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The momentum correlation functions of baryon pairs, which reflects the baryon-baryon interaction at low
energies, are investigated for multistrangeness pairs (�� and N�) produced in relativistic heavy-ion collisions.
We calculate the correlation functions based on an expanding source model constrained by single-particle
distributions. The interaction potentials are taken from those obtained from recent lattice QCD calculations
at nearly physical quark masses. Experimental measurements of these correlation functions for different system
sizes will help to disentangle the strong interaction between baryons and to unravel the possible existence of
strange dibaryons.
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I. INTRODUCTION

Either bound or resonant dibaryons provide valuable infor-
mation on baryon-baryon interactions [1,2]. Historic example
is the bound deuteron [3] which indicates the strong tensor
force in the 3SD1 nucleon-nucleon interaction [4]. Similarly,
observing possible dibaryons with multistrangeness would
give useful constraints on the unknown hyperon-nucleon and
hyperon-hyperon interactions. The H-dibaryon with spin J =
0 and S =−2 [5], the N� with J =2 and S =−3 [6,7], and
the �� with J =0 and S =−6 [8] are particularly interesting,
since the Pauli blocking among valence quarks do not operate
in these systems.

In recent years, ab initio calculations of baryon-baryon
interactions on the basis of lattice quantum chromodynamics
(LQCD) became possible near the physical quark masses.
This is due to the development of advanced techniques such
as the HAL QCD (Hadron to Atomic Nuclei from Lattice
QCD) method [9,10] and the unified contraction algorithm
[11]. In particular, it was numerically demonstrated that the
�� interaction in the J = 0 channel and the N� interaction in
the J = 2 channel are attractive enough to hold molecular-like
bound states in the S-wave [12,13].

To study such multistrangeness systems experimentally,
high-energy heavy-ion collisions provide a unique oppor-
tunity allowing direct search via invariant mass spectrum
[14,15] as well as indirect search via momentum correlations
[15–19]. As for the latter, a ratio of the correlation functions
obtained from different source sizes has been theoretically
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introduced and called “small-to-large ratio” (SL) [17]. This is
useful to access, e.g., the strong p� interaction without much
contamination from the Coulomb interaction at small relative
momentum. Subsequently, the measurement of the momen-
tum correlation of p� was conducted in Au+Au collisions at
the Relativisitic Heavy Ion Collider (RHIC) [20].

The main purpose of this paper is to study the pair momen-
tum correlation functions of the dibaryon candidates, �� and
p�, by extending our previous analysis [15–19]. We employ
the latest interactions obtained from the (2+1)-flavor lattice
QCD simulations with nearly physical quark masses [12,13].
Also we use an expanding source model constrained by exper-
imental transverse-momentum spectra and multiplicities. In
Sec. II, we recapitulate the general feature of the momentum
correlation function in a simplified example to give an account
of how the final-state interaction (FSI) is translated into the
pair correlations. A model for the emission source function
is described in Sec. III. We give details of the potential and
resultant correlation functions for �� pairs and p� pairs
in Secs. IV and V, respectively. Section VI is devoted to
summary and concluding remarks. In Appendix A, the system
size dependence of the momentum correlation for p� with
uncertainty quantification are examined. In Appendix B, we
show a comparison of the p� potential in Ref. [17] with that
in Ref. [13] adopted in the present paper.

II. TWO-PARTICLE MOMENTUM CORRELATION
FROM FINAL-STATE INTERACTIONS

A. Formalism

We briefly recapitulate the general property of the two-
particle momentum correlation function with FSI. More de-
tails can be found in, e.g., Refs. [15,21].
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The momentum correlation function between particles 1
and 2 with respective momenta p1 and p2 is defined by the ra-
tio of two-particle spectrum N12(p1, p2) = E1E2dN12/d p1d p2
and the product of single-particle spectra Ni(pi ) = EidNi/d pi
as

C(qμ, Pμ) = N12(p1, p2)

N1(p1)N2(p2)
, (1)

with Ei =
√

p2
i + m2

i being the on-shell particle energy. The
center-of-mass momentum P and the generalized relative
momentum q are defined by

Pμ = pμ
1 + pμ

2 , (2)

qμ = 1

2

[
pμ

1 − pμ
2 − (p1 − p2)P

P2
Pμ

]
. (3)

One may, in principle, measure the correlation function as
a function of three independent components of the relative
momentum qμ. Such a decomposition has been utilized to
investigate expansion dynamics of the hot matter through
pion correlations [21]. In practice, particles except for pions
do not allow for such detailed study due to limited statis-
tics. Hereafter, we consider only one-dimensional correlation
function with respect to the invariant relative momentum
q = √−qμqμ. Then we can define the experimental correla-
tion function by

