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The capabilities of the new version of the Liège intranuclear cascade model (labeled INCL + +6 from now
on) are presented in detail. This new version of INCL is able to handle strange particles, such as kaons and
the � and � hyperons, and the associated reactions and also allows extending nucleon-nucleon collisions up
to about 15–20 GeV incident energy. Compared to the previous version, new observables can be studied, e.g.,
kaon, hyperon, and hypernuclei production cross sections (with the use of a suitable de-excitation code) as well as
aspects of kaon-induced spallation reactions. The main purpose of this paper is to present the specific ingredients
of the new INCL version and its new features, notably the newly implemented variance reduction scheme. We
also compare, for some illustrative strangeness production cases, theoretical results calculated using this version
of INCL with experimental data.
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I. INTRODUCTION

Spallation reactions have applications in many different
domains, such as medicine, astrophysics, nuclear physics, etc.
This large range of applications explains why it was, and
still is, so important to fully understand and model this type
of spallation reactions as stand-alone models or embedded
in transport codes. Spallation models are commonly used in
the energy range 100 MeV–3 GeV, the higher energies being
treated with string models. However, spallation models can in
principle be used in a wider energy range. Notably, they can
be used at energies up to 15–20 GeV if the new open channels
are correctly treated.

The intranuclear cascade model of Liège (INCL), which
was recognized by the IAEA benchmark in 2010 [1] as one of
the best spallation models when combined with the ABLA07
[2] de-excitation code, has been considerably improved during
the past decade. One can mention the light-ion-induced reac-
tions [3], the improvements for few nucleons removal [4,5],
and the extension to high energy [6,7]. The last point was
motivated by various reasons. A notable example is the need
to make a better transition between string models like the
FTF model [8], for which the few GeV scale represents the
low-energy part, and intranuclear cascade (INC) models like
INCL where the few GeV scale represents the high-energy
part. This energy range is crucial notably for cosmic rays
interactions. We can also mention an interest in exotic physics,
like processes involving strangeness that appear in this new
region with new particles and hypernuclei formation.

The high-energy improvement of INCL involved three suc-
cessive stages: multipion production in the final state of binary
nucleon-nucleon and pion-nucleon collisions [6], production

of η and ω particles [7], and production of strange particles
described for the first time in this paper. This last step is based
on a previous work, which reunified the main ingredients
needed for the implementation of strange particles [9]. Here,
we present the new version of INCL and the calculation
results related to strange particle production. The observables,
which will be discussed, are generated only or almost only
by the intranuclear cascade. Observables depending on both
the intranuclear cascade and the de-excitation stages will be
discussed in a forthcoming publication.

The paper is organized as follows. In Sec. II, we present the
main changes in INCL since the previous public version, and
in Sec. III we explain in detail the variance reduction methods
introduced in INCL to facilitate the study of strangeness
production physics. Next, in Sec. IV, we compare the results
obtained with the new version of INCL to experimental data
of strange particle production for different initial conditions.
Finally, Sec. V is devoted to the conclusions and perspectives.

II. THE PRESENT INCL VERSION

Our starting point is the INCL + + version, described
in Ref. [3]. It has essentially the same physics content,
concerning nucleon-nucleus and pion-nucleus interactions, as
the Fortran version INCL4.6 (see Ref. [10] and references
therein). Only minor differences exist. However, one relevant
difference between the INCL + + and the Fortran version is
the capability to treat reactions induced by light ions (A �
18). Since the publication of Ref. [3], two main aspects
were improved: the few nucleon removal channels, which are
discussed in detail in Refs. [4,5], and the high-energy part
[6,7,9].
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The extension of INCL to high energies allows simula-
tions up to ≈15 GeV instead of the former upper limit of
2–3 GeV of the previous version. This high-energy extension
was performed in three steps: multipion emission in binary
collisions, which is the main contribution at high energies
[6]; implementation of η and ω particles [7]; and finally,
implementation of kaons and hyperons, described for the first
time in this paper. In this section, we describe the different
input data and implementations linked to processes involving
strangeness. Cross sections are crucial ingredients. They are
briefly discussed below, but the reader will find all details in
Ref. [9].

The implementation of strangeness was divided into four
main parts: first, the new particles to implement were se-
lected. Then, their characteristics (mass, charge, isospin, de-
cay modes, and average nuclear potential) were provided.
Third, the interactions of these particles were described essen-
tially with the use of experimental measurements and isospin
symmetry. This includes the determination of production,
scattering, and absorption elementary cross sections as well
as the phase space distribution of outgoing particles in binary
collisions involving strange particles in the initial state and/or
in the final state. The last part was the post-cascade treatment
of the new particles.

A. Particles

The very first step before strangeness could be imple-
mented was to determine which particles are to be added
in INCL. This was based on two criteria. The first obvious
criterion is the production rate in NN and πN collisions,
which are the most common reaction types involved in in-
tranuclear cascades. However, we also considered the quantity
of available information in addition to a priori knowledge. For
those reasons, it was decided to consider the kaons (K0 and
K+), the antikaons (K

0
and K−), the �’s (�−, �0, and �+),

and the �. The difference between kaons and antikaons is rel-
evant in this paper because the opposite hypercharge leads to
significant differences, notably in the production, scattering,
and absorption reactions. The heavier strange particles were
not considered, due to lower production rates (they might
be added in future extensions). The � meson (ss) was not
explicitly taken into account due to the lack of experimental
data, even if it may play a role in the kaon-antikaon pair
production. Some of its contributions are, however, hidden
in the cross sections considered below, as the kaon-antikaon
production cross sections (this may be the case for other
resonances).

B. Average nuclear potentials and characteristics

The mass, charge, isospin, decay modes, and half-life of
each considered particle are taken from the Particle Data
Group review [11]. The average nuclear potential is much
more difficult to determine. Only some of the implemented
particles are relatively well known (�, K+, and K−). Studies
on the �’s potential are rather sparse and it is not yet clear
whether the �’s potential is attractive or repulsive.

Because few experimental measurements exist, the average
potentials for strange particles in INCL are considered as a
constant over the nuclear volume, for sake of simplicity. In the
case of the � particle, a dependence on the nuclear asymmetry
[12] is introduced to improve hypernuclei physics. Typically,
the potential used for the � is a 28 MeV attractive potential
for the symmetric nuclei that grows up to a 41 MeV attractive
potential for the largest asymmetries [(A − 2 Z )/A = 0.25].
The K+ and K− average potentials have been relatively well
studied and it is commonly accepted that the K+ potential
is slightly repulsive and the K− is strongly attractive [13].
The values retained in this paper are a 25 MeV repulsive
potential for the K+ and a 60 MeV attractive potential for
the K−. It was decided to consider the same potential for
K0 and K

0
as for K+ and K−, respectively, with a slight

correction (10 MeV) due to Coulomb repulsion. This choice
is consistent with experimental measurements summarized in
Ref. [13]. The potential for � particles is extremely difficult
to measure because of nuclear effects. A repulsive potential
of 16 MeV for all �’s is used in INCL based on a recent
study [14].

In summary, the potentials used in this new version of
INCL are

25 MeV, K+,

15 MeV, K0,

−60 MeV, K−,

−50 MeV, K
0
,

16 MeV, �′s,
[−28,−41] MeV, � (Ref. [12]).

(1)

The difference between the potentials for kaons and an-
tikaons potentials is not considered in other codes that we use
for our comparisons. This produces significant differences in
cross-section prediction near threshold energies.

