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Longitudinal correlations from fluctuating strings in Pb-Pb, p-Pb, and p-p collisions
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H. Niewodniczański Institute of Nuclear Physics PAN, 31-342 Cracow, Poland
and Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland

(Received 9 September 2019; revised manuscript received 26 November 2019; published 10 January 2020)

In a framework of a semianalytic model with longitudinally extended strings of fluctuating endpoints, we
demonstrate that the rapidity spectra and two-particle correlations in collisions of Pb-Pb, p-Pb, and p-p at the
energies of the Large Hadron Collider can be universally reproduced. In our approach, the strings are pulled
by wounded constituents appearing in the Glauber modeling at the partonic level. The obtained rapidity profile
for the emission of hadrons from a string yields bounds for the distributions of the endpoint fluctuations. Then,
limits for the two-particle correlations in pseudorapidity can be obtained. Our results are favorably compared to
recent experimental data from the ATLAS Collaboration.
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I. INTRODUCTION

Longitudinal correlations are an important source of in-
formation on the dynamics of hadronic collisions. There are
numerous ongoing efforts to understand them, both on the
theoretical side as well as in experiments at the BNL Relativis-
tic Heavy-Ion Collider (RHIC) and the CERN Large Hadron
Collider (LHC), in particular with detector upgrades covering
broader ranges in pseudorapidity. As is well known, long-
range rapidity correlations supply information on the earliest
phases of the reaction, since from causality the correlations
stem from proper times τ limited by τ � τ f exp(−�η/2),
where τ f is the freeze-out proper time and �η is the pseu-
dorapidity separation of the particles in a pair.

In our recent paper [1] we presented an analysis of the lon-
gitudinal hadronic correlations at the highest RHIC energy of√

sNN = 200 GeV in the framework of a simple model where
emission proceeds from strings with fluctuating endpoints
[2]. The model is, up to emission profiles extracted from
the data, analytic, which allows us a simple understanding
of generic production features present in various string or
flux-tube approaches. The present study provides an extension
of our method to LHC energies.

We recall that QCD-motivated string or color flux-tube
models are commonly used in particle physics phenomenol-
ogy to describe the longitudinal dynamics. The strings ex-
tend between receding color sources and fragment, producing
hadrons. Many sophisticated Monte Carlo codes are based on
the Lund string model (see, e.g., [3–8]), or on the dual parton
model built on the Pomeron and Regge exchanges [9–11].
A common feature of these phenomenologically successful
codes is the formation of a collection of strings pulled be-
tween the constituents of the projectiles in the early stage of
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the collision. The endpoints of a string have opposite color
charges (triplet-antitriplet for the quark-diquark and quark-
antiquark configurations, or octet-octet for the gluon-gluon
case). Moreover, the location of the string endpoints in spa-
tial rapidity ηPS ≡ 1

2 ln[(t + z)/(t − z)] fluctuates, following
a proper parton distribution function. As argued in Refs. [1,2],
these fluctuations are the key feature enabling control over
the one-body densities (pseudorapidity spectra) and the two-
particle correlations in pseudorapidity. In our study we focus
on this effect, neglecting other features typically incorporated
in Monte Carlo codes, such as nuclear shadowing or baryon
stopping. In our study, rather than using the parton distribution
functions to describe the endpoint distributions, we take a
more flexible and phenomenological approach, where these
distributions are adjusted to reproduce the pseudorapidity
spectra.

Another important issue is the distribution of the number of
strings, which finally translates into the multiplicity of the pro-
duced hadrons. We use the fact that the multiplicity of the pro-
duced hadrons is successfully described within the wounded
picture [12], which is an adoption of the Glauber theory [13]
to inelastic collisions [14]. Moreover, the wounded quark
scaling [15–18] has been shown to work surprisingly well
[19–37] at both RHIC and LHC collision energies. Extensions
to more partons per nucleon than just three quarks have also
been considered, with the conclusion that the increase in
energy yields more wounded partons [29]. In the present study
we use the wounded model with a few (3 to 6) constituents per
nucleon.