C(q) = A12(q)

B12(q)
, (4)

where A12(q) is for the number of pairs from the same event
while B12(q) is constructed from mixed events. Equation (4)
is related to the two-particle and single-particle spectra as

C(q) =
∫ d p1

E1

d p2
E2

N12(p1, p2)δ(q −
√

−q2)∫ d p1
E1

d p2
E2

N1(p1)N2(p2)δ(q −
√

−q2)
, (5)

where the momentum integration should reflect the experi-
mental momentum coverage.

The source function Si(x, p) is defined as the phase-space
distribution of the particles at freeze-out and is related to the
single-particle spectrum as

Ni(p) =
∫

d4xSi(x, p). (6)

Then the two-particle spectrum from uncorrelated (chaotic)
sources reads

N12(p1, p2) �
∫

d4xd4yS1(x, p1)S2(y, p2)|�(x, y, p1, p2)|2,
(7)

�
∫

d4xd4yS1(x, p1)S2(y, p2)|ϕ(q∗, r∗)|2, (8)

where �(x, y, p1, p2) denotes the Bethe-Salpeter amplitude
describing propagations of pairs from the emission point x and
y to the asymptotic state with momenta p1 and p2. The squared
two-particle amplitude is well approximated by the relative
wave function ϕ(q∗, r∗) in the pair rest frame defined by
P = 0. Here q∗ and r∗ = x∗ − y∗ are the spatial components
of relative momentum and the relative coordinate defined in

the pair rest frame, respectively. Note that q = |q∗| when
P = 0. The information on the pairwise interaction is encoded
in ϕ(q∗, r∗), which can be obtained by solving the Schrödinger
equation. The squared relative wave function |ϕ(q∗, r∗)|2 can
be viewed as a weight factor for the two-particle emission.
Therefore N12(p1, p2) reduces to the product N1(p1)N2(p2)
for |ϕ(q∗, r∗)|2 = 1. Note that Eq. (7) is valid under the
chaotic source assumption, the so-called smoothness assump-
tion [Si(x, p) being smooth in the momentum space], and
the negligible correlation with other particles. The validity
of Eq. (8) further requires q∗ to be small compared with
the particle masses in order for ϕ(q∗, r∗) to be regarded
as the relative wave function. (See Refs. [22] for detailed
discussion.)

If the center-of-mass coordinate and relative time are inte-
grated, we obtain the Koonin-Pratt formula,

C(KP)(q) =
∫

dr∗Srel
12 (r∗)|ϕ(q∗, r∗)|2, (9)

where the relative source function Srel
12 (r∗) can be viewed as

the relative source distribution in the pair rest frame. The
relative source function is momentum dependent when the
emission point is correlated with momentum, as is the case
for collective expansion.

In this paper, we adopt a parameterized model of Si(x, p)
with hydrodynamic expansion [23] with the parameters con-
strained from single-particle spectra through Eq. (6). De-
tailed analyses of π -π correlations at RHIC have revealed
that various features of the expanding matter need to be
implemented to produce the pion emitting source compatible
with measurements [24]. Therefore, our parameterized source
may be an oversimplification. On the other hand, precise
shape of the source function is not crucially important in
our one-dimensional correlation. Use of more realistic source
functions through the implementations of state-of-the-art dy-
namical models will be left for future studies.

B. Correlations from S-wave scattering

Due to the short-range nature of the strong interaction,
the modification of the relative wave function of nonidentical
particle pairs takes place mainly in the S-wave state. Thus, one
may express

ϕ(q, r) = eiq·r − j0(|q|r) + ψ|q|(r), (10)

where j0(x) is the zeroth-order spherical Bessel function and
ψ|q|(r) is the S-wave relative wave function with the pairwise
interaction effects. The connection of the pairwise interaction
with the correlation function can be nicely illustrated by
employing a static and spherically symmetric source function,
Srel

12 (r∗) = S(r = |r∗|), as Ref. [17]