C. Interactions

As mentioned previously, the methods used to determine
production, scattering, and absorption cross sections and the
angular distributions of outgoing particles are described in
detail in Ref. [9]. In Table I, we summarize the considered
reactions based on experimental data.

In addition to the reactions listed in Table I, we include
two other types of reactions, which are listed in Table II.
First are the �N reactions, which are expected to contribute
significantly to strangeness production according to the study
of Tsushima et al. [15]. The second type is the strangeness
production in reactions where many particles are produced
in the final state but no measurements are available. This
second type is needed to get the correct inclusive strangeness
production cross section. Since the cross sections given in
Table II are coming from models, larger uncertainties are
expected.

Strangeness production from baryonic-resonances-induced
reactions seems to be negligible, or at least of second order,
compared to the total strangeness production and the large
widths of some resonances make their propagation question-
able; therefore, the resonances are not propagated in INCL,
except the �(1232), which has been intensively studied. This
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TABLE I. List of considered reactions involv-
ing strangeness based on experimental data.

NN → N�K NK → NK
→ N�K → �π

→ N�Kπ → �π

→ N�Kπ → NKπ

→ N�Kππ → �ππ

→ N�Kππ → �ππ

→ NNKK → NKππ

πN → �K NK → NK
→ �K → NKπ

→ �Kπ → NKππ

→ �Kπ N� → N�

→ �Kππ → N�

→ �Kππ N� → N�

→ NKK → N�

is justified a posteriori (see Sec. IV). However, the contribu-
tions of resonances as intermediate state of binary collisions
are taken into account in an unresolved manner in the cross
sections of the reactions summarized in Tables I and II.

D. Post-cascade treatment

The implementation of strangeness can lead to a new sit-
uation at the end of the intranuclear cascade; a hyperremnant
can be produced in which at least one strange particle is still
inside the target nucleus at the end of the intranuclear cascade.
Therefore, we had to decide how to treat the remaining strange
particle after the end of the cascade.

Owing to the repulsive average nuclear potential for the
kaons, we decided to eject the trapped kaons at the end of the
cascade and to correct their kinematics accordingly to their
potential.

All �’s and antikaons have high absorption cross sections
(N� → N� and NK → �π ) at low energy. Therefore, we
decided to absorb all of them when they are trapped inside
the nucleus and to convert the excess of energy and the mass
energy of the possible pions into nucleus excitation energy.

After kaon emission and � and antikaon absorption, the
hyperremnant contains only protons, neutrons, and �’s. The
hyperremnant is then de-excited using a new version of
the ABLA07 code [2], which will be presented in a future
paper.

TABLE II. List of the reactions involving
strangeness and requiring information that has
been taken exclusively from models. The X stands
for all possible reactions excluding the reaction
summarized in Table I.

�N → N�K NN → K + X
→ N�K
→ ��K πN → K + X
→ ��K
→ NNKK

III. VARIANCE REDUCTION METHODS

Strangeness production is a rare process in spallation reac-
tions, especially for energies below 5–6 GeV. However, the
user of INC models might have an interest in strangeness
physics. Therefore, to have enough statistics, a calculation
will require a large number of events, an event being defined
as the simulation of one cascade in INCL. This would take
a lot of computational time and result in a large amount of
useless information: taking a lot of space on a hard drive and
slowing down the analysis.

The solution proposed here is to use variance reduc-
tion methods, which are based on the importance sampling
method. In INCL + +6, we implemented a variance reduction
scheme (VRS), which artificially increases the statistics for
the observables linked to the strangeness production, keeping
the calculation time and the output file size unchanged.

Note that INCL has an option enabling to write into the
final ROOT file only if a certain condition is fulfilled. This
makes the output size problem marginal for us. However, the
information that does not fulfill the condition is lost with this
option. With the newly implemented VRS all the information
is kept, which we consider a major benefit.

This section describes the variance reduction scheme and
its operation. The reader only interested in the calculation
results of INCL dealing with strangeness production can
skip this section. The variance reduction method developed
here, and used in INCL, aims at getting results with lower
uncertainties, and in some cases is the only way to get results
within a reasonable computation time, but it does not change
the conclusions. Readers eager to understand the method
will find in the following some generalities (Sec. III A) pre-
senting the topic, the constraints and the difficulties within
INCL, the scheme developed, and the technical aspects
(Sec. III B), the case of correlations (Sec. III C), the reliability
of the method (Sec. III D), and some examples of uses of
the VRS (Sec. III E). Readers interested by the main lines
and aspects, and not by the method itself, can go directly to
Secs. III D and III E.

A. Generalities

Basically, a fully operational important sampling method
consists of two successive steps. In a first step, the rules
of the simulation, i.e., the physics ingredients, are modified
(biased) to improve the sampling. In our approach, we in-
crease the strangeness production cross section. In a sec-
ond step, the simulation result is accordingly corrected. The
goal of the variance reduction methods is to obtain the true
observable of interest (e.g., a cross section) with a reduced
variance and therefore with reduced uncertainties within the
same computational time.

For this study, all the processes associated with strangeness
production are of interest. Therefore, the VRS of INCL
was developed to increase the realization probability for all
of them, independently of the observable. However, even
though the current VRS globally modifies the probabilities
for processes involving strangeness, other schemes are in
principle possible. The scheme could also be adapted to be
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more restrictive (e.g., forward kaon production) or to work
for another particle type (e.g., η meson production) or physics
(e.g., peripheral collisions).

The reason for the low global strangeness production rates
in INCL is the low elementary strangeness production cross
sections. For example, the strangeness production represents
0.014% (0.15%) of the total cross section in proton-proton
collision at kinetic energies of 2(3) GeV. Therefore, in a
first step, the VRS modifies the hadron-hadron cross sections
to increase the strangeness production. In a second step, it
corrects a posteriori the bias introduced to obtain the unbiased
observable estimators with reduced uncertainties.

In the general case, the second step (i.e., the bias reversal)
consists in determining the ratio of the probability to make
an observation in the nonbiased version to the probability to
make the same observation in the biased version. This ratio
is called the importance or the weight and can be calculated
for a complete event (a cascade), a specific particle, or for any
observation during the event. Next, the importance is used to
weight the contribution of observations. This number gives the
information about how much this observable is biased. The
importance for an observable X can be written as

WX = P(X |no-bias)

P(X |bias)
. (2)

This expression of the importance leads to a first require-
ment that events contributing to a variable of interest should
have a nonzero probability of realization in the biased version
(the version using the variance reduction scheme); otherwise,
it will result in an arithmetic exception. In other words, every
strange event in INCL that can be produced in the standard
version must be attainable in the version using the variance
reduction scheme. Only the probability of realization can be
changed. Because of this constraint and because it is not trivial
to know whether strangeness production could occur later
during an event, no channel cross section can be reduced to
zero at the binary collision level in INCL.

The treatment of a particle during an INCL event can
be subdivided into a three-step cycle. First, the particles are
propagated freely inside the nucleus. This step ends when
two particles collide. A collision occurs when the distance
between two particles is below a maximal interaction distance
based on their total interaction cross sections. Second, the
type of the reaction of the binary collision is randomly chosen
based on the respective reaction cross sections. In the last step,
the phase space and the charge repartition is randomly gener-
ated either based on differential cross sections (if available)
or on phase space generators. Then, the cycle is repeated until
the end of the intranuclear cascade.

