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Near-barrier heavy-ion fusion: Role of boundary conditions in coupling of channels
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The problem of a quantum-mechanical description of a near-barrier fusion of heavy nuclei, that occurs at
strong coupling of their relative motion to surface vibrations, is analyzed. To this end, an efficient finite-
element method is proposed for numerically solving coupled Schrödinger equations with boundary conditions
corresponding to total absorption. The method allows us to eliminate the instabilities in the numerical solutions
that appear at a large number of coupled channels in some reactions. To illustrate the validity of our approach,
the results of fusion cross section of the 64Ni + 100Mo and 36S + 48Ca reactions have been re-examined.
The obtained results demonstrate a remarkable agreement with the available experimental data. It is found
that experimental data can be reproduced with the use of the Woods-Saxon potential, without introducing the
repulsive cores. It appears that the fusion cross sections at deep sub-barrier energies are sensitive to the potential
pocket profile.
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I. INTRODUCTION

Nuclear fusion phenomena have attracted considerable
theoretical and experimental attention over several decades
[1–7]. Although basic notions of this phenomenon are rel-
atively well understood, there are still many hidden details
that require clarification. This is especially important, for
example, in light of synthesis of superheavy nuclei and eval-

uation of boundaries of the nuclear drip line. According to
general wisdom, the latest problems are closely related to
intimate knowledge of various stages of astrophysical nu-
cleogenesis, from the Big Bang to creation of life on our
Earth.

Thanks to significant improvement of experimental sen-
sitivity in view of the remarkable development of semicon-
ductor detectors and computational capability, it becomes
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possible to systematically investigate stable and exotic nuclei
at energies well below the Coulomb barrier. In particular, the
fusion experimental data at deep sub-barrier energy have been
measured down to 10−5 mb [8]. Evidently, already available
experimental data require reliable qualitative and quantitative
interpretation. For example, the threshold anomaly problem
[9–11], diffuseness parameter anomaly problem [12,13], deep
sub-barrier fusion hindrance and its associated impact on
stellar evolution [14–16], subbarrier positive Q-value fusion
enhancement [17–22], and above barrier fusion suppression
phenomena, to name just a few, are challenges to the theory.
It is at once apparent that the degree of accuracy of theoretical
calculations may lead to different conclusions on the same
phenomenon [8,23–29].

The cross sections of near–barrier and especially sub-
barrier fusion of nuclei can be described within the coupled-
channels models that are based on various approximations
(e.g., Refs. [30–33]). In particular, the approach of di-
rectly constructing a numerical solution to the set of cou-
pled Schrödinger equations (see for details Refs. [6,34])
provides a convenient ground from which to calculate the
fusion cross sections. Note that colliding nuclei may de-
velop large dynamical deformations. Consequently, this prob-
lem requires the consideration of large number of coupled
channels (see, e.g., for discussion Refs. [35–37]). As a re-
sult, one needs to preserve the numerical accuracy of the
calculations, and this requires carefully treating boundary
conditions.

There are generally two approaches to construct the fusion
cross sections based on the solving of the coupled-channels
equations. The first one is to use the regular boundary con-
dition and the complex potential [5]. The fusion is defined
as the absorption of the incident flux due to the imaginary
part of the potential. The fusion cross section can be pre-
dicted accurately by the explicit integration of the imaginary
potential over the radial wave functions. The other approach
adopts the incoming wave boundary condition (IWBC). It
assumes that there is a strong absorption in the inner region
such that the incoming flux never returns. In this case, it
is enough to consider the real potential only [6]. Follow-
ing the same theoretical ideas as in Ref. [6], we develop a
new algorithm for solving a set of second-order differential
equations. We consider the boundary conditions with a strict
requirement of a complete absence of the reflected waves
from the intrinsic region behind the barrier. We calculate the
matrix elements of the interaction between colliding nuclei
explicitly.

The structure of the paper is the following. The theoretical
framework is briefly discussed in Sec. II. Results of numer-
ical calculations on two fusion reaction systems within our
approach are presented in Sec. III. A summary of our work is
given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, for the sake of completeness, we review the
basic notions of the coupled-channels model (see for details,
e.g., Refs. [6,30,34–36,38]).

A. Basic equations

The fusion cross sections, decomposed over partial waves,
have the following form:

σ f (E ) = π h̄2

2μE

∞∑
l=0

(2l + 1)Pl (E ). (1)

Here, E is the center-of-mass energy, μ = APAT /(AP + AT )
is the reduced mass, AP(T ) is the mass of the projectile (target)
nucleus, l is the orbital angular momentum, and Pl (E ) is
the barrier penetration probability. Our task is to find the
coefficients Pl (E ).