C(KP)(q) = 1 +
∫

[dr∗][|ψq(r)|2 − | j0(qr)|2], (11)

where [dr∗] = dr∗S(r) with S(r) being properly normalized
as

∫
[dr∗] = 1. One immediately finds that the deviation of

the wave function from the noninteracting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.
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Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated
by the contribution outside the interaction range such that
the wave function can be approximated by its asymptotic
form ψq(r) ∼ e−iδ sin(qr + δ)/(qr) with δ being the S-wave-
scattering phase shift. Employing a Gaussian source S(r) ∝
exp(−r2/4R2) and the effective range formula for small q,

q cot δ � − 1

a0
+ 1

2
reffq

2, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known as
the Lednický-Lyuboshits (LL) formula [25],

C(LL)(q) = 1 + | f (q)|2
2R2

F3

(
reff

R

)
+ 2Re f (q)√

πR
F1(2qR)

− Im f (q)

R
F2(2qR). (13)

Here f (q) = (q cot δ − iq)−1 is the scattering amplitude,
F1(x) = ∫ x

0 dtet2−x2
, F2(x) = (1 − e−x2

)/x, and F3(x) = 1 −
x/(2

√
π ). Since the scattering length dominates the behavior

of the phase shift at small q, this correlation function is mainly
determined by the scattering length and the source size: For
reff = 0, C(LL)(q) is a function of two dimensionless variables,
qR and R/a0 [15].

Figure 1 represents characteristics of the correlation func-
tion C(LL)(q) with reff = 0. For a fixed qR [Fig. 1(a)], the
correlation function exhibits nonmonotonic changes against
the ratio of the system size to the scattering length. It shows
a strong peak around R/a0 ∼ 0 for small qR due to the
strong enhancement of the wave function. We call the region
where C(q) is enhanced as the “unitary region” throughout
this paper. The peak is smeared as qR is increased. As the
attraction becomes weaker (a0 < 0), the correlation is also
weakened to exhibit monotonic decrease with decreasing
R/a0 and increasing qR. On the other hand, if the attraction is
strong enough to accommodate a bound state (a0 > 0), C(q)
rapidly decreases with R/a0 and then takes values less than
unity, implying the depletion of correlated pairs at small qR.
The depletion can be understood by the so-called structural
core; the scattering wave function needs to be orthogonal
to the bound-state wave function, and then it has a node in
the interaction range as if there is a repulsive core. Thus the
squared wave function is suppressed on average.

The above properties of C(q) are essential in order to
extract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in Fig. 1(b). Consider the case where
C(q) � 1 at small qR. It indicates that the system is in the
unitary region where |R/a0| is small, while the sign of a0 is
unknown. However, by increasing R with a0 and qR fixed,
C(q) eventually becomes smaller than 1 for positive a0, while
C(q) is always larger than 1 for negative a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics
in the case of identical pairs (Hanbury Brown-Twiss (HBT)
effect), from the Coulomb interaction, and from the coupled-
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FIG. 1. The correlation function C (LL)(q) with reff = 0 as a func-
tion of R/a0 for different qR (a) and as a function of qR for different
R/a0 value (b). In the present sign convention, a0 > 0 corresponds to
the existence of a bound state.

channels effect [26]. Furthermore, the correlation from the
HBT effect is affected by the collective flow through the
modification of the source geometry. As a result, even for non-
identical pairs, the absolute magnitude of C(q) with respect to
unity is not always a useful measure to quantify the effect of
FSI in heavy-ion collisions. However, by taking a ratio of the
correlation functions with small and large system sizes as

CSL(q) = Csmall-R(q)/Clarge-R(q), (14)

one can nicely cancel out the effect of the Coulomb interaction
between charged pairs and extract the FSI from the strong
interaction, as demonstrated in Ref. [17]. We will follow this
idea in this paper to study �� and p� correlations.

III. MODELING EMISSION FUNCTION

As seen from Fig. 1, the correlation from FSI strongly
depends on the source size. In order to extract the pairwise
interaction from the correlation function, one needs to know
the source size or to look at the system size dependence of
the correlation [17]. Therefore, modeling the particle source is
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one of the indispensable ingredients in quantitative analyses.
Here we employ a thermal source model with hydrodynamic
expansion in which parameters are so tuned as to reproduce
relevant particle yields and spectra.