The propagation along straight trajectories between colli-
sion events is deterministic. According to this, an artificially
decrease of a total interaction cross section can lead to a
situation of particles flying past each other where they would
have collided using the original cross section. From such an
event onwards, the subsequent cascade is outside the universe
of possibilities based on the unbiased total interaction cross
section. Therefore, the importance of this event would be
null according to Eq. (2). The same argument can be made
for an increased total interaction cross section. Hence, the

total interaction cross sections for binary collisions must be
preserved.

Thanks to the random treatment of the reaction choice and
the phase space generation, both steps can be biased; chang-
ing the probability of realization. In our case, only the step
selecting the type of reaction needs to be biased to increase
the global strangeness production. However, if the user is
interested in the production of a particle in a specific phase
space (e.g., backward production), phase space generation can
be biased under minor modification in the code.

The two constraints, no cancellation of any particular
channel and the preservation of total cross sections for binary
collision, will be crucial for the INCL variance reduction
scheme.

With the variance reduction scheme, the new weighted
estimators and the associated variances of an observable X
[16] are given by

E (X ) =
∑M

i=1 wixi

N
, (3)

V (X ) =
∑M

i=1[wixi − E (X )]2

M
, (4)

with wi being the importance of the ith observation xi of the
observable X and N being the total number of events. The
natural summation is such a case corresponds to summing
over the events (M = N), with wi the importance of the ith
event and xi the number of observations corresponding to the
observable X (e.g., kaons) in the corresponding event.

An alternative summation is actually possible and preferred
in our case. We can sum over the final particles (M �= N)
with wi the importance of the ith particle and xi = 1 or 0 if
the particle corresponds to the observable or not, respectively.
With the natural summation, we estimate the mean value
of the number of strange particles produced per reaction.
In the alternative summation, we estimate the number of
strange particles produced and we normalize by the number
of reactions. It clearly appears the observables estimated in
the two approaches correspond.

For INCL, it is simpler to sum over the particles consider-
ing the output generated. Moreover, for sake of simplicity, the
relative uncertainties displayed in figures below do not derive
from Eq. (4) but are calculated using the formula

relat. uncer. =
√∑

(wixi )2
∑

wixi
, (5)

which is equivalent to the standard relative uncertainty equals
to the inverse square root of the number of observations in the
Monte Carlos simulations and which is an approximation of
the relative uncertainty that can be obtained using Eq. (4).

It is worth emphasising that, the observable X can be
anything. For example, it can be the presence or absence
of a particle of a certain type, the number of particles of
a certain type produced during the cascade, the presence of
many correlated particles, an entire event, or a part of an event.

The minimum variance for a given number of events is
achieved when all the strange particle importances are equal
according to Eqs. (3) and (4). However, these importances are
not always equal in INCL for reasons explained further below.
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FIG. 1. Simplified example of an intranuclear cascade repre-
sented as a time ordered graph. Circles and arrows represent binary
collisions and the propagation of the particles, respectively. The blue
(red) and purple part of the graph is the history of the X (Y ) particle.

Therefore, the objective is to keep them as close as possible to
minimize the variance and therefore uncertainties.

B. Variance reduction scheme in INCL

For a better understanding of the VRS used with INCL, a
cascade can be seen as a time ordered graph where the edges
(arrows) and vertices correspond to the particles propagating
and to the binary collisions, respectively. Thus, a cascade is
fully defined by the set of its vertices. The information about
what happened before (e.g., the projectile type, the impact
parameter, etc.) is hidden in the definition of the vertices initial
state. A schematic example is displayed in Fig. 1.

As explained in the previous subsection, the VRS must
increase the strangeness production in a way that minimizes
the spread of the strange particle importances to achieve min-
imum variance and therefore to obtain the smallest possible
uncertainties for a given number of events.

In our variance reduction scheme, if the particle Y shown in
Fig. 1 is a strange particle, then the event containing the set of
vertices A, C, D, and F should have an increased probability
of realization. If the particle X is a strange particle, then the
events containing the set of vertices A, B, C, D, E , and G
should be promoted. If both particles are strange particles,
then both paths should be promoted in the same way. Two
solutions can be considered. The first one is to promote
the vertices A, C, and D, which are common to both paths,
and to continue as a standard cascade. In such an approach,
it actually means only the first vertex can be biased. The
problem is that we do not know whether a strange particle
will be produced in any of the binary collision represented
by a later vertex. As a consequence, only strangeness produc-
tion in the first collision can be promoted. This would lead
to differences between the importances for the events that
produced strangeness in the first collision, and the events that
produced strangeness in secondary collisions. Thus, it would
be a new source of variance, what should be avoided. The
second solution is to bias each vertex (each elementary binary
collision) along the entire cascade in such a way the same
importance is obtained for every strange particle. The second
solution was chosen for INCL and the importance associated
to each final particle is provided in the final ROOT file.

In our solution, the promotion of strangeness production
can change from one binary collision to another. However,
if different channels are producing strangeness in a given
binary collision, then they should be promoted in the same
way to get the same importance as the other strange particles
whatever the channel chosen. Once again, this should be done
to minimize the variance.

With the INCL variance reduction scheme, we introduce a
new input parameter to INCL. This input is a scalar, which is
used to defined the required importance of strange particles.
This allows to have the same importance for strange particles
in the different events, which are independent. This input
scalar will be called the bias factor in the following. The VRS
implemented in INCL tries to force the final importances of
strange particles to be the reciprocal value of the bias factor.
Consequently, the bias factor is a multiplication factor of the
probability to create a strange particle. However, the effective
increase is lower in some cases. This is discussed in Sec. III E
with the way to optimize the bias factor.

Before explaining how the VRS forces the final impor-
tances of strange particles to be a specific value, we describe
how the importances of particles are calculated. Doing so, we
start with the general formula,

P(N ∩ M ) = P(N |M ) × P(M ), (6)

with P(N ∩ M ) the probability of realization of N and
M, P(N |M ) the probability of realization of N knowing that
M is realized, and P(M ) the probability of realization of M.

In Fig. 1 the vertex B can happen only if the vertex A has
been realized, therefore,

P(A|B) = 1. (7)

Combining Eqs. (6) and (7), we get

P(A ∩ B) = P(A|B) × P(B) = P(B). (8)

For the same reason,

P(A|F ) = P(C|F ) = P(D|F ) = 1, (9)

⇒ P(A ∩ C ∩ D ∩ F ) = P(F ). (10)

Therefore, in the version using the VRS the probability of
producing the final particle Y , which is produced in vertex F ,
must be corrected by the importance WY , which is given by

WY = WF = P(F |no-bias)

P(F |bias)
,

= P(A ∩ C ∩ D ∩ F |no-bias)

P(A ∩ C ∩ D ∩ F |bias)
,

= P(A|no-bias)

P(A|bias)
× P(C|A, no-bias)

P(C|A, bias)

× P(D|A,C, no-bias)

P(D|A,C, bias)
× P(F |A,C, D, no-bias)

P(F |A,C, D, bias)
,

= σ (A)/σtot (A)

σ ′(A)/σtot (A)
× σ (C)/σtot (C)

σ ′(C)/σtot (C)

× σ (D)/σtot (D)

σ ′(D)/σtot (D)
× σ (F )/σtot (F )

σ ′(F )/σtot (F )
,
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= σ (A)

σ ′(A)
× σ (C)

σ ′(C)
× σ (D)

σ ′(D)
× σ (F )

σ ′(F )
,

= CSR(A) × CSR(C) × CSR(D) × CSR(F ), (11)

with CSR(I ) the cross-section ratio of vertex I, σ (I ) and σ ′(I )
the standard and biased cross section of the reaction that
took place in vertex I , and σtot(I ) the total interaction cross
for the vertex I . WY = WF because the propagation between
collisions is not biased.