Consider a collision between two nuclei, taking into ac-
count the coupling of the relative motion between the centers
of mass of the colliding nuclei, r = (r, r̂) to a nuclear intrinsic
motion ξ . The system Hamiltonian has the following form:

H (r, ξ ) = − h̄2

2μ
∇2

r + V (r) + H0(ξ ) + Vcoup(r, ξ ), (2)

where H0(ξ ) describes the intrinsic structure, while the term
Vcoup(r, ξ ) describes the coupling between the relative motion
and the intrinsic structure. Note that the intrinsic degree of
freedom ξ may have a finite spin I . In this case, for a fixed total
angular momentum J and its z component M of the system,
the channel wave function can be chosen in the following
form:

〈r̂ξ |(αlI )JM〉 =
∑
ml ,mI

〈lml ImI |JM〉Ylml (r̂)ϕαImI (ξ ), (3)

where Ylml (r̂) is the spherical harmonics. The wave functions
of the internal motion ϕαImI (ξ ) is subject to the equation

H0(ξ )ϕαImI (ξ ) = εαIϕαImI (ξ ), (4)

where α stands for quantum numbers associated with the
intrinsic motion and εαI is the corresponding eigenenergy.
Expanding the total wave function with the channel wave
functions as

�J (r, ξ ) =
∑
α,l,I

uJ
αlI (r)

r
〈r̂ξ |(αlI )JM〉, (5)

one obtains the coupled-channels equations for uJ
αlI (r)[

− h̄2

2μ

d2

dr2
+ l (l + 1)h̄2

2μr2
+ V (r) − E + εα,I

]
uJ

αlI (r)

+
∑

α′,l ′,I ′
V J

αlI;α′l ′I ′ (r)uJ
α′l ′I ′ (r) = 0, (6)

where the coupling matrix elements V J
α,l,I;α′,l ′,I ′ (r) are given as

V J
α,l,I;α′,l ′,I ′ (r) = 〈(αlI )JM|Vcoup(�r, ξ )|(α′l ′I ′)JM〉. (7)

In solving the quantum problem in question, we employ
the so-called isocentrifugal approximation (see details in
Ref. [6]). In this approximation, the angular momentum of the
relative motion in each channel is replaced by the total angular
momentum. In this case, one ignores the change of the orbital
angular momentum due to intrinsic excitations. Such approx-
imation allows us to reduce several-fold the dimensionality of
the set of differential equations that should be solved.
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B. Vibrational coupling

To demonstrate all pros and cons of our approach we
analyze couplings of the relative motion to surface vibrations
of a target nucleus only, comparing our results with those well
known from literature. Hereafter, for the sake of convenience,
we consider the potential between the projectile and the target
as a function of the relative distance r between them:

V (r) = VN (r) + VC (r). (8)

The potential contains the Coulomb term VC = ZPZT e2/r and
a phenomenological nuclear potential VN (r), that is chosen in
the Woods-Saxon form:

VN (r) = − V0

1 + exp[(r − R0)/a0]
. (9)

Here, the parameters V0, R0, a0 are the potential depth, poten-
tial radius, and diffuseness, respectively.

The nuclear coupling term of the Hamiltonian (2) can be
generated by changing the target radius in the potential to a
dynamical operator R0 + Ô [39]. The surface operator Ô is
defined as

Ô = βλ√
4π

rcoup A1/3
T (a†

λ0 + aλ0), (10)

where a†
λ0 (aλ0) is the creation (annihilation) operator of the

vibrational mode of the multipolarity λ. In this representation,
the matrix element of the operator Ô has the following form:

Ônm = βλ√
4π

rcoup A1/3
T (

√
mδn,m−1 + √

nδn,m+1), (11)

where the n-phonon state of the multipolarity λ is defined as

|n〉 = 1√
n!

(a†
λ0)n|0〉.

The deformation parameter βλ, that defines the ampli-
tude of the zero-point motion, can be determined from the

experimental transition probability

βλ = 4π

3ZT Rλ
T

√
B(Eλ) ↑

e2
, (12)

where Rλ
T is the radius of the spherical nucleus. In our con-

sideration, the variable rcoup is a free parameter, being slightly
varied around the mean value 1.2 fm. The nuclear coupling
matrix elements are then determined as

V (N )
nm (r) = 〈n|VN (r, Ô)|m〉 − V (0)

N (r)δn,m, (13)

where VN (r, Ô) ⇐⇒ VN (r, R0 + Ô), V (0)
N (r) ≡ VN (r) (see

Eqs. (3.52)–(3.59) in Ref. [6] for more details). The latter term
in Eq. (13) is introduced to counteract the coupling interaction
in the entrance channel [40].