II. THE MODEL

As mentioned, our model combines the string picture with
the wounded parton model, assuming that the number of
strings is given by the number of wounded constituents. As a
matter of fact, this complies with the Lund model mechanism,
where the basic string extends between a parton from a given
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nucleon and a parton (or diquark) from the same nucleon [3].
Thus, in collisions of nuclei A and B, hadrons are emitted from
strings associated with mutually independent NA wounded
partons from A and NB wounded partons from B, respectively.
At a given collision energy the emission profile of hadrons
(defined as the number of hadrons per η) from each string,
f (η), is assumed to be universal, i.e., independent of the mass
numbers of the projectiles or centrality. Here η denotes the
pseudorapidity in the center of mass of the colliding NN
system. The above assumptions correspond to the following
scaling law [38]:

dNch

dη
= 〈NA〉 f (η) + 〈NB〉 f (−η), (1)

where we have adopted the convention that A moves to the
right and B to the left along the z axis. The symbol 〈·〉 denotes
the average over events in the considered centrality class.

From Eq. (1) it follows that the symmetric and antisym-
metric parts of the distributions are given by

1

2

(
dN

dη
(η) + dN

dη
(−η)

)
= 〈N+〉 fs(η),

1

2

(
dN

dη
(η) − dN

dη
(−η)

)
= 〈N−〉 fa(η), (2)

with N± = NA ± NB denoting the sum and the difference of
sources from A and B, whereas fs(η) and fa(η) denote the
symmetric and antisymmetric parts of the profile f (η).

In our simulations, centrality is determined via the quan-
tiles of the total number of wounded partons, 〈N+〉.

From various studies of hadron multiplicity distributions
in p-Pb collisions, it is known that the Glauber approach of
hadron production must be amended with fluctuations of the
number of sources. Typically, the negative binomial distri-
bution is overlaid over the distribution of wounded sources.
We follow this scheme in our simulations, with the following
prescription: we generate events with GLISSANDO 3 [39], with
nA and nB wounded partons in a given event. Then we generate
randomly NA = k(NA; nA, q) and NB = k(NB; nB, q), where

k(x; n, q) = NB

[
x;

nq

1 − q
, q

]
(3)

is the negative binomial distribution with x = 0 removed,
i.e., x = 1, 2, 3, . . . . The cases where NA = 0 or NB = 0
(no strings) are disregarded. By construction, 〈x〉 = n and
var(x) = n/q. The parameter q � 1, treated as a free variable
to be fitted, controls the variance of the number of strings.

The role of increased fluctuations introduced by an overlaid
distribution enters indirectly into our analysis, by modifying
the division of the event sample into centrality classes.

III. EXTRACTION OF THE EMISSION PROFILE
FROM PSEUDORAPIDITY SPECTRA

This section explains in detail how the experimental data
on rapidity spectra from p-Pb and Pb-Pb collisions at the

LHC with
√

sNN = 5.02 TeV were jointly fitted to obtain the
emission profiles of Eq. (1). We carry out the following steps:

(1) Choose the variant of the model by deciding on the
number of partons per nucleon.

(2) GLISSANDO 3 is run to generate event samples with the
number of wounded sources nA and nB for both the
p-Pb and Pb-Pb collisions.

(3) For a given value of, samples with string numbers NA

and NB are obtained by overlaying a negative binomial
distribution according to Eq. (3).

(4) The samples for p-Pb and Pb-Pb are then divided into
centrality classes according to the values of N+.

(5) The values of 〈NA〉 and 〈NB〉 in all centrality classes
are used to construct the least-squares fit of the pro-
files f (η) to the experimental pseudorapidity spectra
dNch/dη from Eq. (1).

(6) Steps 3–5 are repeated to obtain the optimum value
of q, corresponding to a global minimum of the least
square function. The result is the optimum profile
f (η).