The cross-section ratios are easily determined during an
event since both terms in the ratio σ/σ ′ are known for all
the possible reactions when a binary collision happens. Some
examples are discussed in the Appendix.

In the VRS of INCL, the cross-section ratio of the vertices
are stored. Therefore, whenever a binary collision happens,
the cross-section ratio of the previous vertices are known. This
allows to calculate what should be the cross-section ratio of
the vertex representing the aforementioned binary collision
[e.g., the vertex F for the case in Eq. (11)] to match the
importance of the outgoing particles (the particle Y in our
example) to the desired importance. This calculated cross-
section ratio defines how the strangeness production should
be promoted (see examples in the Appendix).

In the special case of a binary collision between a strange
particle and another particle, a strange particle will be present
in the final state regardless of the channel chosen in INCL.
Therefore, the strangeness cannot be promoted and the cross-
section ratio will be equal to 1. Such a binary collision can
result in a strange particle that does not have the aimed impor-
tance of the strange particles. No solution was found to solve
this problem. However, the dispersion of particle importances
due to this phenomenon in most of cases is marginal thanks to
the precautions discussed below and does not introduce a new
significant source of variance.

The main source of importance dispersion for strange
particles in INCL, which is itself source of variance, is due
to the two constraints discussed before. First, the nonstrange
cross sections cannot be null but no lower bound is fixed.
Therefore, when a reaction cross section is drastically reduced
but the corresponding reaction is chosen anyway, the cross-
section ratio of the binary collision is extremely large. Second,
the total cross section must remain unchanged. This fixes
a lower bound for the cross-section ratio of a vertex that
produces strangeness (=σ strange/σ tot ). Therefore, if the cross-
section ratio required for a vertex is below this limit, then the
effective strangeness promotion will not correspond to the one
required.

The first constraint can lead to extremely large cross-
section ratios, which cannot be counterbalanced by the follow-
ing ones because of the second constraint. If a strange particle
is produced on such a path, then it would result in a strange
particle with a large importance compared to others and,
therefore, it will strongly contribute to the observables. Such
high contributions produced by single particles will make the
convergence slower, lead to variance jumps and, therefore,
to large uncertainties for the observables (see Sec. III E). If
pronounced jumps are seen, then all the observables estimated
with the corresponding INCL results should not be trusted. In
such a case, the associated uncertainty estimated accordingly

to Eq. (4) or Eq. (5) might be highly underestimated because
of the bad sampling. This situation means the bias factor was
chosen way too large and paths important for strangeness
production were suppressed too much.

To avoid these problems, a compromise should be found
between the increase of the statistics, obtained using high bias
factors, and the maintain of equal importances for strange
particles, which is most easily achieved using small bias
factors.

Therefore, a safeguard was implemented in the variance
reduction scheme. This safeguard aims at optimising the con-
vergence efficiency for observables of interest by modifying
the bias factor used. The safeguard does it by preventing the
decrease of channel cross sections below the half of the initial
cross sections. Therefore, a vertex cross-section ratio cannot
be higher than 2. This strongly limits the product of vertex
cross-section ratios for a given history and it will be easier
to counterbalance it. At the end of an event, this procedure
strongly reduces the variance jumps even if the bias factor is
chosen too high. A less restrictive safeguard has been tested
but the actual one presents better compromises. However,
this safeguard is not perfect. If a particle has a history with
numerous vertices with cross-section ratios between 1 and 2,
then it can have a large importance anyway and will result in
variance jumps and a slow convergence.

C. Event importance reversal

As previously mentioned, Eq. (3) is used to estimate the
observables. Two types of summation can be used: a sum over
the events using the importance of the events where xi is an
integer (not used in our case) or a sum over the particles using
the importance of the particles where xi = 0 or 1. However,
the dynamic adjustment of the bias factor depending on the
history of events and their importances introduces some sort
of dependency between particles of a same event. If working
at the level of particle importances as we do, Eq. (3) is
probably not fully correct any more, since correlations have
be taken into account (e.g., when looking at cross section of
hyperon emission in coincidence with a kaon).

There is an alternative possible type of summation for
Eq. (3). The summation can be done over the particles (xi = 0
or 1) but using the event importances instead of the individual
particle importances.

The event importance is equal to the product of every
vertex cross-section ratio of the entire event. It is, a priori,
different from the importance of an observation X (let us say a
particle) because it includes the contribution of extra vertices,
which are not on the path of the particle X , and are therefore
not relevant. However, the expected value of the cross-section
ratio of a vertex A is

E [CSR(A)] =
∑

reac

σ (reac)

σ ′(reac)
× P(reac|init. state, bias),

=
∑

reac

σ (reac)

σtot
= 1, (12)

with the same notation as in Eq. (11). Noteworthy, this equa-
tion is true only if no reaction of the nonbiased version is
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FIG. 2. � transverse momentum versus rapidity distribution in p(1.7 GeV) + Ca collision. Both plots are obtained using the same number
of events (107). (a) No bias. (b) Bias factor = 10.

forbidden in the biased version, which is the case in INCL.
The same argument can be used for any substructure in
a cascade, which have no constraints on its final state. In
particular, the extra vertices, which are not on the path of the
particle X , have no constraint on their final state, since they
play no role in the production of the particle X . Therefore,
the contribution of extra vertices is statistically null and the
expected value of the event importance knowing the particle
X has been produced is equal to the importance of this
particle X .

Then, it is trivial to prove that the expected value of the
estimator is the same using wi [=E (wevent )] or wevent taking
into account xi = 0 or 1 in Eq. (3) when using the summation
over the particles.

The event importance is provided in the final ROOT file.
The convergence being slower or equal, it is recommended
to use the particle importance for the reversal of independent
observables. However, it was decided to conserve only a scalar
importance for each particle and a event importance to limit
the quantity of information recorded in the output file. Doing
so, the correlations are lost. Therefore, if the observable is
a coincidence production, then the event importances must
be used regardless of the type of summation. Additionally,
if INCL is connected to another program (e.g., a transport
code) that is not able to keep track of the importance of
the individual particles, then this program can use the event
importance to weight its own results.

D. Validation

As a first test of whether the VRS works reliably and
as expected, the results obtained using the variance reduc-
tion method are compared with results obtained using the
nonbiased version. Not only the observables obtained with
the VRS must be the same as the observables obtained
without it (no residual bias), but the uncertainties must also
be reduced for the same calculation time (variance reduc-
tion). Various illustrative comparisons are discussed in the
following.

