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Background: In dynamic systems such as heavy-ion collisions, charge susceptibilities and local charge correla-
tions change with time. These changes are accompanied by nonlocal correlations, which spread diffusively with
time and are constrained by local charge conservation. Such correlations have been measured at the Relativistic
Heavy-Ion Collider (RHIC) and have been linked to the chemical evolution of the matter and possible phase
separation or critical phenomena. The evolution of such correlations has been modeled for two-point correlators
superimposed onto hydrodynamics, but not for three- or four-point correlators. These higher-order correlators
represent an essential basis for calculating the kurtosis and skewness of charge distributions measured at RHIC.
Purpose: For short-range correlations, such as those between charges on the same particle, and the associated
charge-balance correlations a theoretical formalism was lacking for handling higher-order correlations. In
particular, one needed to understand how higher-order charge fluctuations was split onto lower numbers of
particles. For example, correlations of order three have contributions with charge all on one particle, split onto
two particle, or split onto three.
Methods: By assuming local chemical equilibrium of short-range correlations, the sources of the various
correlators were found to be uniquely determined. The relevant theoretical foundation is presented here,
including a diagrammatic technique to correctly account for all the possible terms to higher-order correlations.
Results: A consistent theoretical treatment is found and its applicability, viability, and tractability are discussed.
Conclusions: The formalism derived here enables realistic and quantitative modeling of the three- and four-
point charge correlations necessary for understanding measurements of the kurtosis and skewness of charge
distributions at RHIC. These observables have been promoted as signals of phase transitions or measures of
chemical evolution.

DOI: 10.1103/PhysRevC.101.014914

I. INTRODUCTION

Correlations and fluctuations of conserved charges play
a central role in heavy-ion collisions. Charge fluctuations
represent defining property of any bulk system, particularly in
characterizing phase transitions. As temperatures rise above
≈160 MeV, matter undergoes a transition from a hadronic
gas to a strongly interacting plasma of quarks and gluons, the
quark-gluon plasma (QGP). For neutral matter, equal numbers
of particles and antiparticles, lattice gauge theory has shown
that the transition is a smooth crossover occurring within a
rather narrow window of temperatures, 150 � T � 180 MeV.
For temperatures below 150 MeV charge susceptibilities from
lattice calculations are consistent with expectations for a
weakly interacting gas of hadrons, and for temperatures above
180 MeV, they become consistent with a weakly interacting
gas of light up, down, and strange quarks [1–5]. This consis-
tency is rather surprising given the experimental evidence that
the system behaves like a nearly ideal liquid, with mean-free
paths on the order of the thermal wavelength [6–9]. Fluctua-
tions between baryon charge and strangeness [10], and baryon
fluctuations of third or fourth order, e.g., 〈δQ3〉 or 〈δQ4〉,
are especially illuminating [11]. They suggest that charges
fluctuate in units of one-third baryon number rather than in
units of baryon number once temperatures rise above the

aforementioned window [5]. At finite baryon density, where
lattice calculations struggle due to a sign problem, the pos-
sibility exists for a first-order phase transition, which would
culminate at a critical point [12–14]. The baryon density of the
critical point might be several times normal nuclear density
and the critical temperature would likely be moderately less
than the temperature window quoted above for the smooth
transition at zero baryon density. Baryon fluctuations should
represent identifying properties of such a phase transition, par-
ticularly near the critical point. Fluctuations of baryon number
in high-energy heavy-ion collisions have been analyzed as a
function of beam energy at the Relativistic Heavy Ion Collider
(RHIC) [15–19]. At the highest RHIC energies, the incoming
beams are insufficiently stopped to contribute large numbers
of baryons to the midrapidity region. Combined with rampant
particle production at such energies, net baryon densities are
much lower than entropy densities and experiments are able
to investigate the properties of matter with nearly zero baryon
chemical potential, μB ≈ 0. Baryon densities increase for
lower beam energies, which provides the opportunity to study
the properties of matter as a function of baryon density at high
temperature.

Unfortunately, interpreting charge fluctuations is greatly
complicated by the dynamic nature of the collision. A sys-
tem’s baryon density and temperature traverse a swath through
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the density-temperature plane. Thus, any measurement re-
flects on the bulk properties over a range of density and
temperature. Further, the short lifetime of these environments
restricts charge fluctuations within any volume from attaining
equilibrium values because charge is locally conserved and re-
quires significant time to diffuse across the volume. Any quan-
titative model of charge fluctuations must therefore describe
the evolution of charge correlations, 〈δρ(r1, t ) · · · δρ(rn, t )〉,
in order to understand how the equilibrium properties one
would study in a static system would become manifest in
the finite-size and finite-volume systems created in heavy-ion
collisions, where measurement of the conserved charges are
confined to the final state.

Models have addressed the challenges outlined in the
previous paragraph, but mainly for two-point correlations
[20–23]. As reviewed in the next section, two-point correla-
tions can be split into two pieces. The first piece is the short-
range contribution. This is when the two density operators
in the correlation, 〈δρ(r1, t )δρ(r2, t )〉, refer to charges within
the same particle. Throughout this paper, the word particle
can be extended to any short-range feature that might locally
equilibrate. For example, in a hadron gas this would be the
case where the two density operators referred to the same
hadron, and for a QGP gas, this would be when the two density
operators address the same quark. Assuming knowledge of the
local part of the correlation part, e.g., assuming a chemically
equilibrated gas, the remainder of the correlation function
is constrained by the fact that the net correlation function
must integrate to zero due to local charge conservation. If
one assumes that charges move diffusively, the evolution of
the nonlocal part of the correlation function can be modeled
by the diffusion equation with a source term given by the
rate of change of the local part. Such an approach was su-
perimposed onto a hydrodynamic description of a heavy-ion
collision in Ref. [22] and then extended to include a hybrid
hydrodynamic model interfaced to a hadronic simulation that
simulated the breakup stage of a heavy-ion collision [23,24].
These approaches roughly reproduced several experimental
measures of charge correlations from the STAR collabora-
tion at RHIC, which should translate into reproducing ex-
perimental measures of charge fluctuations to order 〈δQ2〉,
because fluctuations are determined by integrating over the
correlations.

The aim of this work is to provide a theoretical foundation
to extend the treatment of two-point correlations to three-
point, four-point, and n-point correlations. This is more dif-
ficult than the case for two-point correlations. In that case the
correlation was divided into a local part, where the two density
operators referred to the same particle, and a nonlocal part.
For three-point correlations, 〈δρa(r1, t )δρb(r2, t )δρ(r3, t )〉,
one must consider three cases: where all three density oper-
ators refer to the same particle, where two of the three refer
to the same particle, and where all three refer to different
particles. Even if one makes an assumption about the local
part for the three-point function, i.e., it reflects chemical
equilibrium, one must understand how to split the remain-
ing correlation over the other two possibilities. Four-point
and higher correlations offer even more possible splittings.
Section III shows how three-point correlations can be mod-

eled. The question of how to spread correlations among the
various splittings is answered by assuming that a differential
charge results in differential changes in the various species
according to equilibrium. This then allows correlations of
order δρ3 due to a two-point function to be determined by
the two-point function contribution to correlations of order
δρ2. The algebra in Sec. III is rather lengthy, and a similar
exposition for n-point correlations with n > 3 would be much
more so. Fortunately, the expressions can be represented
diagrammatically. A diagrammatic description, which is ex-
tendable to higher n, is presented in Sec. IV.

In Ref. [22] the diffusion equation for the two-point corre-
lation function was addressed by noting the equivalence with
a random walk. In Sec. VI the benefits of a random-walk
algorithm vs. a mesh-based description of the correlation
function is discussed. In a quark gas, up, down, and strange
quarks represent good quasiparticles and the three-by-three
diffusivity tensor is diagonal. In a hadron gas, hadrons carry
multiple quarks and the diffusivity tensor, just like the suscep-
tibility, is no longer diagonal in the u, d, s basis. A strategy
for applying a random walk algorithm in a situation where the
diffusivity tensor is not diagonal is also provided in Sec. VI.