Thus, in the isocentrifugal approximation, the coupled-
channels Schrödinger equation has the following form:[
− h̄2

2μ

d2

dr2
+ l (l + 1)h̄2

2μr2
+ V (0)

N (r) + ZPZT e2

r
+ εn−E

]
ψnno

+
N∑

n′=1

Vnn′ (r)ψn′no (r) = 0. (14)

In the above equation, εn is the excitation energy of the
nth channel or threshold energy, n = 1, ..., N , that is defined
by Eq. (4). The number no is a number of the open entrance
channel with a positive relative energy Eno = E − εno > 0,
no = 1, ..., No � N , and the wave functions {ψnno (r)}N

n=1 are
components of a desirable matrix solution. The coupling
matrix elements (7) are transformed to the matrix element
Vnm(r) that consists of the Coulomb and the nuclear potentials
V (0)
N (r) in each entrance channel.

The solution of Eq. (14) is obtained under the IWBC.
Namely, it is assumed that there is a strong absorption inside
the potential pocket. The asymptotic boundary conditions of
such type are determined conventionally for components of
matrix solutions {ψnno (r)}N

n=1 in the open entrance channels no

with a positive relative energy Eno by the following relations:

ψas
nno

(r) =
{

exp (−ikn(rmin)r)Tnno, r � rmin, kn(rmin) > 0,

H−
l (knr)δn,no − H+

l (knr)Rnno, r > rmax.
(15)

The functions H±
l (knr) = ±iFl (ηn, knr) + Gl (ηn, knr) are the outgoing and the incoming Coulomb partial wave functions,

respectively. They are determined by means of the regular Fl (ηn, knr) and the irregular Gl (ηn, knr) Coulomb partial wave
functions [41]. Here, kn(r) is the local wave number for the nth channel

kn(r) =
√

2μ

h̄2

[
E − εn − l (l + 1)h̄2

2μr2
− V (0)

N (r) − ZPZT e2

r
− Vnn(r)

]
(16)

that depends on the excitation energy εn of the nth channel.
The asymptotic behaviors of the functions H±

l (knr) are de-
fined as

H±
l (knr) → exp

[
±i

(
knr− ηn ln(2knr)+ σln− lπ

2

)]
, (17)

where ηn = knZT ZPe2/(2En) is the Sommerfeld parameter;
σln = arg �(l + 1 + iηn) is the Coulomb phase shift in open
channels at kn =

√
2μ(E − εn)/h̄2 > 0.

On the other hand, for the components of ψas
nno

(r) with
elements n = No + 1, . . . , N , where n is restricted by the
condition En = E − εn�0, we have

ψas
nno

(r) =
{

exp(|kn(rmin)|r), r � rmin,

0, r � rmax.
(18)

The conventional partial fusion probability Pl (E ) for the
incident channel n0 is determined by summation over all open
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channels of intrinsic states at kn(rmin) > 0 for n = 1, . . . , No:

Pl (E ) ≡ T (l )
nono

(E ) =
No∑

n=1

kn(rmin)

kno

∣∣Tnno

∣∣2
, (19)

where the incident wave number kno =
√

2μ(E − εno )/h̄2 .
Finally, the total fusion cross section is expressed as a sum
over partial waves at the center of mass energy E , which is

σ f (E ) =
L∑

l=0

σ
(l )
f (E ) = π

k2
no

L∑
l=0

(2l + 1)Pl (E ). (20)

C. Boundary conditions

Prior to proceeding to the numerical analysis, a few com-
ments are in order. In Eq. (15), rmax is set as a large enough
distance where the interaction is weak, and the off-diagonal
elements of the coupled matrix tend to be zero. The minimal
point rmin is taken as the minimum of the potential pocket.
The plane wave boundary condition at the left boundary rmin

involves only the diagonal part of the coupling matrix element
kn(rmin) from Eq. (16). This requires that the off-diagonal
matrix elements tend to be zero. However, at rmin, the distance
between two nuclei is so short that the off-diagonal matrix
elements are usually not zero. As addressed in Ref. [35], there
can be sudden noncontinuous changes in the left boundary,
and this will cause the distortion for the total wave function in
the barrier region. To resolve this problem, we further develop
the approach proposed in a series of papers [37,42–48].