A comparison of simulations using or not the VRS indi-
cates that the calculation time is largely independent of the
bias factor used. Therefore, the number of events can be used
as a measure of the computational time and/or to compare the
efficiency of calculations using different bias factors.

Figure 2 shows a comparison of calculations with and
without bias. The two calculations have identical inputs except
for the bias factor (1 and 10, respectively). It can be clearly
seen that the calculation using the bias factor = 10 [Fig. 2(b)]
produced a much more precise distribution using the same
binning thanks to the statistic increased by a factor around
10. Additionally, no significant difference shows up for the
amplitude, the mean values, and the standard deviations dis-
played for both bias factors in the frames. Consequently, the
objectives of the VRS are perfectly fulfilled.

A test of convergence was carried out for the reaction
p(1.7 GeV) +12 C using different bias factors (no bias, 10,
and 100) using 4500 simulations with various numbers of
events per calculation. The observable chosen to test the
convergence efficiency is the K+ mean momentum. What is
considered as the true value for the K+ mean momentum was
estimated with an additional calculation using no bias and
109 events, which resulted in an uncertainty of 0.1% for the
true value. We then compared the estimator of the K+ mean
momentum for the 4500 simulations to the true value. The
absolute value of the difference between an estimator and the
true value is the error. Figure 3 shows the mean relative error
for the different bias factors as a function of the number of
events, which corresponds to a computational time, which is
independent on the bias factor. Fits of the form a nb are plotted
and the parameters and their uncertainties are shown.

Since the true value has been estimated with an uncertainty
of 0.1%, a mean relative error of below 0.001 cannot be
interpreted in Fig. 3.

A horizontal line was added in Fig. 3. It represents a
relative error of 1.5%. According to this, the precision of
1.5% is obtained with about 5 × 106 events without the VRS
and with only 5 × 105(1.8 × 105) events with a bias factor
10(100). Therefore, the 1.5% precision is reached with about
10 times less events using a bias factor 10, while using a bias
factor of 100 the gain in time is not 100, but only 30. This
reduction of the computational time needed to reach the same
precision is called the effective bias factor. The effective bias
30 for the bias factor 100 indicates that the optimal bias is
probably around 30 and the safeguard (see Sec. III B) forced
the effective bias factor to be closer to this value.

In Fig. 3, a decreasing mean relative error that is inversely
proportional to the square root of the number of events is
observed for every bias factor used. This includes the bias

014608-7



J. HIRTZ et al. PHYSICAL REVIEW C 101, 014608 (2020)

FIG. 3. Mean relative error of the K+ mean momentum estimator
as a function of the number of events. The number of events cor-
responds to a simulation time. The true value taken for the kaons
mean momentum is estimated using a 109 unbiased event calculation.
The considered reaction is p(1.7 GeV) +12 C with bias f actor = 10
(red), 100 (cyan) and not using a variance reduction method (green).
Dotted lines are fits of the form a nb

event. The horizontal blue line is
here to guide eyes (see text).

factor that is clearly above the optimal bias factor. Addition-
ally, the dispersion of the results for the 4500 calculations
follows a normal distribution around the true K+ mean mo-
mentum (estimated using the calculation with 109 events) with
respect to their statistical uncertainties. This confirms that
every calculation converges to the same limit regardless of the
bias factor used. Therefore, the VRS (bias + reversal) does not
introduce any bias in the final observables. They all converge
to the true value.

E. Examples

Let us review the important vocabulary introduced in this
section:

Bias factor: The augmentation of the statistics of strange
particles required at the beginning of the calculation.
Effective bias: The real augmentation of the statistics of
strange particles observed.
Optimal bias factor: The bias factor minimising the un-
certainties linked to strange particles for a given number
of events.

The use of the VRS of INCL + +6 requires two steps in
addition to the standard use of INCL. Firstly, the user must
provide the bias factor and second, the user must weight the
final observables with the corresponding importances stored
in the output file.

The a priori bias factor optimisation is not trivial because
the optimal bias factor strongly depends on the initial parame-
ters, like the target size and the projectile kinetic energy, but it
depends also on the final observables. However, the bias factor
does not need to be perfectly optimised; a sensible choice
for the bias factor already helps significantly to speed up the
convergence of estimator of observables involving strangeness

production. By starting with a sensible choice, the safeguard
presented above is able to finalise the optimisation. A work on
the bias optimisation was carried out. However, the observ-
ables multiplicity and the possibilities of initial parameters
being too large, a simple way to determine the optimal bias
factor cannot be provided by the authors. The simplest way to
evaluate the optimal bias factor is an interpolation taking into
account the energy and the mass number of the target, given
that it is safer to be below the optimal bias factor. Examples
of sensible choices can be found in Sec. IV for each figure
plotted.

In Fig. 4, we show the results of the study on the limits
of the variance reduction methods implemented in INCL. The
limits discussed are problematic only for some extreme (high
projectile energy and large target mass) reactions where the
choice of the bias factor was not sensible. However, this case
illustrates perfectly the problem of the importance dispersion,
which produces large uncertainties in terms of variance jumps
even when the statistics is increased.

Here, we studied the mass distribution of hyperremnants
in p (10 GeV) + 208Pb collisions. The bias factors used were
1 (no variance reduction method used), 2, 5, 10, 20, and
50. The number of events was the same (107) for all the
calculations and the computational time was equivalent. The
Figs. 4(a) and 4(b) show the results obtained using the vari-
ance reduction scheme, with a bias factor 2 and 10, respec-
tively, together with the result from the standard calculation.
The increase of the statistics (nHyp) and the normalized mean
uncertainty as a function of the bias factor are displayed in
Figs. 4(c) and 4(d). The left panels clearly show the minimal
variance (i.e. the smallest uncertainties) is not achieved with
the highest statistics in this case.

An interpolation (shown as a blue line) of the normalized
uncertainties predicts an optimal bias factor of around 2.5.
This is illustrated by the significantly better description of
the hyperremnants spectrum obtained using a bias factor 2
compared to the calculation using a bias factor 10. The large
uncertainties obtained using a bias factor 10 are purely linked
to the dispersion of hyperremnant importances. It is interest-
ing to note that the interpolation of the effective bias factor
(blue line) in Fig. 4(c) deviates from the nominal bias factor
(dashed brown line) around the optimal bias factor (2.5). The
effective bias factor is reduced by the safeguard discussed
before and the reduction starts to be significant slightly above
the optimal bias factor. This demonstrates that the safeguard
works well in this case, though it is not perfect.

Generally, variance jumps result in a global underesti-
mation compared to the standard calculation and in some
strongly overestimated bins. This can be dangerous if an
underestimated bin is studied because the error bars for this
bin are not significantly large but they can be far from the true
value [see Fig. 4(b)]. This is why it is crucial to minimize
the importance dispersion. Remember, however, that every
calculation converges to the same limit. Once again, the vari-
ance jumps just make the convergence slower. The problem
is that the variance, and by extension the error bars, might be
underestimated because of the bad sampling.

Figure 5 shows a reaction in which the number of nucleons
in the target is too low to produce variance jumps thanks to the
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FIG. 4. Left: Hyperremnant mass distribution in p(10 GeV) +208 Pb collisions with 107 shots. Calculations with bias factors = 2 (a) and
10 (b) are compared to the calculation without VRS used. Right: Evolution of uncertainties and statistics as a function of the bias factor (see
text). The uncertainties and statistics are normalized to 1 for bias factor=1 (no VRS used). The dashed brown line in Fig. 4(c) represents the
prefect case where the effective bias factor equals the nominal bias factor.

safeguard regardless of the bias factor. The number of target
nucleons being low, this leads to short intranuclear cascades
with a low number of vertices. Additionally, the cross-section
ratio of vertices is limited by the safeguard. This results in
strong constraints for the importances of final particles.