The final section, Sec. VII, presents a discussion of the
applicability of the relations from Secs. III and IV. The role
of assuming chemical equilibrium is emphasized. Finally,
strategies are presented for handling both local and nonlo-
cal contributions to the susceptibility. Critical phenomena
involves correlation on longer length scales and seems well
suited for hydrodynamic treatments [20,21,25–33]. Phase
separation dynamics might also be addressed with such an
approach [34–44]. However, hydrodynamics, noisy or not,
is a clumsy means by which to model the correlation of
a particle with itself because hydrodynamics is based on
gradients, which implies that correlations have a length scale
greater than the interparticle separation. Section VII describes
the possibility of combining a hydrodynamics approach to
account for the nonlocal contribution to the susceptibility
and the formalism presented here to account for the local
part. This study considers only evolving the correlations in
coordinate space, whereas measurements are restricted to the
asymptotic momenta. Techniques for translating correlations
to momentum space have been described and implemented
in Refs. [45,46], and it would be straightforward to extend
these methods to project n-point correlations into momentum
space. Implementations of the formalism presented here will
be deferred for another study.

II. TWO-POINT FUNCTIONS

Before launching into a formalism for three- and four-point
functions, that for two-point functions is reviewed here. This
has been shown in Ref. [22] and applied to a hydrodynamic
evolution of a heavy-ion collision in Refs. [22–24].

First, the definitions,

C (tot)
ab (r1, r2, t ) = 〈δρa(r1, t )δρb(r2, t )〉

= χ
(2)
ab (r12, t )δ(r1 − r2) + C(1;1)

a;b (r1, r2, t ),

ri j ≡ (ri + r j )/2. (1)
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The subscript a denotes the various charges, perhaps the
u, d, s charges on quarks. Here, δρa = ρa − 〈δρa〉 so that
〈δρa〉 = 0. The subscripts on the correlations indicate whether
the charges are on the same particle, as χ (2)(r, t ) describes
the contributions where both charges come from the same
point, or from the same particle, whereas C(1;1) encapsulates
the contribution to the correlation when the charges are on
different particles. The semicolon in C(1;1)

a;b emphasizes that
the two charges a and b are not on the same particle. For the
considerations of this paper, it will be assumed that the local
part is understood, i.e., it could be the equilibrated suscep-
tibility if the particles are well defined and are in chemical
equilibrium. In the gaseous limit, χ

(2)
ab is the correlation of the

charges within a particle,

χ
(2)
ab =

∑
s

nsqs,aqs,b, (2)

where ns is the number density of species s, and qs,a is the
charge of type a on a particle of species s. For the example
of a hadron gas, the contribution from π+ mesons to χ

(2)
ud is

−nπ+, where nπ+ is the density of π+ mesons. The negative
sign ensues because the π+ meson has an up quark and
an antidown quark. Even for individual quarks, one finds
a contribution to χ (2) from the correlations of quarks with
themselves. For a gas of quarks, χ (2)

ss = ns + ns̄, the density
of strange plus that of antistrange quarks. In this paper, the
quasiparticles that carry charge will be referred to as parti-
cles. Particles could refer to point charges, hadrons, atoms,
molecules, or could even include a local polarization cloud.

The nonlocal part, C(1;1), will diffuse and spread over large
relative coordinates. Providing the theoretical structure for
calculating the evolution of C(1;1), for the case of two-particle
correlations, and C(1;1;1) or C(1;1;1;1) for three- or four-particle
correlations, is the principal goal of this paper. The local cor-
relation, whose strength is χ (n), will be assumed to be given,
by assuming local chemical equilibrium.

The evolution of the correlation is guided by the equation,

D1C
(tot)
ab (r1, t1, r2, t2) = −〈[∇1 · ja(r1, t1)]δρb(r2, t2)〉

Di ≡ ∂

∂ti
+ v(ri, ti ) · ∇i + ∇i · v(ri, ti ).

(3)

Here, v is the local velocity of the fluid, and ja is the current
measured in the fluid frame, i.e., it neglects the part of the
current from δρav. The definition of Di differs from the usual
definition of a comoving derivative because of the presence
of the term ∇ · v. That term accounts for the current j being
measured relative to the local frame of the fluid. If one were
to include the term δρv to the current, this additional contri-
bution to Di would not be necessary. With this definition, j
can be considered as the diffusive contribution to the current,
i.e., it ignores the part from simple fluid movement. Because
the right-hand side (r.h.s.) of Eq. (3) is a divergence, this rep-
resents local charge conservation. A corresponding equation
is also true for D2. To propagate the equal-time correlation
forward,

C(1;1)
a;b (r1 + v1dt, t1 + dt, r2 + v2dt, t2 + dt ) = C(1;1)

a;b (r1, t1, r2, t2) + dtDtC
(1;1)
a;b (r1, t1, r2, t2),

Dt = D1 + D2,
(4)

DtC
(tot)
ab (r1, r2, t ) = δ(r1 − r2)Dtχ

(2)
ab (r12, t ) + DtC

(1;1)
ab (r1, r2, t ),

r12 ≡ (r1 + r2)/2,

or in terms of C(1;1),

DtC
(1;1)
a;b (r1, r2, t ) = −〈[∇1 · ja(r1, t )]δρb(r2, t )〉 − 〈δρa(r1, t )∇2 · jb(r2, t )〉 + S(2)

ab (r12, t )δ(r1 − r2),
(5)

S(2)
ab (r12, t ) = −Dtχ

(2)
ab (r12, t ).

The last term, with S(2)
ab (r12, t ), behaves like a source function

for C(1;1),

∫
d3r1 d3r2 C(1;1)

a;b (r1, r2, t ) =
∫ t

−∞
dt ′d3r′ S(2)

ab (r12, t ′).

(6)

The source term contributes to the strength of the correla-
tion at r1 − r2 = 0. For a small fluid element of volume δV
that expands with the fluid, the source contributes when the
product χδV changes with time. This is a consequence of the
definition of Dt including the ∇ · v term, because the usual
comoving derivative, ∂t + v · ∇, acting on δV gives

[∂t + v · ∇]δV = (∇ · v)δV. (7)

For ideal hydrodynamics, the entropy within δV , which equals
sδV , would remain constant. In that case,

Dtχ
(2)
ab (r, t ) = s[∂t + v · ∇]

(
χ

(2)
ab (r, t )

s(r, t )

)
, (8)

and one can see that the source term is principally a function
of whether the ratio χ/s rises or falls as one moves with
the fluid. If entropy is not conserved, the source term differs
somewhat. In the treatments of Refs. [24,45] the hydrody-
namic evolution was viscous, and the source term was cal-
culated with the full expression given in Eq. (5). Nonetheless,
the approximate form in Eq. (8) is insightful, as plotting χab/s
as a function of temperature describes at what points in the
trajectory the source term becomes significant. Further, this
ratio can be calculated in lattice gauge theory [46].
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Although the expressions involve two powers of the den-
sity, the evolution of C(1;1) is described by a linear equation
including a source term. For each differential contribution
to the source function, −Dtχ

(2)
ab d3r dt , one can solve for its

contribution of C1,1. Finally, one can sum each contribution
by integrating over the source function. If the evolution is
diffusive, ja(r) = −Dab(r)∇δρb(r), where D is the diffusivity
tensor. If the diffusivity tensor is diagonal each of these
contributions can be represented by two sample charges a
and b undergoing a random walk with the parameters of the
random walk set by the diffusivity tensor. The positions of
the two charges can then be used to construct the correlation
function in coordinate space. It is then straightforward to
design a Monte Carlo procedure to generate pairs for each
contribution from the source function at some point rs and
time ts. Because only the charges originating from the same
source point are correlated with one another, there is no
combinatoric noise to overcome. This approach was applied in
Refs. [22–24]. A method for handling nondiagonal diffusivity
tensors is provided in Sec. VI.

III. THREE-POINT CORRELATORS

If correlations are sufficiently local, the three-point corre-
lator can be written as

C (tot)
abc (r1, r2, r3, t )

= 〈δρa(r1, t )δρb(r2, t )δρ(r3, t )〉
= C(1;1;1)

a;b;c (r1, r2, r3, t ) + C(2;1)
ab;c (r12, r3, t )δ(r1 − r2)

+C(2;1)
ac;b (r13, r2)δ(r1−r3, t ) + C(2;1)

bc;a (r23, r1)δ(r2−r3, t )

+χ
(3)
abc(r123, t )δ(r12 − r3)δ(r1 − r2). (9)

Here, r123 ≡ (r1 + r2 + r3)/3. The contribution to the suscep-
tibilities from local correlations, χ (2) and χ (3), are given by the
densities of particles, or clusters, s, as was assumed in Eq. (2),

χ
(2)
ab =

∑
s

nsqs,aqs,b,

(10)
χ

(3)
abc =

∑
s

nsqs,aqs,bqs,c.