We assume that the baryon production takes place
at chemical and thermal freeze-out temperature Tf

from a cylindrically expanding boost-invariant fireball,
where the flow velocity uμ(x) is parameterized as uμ =
(cosh ηs cosh yT , sinh yT cos φ, sinh yT sin φ, sinh ηs cosh yT )
with ηs = tanh−1(z/t ) being the space-time rapidity. The
transverse rapidity yT is parameterized as yT = α(rT /RT )β ,
where α are β are the fitting parameters and RT denotes the
transverse source size. Then the emission function of particle
species i can be written as [23]

d4xSi(x, p) = τ0dηsd
2rT

d

(2π )3
nF (u · p, T ) exp

(
− r2

T

2R2
T

)
,

(15)
where p is the on-shell momentum, x is the space-time emis-
sion point, d denotes the spin degeneracy, and nF denotes
the Fermi distribution function. We assume that hadrons are
produced at a constant proper time τ = √

t2 − z2 = τ0 with
a Gaussian profile in the transverse direction. The use of
azimuthally symmetric profile is an oversimplification since
it does not account for the significant anisotropic flow in
noncentral events, but we retain it in order to reduce the
number of parameters. In fact, the one-dimensional baryon-
baryon correlation functions are not expected to be strongly
sensitive to detailed source shape in the transverse plane, since
it can be expressed in terms of relative source distribution (9).
By integrating over ηs and rT , one obtains the single-particle
spectrum, EdN/d3 p. In the Boltzmann approximation m �
T , the thermal spectrum is proportional to the volume factor
V = 2πτ0R2

T , so that we have

dN

dypT d pT 2π
= d

(2π )3
2mT V

∫ ∞

0
dρe−ρ2/2

× I0

(
pT

T
sinh yT

)
K1

(
mT

T
cosh yT

)
, (16)

where I0 and K1 are the modified Bessel functions.
The parameters in our model are determined by the

following procedure. First, we fix the freeze-out temperature
to Tf = 155 MeV from the fit to the various particle
multiplicity data at the Large Hadron Collider (LHC) [29].
We perform a fit to the experimental transverse-momentum
spectra of each species by varying three parameters (V ,
α, and β). Finally, we fix τ0 = 10 fm/c from a freeze-out
temperature in a hydrodynamic model calculation [30] for the
most central event bin (5–10%) in � production analyses [27].
We take the relation τ0 � (dN/dy)1/3 which is expected from
the property of longitudinal HBT radii Rlong � τ0

√
Tf /mT

[31] and well-established relation between the HBT radii and
multiplicity. Then R is obtained from the fitted values of the
volume factor V .

Figure 2 displays the fitted transverse-momentum spectra
for �s and protons. The obtained parameter sets are sum-
marized in Table I. We take into account two-body decay
contributions from resonances with mass mR < 2 GeV to the
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FIG. 2. Transverse-momentum spectra of (a) � and (b) p. Exper-
imental data are taken from Refs. [27] and [28] for � and protons,
respectively. Two most central events are scaled by factor 3 and 1.5
for better comparison.

proton spectra. We note that those resonance contributions
are important to fit the total yield of protons with reasonable
system sizes. Note also that there is so-called thermal proton
yield anomaly at LHC [29]. (See Ref. [32] for a possible
resolution.) The proton spectra have more detailed centrality
bins than those of the �, such that fits are made for those
data. In the calculations of the correlation function below, we

TABLE I. Parameters in the emission function (15) for different
centralities and particle species.

Centrality τ0 (fm/c) R�
T (fm) Rp

T α� β� αp β p

0–10% 10.0 8.0 6.8 0.584 0.628 0.759 0.421
10–20% 9.085 6.75 6.23 0.618 0.579 0.750 0.425
20–40% 7.5 5.88 5.2 0.546 0.692 0.707 0.466
40–60% 5.5 4.38 3.92 0.444 0.858 0.604 0.6
60–80% 3.62 2.12 2.66 0.456 0.812 0.456 0.82
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adjust the centrality selections to � data. Thus, the parameters
shown in Table I are those used in the subsequent calculations
and are obtained by averaging over corresponding centralities
in the spectrum (i.e., 0–10% parameters are obtained by aver-
aging 0–5% and 5–10% with multiplicity being the weight.)
Clearly, the present model is too simple to fully account
for other possible contributions to the proton spectrum such
as rescattering effect after chemical freeze-out. Nevertheless,
we have checked that proton HBT radii from the model are
consistent with measurements [33]. Therefore, we expect that
the following results remain valid for more realistic modeling
of the particle sources.

IV. �� CORRELATION

First we discuss pairs of �(1672) particles. A recent
LQCD calculation shows that the J = 0 �� system has
a shallow bound state [12]. Direct detection of the ��

dibaryons (di-Omega) is highly challenging because of the
tiny production rate for the S = −6 object even in heavy-ion
collisions and the background yields of the decay products
would be high. On the other hand, the high-luminosity up-
grade at the LHC may allow for measuring the momentum
correlation of �� pairs in the future.