In such cases associated to low energy, the safeguard
matches automatically the effective bias factor to the optimal
bias factor when the bias factor has been chosen too high. This
is well illustrated in Fig. 5. Although the nominal bias factor
(104) is clearly above the optimal bias factor, which is 60, the
spectrum obtained using the VRS exhibits no variance jump.

FIG. 5. K+ momentum in p(1.6 GeV) +12 C with 107 events.
INCL using a bias factor 104 (blue) is compared to INCL using no
bias (red).

IV. RESULTS

In this section, results of INCL + +6 calculations are com-
pared to experimental data and to other models to facilitate
the interpretation and the analysis. The different strengths and
weaknesses observed in INCL + +6 are discussed. Hyper-
nucleus production is not presented here because it depends
strongly on the de-excitation stage of the spallation reaction.
A forthcoming paper will be dedicated to the strange degree
of freedom in the de-excitation model and the hypernucleus
production will be discussed in this publication. Here, we
focus on the intranuclear cascade and single strange particle
production.

The studied particles are the charged kaons (K+ and K−),
the �, and the neutral kaons. The K+ was clearly the most
studied particle in the past. Experimental data exist near
the threshold, and even in the subthreshold region, up to
high energies (≈14 GeV). Additionally, various targets were
studied and the emitted K+ were observed at different angles.
Moreover, the K+ is the only particle together with the K0 in
our energy range that carries a positive hypercharge. There-
fore, every strangeness production results in kaon production.
Because the production modes of the two kaons are similar,
studying the K+ also gives an estimate of the reliability
of the total strangeness production in INCL + +6. The K−
was less intensively studied because of the lower production
rate (about two orders of magnitude compared to the K+).
However, double differential experimental data can be found
in the literature. The � and the neutral kaons having no
electric charge, their detection is more complex and less
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FIG. 6. K+ invariant cross section for various angles in (a) p(1.6 GeV) + C and (b) p(3.5 GeV) + Au collisions. Experimental data [17]
(black symbols) are compared to INCL (red) and to the Bertini cascade model [18] (blue). Bias factor used: 10.

experimental data are available. However, their analysis can
help to understand the different processes in competition in
the strangeness production.

The bias factors (see Sec. III) used to obtain the INCL +
+6 results are given in the captions of the corresponding
figures.

A. KaoS

The Kaon Spectrometer (KaoS) [17] experiment was per-
formed at the heavy-ion synchrotron SIS at GSI in Darmstadt.
The KaoS collaboration measured the K+ and K− production
in p + C and p + Au collisions at 1.6, 2.5, and 3.5 GeV
proton beam kinetic energies. The kaon momentum was mea-
sured from plab = 0.3 to 1.1 GeV/c.

Most of the data measured for the K+ production are
well described by INCL. Figure 6 shows the K+ production
invariant cross section in two configurations measured by the
KaoS collaboration in comparison to INCL and to the Bertini
cascade model [18]. Either for Fig. 6(a) with K+ production
near threshold on a light nucleus (carbon) or for Fig. 6(b)
with K+ production at higher energy on a heavy nucleus
(gold), the results of INCL match very well the experimental
data. The comparison with the KaoS data indicates a reliable
total strangeness production cross section for a relatively large
range of nuclei, energies, and angles. It can be seen that the
Bertini cascade model gives a shape similar to INCL in the
momentum range of the experimental data but underestimates
them by roughly 40%. This difference can be explained by
the �-induced strangeness production, which is not included
in the Bertini model. Figure 6 depicts for the low momenta re-
gion huge differences between the predictions from the INCL
and Bertini models. This is due to the different values used for
the K+ potential. In our approach, the K+ repulsive potential
in INCL reduces drastically the invariant cross section at low
momenta. Experimental data at lower momenta would help to
test the K+ potential.

Figure 7 shows the invariant cross section for K− produc-
tion for the reaction proton on Au at 3.5 GeV. It can be seen
that the data are well described by INCL for momenta above
0.5 GeV/c. However, below this energy, the cross section
is clearly underestimated and INCL does not reproduce the
shape of the experimental data. In Ref. [17], the authors

concluded that the K− production is mostly due to the NY →
K−NN reaction and to a lesser extent to the πY → K−N

reaction. Both reactions are not considered in INCL because
of the lack of experimental data. This is probably the expla-
nation. The low energy production being dominated by sec-
ondary reactions and the high-energy production by primary
reactions, our result seems consistent with a predominance
of antikaon production through strangeness exchange (NY →
K−NN and πY → K−N) for low momenta and through

direct production (NN → NNKK) for high momenta. The
Bertini cascade model, which includes the NY → K−NN
(but not the πY → K−N) reaction, shows a significantly
better description over the entire momentum range covered by
the experimental data. This would be in favour of adding the
extra strangeness exchange reactions even when considering
the bad quality of experimental data.

B. ITEP

The study carried out at the Institute of Theoretical and
Experimental Physics (ITEP) accelerator in Russia [19] mea-
sured the K+ production in proton-nucleus collisions. The
nuclei studied were Be, Al, Cu, and Ta. This choice covers

FIG. 7. K− invariant cross section at 40◦, 48◦, and 56◦ in
p(3.5 GeV) + Au collisions. Experimental data [17] (black) are
compared to INCL (red) and to the Bertini cascade model [18] (blue).
Bias factor used: 10.
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FIG. 8. K+ invariant cross section in p + A → K+ + X reactions
for kaons emitted with a momentum of 1.280 ± 0.014 GeV/c at θ =
10.5◦. The experimental data from Ref. [19] (circles) are compared
to INCL with (triangles) and without �-induced strangeness pro-
duction (squares). Bias factor used: 50 for INCL without �-induced
strangeness production for Tp < 2 GeV, 20 otherwise.

a mass range from A = 9 to 181 (Z = 4 to 73). The projectile
energy range from 1.65 up to 2.91 GeV. The experiment mea-
sured the production of K+ with a momentum p = 1.280 ±
0.014 GeV/c and with an emission angle θ = 10.5◦. This
very specific phase space constraint was used to drastically
reduce the contribution of the K+ production in πN → Y K
secondary reactions (see Ref. [19] for details). This simplified
their analysis by considering only the NN → NY K primary
reactions.

In our analysis, we tested the implemented �-induced
strangeness production, which is not based on experimental
data, but the corresponding cross sections are based on the-
oretical calculations from Tsushima et al. [15] (see Ref. [9]
for more details). In Fig. 8 we compare INCL calculations
with and without �-induced strangeness production to exper-
imental data [19]. This allows to study the impact of �N →
NY K secondary reactions compared to NN → NY K primary
reactions; the πN → Y K secondary reactions being naturally
suppressed by the phase space constraint. The Bertini model,
which has no variance reduction method, is not plotted in
Fig. 8 because of the unreasonable computing time needed to
get comparable uncertainties. The threshold for the direct pro-
duction of K+ with a momentum p = 1.280 ± 0.014 GeV/c
is T = 2.115 GeV in nucleon-nucleon collisions. The sub-
threshold production is allowed thanks to effects of structure
like the Fermi motion, and also to secondary reactions (e.g.,
�N) as explained below.