First, it is reasonable to assume that at rmax the contribution
of closed channels is negligible small. Consequently, we can
use the conventional Dirichlet boundary condition at rmax for
components of matrix solutions ψnno (rmax) = 0 of Eq. (14) for
[n = 1, . . . , N ; no = No + 1, . . . , N] in closed channels [see
also Eq. (18)]. Second, at the left boundary we adopt the linear
transformation method [37]. The essence of this method is the
following:

Let consider the matrix W to be a symmetric matrix of our
problem [see Eq. (14)] of the dimension N × N

Wnm = Wmn

= 2μ

h̄2

[(
l (l + 1)h̄2

2μr2
+ V (0)

N (r)

+ ZPZT e2

r
+ εn

)
δnm + Vnm(r)

]
, (21)

and the constant matrix in the vicinity of the left boundary
point r = rmin. In the above equation, Vnm(r) = V (N )

nm (r) +
V (C)

nm (r), where V (N )
nm (r) is obtained by Eq. (13) and V (C)

nm (r)
is the Coulomb coupling matrix elements (see Eq. (28) in

Ref. [34] for more details). Here, the matrices A and W̃ are the
matrix of eigenvectors and the diagonal matrix of eigenvalues
of the eigenvalue problem, respectively. Namely, we have

WA = AW̃, {W̃}nm = δnmW̃mm,

W̃11 � W̃22 � · · · � W̃NN . (22)

In this case, the linear independent matrix solution
{φnm(r)}N

n,m=1 of Eq. (14) can be written in the form

φnm(r) = Anmym(r), (23)

where functions ym(r) are solutions of the uncoupled equa-
tions

y′′
m(r) + K2

mym(r) = 0, K2
m = 2μ

h̄2 E − W̃mm. (24)

In open channels at K2
m > 0, m = 1, ..., Mo � N , the solutions

ym(r) have the form

ym(r) = exp(−iKmr)√
Km

, (25)

while in closed channels at K2
m � 0, m = Mo + 1, ..., N ,

ym(r) = exp(|Km|r)√|Km| . (26)

In this case, ψnno (r) is expressed by the linear combinations
of the linear independent solutions φnm(r)

ψnno (r) =
Mo∑

m=1

φnm(r)T̂mno ≡
Mo∑

m=1

Anmym(r)T̂mno,

r = rmin. (27)

In this way, the off-diagonal matrix elements have been con-
sidered in our calculations (see Sec. III). We consider the
following boundary conditions in two endpoints. At r = rmin,
we have in terms of corresponding solutions Anm n, m =
1, ..., N at Km � 0, m = 1, ..., Mo � N for open exit channels
and pure imagine Km < 0, m = Mo + 1, ..., N for closed exit
channels

ψas
nno

(r) =
Mo∑

m=1

Anm
exp (−iKmr)√

Km
T̂mno

+
N∑

m=Mo+1

Anm
exp(|Km|r)√|Km| T̂ c

mno
, r = rmin. (28)

At r = rmax, the asymptotic solutions are given in the terms
of normalized Coulomb functions Ĥ±

l (knr) = H±
l (knr)/

√
kn,

kn � 0, n = 1, ..., No � N , and for components of
ψas

nno
(rmax) = o(1) with elements n = No + 1, ..., N for

closed channels,

ψas
nno

(r) =
{

Ĥ−
l (knr)δn,no − Ĥ+

l (knr)R̂nno, r = rmax,

2|kn|1/2rl+1 exp(−|kn|r)U (l + 1 + ηn, 2l + 2, 2|kn|r), r = rmax.
(29)

Here U (l + 1 + ηn, 2l + 2, 2|kn|r) is Whittaker function [41],
T̂nno and R̂nno are desirable partial transmission and reflection

amplitudes, and they are at no = 1 desirable—from a ground
state |io〉 = |no − 1〉 = |0〉 of the intrinsic motion before the
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collision, T̂ c
mno

are transmission amplitudes in closed channels
m = Mo + 1, ..., N .