A. �� interaction from lattice QCD

Since � has a spin 3/2, the �� pairs can have J = 0, 1, 2,
and 3. Among others, the J = 0 state is expected to have
appreciable S-wave attraction without suffering from the Pauli
exclusion effect for valence quarks. The interaction potential
V J=0

�� was recently calculated by (2+1)-flavor lattice QCD
simulations [12] with a large lattice volume (8.1 fm)3, a
small lattice spacing a � 0.0846 fm and nearly physical quark
masses (mπ � 146 MeV, mK � 525 MeV, mN � 964 MeV, and
m� � 1712 MeV). In the time-dependent HAL QCD method
[10] employed in the analysis, the lattice data at moderate
values of the Euclidean time, t ∼ (1 − 2) fm, are found to be
sufficient to extract the baryon-baryon interaction. For ��,
the interval t/a = 16–18 is chosen to avoid the contamination
from the excited state of a single � at small t and large
statistical errors at large t .

Resultant potentials with statistical errors are recapitulated
in Fig. 3 together with the fitted potential of the three-range
Gaussian form [12]. The scattering length and the effective
range without the Coulomb repulsion are a0 � 4.6 fm and
reff � 1.27 fm, respectively, so that a weakly bound di-Omega
appears with the binding energy EB � 1.6 MeV.

Table II shows the low-energy-scattering parameters and
binding energies obtained by solving the Schrödinger equa-
tion in the presence of the attraction from the strong inter-
action and the repulsion from the Coulomb interaction. The
already large positive scattering length found in lattice QCD
calculations is further driven toward the unitary limit (a0 �
reff ) by the Coulomb repulsion. The obtained scattering length
exceeds the effective source size in heavy-ion collisions;
therefore one can expect the correlation function belongs to
the unitary region characterized by R/a0 ∼ 0 in Fig. 1(a).
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FIG. 3. The �� potential in J = 0 channel from lattice QCD
simulations [12]. The lattice data are fitted by the form, Vfit(r) =∑

j=1,2,3 c je−(r/d j )2
.

B. Correlation function

Assuming that the strong interaction except for the J = 0
channels is negligible, one may write the wave functions à
la Eq. (10) with the Coulomb repulsion and the Fermi statis-
tics (symmetrization for J = 0, 2 and antisymmetrization for
J = 1, 3):

ϕJ=0(q, r) = ϕC
sym(q, r) − ϕC

0,sym(r) + χC
0 (r), (17)

ϕJ=2(q, r) = ϕC
sym(q, r), (18)

ϕJ=1,3(q, r) = ϕC
asym(q, r). (19)

Here ϕC
sym(q, r) and ϕC

asym(q, r) denote the Coulomb wave
functions with symmetrization and antisymmetrization, re-
spectively. Also, ϕC

0,sym(r) is the S-wave component of
ϕC

sym(q, r). The full wave function in the S-wave, χC
0 (r), is ob-

tained by solving the Schrödinger equation with the strong in-
teraction potential Vfit (r) in Fig. 3 together with the Coulomb
repulsion. In the absence of the Coulomb interaction, these
expressions reduce to the case of neutral particles, e.g., ��

pairs shown in Ref. [16]. Also note that the wave functions
ϕJ in Eqs. (17)–(19) contain the higher-partial wave (L � 1)
components. The total probability density is thus given by

|ϕ��(q, r)|2 =
3∑

J=0

2J + 1

16
|ϕJ (q, r)|2. (20)

TABLE II. Scattering length a0, effective range reff, and binding
energy of the �� pair with the lattice QCD potential for different
t/a and the Coulomb repulsion.

t/a a0 (fm) reff (fm) EB (MeV)

16 65.28 1.29 0.1
17 17.59 1.24 0.54
18 11.69 1.26 1.0
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FIG. 4. �� correlation function C(q) from central (0–10%) to peripheral (60–80%) Pb-Pb collisions, as well as the small-to-large ratio
CSL(q).

Note that the effect of the strong interaction in J = 0 is
weighted only by 1/16 in the probability.

We calculate the correlation function C(q) in Eq. (5) by
combining Eq. (15) and Eq. (20). In the momentum integral,
we take vanishing particle rapidities and fix the transverse
momentum to the average values obtained from the spectra
(Fig. 2). In Fig. 4, �� correlation functions for different
centralities are displayed. Note that the system size becomes
smaller as the centrality increases. The depletion of C(q)
below 1 at small q is due to the Coulomb repulsion and the
HBT effect. Also the latter effect extends to wider region of q
for smaller systems. As shown in a schematic analysis given in
Fig. 1(b), the correlation function exhibits stronger FSI effect
with decreasing system size. Such a tendency can be seen
particularly for the �� potential with t/a = 16 in Fig. 4, since
a0 is extremely large.