Figure 8 shows that the standard INCL calculations (with
�-induced strangeness production) reproduce relatively well
the shape and the absolute values of the experimental data, es-
pecially for energies below 2.1 GeV, which correspond to the
subthreshold production. However, the standard INCL model
overestimates the 2.1–2.9 GeV energy region by around 50%.
In comparison, INCL without �-induced strangeness produc-
tion underestimates the experimental data over the entire en-
ergy range. Above T = 2 GeV, the underestimation is around
20%. This underestimation reaches an order of magnitude for
the lowest momenta. This demonstrates the crucial role of �’s

FIG. 9. K+ momentum spectrum in p(2.3 GeV) +12 C collisions
within the angular acceptance of the ANKE experiment. Two sets of
experimental data [20] (circles and squares) are compared to INCL
(red), LAQGSM [21] (green), and the Bertini cascade model [18]
(blue). Bias factor used: 10.

in the strangeness production. Going deeper in the analysis,
the overestimation in the 2.1–2.9 GeV energy range indicates
that the �-induced kaon production in this region is likely
overestimated. This seems consistent with observations made
in Ref. [15} where the authors observed an overestimation
of the cross sections for these reactions with center-of-mass
energies 200 MeV above the threshold.

The assumption that cross sections are very well described
near the threshold but are overestimated at higher energy
could be due to the neglect of hyperonic resonances in the
model used in Ref. [15]. This choice was made because of the
low confidence level associated to these resonances. However,
they could play a significant role, notably at high energies.

A precise evaluation of �-induced strangeness production
cross sections with INCL is difficult to realize because of the
complexity of the spallation process. However, the impossi-
bility to measure the �-induced strangeness production cross
sections and the limitations of the theoretical calculations
make simulation models like INCL suitable candidates to
estimate and/or test such cross sections.

C. ANKE

The ANKE experiment [20] investigated the production of
K+ in the forward direction in p + A collisions with proton
kinetic energies between 1 and 2.3 GeV. The targets were A =
2H,12C, Cu, Ag, and 197Au. The experiment took place at the
COoler SYnchrotron COSY-Jülich in Germany. The angular
acceptance was ±12◦ horizontally and ±7◦ vertically.

In Fig. 9, calculations from LAQGSM [21], Bertini [18],
and INCL are compared to ANKE experimental data. It can be
seen that the three models fit relatively well the experimental
data at low momenta (below 300 MeV/c) with INCL being
slightly closer to the experimental data than the other two.
At higher momenta, INCL and LAQGSM still reproduces
the data while Bertini underestimates them. At higher ener-
gies where no experimental data exist, every model gives a
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different shape. Whereas LAQGSM decreases quickly, INCL
continues to increase and Bertini predicts a bump. The max-
ima are around 600 MeV/c, 800 MeV/c, and 900 MeV/c for
LAQGSM, INCL, and Bertini, respectively. An extrapolation
from Fig. 8 suggests that INCL overestimates the production
cross section for K+ with pK+ = 1.280 GeV/c in forward
direction by roughly 30%. This would be compatible with
the Bertini’s value at pK+ = 1.280 GeV/c. Again, the INCL
�-induced kaon production is probably overestimated.

D. LBL

The experiment carried out at the Lawrence Berkeley Lab-
oratory (LBL) [24] studied the inclusive K+ production us-
ing projectiles with T = 2.1 GeV/nucleon. Several projectile
types and targets were tested but a direct comparison between
measured and modelled data is only possible for the reactions
p +208 Pb and 2H +208 Pb.

To estimate the inclusive K+ production cross section, the
collaboration measured K+ spectra at four different angles:
θ = 15◦, 35◦, 60◦, and 80◦ for the p +208 Pb reaction and
θ = 15◦, 25◦, 35◦, and 60◦ for the 2H +208 Pb reaction. Spec-
tra were measured for kaon momenta from 350 to 750 MeV/c.

The two panels in Fig. 10 shows that there is good
agreement between INCL predictions and experimental data
both for proton- and deuteron-induced reactions. It must be
mentioned this experiment is very similar to the one carried
out by the KaoS collaboration. Though, the angles studied, the
energies, the projectiles, and the targets are slightly different
but the conclusions are the same. Again, the good agreement
not only in the absolute values but also in the energy depen-
dence of the data demonstrates the reliability of the handling
of strange particles in the new INCL version. This is a first
validation that INCL can handle light clusters as projectile.

E. Hades

The High Acceptance DiElectron Spectrometer (HADES)
collaboration studied � and K0

s productions in p + p and
p + Nb collisions at 3.5 GeV [23,24]. The Experiment took
place at GSI in Germany. The � particles were measured in
the [0.1,1.3] rapidity (y) range in the laboratory frame and
the K0

s particles were measured in the [−0.85, 0.55] rapidity
range in the nucleon-nucleon center of mass. In this second
case, the rapidity of the laboratory is ylab = −1.118.

The hypernucleus production is strongly correlated to the
� production since most of the observed hypernuclei involve
one or more �’s. Therefore, the � production must be tested
before studying the hypernucleus production, which implies
more complex processes.

In Fig. 11 we compare the � production yield as function
of rapidity calculated using INCL to predictions from UrQMD
[25] and GiBUU [26] and to experimental data [23]. The
original plot is taken from [23]. The Bertini cascade model
does not handle �0’s decay, which plays a role in the �

production. Therefore, results from the Bertini code are not
plotted here.

Figure 11 depicts a rather good agreement between
INCL and the experimental data when taking into account

FIG. 10. K+ invariant cross section at 2.1 GeV/Nucleon for the
reactions p +208 Pb (a) and 2H +208 Pb (b). The experimental data
[22] (black dots) measured at the LBL are compared to the Bertini
cascade model [18] (blue) and INCL (red). Bias factor used: 10.

FIG. 11. � production yield in p(3.5 GeV) + Nb collisions as a
function of rapidity. The HADES experimental data (black square)
are compared to GiBUU (blue dashed line), UrQMD (purple line),
and INCL (red line) model predictions. The original plot can be
found in [23]. Reprinted by permission from Springer Nature Cus-
tomer Service Centre GmbH. Bias factor used: 10.
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FIG. 12. � rapidity versus transverse momentum yield in
p(3.5 GeV) + Nb collisions. (a) INCL predictions, (b) experimental
data from Ref. [23] after correction of efficiency. Reprinted by
permission from Springer Nature Customer Service Centre GmbH.

systematic errors except for the rapidities higher than 0.9. The
bump observed in the INCL predictions around y = 1.3 can
also be seen with the GiBUU model, but at lower rapidity.
The UrQMD model does not exhibit such a behavior and is
close to the experimental data, but it misses the first two data
points at the lowest rapidities.

Aiming at understanding the INCL bump, we show in
Fig. 12 the transverse momentum versus the rapidity of �

particles. It can be seen that Fig. 12(a) (INCL) and Fig. 12(b)
(HADES data) match well. For the problematic rapidities
(above y = 0.9) one can find an overabundance of � particles
of INCL compared to HADES in the rapidity range [1,1.4]
and the transverse momentum range [200,500] MeV/c. This
corresponds to emission angles between 5 and 19 degrees
when the experiment acceptance is between 18 to 85 degrees.