The third type or Robin boundary conditions for solutions
ψnno (r) of Eq. (14) follow from their asymptotic expansion
ψnno (r)(

dψnno (r)

dr
−

N∑
n′=1

Gnn′ (r)ψn′no (r)

)
r=rmin,rmax

= 0, (30)

where Gnn′ (r) are solutions of algebraic problem(
dψas

nno
(r)

dr
−

N∑
n′=1

Gnn′ (r)ψas
n′no

(r)

)
r=rmin,rmax

= 0. (31)

In this case, at fixed orbital momentum l the partial fusion
probability

Pl (E ) ≡ T (l )
nono

(E ) (32)

is given by summation over all possible intrinsic states:

T (l )
nono

(E ) =
Mo∑

m=1

∣∣T̂mno

∣∣2
,

R(l )
nono

(E ) =
No∑

n=1

∣∣R̂nno

∣∣2
, (33)

T (l )
nono

(E ) = 1 − R(l )
nono

(E ),

that we used P(l )
nono

(E ) ≡ T (l )
nono

(E ) in the conventional formula
for total fusion cross section (20). The above discussed ideas
have been transformed to the improved version of the program
KANTBP used in our calculations. This program is based
on the finite-element method and will be presented in the
forthcoming paper.

It is noteworthy that the condition T (l )
nono

(E ) + R(l )
nono

(E ) −
1 = 0 fulfills in below calculations with ten significant digits.
This means that the calculated scattering S matrix is symmet-
ric and unitary with an accuracy of the same order [45]. The
reader can find details of the preceding version of the program
KANTBP in Refs. [43,44].

III. RESULTS AND DISCUSSION

In order to validate our approach, we calculate the tun-
neling probability and fusion cross sections for 16O + 144Sm
by means of KANTBP. We consider one incident channel and
one coupled channel. Only the low-lying collective 3− vibra-
tional state of 144Sm with the excitation energy 1.81 MeV
is taken into account. Our results demonstrates a remarkable
agreement with those obtained by the modified Numerov
(MNumerov) method (employed in CCFULL) (see Fig. 1). The
potential parameters, used in this calculation, produce a very
steep potential pocket, with barrier height at 61.25 MeV and
pocket minimum at 8.94 MeV. The lowest incident energy is
55 MeV, which is far higher than the potential minimum.

For most fusion reaction systems, the results predicted
with the use of KANTBP and CCFULL are almost identical
when there are few coupled channels at near-barrier incident
energy. For example, we observe such the agreement as well

0.0
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0.4
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1.0

P l
=

0 
(E

)

MNumerov
KANTBP
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300

450

600

55 60 65 70

σ 
(m

b)

 E (MeV)
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100

101

102

103

55 60 65 70

 E (MeV)

FIG. 1. The tunneling probability and fusion cross sections for
16O + 144Sm at linearization and logarithmic scale. The results

obtained with the use of CCFULL are connected by solid line; also
labeled as MNumerov. The results obtained by means of KANTBP are
denoted by open circles. The parameters used in both calculations
are taken from Ref. [34].

for 32S, 40Ca + 90,94,96Zr reactions. The method introduced
in these cases does not gain so much. However, when the
number of coupled channels is increased considerably, the
differences become more evident. Besides that, at the deep
sub-barrier energy region, when the incident energy is close
to the potential minimum, the fusion cross sections are very
low and quite sensitive to the theoretical scheme.

In the following, we will consider 64Ni + 100Mo and
36S + 48Ca reactions and compare the results obtained by

means of our approach and with the use of CCFULL. These
two reactions have been both measured down to the deep
sub-barrier energy region. Because of the instability of the
modified Numerov method used in the CCFULL calculations,
the shapes of the cross section lines can be different by
connecting fusion cross section points at different incident
energies. In order to avoid the shape uncertainty, we perform
calculations at available experimental data except where there
is no experimental point at the lowest energy.

In Table I, the adopted structure properties including exci-
tation energies and deformation parameters for the nuclei used
in this study are listed [49,50]. The low-lying collective 2+
and 3− vibrational states are considered. The radius parameter
rcoup in the coupling interactions of Eq. (10) is assumed as

TABLE I. Adopted excitation energies Ex , spins and parities
λπ , π = (−1)λ, and deformation parameters βλ of the low-lying
collective excited states for the indicated nuclei. The units of the
excitation energies are in MeV.

Nucleus 36S 48Ca 64Ni 100Mo

E2+ [49] 3.291 3.832 1.346 0.536
β2 [49] 0.168 0.106 0.179 0.231
E3− [50] 4.193 4.507 3.560 1.908
β3 [50] 0.376 0.230 0.201 0.218
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1.2 fm for both target and projectile in all the following
calculations. The numbers of target 3− phonon, target 2+
phonon, and projectile 2+ phonon are denoted as NT3− , NT2+ ,
and NP2+ respectively. The total coupled-channels number
will be Ncoup = (NT3− + 1)(NT2+ + 1)(NP2+ + 1) − 1 when all
mutual excitations are included. It means that number of
coupled equations in Eq. (14) is N = Ncoup + 1.