In the fitting procedure, the symmetric part of the profile,
fs(η), is sensitive to both the Pb-Pb and p-Pb data, whereas
the the antisymmetric part, fa(η), depends only on the (asym-
metric) p-Pb collisions, as is obvious from Eq. (2). As we wish
to fit jointly the Pb-Pb and p-Pb data, we choose the collision
energy where both sets of data on the pseudorapidity spectra
are available, namely

√
sNN = 5.02 TeV. Specifically, we take

ALICE data [40] on pseudorapidity spectra of Pb-Pb, and the
ATLAS data [41] on pseudorapidity spectra of p-Pb. We note
that the data used for the p-Pb pseudorapidity spectra for p-Pb
collisions from ATLAS [41] are accurately compatible with
the ALICE [40] data with the V0A selection of centrality.
We prefer to use the ATLAS data here, as we will compare
the results of our model with the pseudorapidity correlations
extracted from the ATLAS experiment [41].

The experimental data for p-Pb collisions at the LHC are
shifted with respect to the NN center-of-mass frame by 0.465
units of rapidity. Since rapidity y and pseudorapidity η are
related as pT sinh(η) =

√
m2 + p2

T sinh(y), where pT is the
transverse momentum and m the particle’s mass, one can
obtain η ≈ y in the case m � pT , which we assume in our
further considerations. One can justify this assumption by
the fact that the emitted particles are predominantly pions
with a small rest mass of mπ � 140 MeV, which is smaller
than typical values of pT . Thus, to a good approximation

TABLE I. Optimum values of the negative
binomial parameter q and the corresponding value
of the least-squares function L̂, for models with
various numbers of partons per nucleon.

Constituents q L̃

3 0.245 476
4 0.905 140
5 0.785 137
6 0.805 571
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FIG. 1. Model results (solid lines) and ALICE data [40] (points with bands indicating experimental errors) for the pseudorapidity spectra
in Pb-Pb collisions at 5.02 TeV. Subsequent panels correspond to models with 3, 4, 5, and 6 partons per nucleon.

the pseudorapidity η in the laboratory frame is related to η

in the NN center-of-mass (CM) frame, ηlab � ηCM + 0.465.
This allows us to transform the experimental pseudorapidity
spectra from p-Pb collisions into the CM frame by a simple
shift.

A joint least-squares fit for Pb-Pb and p-Pb spectra can be
performed in the following way: For each value of q individ-
ually the numbers of sources in the wounded parton model,
overlaid with the negative binomial distribution, are generated
with the help of GLISSANDO 3 [39]. In order to obtain the
emission profile f (η) we construct for each value of η for
which the data exists the least squares sum L( fA(η), fB(η)),
depending on two fitting parameters fA(η) and fB(η):

L( fA(η), fB(η))

= 1

N

N∑
i=1

{[(
dN

dη
(η)

)
i

− [〈NA〉i fA(η) + 〈NB〉i fB(η)]

]2

+
[(

dN

dη
(−η)

)
i

− [〈NB〉i fA(η) + 〈NA〉i fB(η)]

]2
}

, (4)

where i runs over all spectra (i.e., all the centrality classes
and reactions) that are to be fitted.1 We then minimize
L(η, fA, fB) at each η, which yields the functions fA(η) and
fB(η). Our choice for the least-squares sum, Eq. (4), has
the desired symmetry property L(−η, fA, fB) = L(η, fB, fA),
which follows from the fact that fA(η) = fB(−η), which
means the replacement of the left-going wounded source by
the right-going one. Recall that in the notation of Eq. (1)
f (η) = fA(η) = fB(−η).

1We use all the available rapidity spectra for Pb-Pb and p-Pb,
except the p-Pb data for the most central 1% of collisions, which
are far off the optimal fit, hinting at different physics in this case.

