Ref. [35]. Also, there one
had to establish first the mere existence of the decay, then the
approximate agreement with the QED case, and finally with
much higher experimental efforts the existence of a nontrivial
form factor. We are looking forward to this future endeavor
for the hyperon sector.

FIG. 2. Real and imaginary parts of G+1(q2).
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FIG. 3. Real and imaginary part of G−1(q2).
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APPENDIX A: MESON VS BARYON DYNAMICS

The purpose of this Appendix is to discuss the different
physical aspects that are contained in a dispersive determina-
tion of the low-energy TFFs. As an integral part of the main
text, it might distract the reader too much from the presen-
tation of conceptual developments and results. Therefore, we
dedicate this Appendix to this discussion.

FIG. 4. Single-differential decay width for the �∗ → �e+e−

Dalitz decay. The curve labeled “FFs (q2)” is the angular integral of
(22). The other curve is the QED analog, given by (24).

FIG. 5. A comparison of the three combinations of TFFs in front
of the trigonometric functions in Eq. (29) for the �∗ → pπ−e+e−

decay.

To understand the physical content of our approach, it
might be illuminating to study a form factor on the one-loop
level. This is displayed in Fig. 6. Before discussing these
diagrams, we stress that the dispersive approach contains
more than these one-loop diagrams by including in Eq. (45)
the complete rescattering of pions via their measured pion
phase shift. The first diagram in Fig. 6 displays the exchange
of a hyperon Y in the crossed channels. The second diagram
shows the formation of a vector meson V . The third diagram
contains a contact interaction between the hyperons and the
pions. A contact interaction is without structure. It contributes
with a polynomial to the hyperon-pion scattering amplitude.
Thus, the contact interaction provides a contribution to the
polynomial P in Eq. (45). For the following discussion we
call this contribution Pc.

Next, we want to specify the relevant exchange hadrons Y
and V . If such a hadron is very heavy, its pole and cut struc-
tures caused by its propagator are not resolved. It contributes
effectively like a contact interaction. Thus, what is not covered
(at the one-loop level) by the third diagram of Fig. 6 are
exchanges of light hadrons. Concerning the baryon exchange
diagrams, we have included explicitly the relevant lightest
baryon states from the octet and decuplet. We call the impact
of these processes on the form factors the “aspect of baryon
dynamics.” Below, we will show a calculation that focuses
only on this aspect. The second and third diagrams of Fig. 6
couple the external baryons directly to mesons. Therefore,
we call the impact of these processes on the form factors the
“aspect of meson dynamics.” This part might be linked to the
notion of vector meson dominance [32]. Below, we will also
show a calculation that focuses only on this aspect.

Finally, let us look at the second diagram of Fig. 6 in
more detail. The dynamics of the lightest vector meson, the ρ
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Σ∗

γ∗

Λ

π π

Y

Σ∗

γ∗

Λ

V

ππ

Σ∗

γ∗

Λ

ππ

FIG. 6. One-loop diagrams contained in our approach. The
shaded blob denotes the pion vector form factor. The first diagram
leads to the amplitude K in Eq. (45).

meson, is automatically contained in the measured pion phase
shift because the ρ meson couples essentially with 100%
to a two-pion state. Diagrammatically, the second and third
diagrams of Fig. 6 are covered by the diagram of Fig. 7.

What is not automatically covered is the initial coupling
strength with which the vector meson V couples the pions to
the hyperons. Schematically,

igBV B̄γμγ5TνV μν + iGV [uμ, uν]V μν

→ gBV GV

M2
V

B̄γμγ5Tν [uμ, uν], (A1)

Σ∗

γ∗

Λ

ππ

ππ

FIG. 7. Diagrammatic representation of all processes that do not
contain the cross-channel exchange of light baryons. The shaded
blob with four pion legs represents the S matrix of pion scattering.
The black dot contains the contact interaction of the third diagram
of Fig. 6 and the strength mediated by the vector meson of the
second diagram of Fig. 6. This black dot leads to the polynomial
P in Eq. (45).

which leads to

P = Pc + PV with PV ∼ gBV GV

M2
V

. (A2)

In Appendix D and in Ref. [61], respectively, the flavor struc-
ture of (A1) is specified, which is, however, of no concern for
our qualitative discussion. We will show below in more detail
how the dynamics contained in the second diagram of Fig. 6
emerges from the dispersive framework by translating and
simplifying this framework to the vector meson dominance
language.

The result of the present discussion is that our dispersive
framework contains all processes of Fig. 6 if the contact
interaction strength ∼P of Fig. 7 is determined by a fit to
experiment. Without further theory input, this needs to be
done separately for each form factor. If we need to estimate
the size of P on the theory side, we must include the influence
of vector mesons as shown in Eq. (A2) and carried out in
Appendix D. In this context, we note that a pion-hyperon
contact term of a given order in χPT leads to a contribution
of the same order for the form factor. To be concrete, the
TFFs Fi of (2) start at second, third, and fourth chiral orders
for i = 1, 2, 3, respectively. Correspondingly, to fully account
for the contribution of the ρ meson to the TFF, Fi requires a
pion-hyperon contact interaction from the chiral Lagrangian
of (i + 1)th order. With our present NLO input, we have a
full coverage of F1 only. In turn, F1 constitutes the leading
contribution to the TFFs G±1 in Eqs. (8) and (10). In addition,
our formalism contains the pertinent contributions to all TFFs
from the baryon dynamics induced by the first diagram of
Fig. 6.