Here, it is assumed that local correlations are the same as
those in an equilibrated system, and χ (2) and χ (3) become the
equilibrated susceptibilities. Equivalently stated, the density
of particles or clusters, ns, is a function of the local chemical
potential and temperature, or equivalently by the local one-
body energy and charge densities.

The correlation C(1;1;1) describes correlations when all
three positions are different, i.e., the density operators refer to
different particles, and C(2;1)

ab;c describes the correlations when
two positions are the same, i.e., the two charges a and b
are on the same particle and c is on a separate particle. The
correlation when all three points are the same, or all three
charges are on the same particle, is described by χ

(3)
abc. Just as

with χ
(2)
ab , this will be identified as the equilibrium suscepti-

bility here. Assigning χ (n) as the equilibrium susceptibility is
equivalent to saying that the chemistry is equilibrated, or that
the density of each species of particle, ns, is at its equilibrated

value. If the system equilibrates over a long time, in a static
environment, the correlations C(2;1) and C(1;1;1) disperse over
increasingly large distances with time. These correlations,
whose strengths are determined by charge conservation then
become negligible, and any finite subset of the system behaves
like a grand canonical ensemble.

Although the expression above appears general, there is an
implicit assumption that there exists a basis of independent
particles that carry the correlations. For a system that is largely
a gas of molecules, or of hadrons or partons in this case,
it is clear that one need not worry about arbitrarily large
clusters of charge where collections of particles might move
together. However, if correlations become long range, or if
large aggregates of particles appear, the expression above,
which requires summing over some set of objects of finite
size, becomes untenable. For example, if there existed clusters
of a dozen hadrons or more, defining the sum over species,
or particle types, would become problematic. Long-range
correlations, such as those arising from phase separation or
critical phenomena, should not be described by a set of
independent clusters whose correlations are driven only by
charge conservation.

The dynamics of long-range correlations, which typically
involve large numbers of particles, can be described by phe-
nomenological models based on one-body dynamics, such
as noisy hydrodynamics. Although such methods provide
only a one-body description, the descriptions fluctuate event
by event. By evaluating an ensemble of such events, one
can then generate correlations to all orders. One might then
consider separating the correlations into two contributions.
Long-range correlations might be modeled by a one-body
description, which could describe the correlation associated
with phase separation or critical phenomena, but would ignore
the correlations of a particle with itself, or the correlations
between microscopic charges due to local charge conserva-
tion. In short, one-body treatments describe the densities as
being continuous functions of position, as if the charges were
carried by a continuous distribution of infinitesimal charges.
The procedure described here could then be part of a hybrid
procedure, where the additional correlation owing to the dis-
crete nature of the charges is calculated. This calculation of
this second class of correlation would be superimposed onto
the individual one-body descriptions, and would be based on
the assumption that the particle densities, ns, would be de-
termined by the one-body evolution assuming local chemical
equilibrium.

The second class of correlations, i.e., those arising from
the discrete nature of the charge carriers, would include the
correlations between the charges within a charge-carrying
cluster, and correlations between them due to local charge
conservation. Separating the correlations into short- and long-
range pieces brings arbitrariness into the procedure unless the
scales of the long-range correlation well surpass that of the
short-range correlations. For example, if a gas of molecules
were to coalesce into droplets of liquid, separating the correla-
tions would seem clear if the droplets were so large one could
describe the fluctuations as a one-body density. However,
correlations involving a handful of molecules might either be
described as being carried by a new type of larger cluster,
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or might be described as part of a fluctuating hydrodynamic
description. Unfortunately, the choice of a scale separating
long- and short-range treatments will always involve some
amount of bias.

Thus, the method presented here seems well founded for
any gaseous system, or even for a liquid with only short-range
correlations. Applying these ideas to environments character-
ized by phase separation or by critical fluctuations requires
superimposing these correlations onto some sort of smooth
picture of the system’s fluctuating density. The smooth de-
scription cannot handle correlations arising from the discrete
nature of the microscopic charges, nor can the method given
here reasonably describe long-range correlations. Unfortu-
nately, choosing a size cutoff for clusters in Eq. (9) requires
one to choose some length scale, or cutoff particle size. This
issue is discussed more in Sec. VII.

The correlator, C(2;1)
ab;c (r12, r3, t ), describes the correlation

between a charge of type c at r3 and a particle at position r12

carrying a product of charges QaQb. Here, we show that it is
directly determined by C(1;1)

d;c (r12, r3, t ) and the susceptibili-
ties. To demonstrate this relation, one can consider a particle
of species s. The charge δQd due to the increased probability
of having a particle δNs, is

δQd =
∑

s

δNsqs,d , (11)

where qsd is the charge of type d on the particle of type s. If
the particle probability is equilibrated in response to the small
charge,

δNs = 〈Ns〉δμaqs,a, (12)

where δμa is the chemical potential inspired by the small
charges, divided by the temperature. One can insert Eq. (12)
into (11),

δQd =
∑

s

qs,d〈Ns〉δμaqs,a

= V χ
(2)
da δμa,

δμa = 1

V
[χ (2)]−1

ab δQb, (13)

where [χ (2)]−1
ab is the inverse two-point susceptibility matrix.

Inserting this into Eq. (12),

δNs = 〈ns〉qs,a[χ (2)]−1
ab δQb. (14)

This expresses how many extra particles of type s, δNs, one
would generate in a volume when a small charge, δQa, is
added to the volume.

One can now calculate the additional product of charges
δ(QaQb) due to δQc. To that end, one can consider a small
volume δV restricting the position r12. The δ function should
not be of zero extent, but should have a range large enough to

fit in a quasiparticle.∫
∈δV

d3r12 d3(r1 − r2) δρa(r1)δρb(r2)δ(r1 − r2)

= 1

δV
δ(QaQb)

= 1

δV

∑
s

qs,aqs,bδNs

= 1

δV

∑
s

〈ns〉qs,aqs,bqs,d [χ (2)]−1
dc δQc

= χ
(3)
abd (r12, t )[χ (2)]−1

dc (r12, t )δρc(r12, t ). (15)

Here, δ(QaQb) refers to the charges inside the volume δV . It
is indeed this product of charges in a single particle at r12 that
is described by C(2;1)

ab;c (r12, r3, t ). Thus,

C(2;1)
ab;c (r12, r3, t ) = L(2)

ab,e(r12, t )C(1;1)
e;c (r12, r3, t ),

(16)
L(2)

ab,e(r12, t ) ≡ χ
(3)
abd (r12, t )[χ (2)]−1

de (r12, t ).

By assuming that χ (3) is consistent with chemical equilibrium,
all mention of the individual particles and their charges has
disappeared, and C(2;1)

ab;c (r12, r3, t ) is determined by the cor-
relation and the susceptibilities evaluated at r12. For future
reference, one can readily show that for any product of m
charge densities ρa · · · ρc,

C(m;··· )
a···c;···(r, · · · , t ) = L(m)

a···c,d [(r, t )C(1;··· )
d;··· (r, · · · , t )],

L(m)
a···c,d (r, t ) = χ (m+1)

a···c,e (r, t )[χ (2)(r, t )]−1
ed . (17)

Our principal goal is to determine the evolution of
C(1;1;1)

a;b;c (r1, r2, r3, t ). Assuming that the two-point correlation

C(1;1)
a;b was already determined using the methods of Sec. II, all

terms from the r.h.s. of Eq. (9) involving two-point functions
can be calculated from Eq. (16). Here, we first solve for Dt =
D1 + D2 + D3 of the left-hand side (l.h.s.) of the equation,
i.e., Dt acting on the total correlation. Then applying Dt to the
r.h.s. will provide an expression for DtC(1;1;1).

Before applying Dt to the l.h.s. of Eq. (9), one can surround
the points r1, r2, and r3 with surfaces and consider the net
correlation of the product of charges within the enclosing
volumes V1, V2, and V3,

〈δQaδQbδQc〉
=

∫
V1V2V3

d3r1 d3r2 d3r3 〈δρa(r1, t )δρb(r2, t )δρc(r3, t )〉.