The procedure described above provides the optimum
emission spectrum f (η) for a given value of the negative
binomial parameter q of Eq. (3). To obtain the optimum
value of q we additionally minimize the least-squares sum (4)
summed over all values of η, denoted as L̂, with respect to
q. The optimum values for q for the models with 3, 4, 5, and
6 partons per nucleon together with the corresponding values
for the least-squares sum L̃ are listed in Table I. We note that
the values for L̃ are lowest for models with 4 or 5 constituents
per nucleon. Thus in the following we focus on results for
these two cases.

The results of our fits for the symmetric parts of the Pb-
Pb pseudorapidity spectra for the models with 3, 4, 5, and 6
partons per nucleon are shown in Fig. 1. As the figure shows,
the ALICE data [40] are reasonably well reproduced for all
variants of the model and for all centrality selections. Thus
the Pb-Pb spectra do not discriminate between the variants of
the model.

The situation is different for the p-Pb case. Figures 2 and 3
show, respectively, the symmetric and antisymmetric parts of
the pseudorapidity spectra for p-Pb collisions, compared the
ATLAS data [41]. Whereas for the antisymmetric contribu-
tions, shown in Fig. 3, all variants of the model reproduce the
data reasonably well, significant differences can be noticed
in the symmetric contributions, shown in Fig. 2. Acceptable
agreement is obtained for 4 and 5 partons. In the following
parts of this article, when considering correlations, we will
thus focus on the 4 and 5 parton cases.

The corresponding universal profiles f (η) obtained from
our fitting procedure are shown in Fig. 4, together with their
symmetric and antisymmetric contributions fs(η) and fa(η)
given in Fig. 5. We note from Fig. 4 that the profiles scaled
by the central value, f (η)/ f (0), differ by a few percent at
peripheral values of η, with a steeper fall-off with η for larger
number of partons per nucleon.
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(a) (b)

(c) (d)

FIG. 2. Model results (solid lines) and ATLAS data [41] (points with bands indicating experimental errors) for the symmetric parts of the
pseudorapidity spectra in p-Pb collisions at 5.02 TeV. Subsequent panels correspond to models with 3, 4, 5, and 6 partons per nucleon.

Figure 5(a) shows that the symmetric parts of the profiles,
fs(η), decrease with the number of partons. This behavior is
natural and follows from the first of Eqs. (2). When 〈N+〉
decreases due to a smaller number of partons per nucleon,
the magnitude of fs(η) needs to be correspondingly increased
to yield the same pseudorapidity spectra. Figure 5(b) shows
the antisymmetric parts of the profiles, fa(η). As can be seen,
the different number of partons per nucleon has essentially
no influence on fa(η). We have found no apparent physical

reason for such a behavior, which may be considered acciden-
tal. The overall steeper fall-off of profiles f (η)/ f (0) in Fig. 4
with increasing number of partons per nucleon can thus be
understood via the decrease of the magnitude of fs(η), with
no change in fa(η).

We remark that instead of the least-squares sum of Eq. (4)
we can use the χ2 function, which yields essentially the
same optimum results. Regarding the values of χ2/d.o.f.,
admittedly they are large due to the approximate nature of our

(a) (b)

(c) (d)

FIG. 3. Same as in Fig. 2, but for the antisymmetric part of the p-Pb spectra.
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FIG. 4. Emission profile in pseudorapidity, divided by its value
at the origin, f (η)/ f (0), for models with various numbers of con-
stituents per nucleon.

model, which assumes a very simple uniform mechanism of
string production and breaking. Thus the values of χ2/d.o.f.
cannot be used as stringent measures of the statistical quality
of the fit, which is an issue shared by many models applied to
ultrarelativistic nuclear collisions.

To conclude this section, as a preliminary step of our study
we were able to uniformly fit in an approximate way the

(a)

(b)

FIG. 5. Symmetric (a) and antisymmetric (b) parts of the emis-
sion profile f (η) for models with various numbers of constituents per
nucleon.

experimental data for Pb-Pb and p-Pb collisions from the
ALICE [40] and ATLAS [41] Collaborations, respectively,
in the wounded parton model, with a preference for a model
variant with 4 or 5 wounded constituents per nucleon.