Baryon form factors are influenced by meson dynamics and
by baryon dynamics. Therefore, it might be illuminating to
disentangle the meson and the baryon dynamics by switching
off one of the two aspects. This will be discussed in the
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(a) (b)

FIG. 8. Pure mesonic contribution to the TFFs (a) in arbitrary units, compared with the full G−1(q2) described by meson and baryon
dynamics together (b), in the unphysical timelike region 4m2

π < q2 < 1 GeV2.

following two subsections. We would like to stress that both
cases miss part of the physics.

1. Pure meson dynamics

To focus on the impact of pion rescattering, we switch
off the aspect of baryon dynamics, i.e., we put K → 0 for
the calculation of the hyperon-pion scattering amplitude T in
Eq. (45). Consequently, we put f → 0 in Eqs. (53) and (60).
For simplicity, we use the unsubtracted dispersion relation
(64). Since we want to focus on the low-energy aspects, we
also leave out the effective-pole term, i.e., cm → 0. Thus, we
obtain finally

Gpure meson(q2) = P

12π

∫ ∞

4m2
π

ds

π

(s) p3
c.m.(s) FV ∗

π (s)

s1/2 (s − q2 − iε)
. (A3)

Since the subtraction constant = contact interaction strength
P is just a number that does not influence the s dependence of
the integrand, we have not specified the TFF by any label. We
show its generic form in Fig. 8(a), in the unphysical region
between the two-pion threshold and 1 GeV2. Obviously, the
TFF displays the influence of the ρ meson; i.e., the mesonic
aspects are very well covered. An unphysical aspect emerges
from the fact that the imaginary part of the TFF vanishes
below the two-pion threshold. In reality, the TFF is complex
everywhere, since the �∗ is unstable. This is, however, hardly
visible in the full results for G−1 in Fig. 8(b), since the
imaginary part at q2 ≈ 4m2

π becomes extremely tiny. From
the comparison of Figs. 8(a) and 8(b), one sees that if one
adjusted the ρ peak of the imaginary parts to the same size,
then the peak of the real part of the full calculation will be
somewhat smaller than the one of the pure-meson calculation.
Moreover, at low energies the curvature in the real part of the
full G−1 is milder with respect to the pure-meson calculation.

A relation to strict vector meson dominance can be de-
duced from (A3). Suppose that the width of the vector meson

is small. Essentially, this means that the pion phase shift is
zero below the vector meson mass and π above. This leads
to (s) = m2

ρ/(m2
ρ − s). With a slight refinement, m2

ρ − s →
m2

ρ − s − imρ	ρ , one obtains (s) FV ∗
π (s) ∼ δ(s − m2

ρ )/	ρ

and therefore Gpure meson(q2) ∼ (P/	ρ )/(m2
ρ − q2). The ap-

pearance of the ratio P/	ρ has a natural interpretation: In a
vector meson dominance picture, the contact term ∼P for the
hyperon-pion scattering amplitude emerges from integrating
out the vector meson; see (A1) and (A2). This leads to P ∼
gBρ GV . On the other hand, in strict vector meson dominance,
the coupling of the vector meson to the pions must be adjusted
such that the correct electric charge of the pion emerges that
is independent of strong-interaction coupling constants, i.e.,
GV ∼ 1/FV , where FV denotes the coupling strength with
which the photon couples to the vector meson. Thus, one finds
P/	ρ ∼ P/G2

V ∼ gBρ/GV ∼ gBρFV . This is exactly what one
expects as the coefficient of a form factor obtained in the
vector meson dominance framework; i.e., in full analogy to
(A1) one finds

igBV B̄γμγ5TνV μν + FV f μν
+ Vμν → i

gBV FV

M2
V

B̄γμγ5Tν f μν
+ .

(A4)

Thus, the dispersive framework reproduces and refines the
vector meson dominance aspects. The only input one needs is
the initial strength (contact interaction) with which the pions
couple to the baryons. In the vector meson dominance setup,
this is obtained by integrating out the vector meson. One can
also rephrase it in the following way: If one integrates out
the vector meson for the interaction terms between the vector
meson and the baryons and between the vector meson and
the photon, one obtains a photon-baryon coupling right away.
The dispersive framework produces the same with the pions
as intermediate agents. Of course, the dispersive framework
based on data for the pion phase shift and the pion vector
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(a) (b)

FIG. 9. Pure baryonic contribution to G−1(q2) (a) as compared to the full result for G−1(q2) described by meson and baryon dynamics
together (b), in the range −1 < q2 [GeV2] < 1.

form factor is more accurate than the schematic and model-
dependent vector meson dominance scenario but it covers
qualitatively the same physics. In addition, the dispersive
framework presented in this paper contains also the aspects
of baryon dynamics that is completely missing in the vector
meson dominance approach.