Shown in Fig. 4(f) is the small-to-large ratio, CSL(q),
between 40–60% (or 60–80%) for small systems and 10–20%
for large systems. Due to the cancellation of the Coulomb
effect, one now finds notable enhancement of CSL(q) above 1
for small q due to the strong �� attraction and the reduction
of CSL(q) below 1 for large q due to the HBT effect.

V. p� CORRELATION

Let us now move on to the results for p� correlations.
Among J = 1 (5S2) and J = 2 (3S1) channels which the
p� pair can take, the J = 2 channel is expected to have a
shallow bound state as indicated from lattice QCD [13]. Note,
however, that the p� pair is not the lowest energy channel

in the S = −3 dibaryon system: There exist thresholds of the
octet-octet states (�� and ��) at lower energies, which act
as absorptive channels for p�. The S-wave J = 2 channel
couples to octet-octet states only through the D-wave, so that
the decay is dynamically suppressed and its effect on the
correlation function is considered to be sufficiently small.
According to Ref. [34], where the J = 2 N� interaction is
discussed with the meson exchange model including the decay
channels, the coupling does not change the weak-binding
nature of p�. Thus, in the following calculations, we apply
the single-channel approximation to the J = 2 p� correlation
function.

In the previous study on CSL(q) for p� [17], the J = 2
potential obtained by lattice QCD simulations with heavy
quark masses [35] were used. Below we update the analysis
by using the J = 2 potential for nearly physical quark masses
as described below.

A. N� interaction from lattice QCD

The N� interaction in J = 2 channel has been calculated
by (2+1)-flavor lattice QCD simulations [13] with the same
setup as the �� case discussed in Sec. IV A. In this case,
the Euclidean time interval was chosen to be t/a = 11 − 14
to avoid significant statistical errors for large t . Resultant
potentials with statistical errors are recapitulated in Fig. 5
together with the fitted potential of a Gaussian + (Yukawa)2

form. The scattering length and the effective range without
the Coulomb interaction are a0 � 5.3 fm and reff � 1.26 fm,
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FIG. 5. The S-wave N� potential with J = 2 from lattice QCD
simulations [13]. The lattice data are fitted by the form Vfit(r) =
b1e−b2r2 + b3(1 − e−b4r2

)(e−mπ r/r)2 with mπ = 146 MeV.

respectively, so that a weakly bound N� appears with the
binding energy EB ∼ 1.54 MeV.

Table III shows the low-energy-scattering parameters and
binding energies obtained by solving the Schrödinger equa-
tion in the presence of the attraction from the strong inter-
action and the extra attraction from the Coulomb interaction.
The value of the resultant scattering length is compatible with
the expected effective system size in heavy-ion collisions,
thus one can expect characteristic depletion of the correlation
function and its variation for the system with bound state,
against system size as seen from Fig. 1.

B. Correlation function

In addition to the J = 2 channel, the N� system has the
J = 1 channel which is expected to couple strongly with
low-lying octet-octet states due to fall apart decay in the
S-wave. In the same way as Ref. [17], we consider a limiting
case where the J = 1 p� pairs are perfectly absorbed into
low-lying states through the potential V J=1(r) = −iθ (r0 −
r)V0. The strength V0 is taken to be infinity and r0 is set to
2 fm where Coulomb interaction dominates over the J = 1
LQCD potential. Accordingly, the wave function is written
as ϕJ (q, r) = ϕC (q, r) − ϕC

0 (r) + χC
0 (r), where the scattering

wave function in the S-wave, χC
0 (r), receives the effects of the

interactions.

TABLE III. S-wave scattering length a0, effective range reff, and
binding energy of the p� pair with the lattice QCD potential for
different t/a and the Coulomb attraction.

t/a a0 (fm) reff (fm) EB (MeV)

11 3.45 1.33 2.15
12 3.38 1.31 2.27
13 3.49 1.31 2.08
14 3.40 1.33 2.24

FIG. 6. p� correlation function from central (0–10%) to periph-
eral (60–80%) Pb-Pb collisions (a), as well as from peripheral to
central collisions and the small-to-large ratio (b).