IV. STRING END-POINT DISTRIBUTIONS

In this section we proceed in analogy to our earlier work
[1]. However, in contrast to the description used therein, in this
article we pass from the profile functions in pseudorapidity η,
obtained in the previous section, to the profile functions in
rapidity y. The reason is technical but relevant. The method
of [1] works for profile functions which are unimodal (have a
single maximum), as this is what follows from strings contin-
uously stretched between fluctuating endpoints. Unimodality
is not the case in the present analysis, as can be seen from
Fig. 4. For instance, for the case of 3 constituent partons per
nucleon, one can notice a maximum at η � −1.8 and another
weak maximum at η � 0.8 (variants with a larger number of
constituents have a maximum outside of the left bound of the
plot). However, the maximum near 0.8 is an artifact of using
pseudorapidity rather than rapidity.

As can be seen from the experimental data [40–43], pseu-
dorapidity spectra mainly differ from rapidity spectra by a
pronounced dip around η = 0, which trivially follows from
the kinematic relation between rapidity and pseudorapidity.
In order to pass from pseudorapidity to rapidity for the
spectra which are largely dominated by the pions, we use the
simplifying assumption of a factorization of the rapidity and
pT dependence of the spectra. Then, approximately, one can
write

dN

dy
=

∫
d pT

dη(y, pT , mπ )

d pT dy

dN

dη
≈ dη

dy

dN

dη

∣∣∣∣
y≈η

. (5)

The Jacobian dη/dy in the last part of Eq. (5) can be ob-
tained from the experimental data from ALICE for the 5%
most central Pb-Pb collisions [40], where both the rapidity,
dN/dy, and pseudorapidity, dN/dη, spectra are provided.
This procedure, in essence, is a way of averaging over the
transverse momentum pT , incorporating the experimental
acceptance.

Consequently, we can obtain the one-body emission pro-
files f (y) in terms of f (η) presented in Sec. III, namely,

f (y) = dη

dy
f (η). (6)

Thus obtained result for dη/dy is shown in Fig. 6. Similarly,
for the two-particle emission profiles we get

f2(y1, y2) = dη1

dy1

dη2

dy2
f2(η1, η2), (7)

which will be used in the next section.
The results for f (y) in models with 3, 4, 5, and 6 wounded

partons obtained with Eq. (6) are shown in Fig. 7. The feature
that can be seen when comparing to f (η) from Fig. 4 is the
absence of the central dip in the symmetric part. As a result,
f (y) at various centralities are unimodal functions (have only
one maximum at negative y), which allows us to carry out the
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FIG. 6. The Jacobian dη/dy obtained from Eq. (6) and the
experimental data from [40].

analysis along the lines of [1]. We recapitulate the basic steps
of the procedure:

(1) Each of the NA and NB wounded sources is associated
with a longitudinally extended string.

(2) A string breaking at spatial rapidity y corresponds
to a particle emission at rapidity y. The corre-
sponding probability distribution for string breaking,
s(y; y1, y2), is uniform between the endpoints y1 and
y2, namely s(y; y1, y2) = ω[θ (y1 < y < y2) + θ (y2 <

y < y1)], where ω is a normalization constant and
the function θ equals 1 wherever the condition in its
argument is fulfilled, and 0 otherwise.

(3) String end points y1 and y2 follow distributions g1(y1)
and g2(y2), respectively. The corresponding cumu-
lative distribution functions (CDFs) are denoted as
G1(y1) and G2(y2).

Then, the one-body emission profile f (y) can be written as
[1]

f (y) =
∫ ∞

−∞
dy1

∫ ∞

−∞
dy2g1(y1)g2(y2)s(y; y1, y2)

= ω

{
1

2
− 2

[
G1(y) − 1

2

][
G2(y) − 1

2

]}
. (8)

It is apparent from Eq. (8) that for a given one-body emission
profile the solution to the string endpoint distributions G1(y)
and G2(y) are not unique. It is, nevertheless, possible to
constrain the range of possible solutions for the CDFs [1].
We denote y0 as the position of the maximum of f (y), and
consider the two extreme cases:

(1) f (y0) = ω/2: In this case the string endpoint distribu-
tions g1(y) and g2(y) for both ends of the strings are
identical. We label this case “g1 = g2.” Of course, in
this case also G1(y) = G2(y).