2. Pure baryon dynamics

To focus on the impact of the processes where baryons
are exchanged in the cross channel, we switch off the contact
interaction and the pion rescattering. For simplicity, we use
an unsubtracted dispersion relation. Thus, we put FV

π → 1
in Eqs. (64) and (60). Since we want to focus on the low-
energy aspects, we also leave out the effective-pole term, i.e.,
cm → 0. For the calculation of the scattering amplitude T ,
we put P → 0 and δ → 0 in Eq. (45). This also implies that
the anomalous piece vanishes. In simple terms, Tm → Km in
Eq. (64). This leads to

Gpure baryon
m (q2) = 1

12π

∫ �2

4m2
π

ds

π

Km(s) p3
c.m.(s)

s1/2 (s − q2 − iε)

+ 1

12π

∫ 1

0
dx

ds′(x)

dx

1

s′(x) − q2

× fm(s′(x)) s′(x)

−4
[− λ

(
s′(x), m2

�∗ , m2
�

)]3/2 . (A5)

In Fig. 9(a), this contribution is plotted for the TFF
G−1(q2), in the range −1 < q2 [GeV2] < 1. As expected, the
form factor has an imaginary part for all values of q2, even if
very tiny for q2 < 0. The baryon exchange diagrams contain
the physical aspect that the �∗ is unstable. What is missing,
of course, is the influence of the ρ meson, i.e., the mesonic as-
pects. For comparison, we show in Fig. 9(b) also the complete

result for G−1(q2), taking into account the contributions of
both meson and baryon dynamics, again across the space-
and timelike regions. Note that the same quantity has been
previously plotted [Fig. 8(b)] but in a different range. This
time, we include the negative q2 physical region and focus
on the region around q2 = 0. There, we notice in Fig. 9(a) a
steep rise in the real part, which is mitigated in Fig. 9(b) by
the ρ-meson tail. In summary, even if the ρ-meson dictates in
general the shape and size of the form factor, the low-energy
behavior is significantly influenced by the baryon dynamics.

APPENDIX B: PROJECTOR FORMALISM
FOR HELICITY AMPLITUDES

Spin-3/2 objects can be obtained from the coupling of
spin-1/2 and spin-1 states. Thus, we construct a spin-3/2
vector-spinor [62] by

uμ(p, σ ) =
∑
ρ,λ

(
3

2
, σ

∣∣∣∣1, ρ ;
1

2
, λ

)
u(p, λ) εμ(p, ρ) (B1)

with a spin-1/2 spinor u, a spin-1 polarization vector εμ and
a Clebsch-Gordan coefficient (J, M| j1, m1; j2, m2). Here, in
slight contrast to the rest of this work, the spin projections on a
given quantization axis (and not the helicities) are denoted by
σ , λ, and ρ, respectively. Yet if one chooses the quantization
axis along the flight direction (as we will do in a moment) then
helicity and spin projection coincide.

It is useful to provide (B1) in an explicit form:

uμ(p,±3/2) = u(p,±1/2) εμ(p,±1),

uμ(p,±1/2) = 1√
3

u(p,∓1/2) εμ(p,±1)

+
√

2√
3

u(p,±1/2) εμ(p, 0). (B2)
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For the spin-1/2 spinors, we use the conventions of
Ref. [38]. For the spin-1 polarization vectors for massive
states, we provide here only their explicit form for the case
where the z direction constitutes both the spin quantization
axis and the direction of motion of the particle [63,64]:

εμ(pz,±1) = ∓1√
2

(0, 1,±i, 0),

εμ(pz, 0) = (pz/m, 0, 0, E/m), (B3)

where m denotes the mass of the particle and E its energy.
Note that the coefficient ∓1 does not show up in the defini-
tions of Ref. [38].

Irrespective of flight direction and spin quantization axis,
the spin-3/2 vector-spinors satisfy∑

σ

uμ(p, σ ) ūν (p, σ ) = −(/p + m) P3/2
μν (p), (B4)

where p0 =
√

m2 + 	p2 denotes the energy of the particle
described by the vector-spinor and m its mass. The projector
on spin 3/2 is defined by

P3/2
μν (p) := gμν − 1

3
γμγν − 1

3p2
(/pγμ pν + pμ γν /p). (B5)

Note that for (B4) the scalar product p2 appearing in Eq. (B5)
can be replaced by m2.

For our Lagrangian (67), a spin-3/2 (vector-spinor) field
ψμ(x) has the following propagator [65,66]

〈0|Tψμ(x) ψ̄ν (y)|0〉 =
∫

d4 p

(2π )4
i Sμν (p) e−ip(x−y) (B6)

with

Sμν (p) := − /p + m

p2 − m2 + iε
P3/2

μν (p) + 2

3m2
(/p + m)

pμ pν

p2

− 1

3m

pμ pα γαν + γμα pα pν

p2
. (B7)

Note that for the propagator of (B6) and (B7), the scalar
product p2 appearing in Eq. (B5) cannot be replaced by m2.
The propagator (B7) describes propagating modes of spin 3/2
and frozen modes of spin 1/2 [65].