Then the total probability density reads

|ϕp�(q, r)|2 =
2∑

J=1

2J + 1

8
|ϕJ (q, r)|2. (21)

Here the J = 2 contribution which is of our interest, is
weighted by a large factor 5/8. The number of the low-
momentum pairs decrease due to the absorption in the J = 1
channel and the resultant correlation function C(q) tends to
decrease but not with significant amount as discussed in in
Ref. [17].

Figure 6 shows the p� correlation functions from periph-
eral to central collisions. Since the N� potential in Fig. 5
is nearly independent of t/a, the same holds for C(q), too.
Thus we display only results of t/a = 12. The enhancement
of C(q) above 1 for small q is due to the Coulomb attraction,
whereas the suppression of C(q) below 1 is due to the positive
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scattering length or, equivalently, the existence of p� bound
state. The effect of FSI is smallest (largest) in central colli-
sions (0–10%) [peripheral collisions (60–80%)], so that the re-
gion of the suppressed correlation becomes deeper and wider
as the system size decreases, in accordance with the moderate
value of the scattering length (a0 � 3.4 fm) in Table III.

Shown in Fig. 6(b) is the small-to-large ratio, CSL(q), be-
tween 40–60% (or 60–80%) for the small system and 10–20%
for the large system. After the cancellation of the Coulomb
effect, one now finds notable enhancement of CSL(q) above
1 at small q and depletion below 1 at q = (20–80) MeV due
to the strong p� attraction accommodating a bound state. In
response to the theoretical proposal in Ref. [17], the STAR
collaboration at RHIC has reported a first measurement of p�
correlation in Au+Au collisions [20]. Although the statistics
of the data are not sufficient to draw a definitive conclusion,
the measured C(q) and CSL(q) show similar tendency with
Fig. 6 in the present paper.

VI. SUMMARY AND CONCLUDING REMARKS

We have studied the two-particle momentum correlations
for �� and p� in relativistic heavy-ion collisions. The corre-
lation functions are calculated by using an expanding source
model combined with the latest lattice QCD potentials which
predict shallow bound states with relatively large positive
scattering lengths in the J = 0 �� and the J = 2 N�.

At the LHC energies, the correlation function C(q) for
�� in Pb-Pb collisions exhibits an enhancement due to large
scattering length (a0 > 10 fm) over the Coulomb repulsion
and the HBT effect, especially in the peripheral events.
This characteristic feature can be best visible and quanti-
fied as an enhancement of the small-to-large ratio CSL(q) at
q < 40 MeV/c.

On the other hand, the characteristic feature of the corre-
lation function C(q) of p� is its depletion below 1 at q =
20–40 MeV due to the moderately large value of the positive
scattering length a0 � 3.4 fm. Properly chosen small-to-large
ratio CSL(q∗) also exhibits this behavior.

Measuring the �� in heavy-ion collisions is a challenge
even with the high-luminosity upgrade of LHC due to its
small production rate as well as the correlation measurement
at small q (<50 MeV). Therefore, not only the luminosity up-
grade but also the improvements of measurement techniques
would be necessary.

In response to our theoretical proposal in Ref. [17], the
STAR collaboration at RHIC has reported a first measurement
of p� correlation in Au+Au collisions [20]. Although the
statistics of the data are not sufficient to draw a definitive
conclusion, the measured C(q) and CSL(q) show similar ten-
dency with Fig. 6 in the present paper. Also the ALICE
Collaboration at LHC has started the p� measurements with
pp and p-Pb collisions [36]. Extracting the p� interaction
from a combined theoretical analysis of the pp, pA, and
AA collisions with proper uncertainty quantification would
be an interesting future problem. (See Appendix A for an
exploratory study along such direction.)

In order to draw definite conclusion on the existence of
the �� and N� dibaryon bound states from the future and

existing correlation function data, we need further works to
be done. First, it is desired to obtain not only the J = 0 ��

potential and J = 1 N� potential but also the J = 1, 2 and
3 �� potentials and the J = 1 N� potential. Second, the
coupled channel effects need to be clarified. As discussed in
Appendix A, the J = 1 contribution causes visible uncertain-
ties in the p� correlation function. While the coupling effects
to octet-octet channels with J = 1 in the p� correlation func-
tion have been assumed to be described by the absorption, the
coupled-channels formula [26] shows that creation processes
such as �� → p� also contribute to the correlation function
of p�. Then we need to evaluate the transition potentials and
the source function of � and �.
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APPENDIX A: SYSTEM-SIZE DEPENDENCE OF C(q)
FOR p� WITH UNCERTAINTY QUANTIFICATION

In the light of feasibility of measuring p� correlation in
pp, pA, and AA collisions, it is desirable to get a feel for theo-
retical uncertainties in evaluating the momentum correlations.
In the following, we focus on the uncertainties originating
from the J = 2 p� potential from lattice QCD and from
the treatment of the unknown J = 1 p� potential. To make
the discussion transparent, we consider a simplified static
and spherically symmetric Gaussian source function S(r) =
(4πR2)−3/2 exp(−r2/4R2) with the source size ranging from
0.8 to 4 fm.