(2) f (y0) = ω: In this case the supports for the string
endpoint distributions g1(y) and g2(y) in rapidity are
disjoint, hence we refer to this case as the “disjoint
case.” The distribution of the left endpoint, g1, has
support for y � y0, whereas the distribution of the right

(a)

(b)

(c)

FIG. 7. Emission profiles of individual strings in rapidity for
models with various numbers of wounded constituents (a) together
with their respective symmetric (b) and antisymmetric parts (c).

endpoint, g1, has support for y � y0. Correspondingly,
G1(y) = 1 for y � y0 and G2(y) = 0 for y � y0.

Figure 8(a) shows these two limiting CDFs obtained with
the profile f (y) from Fig. 7 for the 5 parton case and Fig. 8(b)
gives the corresponding string endpoint distributions, g1(y)
and g2(y). The position of the maximum is y0 � −2. We note
the desired features mentioned above. The disjoint case is
interpreted in such a way that the left endpoint is always at
y � y0, essentially outside of the scope of the plot, whereas
the right endpoint is smoothly distributed at y � y0, with
highest probability at high values of y. As discussed in
Ref. [1], any solution of Eq. (8) must have G1(y) between the
upper solid line and the dashed line, and G2(y) between the
lower solid line and the dashed line in Fig. 8(a). This provides
useful constraints that carry over to the analysis of two-body
correlations.
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(a)

(b)

FIG. 8. Solutions for the cumulative distribution functions of
string endpoints (a) and the corresponding probability distributions
(b) in the g1 = g2 and disjoint cases (dashed and solid lines, respec-
tively). Model with 5 constituent partons per nucleon.

V. TWO-PARTICLE CORRELATIONS

This section presents our model results for the two-particle
correlations in pseudorapidity obtained for p-Pb and Pb-Pb
collisions at

√
sNN = 5.02 TeV. The findings presented here

complement our earlier results [1] for d-Au and Au-Au
collisions at

√
sNN = 200 GeV, with the main difference that

at
√

sNN = 5.02 TeV a wounded parton model with 4 or 5
constituents per nucleon is used, rather than the model with 3
constituents per nucleon applied at

√
sNN = 200 GeV.

The interesting feature that at higher collision energies one
needs in the wounded picture more partons per nucleon has
also been discussed in Refs. [29,34] within analyses of the
particle multiplicities dNch/dη in A-A collisions. Our results
are in line with the conclusion of [34], stating that whereas
the fits at RHIC collision energies lead to 3 constituents
partons, higher collision energies prefer about 5 partons per
nucleon.

Two-particle correlations in A-B collisions are defined
as

CAB(η1, η2) = 〈N (η1, η2)〉
〈N (η1)〉〈N (η2)〉 , (9)

where N (η1, η2) is the number of pairs with one particle in a
bin centered at η1 and the other in a bin centered at η2, and
N (ηi ) is the number of particles in a bin centered at ηi. To the
extent that η ≈ y (see the discussion in Sec. IV) and applying
Eqs. (6) and (7), we may write

CAB(η1, η2) ≈ CAB(y1, y2), (10)

since the Jacobian factors dη/dy cancel out between the
numerator and denominator.