The scattering amplitudes for the reaction �∗ �̄ → π+π−
have the following structure:

v̄�(p�, λ) Mμ(p�∗ , p�, k) uμ
�∗ (p�∗ , σ ) (B8)

with k := pπ+ − pπ− . Feynman rules can provide a quite
lengthy expression for the spinor 4 × 4 matrix Mμ. Therefore,
we aim at a projector formalism where (B8) is related to scalar
quantities ai and a predefined set of spinor objects such that
only the scalar quantities depend on the explicit form of Mμ,
i.e.,

v̄� Mμ uμ
�∗ =

∑
i

ai v̄� Mμ
i gμν uν

�∗ . (B9)

The tasks are to construct a complete set of linearly indepen-
dent structures Mμ

i and to find a convenient way to determine
ai from an arbitrary Mμ. Such an endeavor is similar in spirit
to Ref. [64].

Because of parity symmetry, we can focus on the case
where the �̄ has positive helicity, λ = +1/2. Then we
need four predefined spinor objects corresponding to the
possible values for the helicity of the �+ baryon, σ =
+3/2,+1/2,−1/2,−3/2. It is convenient to introduce the
following four-vectors:

q := p�∗ + p�,

k̄ := p�∗ − p�,

r := k̄ − k̄ · q

q2
q,

k⊥ := k − k · r

r2
r. (B10)

In the center-of-mass frame with the three-momentum of the
�∗ pointing in the z direction and the reaction taking place in
the x-z plane, one finds that q has only a zeroth component,
r has only a third (z) component, and k⊥ has only a first (x)
component.

We are looking now for four independent structures of
type Mμ in Eq. (B8). In general, Mμ contains products of
γ matrices and exactly one γ5.7 All γ matrices that are
contracted with p�, p�∗ or the spin-3/2 spinor u�∗ can be
moved toward v̄� or u�∗ and eliminated by equations of
motion. This results in structures with fewer γ matrices. If
two γ matrices are contracted with each other or with the
very same four-momentum, then one can also simplify the
expression.

This whole procedure leaves us with four independent
structures of Mμ type:

γ5 kμ

⊥, γ5 pμ
�, /k⊥γ5 pμ

�, /k⊥γ5 kμ

⊥. (B11)

It is simpler, however, to use the following linear combina-
tions:

Mμ
1 := [q2 − (m�∗ + m�)2]γ5 kμ

⊥ − m�∗ /k⊥γ5 pμ
�,

Mμ
2 := γ5 pμ

�,

Mμ
3 := /k⊥γ5 pμ

�,

Mμ
4 := [q2 − (m�∗ − m�)2]/k⊥γ5 kμ

⊥ − m�∗ k2
⊥γ5 pμ

�. (B12)

They are constructed such that in the center-of-mass frame
they satisfy

v̄�(p�,+1/2) Mμ
i gμν uν

�∗ (p�∗ , σ ) ∼ δi i�∗ (B13)

with i�∗ := 5/2 − σ . In other words, each Mμ
i contributes

only to one helicity amplitude. Thus, the sum in Eq. (B9)
reduces to only one term.

The remaining task is to find the scalar quantity ai for a
given Mμ. What makes the task nontrivial is the fact that
different Mμ lead to the same ai because of the equations
of motion for v̄� and uν

�∗ . Therefore, we construct on- and
off-shell projectors to decompose a completely general Mμ.
Since Mμ is a 4 × 4 spinor matrix with μ ranging from 0 to

7Note that alternatively to a γ5 one might involve a Levi-Civita
symbol. However, this can be related to one γ5 and a product of γ

matrices.

015206-21



JUNKER, LEUPOLD, PEROTTI, AND VITOS PHYSICAL REVIEW C 101, 015206 (2020)

3 we need in general a basis of 64 Lorentz-spinor structures.
Because of parity symmetry, we can restrict ourselves to 32
structures. For the first four terms, we use

T i
μ := P�

on Mν
i P�∗

on P3/2
νμ , (B14)

introducing the projectors [65]

P�
on := 1

2m�

(m� − /p�
),

P�
off := 1

2m�

(m� + /p�
),

P�∗
on := 1

2m�∗
(m�∗ + /p�∗ ),

P�∗
off := 1

2m�∗
(m�∗ − /p�∗ ),

P1/2
μν := 1

3
γμγν + 1

3p2
�∗

(/p�∗γμ gνα + gμα γν /p�∗ ) pα
�∗ ,

P3/2
μν := gμν − P1/2

μν . (B15)

The other 28 structures are obtained from (B14) by exchang-
ing P�

on by P�
off and/or P�∗

on by P�∗
off and/or P3/2

νμ by P1/2
νμ . We

do not specify how we enumerate these structures from i = 5
to i = 32 because we will not need them in the end. We also
introduce the Dirac adjoint structures

T̄ i
μ := γ0

(
T i

μ

)†
γ0, for i = 1, . . . , 32. (B16)

Provided that the T i
μ form 32 linearly independent structures,

we can decompose any Mμ as

Mμ =
32∑

i=1

ai T i
μ (B17)

with

ai =
32∑
j=1

(C−1)i j Tr
(
T̄ j

μ Mμ
)

(B18)

and the 32 × 32 matrix C with elements

Ci j := Tr
(
T̄ i

μ T j
ν

)
gμν. (B19)

Here Tr denotes the spinor trace. We have checked explicitly
that detC �= 0 which shows that the 32 structures T i

μ are
linearly independent, i.e., form a basis to construct the most
general Mμ.