(18)

The rate of change of Cabc is determined by the rate at which
charge flows out of the small encircling volumes,

d

dt
〈δQaδQbδQc〉V = −

∫
d3r2d3r3dA1 · 〈 ja(r1, t )δρb(r2, t )δρc(r3, t )〉′ −

∫
d3r1d3r3dA2 · 〈 jb(r2, t )δρa(r1, t )δρc(r3, t )〉′

−
∫

d3r2d3r3dA3 · 〈 jc(r3, t )δρa(r1, t )δρb(r2, t )〉′ −
∫

d3r3dA12L(2)
ab,d (r12) · 〈 jd (r12, t )δρc(r3, t )〉′
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−
∫

d3r2dA13L(2)
ac,d (r13) · 〈 jd (r13, t )δρb(r2, t )〉′ −

∫
d3r1dA23L(2)

bc,d (r23) · 〈 jd (r23, t )δρa(r1, t )〉′

−
∫

d3r23dA1L(2)
bc,d (r23) · 〈δρd (r23, t ) ja(r1, t )〉′ −

∫
d3r13dA2L(2)

ac,d (r13) · 〈δρd (r13, t ) jb(r2, t )〉′

−
∫

d3r12dA3L(2)
ab,d (r12) · 〈δρd (r12, t ) jc(r3, t )〉′. (19)

Here, the prime on the averages 〈· · · 〉′ restricts the integrals to not include charges in the same particle. The last several terms
used Eq. (16) to relate how the product of charges carried by a single particle is determined by the single-charge charge density.
If the volumes are moving and expanding with the fluid, and if the currents ja are defined relative to the fluid, one can use the
divergence theorem to rewrite Eq. (19) in differential form with d/dt replaced by Dt ,

DtC (tot)
abc (r1, r2, r3, t ) = −∇1 · 〈 ja(r1, t )δρb(r2, t )δρc(r3, t )〉′ − ∇2 · 〈 jb(r2, t )δρa(r1, t )δρc(r3, t )〉′

−∇3 · 〈 jc(r3, t )δρa(r1, t )δρb(r2, t )〉′ − ∇12 · [
L(2)

ab,d (r12, t ) · 〈 jd (r12, t )δρc(r3, t )〉′]
−∇13 · [

L(2)
ac,d (r13, t ) · 〈 jd (r13, t )δρb(r2, t )〉′] − ∇23 · [

L(2)
bc,d (r13, t ) · 〈 jd (r23, t )δρa(r1, t )〉′]

−∇1 · [
L(2)

bc,d (r13, t ) · 〈δρd (r23, t ) ja(r1, t )〉′] − ∇2 · [
L(2)

ac,d (r13, t ) · 〈δρd (r13, t ) jb(r2, t )〉′]
−∇3 · [

L(2)
ab,d (r12, t ) · 〈δρd (r12, t ) jc(r3, t )〉′]. (20)

Putting all these terms together gives the result for applying Dt to the l.h.s. of Eq. (9),

DtC (tot)
abc (r1, r2, r3, t ) = −∇1 · 〈 ja(r1)δρb(r2)δρc(r3)〉′ − ∇2 · 〈δρa(r1) jb(r2)δρc(r3)〉′ − ∇3 · 〈δρa(r1)δρb(r2) jc(r3)〉′

−∇12 · {
L(2)

ab,d (r12, t )〈 jd (r12, t )δρc(r3)〉} − ∇13 · {
L(2)

ac,d (r13, t )〈 jd (r13, t )δρb(r2)〉}
−∇23 · {

L(2)
bc,d (r23, t )〈 jd (r23, t )δρa(r1)〉} − ∇3 · {

L(2)
ab,d (r12, t )〈 jd (r12, t )δρc(r3)〉}

−∇2 · {
L(2)

ac,d (r12, t )〈 jd (r13, t )δρb(r2)〉} − ∇1 · {
L(2)

bc,d (r23, t )〈 jd (r23, t )δρa(r1)〉}. (21)

Next, one applies Dt to the r.h.s. of Eq. (9). First, a sample term is considered where two of the charges are carried by the same
particle,

DtC
(2;1)
ab;c (r12, r3, t ) = Dt

[
L(2)

ab,d (r12, t )C(1;1)
d;c (r12, r3, t )

]
= L(2)

ab,d (r12, t )
[
Dtχ

(2)
dc (r3, t )

]
δ(r12 − r3) − L(2)

ab,d (r12, t )∇12 · 〈 jd (r12, t )δρc(r3)〉′

+ [(∂t + v · ∇12)L(2)
ab (r12, t )]C(1;1)

d;c (r12, r3, t )

= L(2)
ab,d (r12, t )

[
Dtχ

(2)
dc (r12, t )

]
δ(r12 − r3) − ∇12 · [

L(2)
ab,d (r12, t )〈 jd (r12, t )δρc(r3)〉′]

−∇3 · [
L(2)

ab,d (r12, t )〈δρd (r12, t ) jc(r3)〉′] + [
dt L

(2)
ab,d (r12, t )

]
C(1;1)

d;c (r12, r3, t ). (22)

Here, the definition of dt includes the statistical average to its right, 〈δρ(r, t )X 〉,

[dt L
(2)
ab,d (r, t )]〈δρd (r, t )X 〉 =

[(
∂t + v(r, t ) · ∇ + 〈 jd (r, t )X 〉

〈δρd (r, t )X 〉 · ∇
)

L(2)
ab,d (r, t )

]
〈δρd (r, t )X 〉. (23)

Here, X could refer to any operator away from the position r. The quantity 〈 j(r, t )d X 〉 is reexpressed as a ratio over 〈δρd (r, t )X 〉
multiplied the same quantity. This is motivated so that one can see that dt is effectively the comoving derivative, but comoving
in the frame of the current, which is not necessarily the same as the frame of the fluid. Thus, if δρ is represented by Monte Carlo
sampling, the derivative dt would refer to the rate of change according to an observer moving with the sampling particles.

Comparing Eq. (20) to Eq. (22) one can see that many of the terms cancel. The resulting equation expresses the evolution of
C(1;1;1),

DtC
(1;1;1)
a;b;c (r1, r2, r3, t ) = −∇1 · 〈 ja(r1, t )δρb(r2, t )δρc(r3, t )〉′ − ∇2 · 〈 jb(r2, t )δρa(r1, t )δρc(r3, t )〉′

−∇3 · 〈 jc(r3, t )δρa(r1, t )δρb(r2, t )〉′ + S(3)
abc(r123, t )δ(r1 − r2)δ(r12 − r3) + S(2;1)

ab;c (r12, r3, t )δ(r1 − r2)

+ S(2;1)
ac;b (r13, r2, t )δ(r1 − r3) + S(2;1)

ab;c (r23, r1, t )δ(r2 − r3).

S(3)
abc(r, t ) = −Dtχ

(3)
abc(r, t ) − L(2)

ab,d S(2)
cd (r, t ) − L(2)

ac,d (r, t )S(2)
bd (r, t ) − L(2)

bc,d (r, t )S(2)
ad (r, t )(r, t ).

S(2;1)
ab;c (r, r′, t ) = −[

dt L
(2)
ab,d (r, t )

]
C(1;1)

d;c (r, r′, t ). (24)
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The first three terms in Eq. (24) describe how the correlations
evolve when all three coordinates differ. If the current is
diffusive, ja = −Dab∇δρb, the correlations spread with time.
The remaining terms represent source terms for C(1;1;1). In
the absence of the source terms C(1;1;1) would integrate to a
constant. The last four terms describe the sourcing of C(1;1;1)

for instances when at least two of the coordinates are equal.
The term proportional to Dtχ

(3) was expected because χ (3)

describes the correlation when all three charges are on the
same particle. The three terms proportional to L(2)S(2) de-
scribe how some of the correlation of δQaδQbδQb is absorbed
by the change of the two-point function, i.e., two of the
charges are on one particle and the third on a second particle.
The sources S(2;1) describe how the three-point function can
be seeded with two points on the same particle, and one
on a separated particle. The factor dt L(2) describes how the
correlation of two charges carried by one particle split onto
two particles if L(2) = χ (3)[χ (2)]−1 would change with time.
In the next section, a graphical scheme is presented, which
provides some visual delineation of the various terms above,
while providing the means to write down the corresponding
terms for four-point or n-point correlations.

IV. GRAPHICAL REPRESENTATIONS AND
HIGHER-ORDER CORRELATIONS

In the previous section, equations of motion were found
for three-point correlation functions in Eq. (24). Combined
with the expressions for two-point functions in Eq. (5), and
using Eq. (16), one can find all correlations of order δρ3.
The evolution of the two- and three-point functions, described
in Eqs. (5) and (24), can also be expressed graphically. The
elements of the graphs are lines connected by vertices, with
the vertices having either zero or one incoming lines and n
outgoing lines. The lines will connect space-time points r1, t1
and r2, t2 and are Green’s functions describing how charge a
charge δQa, placed at r1, t1 would affect the density, δρb, at a
point r2, t2, where t2 > t1.