In analogy to the profile for the emission of individual
particles from a single string, a two-particle profile for the
emission of particle pairs from single strings is [1]

f2(y1, y2) = ω2G1[min(y1, y2)]{1 − G2[max(y1, y2)]}
+(1 ↔ 2). (11)

With this profile one obtains the correlation in pseudorapid-
ity for particle pairs emitted from all strings in A-B col-
lisions as

CAB(y1, y2) = 1 + covAB(y1, y2)

f (y1) f (y2)
, (12)

where covAB(y1, y2) is

covAB(y1, y2)

= 〈NA〉cov(y1, y2) + 〈NB〉cov(−y1,−y2)

+var(NA) f (y1) f (y2) + var(NB) f (−y1) f (−y2)

+cov(NA, NB)[ f (y1) f (−y2) + f (−y1) f (y2)]. (13)

Contributions to this expression come from emission of a
hadron pair from the same string (associated with a wounded
parton in A or B nucleus) and from the case where the two
hadrons originate from different strings.

We emphasize that while the different string endpoint
distributions found in the previous section yield the same
one-body emission spectra by construction, the same is not
in general true for the corresponding two-particle correla-
tions. Indeed, noticeable differences occur, as can be seen in
Fig. 9, where results for CAB(η1, η2) � CAB(y1, y2) in both
the g1 = g2 and the disjoint cases are shown: Both cases
yield correlations with a ridgelike structure along the η1 = η2

direction. However, for the g1 = g2 case the ridge is higher
than that of the disjoint case and thus exhibits a steeper
decrease in the η1 = −η2 direction. We found the same qual-
itative behavior also for correlations from d-Au and Au-Au
collisions at 200 GeV [1]. For comparison, we also show
in Fig. 9(c) the results for the 4 constituent model in the
disjoint case, which is close to the 5 constituent case from
panel (b).

To analyze CAB(y1, y2) in more quantitative detail, we also
study its projections on the Legendre polynomials [44]

anm =
∫ Y
−Y dy1

∫ Y
−Y dy2C(y1, y2)Tn

( y1

Y

)
Tm

( y2

Y

)
∫ Y
−Y dy1

∫ Y
−Y dy2C(y1, y2)

, (14)

where we follow the choice of Y = 2.4 of the ATLAS Col-
laboration in order to be able to compare with their results.
The dominant contributions to CAB(y1, y2) are represented
by the a11 coefficients. Our model results for p-Pb and Pb-
Pb collisions at

√
sNN = 5.02 TeV are shown in Fig. 10

as a function of the number of charged particles Nch that
are produced within the collisions. As expected, the larger
fall-off from the ridge for the correlations in the g1 = g2

case is reflected in larger a11 coefficients. Our results are
shown in comparison to values extracted from ATLAS data
for Pb-Pb collisions at

√
sNN = 2.76 TeV and p-Pb collisions
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FIG. 9. Correlations C(η1, η2) in pseudorapidity for the g1 = g2

(a) and the disjoint (b) cases for the 5% most central Pb-Pb collisions
at

√
sNN = 5.02 TeV for the model with 5 constituent partons per

nucleon. In (c) the disjoint case for the model with 4 constituent
partons per nucleon is shown.

at
√

sNN = 5.02 TeV from [45]. We use the data for a11

subtracted by the contribution coming from the short range
interactions.

To show our model results as functions of 〈Nch〉 rather than
〈N+〉, we infer from Eq. (2) that

〈Nch〉 = 〈N+〉
∫ Y

−Y
dη fs(η). (15)

From this relation we obtain the proportionality 〈Nch〉 =
5.76〈N+〉 and 〈Nch〉 = 5.43〈N+〉 in the case of p-Pb and Pb-Pb
collisions, respectively (both with 5 constituents per nucleon).
For the 4 constituent model the corresponding values are

(b)

(a)

FIG. 10. Model results for the coefficients a11 for Pb-Pb (a) and
p-Pb (b) collisions at

√
sNN = 5.02 TeV, corresponding to the g1 =

g2 and disjoint cases, plotted as functions of the number of charged
particles Nch (points), in comparison to experimental data from AT-
LAS [45] (solid line) at

√
sNN = 2.76 TeV and at

√
sNN = 5.02 TeV

for Pb-Pb and p-Pb collisions respectively. Models with 4 and 5
constituent partons per nucleon.

〈Nch〉 = 6.97〈N+〉 and 〈Nch〉 = 6.64〈N+〉 for p-Pb and Pb-Pb
collisions, respectively.