Inserting (B17) in Eq. (B8) and using the equations of
motion for the spinors shows

v̄� Mμ uμ
�∗ =

4∑
i=1

ai v̄� Mμ
i gμν uν

�∗ . (B20)

Thus, we only need to determine the four scalar quantities
ai with i = 1, 2, 3, 4 from (B18). Since the projectors in
Eq. (B15) are pairwise orthogonal, one finds

Tr
(
T̄ i

μT j
ν

)
gμν = 0 for i > 4, j = 1, 2, 3, 4. (B21)

In addition, we have checked by an explicit calculation

Ci j ∼ δi j for i, j = 1, 2, 3, 4, (B22)

a result that one could have anticipated already from (B13).
Finally, (B18) simplifies to

ai = Tr
(
T̄ i

μMμ
)

Ci
(B23)

with

Ci := Tr
(
T̄ i

μ T i
ν

)
gμν. (B24)

Explicit expressions are given by

C1 := k2
⊥

4 m�∗ m�

[(m�∗ + m�)2 − q2] λ
(
q2, m2

�∗ , m2
�

)
,

C2 := −1

12 m3
�∗ m�

[(m�∗ − m�)2 − q2] λ
(
q2, m2

�∗ , m2
�

)
,

C3 := k2
⊥

12 m3
�∗ m�

[(m�∗ + m�)2 − q2] λ
(
q2, m2

�∗ , m2
�

)
,

C4 := −(k2
⊥)2

4 m�∗ m�

[(m�∗ − m�)2 − q2] λ
(
q2, m2

�∗ , m2
�

)
(B25)

with the Källén function defined in Eq. (12). In the center-of-
mass frame, one finds

k2
⊥ = −4 p2

c.m. sin2 θ (B26)

with the center-of-mass momentum of the pions pc.m. :=√
q2 − 4m2

π/2 and θ denoting the angle between the three-
momenta of �∗ and π+.

To summarize, for a given amplitude structure Mμ and a
given helicity σ , we find in the center-of-mass frame

v̄�(p�,+1/2) Mμ uμ
�∗ (p�∗ , σ )

= Tr
(
T̄ i

αMα
)

Ci
v̄�(p�,+1/2) Mμ

i gμν uν
�∗ (p�∗ , σ ) (B27)

with i = 5/2 − σ . Note in particular that in Eq. (B27) there is
no implicit summation over i; it is fixed by the choice of σ ,
the helicity of the �∗.

In the main text, we have introduced reduced amplitudes
(44) for the dispersive representation of the TFFs. To make
contact with these reduced amplitudes, we present here the
ratios

v̄�(−pz,+1/2) Mμ
1 gμν uν

�∗ (pz,+3/2)

v̄�(−pz,+1/2) γ5 u1
�∗ (pz,+3/2) pc.m.

= −2 sin θ [q2 − (m�∗ + m�)2],

v̄�(−pz,+1/2) Mμ
2 gμν uν

�∗ (pz,+1/2)

v̄�(−pz,+1/2) γ5 u3
�∗ (pz,+1/2) pc.m.

= 2 q2

m2
�∗ − m2

� + q2

pz

pc.m.

,

v̄�(−pz,+1/2) Mμ
3 gμν uν

�∗ (pz,−1/2)

v̄�(−pz,+1/2) γ5 u1
�∗ (pz,−1/2) pc.m.

= −2 sin θ
q2 − (m�∗ + m�)2

m�∗
(B28)

015206-22



ELECTROMAGNETIC FORM FACTORS … PHYSICAL REVIEW C 101, 015206 (2020)

with pz := λ1/2(q2, m2
�∗ , m2

�)/(2
√

q2) denoting the center-of-
mass momentum of �∗ and �̄. Note that for the M2 case
(nonflip amplitude) there will always be a factor pz pc.m. from
the partial-wave projection of Tr(T̄ 2

α Mα ). Together with the
last ratio on the right-hand side of the corresponding equation
in Eq. (B28), this leads to an expression for the reduced
amplitude without any square roots.

In practice, the whole task of dealing with a Feynman
scattering amplitude for given helicities is reduced to the
calculation of one spinor trace Tr(T̄ i

αMα ).

APPENDIX C: DISPERSIVE REPRESENTATIONS, CUTS
AND ANOMALOUS THRESHOLDS

This Appendix has two purposes. First, we provide a
detailed discussion of the analytic structure of a scalar triangle
diagram. This resembles the first diagram shown in Fig. 6,
except that one deals with p waves there and with s waves in
the scalar case. But the appearance of anomalous thresholds
has the very same pattern. Therefore, we use the scalar triangle
as a test case to check that we include all bits and pieces in the
correct way for our TFF calculations. The second purpose is
the derivation of (53), (60), and (63).