〈δρb(r2, t2)〉 = Gab(r1, t1, r2, t2)δQa. (25)

The Green’s function is normalized,∫
d3r2Gab(r1, t1, r2, t2) = δab, (26)

and obeys the boundary condition at t1 = t2,

Gab(r1, t1, r2, t2 = t1) = δ(r1 − r2)δab. (27)

a, x1 b, x2 = Gab(x1, x2)

x

b

= V
(0→2)
ab (x)

a

x

c

b = V
(0→3)
abc (x)

a

x

d

c
b = V

(0→4)
abc (x)

a

xd

b

= V
(1→2)
d,ab (x)

a

x
d

c

b = V
(1→3)
d,abc (x)

a

FIG. 1. Elements of the graphical representation are defined in
Eq. (29), with x referring to the space-time point r, t .

For a diffusive equation, ja = −Dab∇δρb, the Green’s
function can be calculated by solving the differential equation,

D2Gab(r1, t1, r2, t2) = −Dbc(r2, t2)∇2
2 Gac(r1, t1, r2, t2),

D2 = ∂

∂t2
+ (∇2 · v(r2, t2)) + v(r2, t2) · ∇2.

(28)

For any realistic dynamic system, it is unlikely G can be
found analytically. The choices are either to solve the differ-
ential equation numerically on a three-dimensional mesh, or
to sample the diffusive spread as a random walk. The sources
of the Green’s function for two- and three-point functions are
listed in Eqs. (5) and (24) respectively. Sources for the Green’s
functions can be represented diagramatically, with vertices
representing sources at points in space time, and lines between
the vertices representing Green’s functions. These graphical
elements are illustrated in Fig. 1 and the vertices are defined
below,

V (0→2)
ab (r, t ) = −Dtχ

(2)
ab (r, t ),

V (0→3)
abc (r, t ) = −Dtχ

(3)
abc(r, t ) − L(2)

ab,dV (0→2)
cd (r, t ) − L(2)

ac,d (r, t )V (0→2)
bd (r, t ) − L(2)

bc,d (r, t )V (0→2)
ad (r, t )(r, t ),

V (0→4)
abcd = −Dtχ

(4)
abcd − L(2)

ab,e′ (r, t )V (0→3)
cd,e′ (r, t ) − L(2)

ac,e′ (r, t )V (0→3)
bd,e′ (r, t ) − L(2)

ad,e′ (r, t )V (0→3)
bc,e′ (r, t ) − L(2)

bc,e′ (r, t )V (0→3)
ad,e′ (r, t )

− L(2)
bd,e′ (r, t )V (0→3)

ac,e′ (r, t ) − L(2)
cd,e′ (r, t )V (0→3)

ab,e′ (r, t ) − L(2)
ab,e′ (r, t )L(2)

cd, f ′ (r, t )V (0→2)
e′ f ′ (r, t )

− L(2)
ac,e′ (r, t )L(2)

bd, f ′ (r, t )V (0→2)
e′ f ′ (r, t ) − L(2)

bc,e′ (r, t )L(2)
ad, f ′ (r, t )V (0→2)

e′ f ′ (r, t ) − L(3)
abc,e′ (r, t )V (0→2)

e′d (r, t )

− L(3)
abd,e′ (r, t )V (0→2)

e′c (r, t ) − L(3)
acd,e′ (r, t )V (0→2)

e′b (r, t ) − L(3)
bcd,e′ (r, t )V (0→2)

e′a (r, t ),
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V (1→2)
d,ab (r, t ) = −dt L

(2)
ab,d (r, t ),

V (1→3)
d,abc (r, t ) = −dt L

(3)
abc,d (r, t ) − L(2)

bc,e(r, t )V (1→2)
d,ae (r, t ) − L(2)

ac,e(r, t )V (1→2)
d,be (r, t ) − L(2)

ab,e(r, t )V (1→2)
d,ce (r, t ). (29)

Figure 2 shows the diagrams for calculating two-point,
three-point, and four-point functions. Many of the diagrams
are topologically identical and are related by permuting the
final-state labels. In those cases the similar diagrams are noted
by the number of permutations for that topology.

As an example, the contribution to the three-point diagram
from the second three-point diagram in Fig. 2 is the integral

C(1;1;1)
a;b;c (x1, x2, x2)

= · · · +
∫

d4y1d4y2V
(0→2)

a′d ′ (y1)Ga′a(y1, x1)Gd ′d (y1, y2)

V (1→2)
d,b′c′ (y2)Gb′b(y2, x2)Gc′c(y2, x3). (30)

Each vertex in the diagram is assigned a space-time point,
in this case y1 and y2. Integrations are performed over those
coordinates. Each internal line is assigned two charge indices,
which then determine the charge indices for the vertices. All
diagrams begin with a vertex V (0→n), and end with open
Green’s functions denoted by the desired measurement.

V. RELATION TO CHARGE FLUCTUATIONS

Within some large volume V , charge fluctuations are
defined

F (2)
ab ≡ 1

V
〈δQaδQb〉

F (3)
abc ≡ 1

V
〈δQaδQbδQc〉

F (4)
abcd ≡ 1

V
〈δQaQbδQcδQd〉 − 1

V
〈δQaδQb〉〈δQcδQd〉

− 1

V
〈δQaδQc〉〈δQbδQd〉

− 1

V
〈δQaδQd〉〈δQbδQc〉. (31)

Each charge Qa can be expressed as an integral over the
charge density δρa. For the order Qn fluctuation, one obtains
contributions from the two-point, three-point, up to n-point
functions. The contribution from the n-point function is sim-
ply the integral over all the external coordinates in the dia-
grams from Fig. 2. The contributions from the (n − 1)-point
functions with final-state charge indices a and b can be found
by attaching an operator L(2)

ab,a′ (x) to any external Green’s
function Gd ′a′ (y, x) where x is a final-state coordinate and a′
denotes the measured charge. Thus, each three-point diagram
from Fig. 2 contributes to F (4). The contributions to F (4) from
two-point functions come from either attaching L(2) to both
of the external lines, or by attaching L(3) to either external
line. Finally, F (4) has a contribution from all four charges
being on the same particle, which would be represented
by χ (4).

Experimentally, the contributions to F (4) from four-point
functions come from summing over all combinations of four
final-state particles, never using the same particle twice in the
same term. The contribution to F (4) from three-point functions
would be found by summing over all sets of three final-state

2 POINT:

b, x2

a, x1

3 POINT:

c, x3

b, x2

a, x1

+

c, x2

b, x2 (3 perm.s)

a, x1

4 POINT:

d, x4

c, x3

b, x2

a, x1

+

d, x4

c, x3

b, x2 (4 perm.s)

a, x1

+

d, x4

c, x3

b, x2 (3 perm.s)

a, x1

+

d, x4

c, x3

b, x2 (6 perm.s)

a, x1

+

d, x4

c, x3

b, x2 (12 perm.s)

a, x1

FIG. 2. Diagrams for calculating two-, three- and four-point functions. For topologically identical diagrams, which differ by permutations
of the final-state labels, the net number of permutations is listed rather than repeating the similar diagrams. Each vertex is assigned a space-time
point, over which is integrated.
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particles then requiring one particle to provide two powers
of the charge. The contributions from two-point functions
describes the case where the sum extends over all pairs, with
each particle contributing an order Q2 contribution or for one
particle to provide an order Q and the second providing an
order Q3 contribution. Finally, summing over the particles
individually, one would add the contribution of QaQbQcQd

for that particle. Aside from the contribution to F (n) from
the n-point function, all other contributions are determined by
correlations of fewer coordinates, and thus do not represent
additional information beyond what would have been gathered
by (n − 1)-point functions.

VI. ALGORITHMS

In principle, one could solve the differential equations
for the correlation functions. The differential equation would
involve solving for all points on a grid with three spatial
dimensions and one time dimension. If the three-dimensional
space-time grid was represented by N × N × N grid points
calculated for Nt values of the time, an n-point correlation
function would involve of the order N3nNt grid points. This
would be likely be prohibitively expensive.