The Woods-Saxon potential parameters in Eq. (9) derived
from Akyüz-Winther (AW) parametrization [53,54] are used
in the next step of calculations. This potential is obtained by
means of fitting large-scale experimental scattering data, and
has been successfully used in describing different kinds of
reactions. It is written as

V (0)
N (r) = − V0

1 + exp[(r − RP − RT )/a0]
, (34)

where

V0 = (16πγ a0R̄) MeV,

1

a0
= 1.17

[
1 + 0.53

(
A−1/3

P + A−1/3
T

)]
fm−1,

R̄ = RPRT

RP + RT
,

Ri = (
1.2A1/3

i − 0.09
)

fm, i = P, T,

γ = 0.95

(
1 − 1.8

(NP − ZP )(NT − ZT )

APAT

)
MeV fm−2.

Here NP(T ) is the neutron number of the projectile (target) nu-
cleus. The fusion reaction 64Ni + 100Mo had been measured
at the superconducting linear accelerator ATLAS of Argonne
National Laboratory [51]. The coupled-channel calculations
that adopted different vibrational properties and nuclear ra-
dius were unable to reproduce the experimental fusion cross
sections at deep sub-barrier energies. Hence, it was concluded
that this system exhibits a hindrance for fusion. In Ref. [29],
the CC calculations with the M3Y+ repulsion potential were
used to describe the experimental data. Later, it was reported
in Ref. [52] that the coupled-channel calculations, including
a much deeper well potential than the standard AW potential
[53,54] and a small radius parameter, will fit the experimental
data well. In Ref. [19], the authors reproduced the major part
of the experimental data by means of the coupled-channel
method [35,36]. In these calculations, the standard AW poten-
tial, and the phonon numbers NT3− = 2, NT2+ = 2, and NP2+ =
2, NP3− = 1 are adopted. However, the slopes are deeper, and
the predicted cross sections are generally smaller than the
experimental data for energies E � 125 MeV.

The results obtained by means of KANTBP repro-
duce the experimental data well (see Fig. 2), without
any special settings on the potential. In these calcula-
tions, 26 coupled channels are considered in the cal-
culations, taking into account the number of excited
states of the target: NT3− = 2, NT2+ = 2, and NP2+ = 2.
The detailed channels are listed in Table II. The standard AW
potential [53,54] is adopted. Note that the above-barrier and
below-barrier fusion cross sections are described within the
experimental errors quite well. In contrast, the CCFULL results
fluctuate when the incident energy E < 130 MeV, and far

FIG. 2. Fusion cross sections for 64Ni + 100Mo. The experimen-
tal data (open circles) are from Ref. [51]. The fusion cross sections
at the lowest two energies are the upper limits, which are indicated
with arrows. The comparison of results obtained by means of CCFULL

(solid line, also labeled as MNumerov), and by means of KANTBP

(dotted line). All calculations are performed at the experimental
incident energies except where there is no experimental point at the
lowest energy. The insert is an enlargement of the sub-barrier fusion
cross sections.

from the experimental data at deep sub-barrier energy region.
We have also tested the predictions obtained with the use
of CCFULL + stabilization method (see Ref. [55]), which is
the same as the solid lines shown in Fig. 2. It should also
be noted that when the Coulomb potential is changed to a
spherical one, the instability at the low-energy tail will be
shifted downward according to the radius parameters because
the spherical Coulomb potential produces a deeper potential
pocket and lower threshold energy.

In these calculations for l = 0, the largest diagonal matrix
elements of the matrix h̄2W/2μ in Eq. (21) is 130.98 MeV.
At the incident energy E < 130.98 MeV, the results of

TABLE II. The list of the 26 coupled channel for NT3− = 2,
NT2+ = 2, NP2+ = 2 in the form of |T3− T2+ P2+〉 excluding the ground-
state channel |000〉.