Consider the result of a triangle loop diagram [44,67–70],

C(s)

= 1

iπ2

∫
d4l

1(
l2 − m2

exch

)[
(l+p1)2 − m2

π

][
(l − p2)2−m2

π

] ,
(C1)

which can be calculated directly when rewritten as

C(s) =
∫ 1

0
dx1 dx2 dx3 δ(1 − x1 − x2 − x3)

[
x1x3m2

1 + x2x3m2
2

+ x1x2s − x1m2
π − x2m2

π − x3m2
exch

]−1
(C2)

with s := (p1 + p2)2, m2
1 := p2

1, and m2
2 := p2

2. We consider
first the case that m2

exch is large enough and m2
1 and m2

2 are
small enough. A quantitative specification will follow later.
In this case, the imaginary part of C (for real values of s) is
just given by cutting [71] the two pion lines of the Feynman
diagram. The result is

ImC(s) = −π
σ (s)

κ (s)
log

Y (s) + κ (s)

Y (s) − κ (s)
�
(
s − 4m2

π

)
, (C3)

where

Y (s) := s + 2m2
exch − m2

1 − m2
2 − 2m2

π , (C4)

κ (s) := λ1/2
(
s, m2

1, m2
2

)
σ (s), (C5)

and

σ (s) :=
√

1 − 4m2
π

s
. (C6)

We use the log and the square root function both with a cut on
the real negative axis.

The triangle function C can be represented by a dispersive
integral in the variable s ranging from the two-pion threshold

to infinity (unitarity cut):

C(z) =
∫ ∞

4m2
π

ds′

π

ImC(s′)
s′ − z

=
∫ ∞

4m2
π

ds′

π

σ (s′) l (s′)
s′ − z

(C7)

with

l (s) := − π

κ (s)
log

Y (s) + κ (s)

Y (s) − κ (s)
. (C8)

Here z is an arbitrary complex number that does not lie on the
unitarity cut, i.e., z �∈ [4m2

π ,+∞[.
It should be possible to find a dispersive representation of

the function C for any values of the masses, but it is necessary
to study the cut structure of the logarithm in Eq. (C8). If
this cut intersects with the unitarity cut, one needs a proper
analytic continuation of the logarithm along the unitarity cut
and one picks up an anomalous contribution.

To understand these statements, we consider first the case
where (C7) works. In this case, l (s) from (C8) is a smooth
function along and in the vicinity of the unitarity cut. Con-
cerning the function σ (s), it has a cut for s ∈ [0, 4m2

π ]. It
is convenient to define a function that has a cut along the
unitarity cut [72]:

σ̂ (z) :=
√

4m2
π

z
− 1. (C9)

For s ∈ [4m2
π ,+∞[, it satisfies

σ̂ (s ± iε) = ∓iσ (s). (C10)

By construction, the function C(z) is defined via (C7) in
the whole complex plane except for the unitarity cut. This
cut defines a second Riemann sheet. We construct a function
CII(z) that constitutes an analytic continuation of C through
the cut. For s ∈ [4m2

π ,+∞[, we demand

CII(s + iε)
!= C(s − iε) = C(s + iε) − 2iσ (s) l (s)

= C(s + iε) + 2σ̂ (s + iε) l (s + iε). (C11)

In the last step, we have used (C10) and the assumption that l
is a smooth function around the unitarity cut. This assumption
will be critically reviewed below.

For the case at hand, we can use (C11) to define an analytic
continuation of C on the second Riemann sheet:

CII(z) := C(z) + 2σ̂ (z) l (z). (C12)

The cut structure of CII originates from the unitarity cut, from
the additional cut of σ̂ along the negative real axis, and from
the cut of the logarithm in the expression (C8) for the function
l . We note that the square root functions that define κ in
Eq. (C5) and therefore enter (C8) do not cause an additional
cut because l is an even function in κ .

Let us first focus on the unitarity cut. For s ∈ [4m2
π ,+∞[,

we find

CII(s − iε) = C(s − iε) + 2σ̂ (s − iε) l (s) = C(s + iε).

(C13)

Thus, the unitarity cut connects just the two Riemann sheets.
Next, we focus on the log function. The branch points of

the logarithm in Eq. (C8) are given by Y 2(s) = κ2(s). They
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FIG. 10. Real and imaginary part of s+ obtained by varying m2
1.

The red dot corresponds to m2
1 = m2

�∗ , which is our case of interest.

are located at

s± = −1

2
m2

exch + 1

2

(
m2

1 + m2
2 + 2m2

π

)
− m2

1 m2
2 − m2

π

(
m2

1 + m2
2

)+ m4
π

2m2
exch

∓ λ1/2
(
m2

1, m2
exch, m2

π

)
λ1/2

(
m2

2, m2
exch, m2

π

)
2m2

exch

= 1

4m2
exch

{(
m2

1 − m2
2

)2 − [
λ1/2

(
m2

1, m2
exch, m2

π

)
±λ1/2

(
m2

2, m2
exch, m2

π

)]2}
. (C14)

The problem is that as a function of the masses, the values
of s± move through the complex plane that constitutes the
second Riemann sheet. If either of the two branch points hits
the unitarity cut, then this branch point moves on the physical
(=first) Riemann sheet. To be specific, we take s+ as the
solution that has a positive imaginary part for small values
of m2

1. If one replaces m2
1 by m2

1 + iε and follows the motion
of s+ for increasing values of m2

1, then s+ moves toward the
real axis and could intersect with the unitarity cut.8 Figure 10
shows the trajectory of s+ in the complex plane obtained by
varying m2

1, having fixed m2
exch = m2

� and m2
2 = m2

�. Note
the intersection with the unitarity cut, which implies that an
additional cut must be located on the first Riemann sheet. The
red dot indicates the actual position of s+ for the physical
choice m2

1 = m2
�∗ .