Another possibility for calculating n-point correlations
would be to solve n separate one-point diffusion equations
on n meshes. For each source point, one would increment
the correlations on each of the meshes. For each source
point, S(n)

ab···cd4x, one could increment the charges on the
corresponding mesh points by amounts δQa, · · · δQc, such that
the product of the charges reproduced S(n)

ab···cd4x, but so that
the incremented charge on any of the individual mesh had
a random sign. At the final time, one would construct the
n-point correlation function by using the charges from each
of the n meshes. Unless the contributions came from the same
source point, they would, on average, cancel. Unfortunately,
the cancellation would require repeating the procedure many
times to combat combinatoric noise. This would be especially
true for n > 2. For n > 2 it would be more efficient to evolve
the contribution from a single source point, then construct the
correlation. One would perform a Monte Carlo sampling over
the many source points using |S(n)

ab···cd4x| as the probability to
choose the sampling points, then use S(n)

ab···c/|S(n)
ab···c| as a weight

to increment the correlations functions.
A second approach, built on the assumption that the

dynamics is diffusive, is to represent the correlations with
clusters of sample particles undergoing random walks. For
n-point correlations, the clusters would involve n charges.
Sample charges move with some velocity v and then have
their directions reoriented randomly. The probability that a
particle is thus scattered during a time interval dt is dt/τ , with
τ = 6D/v2. In the limit v → ∞ the random walk approaches
the diffusion equation. By setting v to the speed of light, it
is causal and approaches the diffusion equation after several
scatterings. If the diffusivity, Dab, is not diagonal, a more
sophisticated representation would need to be invoked, and
is described below. Each cluster of particles would be created
via a Monte Carlo procedure weighted by the source function,
and would evolve as a random walk to mimic the diffusion
equation. Each particle carries a unit charge, and each group of

particles would carry a weight, which could be either positive
or negative, describing the contribution from the original
vertex after accounting for the Monte Carlo weight. When
calculating the correlations, only those particles within the
same cluster need to be combined, which results in low combi-
natoric noise. Such an approach was applied in Refs. [22–24].
In those instances, only two-point functions were consid-
ered. Calculations for three- and four-point functions would
involve accounting for a larger number of diagrams. One
advantage of this approach is that vertices of the form V (1→n)

would be rather straightforward to calculate. These vertices
behave as dt L

(n)
a···c,b(x). The derivative dt , defined in Eq. (23),

is the time derivative that comoves with the current, or in
this case is comoving with the sampling particles. Thus,
the (1 → n) vertices involve calculating how La···c,d changes
according to an observer moving with the sampling particles.
This simplifies sampling the secondary vertices with Monte
Carlo.

For either approach, the n-point functions must be ad-
dressed in order. The two-point evolution can be used to cal-
culate the three-point evolution, and the two- and three-point
correlations serve as a basis for the four-point function. For the
random-walk representation, one stores the correlated clusters
of correlated particles. When evolving a pair of particles to
represent the two-point function, one could bifurcate one of
the particles carrying charge d into two with charges a and b
during a time interval dt with probability V (1→2)

d,ab (r, t )dt . One
would continue to simulate the nonsplit trajectory for cal-
culation of the two-point function, and would add the bi-
furcated trajectory into a list of samplings for the three-
point function. Such a three-point trajectory, generated from
an initially two-point trajectory, would represent the second
diagram for three-point correlations in Fig. 2. This would be
added to the purely three-point trajectory described by the
first three-point diagram in Fig. 2. Similarly, one can calculate
four-point functions. Given the lack of combinatoric noise,
such a calculation would be tenable and require only modest
computational resources. However, the simple random walk
approach needs to be altered if the diffusivity is not diagonal,
as described below.

Nondiagonal diffusivity matrix

It is straightforward to model the diffusive evolu-
tion to the n-point contribution of the δρn correlation,
C(1;1;···1)

a;b;···c (r1, r2, · · · rn, t ), for the case where the diffusivity
matrix is diagonal, if one is given the source function
S(n)

ab···c(r1, r2 · · · rn). Because diffusion represents a random
walk, one simply creates a set of unit charges, a · · · c at the
points r1 · · · rn, and assigns a weight to the group. The weight
is given by S(n)

ab···cd4x/PMC . The probability PMC accounts for
the fact that in each four-volume element d4x, one may choose
whether or not to create the sampling charges. If the Monte
Carlo probability, PMC , is chosen as |S(n)

ab···cd4x|, then the
weights are ±1, depending on whether the sources are positive
or negative. Each charge is then propagated as a random
walk. The sample charges move with velocity v relative to
the medium, and with random directions. The charges then
reorient randomly according to a lifetime, τcoll = 6D/v2, i.e.,
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in each time step dt the particle reorients with probability
dt/τcoll.

There are significant advantages to using a random walk
representation of the diffusion equation. First, such implemen-
tations tend to be simpler to implement than the solving the
differential equation on a four-dimensional space-time grid.
Second, one can make the evolution causal by setting v to
the speed of light. In the limit of v → ∞ the random walk
exactly reproduces the diffusion equation, but by lowering v
the method prunes the acausal tail of the correlation function.
The difference between causal and acausal treatments matters
only for short diffusion times. For long times, the random
walk approaches the solution to the diffusion equation as long
as the evolutions involve many reorientations for each test
charge. For the calculations in Refs. [22–24], the number of
such reorientations was on the order of a half-dozen. Finally,
the random walk makes it easy to label the contribution to the
correlation from the same source point. Contributions from
different source points should cancel, so by only incrementing
contributions from the same source point the combinatoric
noise is greatly reduced. This becomes increasingly important
as one considers correlations of increasing order.

Treating diffusion as a random walk is more complicated
once the diffusivity tensor becomes nondiagonal,

ja = −Dab∇ρb. (32)

The method will be based on considering sample charges in
a basis where D is diagonal. Here, the eigenvectors of D

are labeled u(i). The source functions and susceptibilities can
be expressed in this new basis, and the sample charges are
labeled by eigenvectors. If the basis were constant throughout
the evolution, the algorithm would then be unchanged from
what was described above. If one applies Eq. (14) to translate
a sample charge into particles of a specific species, the unit
sample charge δQa is u(i)

a , where i refers to the specific
eigenvector representing the sample charge.

The nondiagonal elements are thus rather straightforward
to accommodate if the eigenvectors of the diffusivity tensor
do not change as the sample charge traverses the medium.
However, when the eigenvectors transform they must be refor-
mulated in terms of the new eigenvectors. Let us assume the
original normalized eigenvectors were â, b̂, and ĉ. The new
eigenvectors will be â′, b̂′, and ĉ′. Also, one can assume the
charge is originally in the state u = â. Using completeness,

â = (â · a′)â′ + (â · b′)b̂′ + (â · c′)ĉ′. (33)

For the Monte Carlo treatment one can probabilistically
choose which new eigenvector to use along with an adjust-
ment of the weight so that on average the charge is still in â.
Here, w designates the original weight assigned to the group
of sampling charges, and w′ will be the new weight after
the charge has been redesignated in the new basis. One can
generate a random number r such that 0 < r < 1. Using r,
the following algorithm should maintain the continuity of the
charge,

if (0 < r < |(â · â′)|/Z < r) then u → â′, and w′ = wZ (â · a′)/|â · a′|
else if (0 < r < (â · b′)â′/Z < r) then u → b̂′, and w′ = wZ (â · n′)/|â · b′|

else then u → ĉ′, and w′ = wZ (â · c′)/|â · c′|,
Z ≡ (â · a′)â′ + (â · n′)â′ + (â · a′)v̂′. (34)

If one averages over values of r, the result averages to u →
(â · â′)â′ + (â · b̂′)b̂′ + (â · ĉ′)ĉ′, which indeed equals u = â.
One need only check whether to reassign the basis with time
steps sufficiently small so that the change in the diffusive
movement is small during that time step.

VII. APPLICABILITY

The approach here was inspired by understanding how
three- and four-point correlations measured in heavy-ion
collisions could be modeled. In particular, the goal was to
understand the role of local charge conservation. During a
heavy-ion collision, one changes phases from a quark-gluon
plasma to a hadronic gas. At zero baryon chemical potential,
calculations of the susceptibilities from lattice gauge theory
suggest that for temperatures below 150 MeV the system is
reasonably represented as a hadronic gas, whereas for temper-
atures above 200 MeV quarks are reasonable quasiparticles.
For intermediate temperatures, the transition appears smooth.
During a central collision of heavy ions at LHC energies or at
RHIC energies, the system traverses a range of temperatures
from well above 200 MeV to approximately 100 MeV, and

undergoes a radical change in chemistry during that time.
The changing number of up, down, and strange charges,
and the combination of such charges into hadrons induces
a rich evolution of charge correlations. If such correlations
are short range, and if the expansion is not too fast, it seems
a reasonable approximation to assume chemical equilibrium,
at least until the temperatures fall below 150 MeV, at which
point chemical rates fall below the expansion rate. If the
chemistry is equilibrated, one would expect the short-range,
�1 fm, correlations to match that of an equilibrated gas.
However, beyond one Fermi correlations due to local charge
conservation persist. The treatment presented here would thus
seem a reasonable approximation to reality, and comparing
predictions to measurements would provide a stringent test
of the assumption of local chemical equilibrium. Indeed, for
two-point correlations this approach has matched a range of
experimental measurements.