Configuration Channels

Projectile |001〉, |002〉
Target |100〉, |200〉, |010〉, |020〉, |110〉, |120〉, |210〉, |220〉
Mutual |101〉, |201〉, |011〉, |021〉, |111〉, |121〉, |211〉, |221〉

|102〉, |202〉, |012〉, |022〉, |112〉, |122〉, |212〉, |222〉
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FIG. 3. Fusion cross sections for 36S + 48Ca. The notations are
the same as in Fig. 2. The experimental data (open circles) on fusion
cross sections are from Ref. [15]. The calculations are performed at
the experimental incident energies except where there is no experi-
mental point at the lowest energy. The insert is an enlargement of the
sub-barrier fusion cross sections.

calculations should be influenced heavily by the nondiagonal
elements. However, this effect is not considered in CCFULL.
This observation explains the reason why the calculation start
to fluctuate below this energy. The linear transform procedure
introduced in this study changes not only the threshold energy
by diagonalization, but also the number of open channels and
closed channels. As a result, the final transmission matrix,
and the cross sections will be affected. By considering the
nondiagonal element in the W matrix at the left boundary,
the calculation by KANTBP produces more stable results below
about 130 MeV.

The fusion reaction 36S + 48Ca was performed at the ac-
celerator of the Laboratori Nazionali di Legnaro of INFN [15].
A deep sub-barrier fusion hindrance feature of this reaction
system had been reported. A large diffuseness parameter of
a = 0.95 fm was used to reproduce the data above and below
the barrier, which may actually mimic the presence of the deep
inelastic reactions [12]. In Refs. [56] and [16], the double-
folding ion-ion potential from different parametrization plus
a repulsive contact term was adopted to describe the exper-
imental cross sections. A weak and short-ranged imaginary
potential is also used in Ref. [16] in order to remove some
unwanted fluctuations in the theoretical calculation.

The results of fusion cross section calculations for
36S + 48Ca are presented in Fig. 3. In KANTBP, we use the

same standard AW nuclear potential and the 26 coupled chan-
nels are considered, since there are the following excitations:

TABLE III. Woods-Saxon potential parameters V0 (MeV), a0

(fm), R0 (fm), fitted at different combinations of the vibration phonon
numbers NT3− , NP2+ , NT2+ for fusion excitation function of the
36S + 48Ca reaction. The standard AW-type potential parameters are

listed in the second column for comparison.

AW Ch-0 Ch-1 Ch-17

NT3− 0 0 1
NT2+ 0 0 2
NP2+ 0 1 2
V0 (MeV) 61.338 72.325 61.355 55.911
a0 (fm) 0.654 0.636 0.652 0.676
R0 (fm) 8.143 8.272 8.298 8.167
VB (MeV) 42.706 41.885 42.041 42.617
RB (fm) 10.052 10.296 10.228 10.042
h̄ω (MeV) 3.285 3.315 3.249 3.196

NT3− = 2, NT2+ = 2, and NP2+ = 2. The results demonstrate
good agreement with the experimental data near the barrier
energy region. At the deep sub-barrier energy region, KANTBP

results are slightly higher than the experiments, which may
indicate the fusion hindrance feature for this reaction system.
In contrast, CCFULL results manifest large fluctuations at the
deep sub-barrier energy region. The reason of this fluctuation
is the same as for the above discussed case (see Fig. 2).
Namely, at l = 0 the largest diagonal matrix elements of the
matrix h̄2W/2μ in Eq. (21) is 38.13 MeV. For the incident
energy E < 38.13 MeV, there is a contribution of nondiagonal
elements that are non-negligible. They are missing in CCFULL

calculations.
Despite the many previous calculations mentioned above, it

is of great interest to see whether the experimental fusion data
can be explained by a simple Woods-Saxon-type potential
model. In the following, we will try to find out that whether it
is possible to describe well the experimental data by fitting the
three parameters of the Woods-Saxon potential. The stability
of the numerical method KANTBP is advantageous for fitting
under some extreme parameters. The three Woods-Saxon
potential parameters V0, R0, and a0 are fitted to reproduce
the fusion cross sections of 36S + 48Ca under different kinds
of collective vibrations. The fitting parameters are shown in
Table III, and the corresponding calculations under different
conditions are given in Fig. 4. Different lines in the figure
are denoted by the number of the coupled channels used.
Three cases are examined here: 0, 1, and 17 coupled channels.
The results of fitting demonstrate a good agreement with the
experimental data for all three cases, in the above barrier
energy region and below barrier energy region. The calcu-
lations under different collective vibrations are also almost
overlapped.

The fitted Coulomb barrier properties, including barrier
height VB, barrier radius RB, and the barrier curvature h̄ω, are
listed in Table III. It can be seen that all fitted parameters
in the last three columns are not very far from the stand
AW parameters in the second column. It is not necessary
to use very deep sub-barrier depths or very large diffuse-
ness parameters to agree with the experimental data, like
V0 = 165 MeV and a0 = 0.95 fm in previous study [15].
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FIG. 4. Fusion cross sections for 36S + 48Ca. The experimental
data (open circles) on fusion cross sections are from Ref. [15]. The
calculations with standard AW potential and 0 coupled channels are
denoted by the solid lines. The fitted calculations performed with 0,
1, 17 coupled channels are represented by the dashed lines (Ch-0),
dash-dotted lines (Ch-1), and dotted lines (Ch-17), respectively.