For uncertainties arising from the insufficient information
on the J = 1 potential, we evaluate “minimum” and “refer-
ence” contributions from the J = 1 channel. The “minimum”
is obtained by assuming χC,J=1

0 (r) = 0, i.e., complete absorp-
tion of the wave function in all range of r. This leads to
the minimum value of C(q) as seen in Eq. (11). The “refer-
ence” is obtained by assuming χC,J=1

0 (r) = χC,J=2
0 (r), i.e., the

same attraction between J = 1 and J = 2 without absorption.
The statistical uncertainty for each case is estimated by the
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FIG. 7. p� correlation function calculated with the static Gaussian source function employing the t/a = 12 potential. The purple solid
line denotes the result with χC,J=1

0 = 0, and blue dashed line denotes the result with the assumption of χC,J=1
0 = χC,J=2

0 . Gaussian source size
is chosen to be in the range R = 0.8–4 fm. The error of each correlation estimated with the Jackknife method is shown by the colored shadow.

statistical error of the J = 2 N� potential at t/a = 12 by the
Jackknife method in the similar way as in Ref. [13].

The results of C(q) for different values of R are shown
in Fig. 7. The shaded areas represent the statistical errors
obtained from the Jackknife analysis. For R � 2 fm, the “min-
imum” and “reference” correlation functions exhibit sizable
differences with larger statistical uncertainty. This is because
the condition for the unitary region shown in Fig. 1 begins to
hold with a0 � 3.4 fm in Table III), so that the correlation
function becomes more sensitive to the uncertainty of the
potential as well as the treatment of the J = 1 channel.

Within the above uncertainty estimate, we can safely con-
clude that the correlation function can be strongly suppressed
at q < 40 MeV for systems with 2 fm � R � 4 fm. We also
find that the suppressed region of C(q) moves toward the
lower q direction with increasing source size. This behavior
is consistent with the trend found in the data from Au+Au
collisions by the STAR Collaboration at RHIC [20]. By
comparison, strong enhancement at small momenta would be
observed for small systems with R � 1 fm as found in the
preliminary data by the ALICE Collaboration at LHC [36].

APPENDIX B: COMPARISON OF N� POTENTIALS

We here compare the J = 2 N� potential used in this
work and those used in Ref. [17]. The former is obtained
from LQCD simulations with nearly physical quark masses
(mπ = 146 MeV and mK = 525 MeV) [13], while the latter
is those with heavier quark masses (mπ = 875 MeV and

mK = 916 MeV) [35]. In Fig. 8, we show the J = 2 N�

potential with nearly physical quark masses at t/a = 12 (solid
curve), and the potentials given in Ref. [17], VI (dashed),
VII (dotted), and VIII (dash-dotted). The potential VII is the
best fit of the lattice data with heavier quark masses with
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FIG. 8. Comparison of the S-wave N� potentials with J = 2 in
Refs. [13] and [17]. The solid curve show the N� potential with
nearly physical quark masses [13] at t/a = 12. The dashed, dotted,
and dash-dotted curves show the J = 2 N� potentials, VI, VII, and
VIII, given in Ref. [17].
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a form Vfit(r) = b1e−b2r2 + b3(1 − e−b4r2
)(e−b5r/r)2. VI and

VIII are two typical examples with weaker and stronger at-
tractions, respectively. These potentials together with the
Coulomb potential give no bound state for VI, a shallow
bound state EB � 0.63 MeV for VII, and a deep bound state
EB � 26.9 MeV for VIII. It should be noted that there is a
typo in the binding energy with VII+Coulomb potential in the
original version of Ref. [17]. The value of 6.3 MeV shown

in Table I of Ref. [17] should be corrected to 0.63 MeV as
updated in the erratum.

We find that the potential with nearly physical quark
masses is between VII and VIII; the attraction becomes
stronger with smaller quark masses, but not as attractive
as VIII. Consequently, the p� correlation function shown in
this work is also between those with VII and VIII shown
in Ref. [17].
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