If chemical equilibrium is not attained the approach can
become invalid. For two-point correlations one can assume the
local correlation is some function χab ∼ δ(r − r′), and if the
function χab can be modeled the approach can still be applied
as chemical equilibrium was not an essential approximation.
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As long as the correlation is local, compared to the size of
the system, the same approach, but with a different model
for the local correlation, would remain valid. However, the
derivations for three- and four-body correlations did rest on
the assumptions of chemical equilibrium. Even if one had
a model of the local correlations, χ (3), χ (4), · · · , that would
not be sufficient to understand how a charge 〈δQa〉 on a
particle would translate into knowing δQbδQc on the same
particle. Local chemical equilibrium was critical in deriving
Eq. (16).

Aside from chemical equilibrium, the second assumption
is that the correlation is sufficiently local to separate it from
the balancing correlation. This should be true in most cases,
but would fail for correlations associated with phase transi-
tions. In the critical region correlations fall as power laws,
effectively with infinite extent. When inside the coexistence
region, bubbles and drops represent macroscopic structures
that should not be described by an expansion of 〈δρn〉. For
high-energy heavy-ion physics, there remains the possibility
that a phase transition exists at finite baryon density, and
might be accessible at the lower range of beam energies at
RHIC. If the correlations from bulk structure are sufficiently
long range, it is possible that short-range correlations, e.g.,
those from charge conservation, might be superimposed onto
a model with a one-body description [28,29,34–38,41–44], in-
cluding some with implementations of noise [26,31,32,40,47].

The strategy would be then to first treat the bulk correlations,
including the critical correlations and those related to phase
separation, using some form of hydrodynamics. Highly local
correlations, including their contribution to the susceptibili-
ties, would be ignored for this first pass. The methods pre-
sented here could then be applied to account for the remainder
of the correlation, i.e., those from short-range correlations and
the associated balancing charge.

Even if one’s main motivation for analyzing multicharge
correlations and fluctuations is to search for evidence of
phenomena related to phase transitions, it is crucial to estimate
the degree to which the short-range correlations and the asso-
ciated charge balance affect the result. The methods presented
here provide a means to calculate that background. If one’s
goal is to investigate the chemical evolution of a heavy-ion
collision through n-point correlations in a system where there
are only short-range correlations, the methods here make it
possible to extend such studies to n > 2.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy
Office of Science through Grant No. DE-FG02-03ER41259,
and benefited from conversations within the Beam Energy
Scan Theory (BEST) Topical Collaboration, also supported
by the Department of Energy.

[1] V. Koch, in Relativistic Heavy Ion Physics, edited by R. Stock
(Springer, Heidelberg, (2010), pp. 626–652.

[2] A. Bzdak, V. Koch, and V. Skokov, Phys. Rev. C 87, 014901
(2013).

[3] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K.
Szabo, J. High Energy Phys. 01 (2012) 138.

[4] A. Bazavov et al. (HotQCD Collaboration), Phys. Rev. D 86,
034509 (2012).

[5] A. Bazavov et al., Phys. Rev. Lett. 113, 072001 (2014).
[6] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301

(2007).
[7] H. Song, S. A. Bass, U. Heinz, T. Hirano and C. Shen, Phys.

Rev. Lett. 106, 192301 (2011); 109, 139904(E) (2012).
[8] S. Pratt, E. Sangaline, P. Sorensen, and H. Wang, Phys. Rev.

Lett. 114, 202301 (2015).
[9] J. Auvinen, J. E. Bernhard, S. A. Bass, and I. Karpenko, Phys.

Rev. C 97, 044905 (2018).
[10] V. Koch, A. Majumder, and J. Randrup, Phys. Rev. Lett. 95,

182301 (2005).
[11] C. Athanasiou, K. Rajagopal, and M. Stephanov, Phys. Rev. D

82, 074008 (2010).
[12] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
[13] M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).
[14] V. Vovchenko, D. V. Anchishkin, M. I. Gorenstein, and R. V.

Poberezhnyuk, Phys. Rev. C 92, 054901 (2015).
[15] M. M. Aggarwal et al. (STAR Collaboration), Phys. Rev. Lett.

105, 022302 (2010).
[16] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 112,

032302 (2014).

[17] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 113,
092301 (2014).

[18] L. Adamczyk et al. (STAR Collaboration), Phys. Lett. B 785,
551 (2018).

[19] D. McDonald, Statistical moments of the multiplicity distribu-
tion of identified particles in Au+Au collisions, Ph.D. thesis,
Rice University, 2013.

[20] M. Stephanov and Y. Yin, Phys. Rev. D 98, 036006
(2018).

[21] M. Stephanov and Y. Yin, Nucl. Phys. A 967, 876 (2017).
[22] S. Pratt, J. Kim, and C. Plumberg, Phys. Rev. C 98, 014904

(2018).
[23] S. Pratt and C. Plumberg, Phys. Rev. C 99, 044916 (2019).
[24] S. Pratt and C. Plumberg, arXiv:1904.11459.
[25] M. A. Stephanov and Y. Yin, Phys. Rev. Lett. 109, 162001

(2012).
[26] S. Pratt, Phys. Rev. C 96, 044903 (2017).
[27] K. Paech, H. Stöcker, and A. Dumitru, Phys. Rev. C 68, 044907

(2003).
[28] K. Paech and A. Dumitru, Phys. Lett. B 623, 200 (2005).
[29] M. Nahrgang, S. Leupold, C. Herold, and M. Bleicher, Phys.

Rev. C 84, 024912 (2011).
[30] J. I. Kapusta and C. Young, Phys. Rev. C 90, 044902 (2014).
[31] J. I. Kapusta, B. Mueller, and M. Stephanov, Nucl. Phys. A 904-

905, 499c (2013).
[32] C. Young, J. I. Kapusta, C. Gale, S. Jeon, and B. Schenke, Phys.

Rev. C 91, 044901 (2015).
[33] B. Ling, T. Springer, and M. Stephanov, Phys. Rev. C 89,

064901 (2014).