Corresponding fitted Woods-Saxon potentials are plotted in
Fig. 5. The results obtained by the different methods show the
different fitting the experimental data. However, the changing
trends of the potential barrier can be seen from this figure.
The fitted potentials reflect two tendencies in order to describe
well the experimental fusion data theoretically, especially at
the deep sub-barrier energy region. On the one hand, one can
include fewer reaction channels and deeper potential inside
the barrier pocket. On the other hand, one can make the

FIG. 5. The Woods-Saxon potentials calculated by different pa-
rameters listed in Table III. The notations are the same as in Fig. 4.

potential shallower and use more reaction channels. However,
this reaction system can still be described well by using
the simple Woods-Saxon potential. Comparing the lines AW
and Ch-17, the Coulomb barriers are almost not changed,
but the shapes of the potential well are quite different. This
demonstrates that the deep sub-barrier fusion cross sections
are very sensitive to the inner shape of the potential well,
which have also been discussed in Ref. [25].

IV. SUMMARY

One of the standard methods to predict the fusion cross
sections of light nuclei and capture cross section of the mas-
sive nuclei is to solve the set of coupled-channel differential
equations with the use of the Numerov method. It is the heart
of the full order coupling code CCFULL [34]. However, the
CCFULL code, taking into account a large number of coupled
channels, exhibits characteristics instabilities of the fusion
excitation functions for some reactions. In the present paper,
we developed a new algorithm for solving a set of second-
order differential equations with the use of the finite-element
method. To attack this problem, we further developed the
approach proposed in series of papers [37,42–46,48]. Guided
by our approach, we constructed the program KANTBP that
was used for analysis of the fusion cross section of the
64Ni + 100Mo and 36S + 48Ca reactions. We demonstrated

that our approach allows us to eliminate successfully the in-
stabilities in the numerical solutions of the coupled-channels
differential equations for these reactions.

In previous studies, special treatments of the potential, such
as a large diffuseness parameter [15], a very deep potential
plus a small radius parameter [52], or a repulsive core are
needed to explain these experimental data related to the
considered nuclei [16,29,56]. By means of our approach, we
found that the fusion cross sections can be still described well
with a simple Woods-Saxon-type potential. In particular, the
fusion excitation function of the 64Ni + 100Mo reaction is
remarkably well described with the use of the standard AW
potential. On the other hand, the fusion excitation function
of the 36S + 48Ca is described well by fitting of the Woods-
Saxon potential parameters, without introducing the repulsive
cores. It is demonstrated that the deep sub-barrier fusion cross
sections are very sensitive to the potential pocket profile. The
deep sub-barrier fusion cross sections can be used as a sensi-
tive probe to explore the inner shape of the potential pockets.
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[56] Ş. Mişicu and F. Carstoiu, Phys. Rev. C 83, 054622 (2011).

014618-10

https://www1.jinr.ru/programs/jinrlib/kantbp/indexe.html
http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m
https://doi.org/10.1007/978-3-642-23568-914
https://doi.org/10.1007/978-3-642-23568-914
https://doi.org/10.1007/978-3-642-23568-914
https://doi.org/10.1007/978-3-642-23568-914
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1103/PhysRevC.71.044613
https://doi.org/10.1103/PhysRevC.71.044613
https://doi.org/10.1103/PhysRevC.71.044613
https://doi.org/10.1103/PhysRevC.71.044613
https://doi.org/10.1140/epja/i2013-13063-2
https://doi.org/10.1140/epja/i2013-13063-2
https://doi.org/10.1140/epja/i2013-13063-2
https://doi.org/10.1140/epja/i2013-13063-2
https://doi.org/10.1016/0375-9474(95)00374-A
https://doi.org/10.1016/0375-9474(95)00374-A
https://doi.org/10.1016/0375-9474(95)00374-A
https://doi.org/10.1016/0375-9474(95)00374-A
http://www.nucl.phys.tohoku.ac.jp/~hagino/ccfull.html
https://doi.org/10.1103/PhysRevC.83.054622
https://doi.org/10.1103/PhysRevC.83.054622
https://doi.org/10.1103/PhysRevC.83.054622
https://doi.org/10.1103/PhysRevC.83.054622