Indeed, for

m2
1 + m2

2 − 2m2
π − 2m2

exch = 0 (cross point) (C15)

8For completeness, we note that s− does not intersect with
the unitarity cut and therefore does not enter the first Riemann
sheet.

the two Källén functions in Eq. (C14) become identical and
one finds at this point

s+|cross point = 4m2
π ,

∂s+
∂m2

1

∣∣∣∣
cross point

= 0, (C16)

∂2s+
∂
(
m2

1

)2

∣∣∣∣∣
cross point

= 2m2
π

λ
(
m2

2, m2
exch, m2

π

) .
Therefore, we obtain

s+
(
m2

1 + iε, . . .
)∣∣

cross point

≈
[

s+
(
m2

1, . . .
)+ iε

∂s+
(
m2

1, . . .
)

∂m2
1

− 1

2
ε2 ∂2s+

(
m2

1, . . .
)

∂
(
m2

1

)2

]
cross point

= 4m2
π − ε2 m2

π

λ
(
m2

2, m2
exch, m2

π

) . (C17)

In other words, the motion of s+ just turns around (vanishing
derivative) at the two-pion threshold. s+ intersects with the
unitarity cut if

λ
(
m2

2, m2
exch, m2

π

)
< 0. (C18)

One can already see in the original expression (C8) that
something goes wrong if m2

1 becomes so large that (C15) is
satisfied. On the real axis, the log in Eq. (C8) is ill defined for
Y (s) = 0. From (C4), we see that this zero of Y is small as
long as m2

1 and m2
2 are small and m2

exch is large, but the zero
of Y reaches the unitarity cut, i.e. the branch point at the two-
pion threshold for (C15). For even larger values of m2

1, i.e., for

m2
1 + m2

2 − 2m2
π − 2m2

exch > 0, (C19)

one needs a smooth analytic continuation of the logarithm
along the unitarity cut. Otherwise, the dispersive
representation (C7) does not make sense. In addition, (C7) is
incomplete, because one has to circumvent also the branch
point s+, which is now on the physical Riemann sheet. It is
convenient to choose the branch that starts at s+ such that it
intersects with the unitarity cut just at its own branch point at
the two-pion threshold [69].

The two conditions for s+ being located on the first Rie-
mann sheet are (C18) and (C19). The dispersive representa-
tion of the triangle function (C1) is then given by

C(s) = 1

2π i

∫
ds′ discC(s′)

s′ − s

= 1

2π i

∫ ∞

4m2
π

ds′ discunitC(s′)
s′ − s

+ 1

2π i

∫ 1

0
dx

dz(x)

dx

discanomC(z(x))
z(x) − s

(C20)

with the straight-line path connecting s+ and the two-pion
threshold,

z(x) := (1 − x)s+ + x 4m2
π , (C21)
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(a) (b)

FIG. 11. Comparison between (a) the triangle function (C1), obtained by either (C2) or (C20), and (b) its incomplete dispersive
representation (C7), where only the unitarity cut has been taken into account, neglecting the presence of the anomalous cut. The masses
involved here are m1 = m�∗ , mexch = m� , and m2 = m�.

the function

discanomC(z) = − 4π2i[−λ
(
z, m2

1, m2
2

)]1/2 , (C22)

and a piecewise defined function given by [cf. (C3)]

discunitC(s)

2i
= −π

σ (s)

κ (s)

[
log

Y (s) + κ (s)

Y (s) − κ (s)

+ 2π i�((m1 − m2)2 − s)

]
(C23)

for λ(s, m2
1, m2

2 ) > 0 while it is given by

discunitC(s)

2i
= −2π

σ (s)

κ̃ (s)

[
arctan

κ̃ (s)

Y (s)
+ π�( − Y (s))

]
(C24)

for λ(s, m2
1, m2

2 ) < 0. This function is continuous along the
unitarity cut except if s = (m1 − m2)2 lies on the cut; there
one has an integrable divergence. We have introduced

κ̃ (s) := [−λ
(
s, m2

1, m2
2

)]1/2
σ (s). (C25)

In Fig. 11(a), the real and imaginary parts of the triangle
function (C1) are plotted using m1 = m�∗ , mexch = m� , and
m2 = m�. We have checked that the dispersive representation
(C20) for s + iε with arbitrary real s fully agrees with the
direct calculation (C2). We want to stress that ignoring the in-
tegration along the anomalous cut produces a very incomplete
result, shown in Fig. 11(b).