014914-11

https://doi.org/10.1103/PhysRevC.87.014901
https://doi.org/10.1103/PhysRevC.87.014901
https://doi.org/10.1103/PhysRevC.87.014901
https://doi.org/10.1103/PhysRevC.87.014901
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1103/PhysRevD.86.034509
https://doi.org/10.1103/PhysRevD.86.034509
https://doi.org/10.1103/PhysRevD.86.034509
https://doi.org/10.1103/PhysRevD.86.034509
https://doi.org/10.1103/PhysRevLett.113.072001
https://doi.org/10.1103/PhysRevLett.113.072001
https://doi.org/10.1103/PhysRevLett.113.072001
https://doi.org/10.1103/PhysRevLett.113.072001
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.109.139904
https://doi.org/10.1103/PhysRevLett.109.139904
https://doi.org/10.1103/PhysRevLett.109.139904
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevC.97.044905
https://doi.org/10.1103/PhysRevC.97.044905
https://doi.org/10.1103/PhysRevC.97.044905
https://doi.org/10.1103/PhysRevC.97.044905
https://doi.org/10.1103/PhysRevLett.95.182301
https://doi.org/10.1103/PhysRevLett.95.182301
https://doi.org/10.1103/PhysRevLett.95.182301
https://doi.org/10.1103/PhysRevLett.95.182301
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevD.82.074008
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevC.92.054901
https://doi.org/10.1103/PhysRevC.92.054901
https://doi.org/10.1103/PhysRevC.92.054901
https://doi.org/10.1103/PhysRevC.92.054901
https://doi.org/10.1103/PhysRevLett.105.022302
https://doi.org/10.1103/PhysRevLett.105.022302
https://doi.org/10.1103/PhysRevLett.105.022302
https://doi.org/10.1103/PhysRevLett.105.022302
https://doi.org/10.1103/PhysRevLett.112.032302
https://doi.org/10.1103/PhysRevLett.112.032302
https://doi.org/10.1103/PhysRevLett.112.032302
https://doi.org/10.1103/PhysRevLett.112.032302
https://doi.org/10.1103/PhysRevLett.113.092301
https://doi.org/10.1103/PhysRevLett.113.092301
https://doi.org/10.1103/PhysRevLett.113.092301
https://doi.org/10.1103/PhysRevLett.113.092301
https://doi.org/10.1016/j.physletb.2018.07.066
https://doi.org/10.1016/j.physletb.2018.07.066
https://doi.org/10.1016/j.physletb.2018.07.066
https://doi.org/10.1016/j.physletb.2018.07.066
https://doi.org/10.1103/PhysRevD.98.036006
https://doi.org/10.1103/PhysRevD.98.036006
https://doi.org/10.1103/PhysRevD.98.036006
https://doi.org/10.1103/PhysRevD.98.036006
https://doi.org/10.1016/j.nuclphysa.2017.06.051
https://doi.org/10.1016/j.nuclphysa.2017.06.051
https://doi.org/10.1016/j.nuclphysa.2017.06.051
https://doi.org/10.1016/j.nuclphysa.2017.06.051
https://doi.org/10.1103/PhysRevC.98.014904
https://doi.org/10.1103/PhysRevC.98.014904
https://doi.org/10.1103/PhysRevC.98.014904
https://doi.org/10.1103/PhysRevC.98.014904
https://doi.org/10.1103/PhysRevC.99.044916
https://doi.org/10.1103/PhysRevC.99.044916
https://doi.org/10.1103/PhysRevC.99.044916
https://doi.org/10.1103/PhysRevC.99.044916
http://arxiv.org/abs/arXiv:1904.11459
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevC.96.044903
https://doi.org/10.1103/PhysRevC.96.044903
https://doi.org/10.1103/PhysRevC.96.044903
https://doi.org/10.1103/PhysRevC.96.044903
https://doi.org/10.1103/PhysRevC.68.044907
https://doi.org/10.1103/PhysRevC.68.044907
https://doi.org/10.1103/PhysRevC.68.044907
https://doi.org/10.1103/PhysRevC.68.044907
https://doi.org/10.1016/j.physletb.2005.08.006
https://doi.org/10.1016/j.physletb.2005.08.006
https://doi.org/10.1016/j.physletb.2005.08.006
https://doi.org/10.1016/j.physletb.2005.08.006
https://doi.org/10.1103/PhysRevC.84.024912
https://doi.org/10.1103/PhysRevC.84.024912
https://doi.org/10.1103/PhysRevC.84.024912
https://doi.org/10.1103/PhysRevC.84.024912
https://doi.org/10.1103/PhysRevC.90.044902
https://doi.org/10.1103/PhysRevC.90.044902
https://doi.org/10.1103/PhysRevC.90.044902
https://doi.org/10.1103/PhysRevC.90.044902
https://doi.org/10.1016/j.nuclphysa.2013.02.062
https://doi.org/10.1016/j.nuclphysa.2013.02.062
https://doi.org/10.1016/j.nuclphysa.2013.02.062
https://doi.org/10.1016/j.nuclphysa.2013.02.062
https://doi.org/10.1103/PhysRevC.91.044901
https://doi.org/10.1103/PhysRevC.91.044901
https://doi.org/10.1103/PhysRevC.91.044901
https://doi.org/10.1103/PhysRevC.91.044901
https://doi.org/10.1103/PhysRevC.89.064901
https://doi.org/10.1103/PhysRevC.89.064901
https://doi.org/10.1103/PhysRevC.89.064901
https://doi.org/10.1103/PhysRevC.89.064901


SCOTT PRATT PHYSICAL REVIEW C 101, 014914 (2020)

[34] J. Steinheimer, J. Randrup, and V. Koch, Phys. Rev. C 89,
034901 (2014).

[35] J. Steinheimer and J. Randrup, Phys. Rev. C 87, 054903
(2013).

[36] J. Steinheimer and J. Randrup, Phys. Rev. Lett. 109, 212301
(2012).

[37] J. Randrup, Phys. Rev. C 82, 034902 (2010).
[38] H. Heiselberg, C. J. Pethick, and D. G. Ravenhall, Ann. Phys.

(NY) 223, 37 (1993).
[39] H. Heiselberg, C. J. Pethick, and D. G. Ravenhall, Phys. Rev.

Lett. 61, 818 (1988).
[40] P. Napolitani, M. Colonna, and V. de la Mota, EPJ Web Conf.

88, 00003 (2015).

[41] P. Chomaz, M. Colonna, and J. Randrup, Phys. Rept. 389, 263
(2004).

[42] B. Borderie et al. (INDRA Collaboration), Phys. Rev. Lett. 86,
3252 (2001).

[43] M. Colonna, P. Chomaz, and S. Ayik, Phys. Rev. Lett. 88,
122701 (2002).

[44] A. Guarnera, M. Colonna, and P. Chomaz, Phys. Lett. B 373,
267 (1996).

[45] S. Pratt, Phys. Rev. C 85, 014904 (2012).
[46] S. Pratt, W. P. McCormack, and C. Ratti, Phys. Rev. C 92,

064905 (2015).
[47] S. Gavin, G. Moschelli, and C. Zin, Phys. Rev. C 94, 024921

(2016).

014914-12

https://doi.org/10.1103/PhysRevC.89.034901
https://doi.org/10.1103/PhysRevC.89.034901
https://doi.org/10.1103/PhysRevC.89.034901
https://doi.org/10.1103/PhysRevC.89.034901
https://doi.org/10.1103/PhysRevC.87.054903
https://doi.org/10.1103/PhysRevC.87.054903
https://doi.org/10.1103/PhysRevC.87.054903
https://doi.org/10.1103/PhysRevC.87.054903
https://doi.org/10.1103/PhysRevLett.109.212301
https://doi.org/10.1103/PhysRevLett.109.212301
https://doi.org/10.1103/PhysRevLett.109.212301
https://doi.org/10.1103/PhysRevLett.109.212301
https://doi.org/10.1103/PhysRevC.82.034902
https://doi.org/10.1103/PhysRevC.82.034902
https://doi.org/10.1103/PhysRevC.82.034902
https://doi.org/10.1103/PhysRevC.82.034902
https://doi.org/10.1006/aphy.1993.1026
https://doi.org/10.1006/aphy.1993.1026
https://doi.org/10.1006/aphy.1993.1026
https://doi.org/10.1006/aphy.1993.1026
https://doi.org/10.1103/PhysRevLett.61.818
https://doi.org/10.1103/PhysRevLett.61.818
https://doi.org/10.1103/PhysRevLett.61.818
https://doi.org/10.1103/PhysRevLett.61.818
https://doi.org/10.1051/epjconf/20158800003
https://doi.org/10.1051/epjconf/20158800003
https://doi.org/10.1051/epjconf/20158800003
https://doi.org/10.1051/epjconf/20158800003
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1103/PhysRevLett.86.3252
https://doi.org/10.1103/PhysRevLett.86.3252
https://doi.org/10.1103/PhysRevLett.86.3252
https://doi.org/10.1103/PhysRevLett.86.3252
https://doi.org/10.1103/PhysRevLett.88.122701
https://doi.org/10.1103/PhysRevLett.88.122701
https://doi.org/10.1103/PhysRevLett.88.122701
https://doi.org/10.1103/PhysRevLett.88.122701
https://doi.org/10.1016/0370-2693(96)00152-9
https://doi.org/10.1016/0370-2693(96)00152-9
https://doi.org/10.1016/0370-2693(96)00152-9
https://doi.org/10.1016/0370-2693(96)00152-9
https://doi.org/10.1103/PhysRevC.85.014904
https://doi.org/10.1103/PhysRevC.85.014904
https://doi.org/10.1103/PhysRevC.85.014904
https://doi.org/10.1103/PhysRevC.85.014904
https://doi.org/10.1103/PhysRevC.92.064905
https://doi.org/10.1103/PhysRevC.92.064905
https://doi.org/10.1103/PhysRevC.92.064905
https://doi.org/10.1103/PhysRevC.92.064905
https://doi.org/10.1103/PhysRevC.94.024921
https://doi.org/10.1103/PhysRevC.94.024921
https://doi.org/10.1103/PhysRevC.94.024921
https://doi.org/10.1103/PhysRevC.94.024921