We note from Fig. 10 that the model results for the a11

coefficient for the disjoint case are close to the ATLAS data,
compared to the g1 = g2 case which largely overestimates the
data by about a factor of 4. We alert the reader that for the
Pb-Pb there is a mismatch in the collision energy, as the model
analysis is carried for

√
sNN = 5.02 TeV, while the data are

available for
√

sNN = 2.76 TeV. Numerically, the mismatch is
not significant. For comparison, we show in Fig. 10 the results
for the 4 and 5 constituent models, which are very close to
each other.

We note that the model results for a11 scale approximately
as 1/Nch ∼ 1/N+, as follows from Eqs. (12) and (13). Speak-
ing of the decomposition (13), it is interesting to separate the
〈NA〉cov(y1, y2) + 〈NB〉cov(−y1,−y2) term originating from
intrinsic correlations of emission from a string, from the
remainder coming from the fluctuation of the number of
strings. Following [1], we denote the corresponding Legendre
coefficient as a∗

11. Then the ratio a∗
11/a11 is a measure of

the intrinsic correlations compared to the total. This ratio is
plotted in Fig. 11 for the models with 4 and 5 constituents as
a function of the number of produced charged particles Nch,
for both p-Pb and Pb-Pb collisions. As can be seen, for the
disjoint case which is close to the data, for Pb-Pb the ratio is
around 0.4, indicating a comparable share of the contributions
from intrinsic string endpoint fluctuations and the fluctuation
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FIG. 11. Ratios a∗
11/a11 for Pb-Pb (a) and p-Pb (b) collisions at√

sNN = 5.02 TeV as functions of the number of charged particles
Nch. Models with 4 and 5 constituent partons per nucleon.

of the number of strings. For the p-Pb case, the corresponding
ratio is above 0.8, thus the intrinsic fluctuations dominate here.

VI. p-p COLLISIONS

With the nucleon substructure present in the model with
several constituent partons, it is possible to carry out the
correlation analysis also for the p-p collisions. In doing so,
we use the same emission profile f (η) obtained earlier from
fitting the Pb-Pb and p-Pb pseudorapidity spectra at

√
sNN =

5.02 TeV. As before, the numbers of wounded partons are
obtained with GLISSANDO3 [39] and the negative binomial
distribution is overlaid according to Eq. (3). The results, com-
pared to ATLAS data [45] at

√
sNN = 13 TeV, are presented in

Fig. 12. We note a fair agreement between the model and the
experiment, again for the disjoint case. Again, the cases with
4 and 5 partons per nucleon are close to each other.

FIG. 12. The Legendre coefficient a11 for p-p collisions at√
sNN = 5.02 TeV, in comparison to the ATLAS data [45] at

√
sNN =

13 TeV. Models with 4 and 5 constituent partons per nucleon.

VII. SUMMARY AND CONCLUSIONS

The basic conclusion of our study is that a very sim-
ple semianalytic approach involving strings of fluctuating
endpoints is capable of explaining the basic features of the
long-range two-particle correlation data in pseudorapidity, as
measured by the ATLAS Collaboration [45]. In particular, the
model with 4 or 5 constituent partons per nucleon and the dis-
joint distributions for the two fluctuating endpoints reasonably
describes the data for Pb-Pb, p-Pb, and p-p collisions. This ex-
plains why more sophisticated models incorporating the string
breaking mechanism, such as those used in various popular
Monte Carlo generators, work in describing the longitudinal
correlations.

Our approach merges the wounded constituent model with
a generic description of string breaking that was first presented
in Refs. [2] and [1], and used for nuclear collisions at

√
sNN =

200 GeV at RHIC. The extension to LHC energies, pre-
sented here for

√
sNN = 5.02 TeV, seems phenomenologically

successful. Further tests of the model could be performed
when the experimental correlation analysis at other collision
energies, with broader pseudorapidity coverage, and for other
systems become available.
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