Having established the correct analytic structure, we leave
the case of the scalar triangle behind and turn to our TFFs,
which have a different partial-wave structure and include the
full pion rescattering.

For triangle diagrams with full two-pion rescattering, we
extend the usual formulas to allow for the presence of the

anomalous cuts. We introduce the values of a function A to
the left (A+) and to the right (A−) of a (directed) cut line. The
discontinuity of A is then defined by

discA := A+ − A−. (C26)

For a cut along the real axis, this yields the well-known
relations

discA(s) = A(s + iε) − A(s − iε)

= A(s + iε) − A∗(s + iε)

= 2iImA(s + iε). (C27)

The optical theorem that leads to (61) and (45) generalizes
to

discF = 2i
1

24π
T+σ p2

cmFV
π− (C28)

and

disc(T − K ) = 2iT+σ t− (C29)

with the p-wave pion scattering amplitude t . Along the unitar-
ity cut, the amplitude t is given by t = sin δ eiδ/σ .

We recall how (C29) is solved [43]. The Omnès function is
introduced as a solution of

disc = 2i+σ t−. (C30)

This allows us to calculate

disc
T − K


= (T − K )+− − (T − K )−+

+−

= (T − K )+− − (T − K )++
+−

+ (T − K )++ − (T − K )−+
+−

= 2iK+σ t−
−

. (C31)
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The product Kσ is essentially proportional to the discontinu-
ity of the triangle function C. The proportionality factor h is
a rational function of s, i.e., has no cuts. With the previous
construction of discC, we have achieved that the two cuts
(unitarity cut and anomalous cut) do not intersect. Therefore,
we can write for the discontinuity (C31) along the unitarity
cut

disc
T − K


= 2iKσ t−

−
= 2iK sin δ

|| (C32)

because here K is by construction a continuous function
and  has the same phase as t . This leads to the standard
dispersive part for T − K explicitly given in Eq. (45). Along
the anomalous cut, we have

disc
T − K


= 2i h discanomC

t−
−

, (C33)

which leads to (53).
Finally, we have to solve (C28). For the unitarity cut,

we can just integrate the right-hand side of (C28). For the
anomalous cut, we use (C29) and find

discanomF = 1

24π
discanom(T − K ) p2

cm

FV
π−
t−

. (C34)

Since we have a dispersive representation for T − K in
Eqs. (45) and (53), we just need to read off the discontinuity
along the anomalous cut. This leads to (63).

If one compares the expressions (53) and (63), one notices
that (53) looks more complicated with  appearing outside
and inside of the integral. Is it not possible to write (53) in a
simpler way? After all,  is continuous along the anomalous
cut. From (C33), one sees that the discontinuity of T − K
along the anomalous cut is indeed just 2i h discanomC t . The
same can be obtained from (53). But the expression (53)
inherits from  also a discontinuity along the unitarity cut.
Therefore, a direct dispersive representation of T − K instead
of the ratio (T − K )/ leads to an integral where in the
integrand the integral of (53) appears. For the form factor,
we have this situation of a double integral anyway in Eq. (61)
where the integral expressions for T enter in the integrand. But
for T itself, one can avoid the double integral representation

if one lives with  appearing outside and inside of the
integrals.

APPENDIX D: ESTIMATE FOR THE NLO FOUR-POINT
PION-BARYON COUPLING CONSTANT

Ideally, the low-energy constant cF from (83) should be
determined from experiment. To have a rough estimate for
its size, we apply a vector-meson-dominance (resonance-
saturation) assumption [32,61,73,74]. To get a feeling for
its accuracy, we will make the same estimate for the octet
sector. To this end, we consider the following part of the NLO
Lagrangian of [25]:

L(2)
V := i cM (Oμν )b

d ( f μν
+ )d

b + H.c.

+ 1

4
cF (Oμν )b

d ([uμ, uν])d
b + H.c.

+ bM,D tr(B̄{ f μν
+ , σμνB})

+ i

2
b3,2 tr(B̄{[uμ, uν], σμνB}) (D1)

with

(Oμν )b
d := εade B̄e

c γμγ5 T abc
ν . (D2)

Estimates for cM and bM,D have been provided in Ref. [25],
based on fits to experimental data on radiative decays
and magnetic moments, respectively: |cM | ≈ 1.9 GeV−1 and
bM,D ≈ 0.32 GeV−1.

Vector-meson dominance [32] implies that the coupling
strengths of hadrons to two pions (in a p wave) and to photons
are correlated. In the χPT framework, this might be rephrased
as the statement that the two building blocks [uμ, uν] and f μν

+
appear in a fixed combination, i.e., as the chiral field strength
[61,73]

	μν := 1

4
[uμ, uν] − i

2
f μν
+ . (D3)

Under this assumption, we obtain the following estimates:
cF ≈ −2 cM and b3,2 ≈ bM,D. In Ref. [74], based on a
resonance-saturation approach, the vector-meson contribution
to the parameter b3,2 (denoted by b10 therein) has been esti-
mated to ≈0.5 GeV−1, i.e., about 50% larger than our value
for bM,D. Therefore, we use as an estimate

|cF | = (4.8 ± 1.2) GeV−1 and
cF

cM
< 0. (D4)
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