The acceptance of the HADES experiment being limited,
data for the unmeasured regions visible in Fig. 12(b) have
been estimated by extrapolating the transverse momentum
spectra using Maxwell-Boltzmann distributions. The so de-
termined data are in disagreement with the INCL predic-
tion. Consequently, the bump around y = 1.3 predicted by
INCL is in a phase-space region not measured experimentally.

FIG. 13. K0
s production cross section in p(3.5 GeV) + Nb col-

lisions in function of the rapidity in the nucleon-nucleon center of
mass. HADES experimental data [24] (black circles) are compared
to GiBUU with (cyan) and without (blue) a chiral potential, the
Bertini cascade model (green), and INCL (red). The little red dots
represent the experimental systematics linked to the normalization.
The original plot comes from Ref. [24]. Bias factor used: 10.

Therefore, there is no strict contradiction between experimen-
tal data and INCL model predictions

In the region around y = 0, every model predicts a peak.
This peak is high and broad using UrQMD, narrow and
smaller using GiBUU, and high and narrow using INCL.
A comparison between INCL with and without �0 in-flight
decay showed the peak in INCL predictions is entirely due
to the � production inside the nucleus. Additionally, study-
ing the origin of the �’s indicated that this peak is the result
of the hyperremnant de-excitation for INCL.

The second particle measured by the HADES collaboration
is the K0

s . In Fig. 13 the experimental data [24] are compared
to GiBUU calculations with and without a chiral potential,
to the Bertini cascade model, and to INCL. It can be seen
that the best description of the experimental data are obtained
using GiBUU. However, the version of GiBUU used here
is a modified version in which the K0 production has been
artificially reduced to fit the p + p HADES experimental data
(see Ref. [24] for details). Additionally, this GiBUU version
is not the same as the one used in Ref. [23], although the
reaction studied is the same. This makes their results difficult
to be interpreted. INCL gives a good shape but overesti-
mates the experimental data by roughly 65%. Similarly to the
case for the K+ production, the �-induced reactions could
be an explanation for the overestimation but some part of
this overestimation might also be due to the normalization.
The total reaction cross section σ

p+Nb
tot used by HADES is

848 ± 127 mb, while INCL calculates a value of 1048 mb.
A measurement of the total reaction cross section for the
same system at a lower energy (1.2 GeV instead of 3.5 GeV)
gave 1063 ± 40 mb [27], which is consistent with the INCL
value. The Bertini cascade model does not reproduce the
energy dependence of the experimental data, but the predicted
absolute yield of K0

s corresponds to the experimental data. The
bump around the laboratory rapidity (ylab = −1.118) can also
be seen in GiBUU predictions with the chiral potential. This
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FIG. 14. Neutral kaon production cross section in the collision
π−(1020 MeV) + A (pπ = 1150 MeV/c). The FOPI experimental
data [28] (blue squares) are compared to QMC [29] (pink dash-dotted
line), HSD [30,31] (red dashed line), Bertini [18] (green circles),
and INCL (orange circles) models. Open rectangular bars are the
FOPI systematic uncertainties. The meaning of the hatched area is
explained in the text. The original figure comes from Ref. [28]. Bias
factor used: 10.

is likely due to the attractive potential used by these models
for the K0, whereas INCL uses a repulsive potential.

F. FOPI

The FOPI collaboration [28] measured the in-medium neu-
tral kaon inclusive cross sections in π−-induced reactions on
various targets: C, Al, Cu, Sn, and Pb. The pion beam had a
kinetic energy T � 1.02 GeV (pπ = 1150 MeV/c). The ex-
periment took place at the heavy-ion synchrotron SIS at GSI.
The geometrical acceptance of the detector was restricted to
the polar angles in the range 25◦ < θ < 150◦. An a posteriori
correction was applied by the FOPI collaboration to obtain the
total inclusive cross sections.

Figure 14 depicts the production of neutral kaons measured
by the FOPI collaboration. In the original paper [28], the
authors compared their experimental data with two models:
the quark-meson coupling model (QMC) [29] and the hadron-
string-dynamics model (HSD) [30,31]. By fitting the data,
the FOPI collaboration found that the inclusive cross sections
can be described by a A-dependent cross section of the form
σ (A) = σeff × Ab, with b = 0.67 ± 0.03. This would indi-
cate that K0 production is dominated by peripheral collision.
Therefore, they developed the function:

σ (A) = σ (π−(1150 MeV/c) + N → K0 + X ) × A2/3,

(13)
with N a target nucleon. The nucleon cross section was
obtained by summing all σ (π− + N → K0 + Y ) processes
weighted with the relative proton and neutron numbers of the
target nucleus. The so developed function is represented as

FIG. 15. K+ production cross sections in p(14.6 GeV/c) + A
collisions as a function of rapidity. The experimental data [32]
(black) are compared to INCL predictions (red). No variance reduc-
tion method was used.

a hatched band in Fig. 14. The bandwidth corresponds to an
uncertainty of 20%. It appears that the experimental data do
not enter in the region defined by this band, which indicates
that the simple dependence expressed in Equation 13 cannot
explain the observed cross sections. Therefore, there must be
an additional process.

The INCL calculations slightly underestimate the experi-
mental data but they are within the experimental systematic
uncertainties (open rectangular bars). The inclusive cross
sections predicted by INCL is proportionnal to A3/4, which
promote a different interpretation on the K0 production pro-
cesses with larger contributions of secondary reactions and
a strangeness production deeper in the nucleus. The Bertini
cascade model [18] shows a result similar to INCL but with a
slightly smaller slope. Both INCL and Bertini cross sections
are consistent with Equation 13 using a A3/4 dependence
instead of the A2/3 dependence proposed.

G. E-802

The INCL model has been extended to work up to incident
energies of about ≈15 GeV. However, the experiment study-
ing strangeness production focus below 3.5 GeV. A notable
exception is the experiment realized by the E-802 collabora-
tion [32] at the Brookhaven National Laboratory (U.S.) using
a proton beam momentum of 14.6 GeV/c (Tp � 13.7 GeV).
This experiment measured various particle production cross
sections in proton-nucleus reactions and, notably, is also
measured the K+ production cross sections. Therefore, it
provides a good opportunity to test INCL strangeness physics
for the highest energies. The nuclei studied by the E-802
collaboration were Be, Al, Cu, and Au.

Figure 15 shows a comparison of INCL predictions with
E-802 experimental data. The Bertini model predictions are
not plotted because the upper energy limit for this model is
about 10 GeV. Considering that the experimental data are
close to the upper limit of INCL, the shape as well as the
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FIG. 16. Subthreshold K+ production cross sections in p + A
collisions as a function of the initial proton kinetic energy. The
experimental data [33] (circles) are compared to INCL predictions
(triangles).

absolute values are in excellent agreement. However, a slight
underestimation at high rapidities can be observed for Cu and
Au. The observed deviations are difficult to analyze because
they are only for two target elements and the discrepancies
differ: a bump for Au and a linear deviation for Cu.

H. LINP

The experiment carried out at the Leningrad Institute of
Nuclear Physics (LINP) [33] studied the subthreshold K+
production on various nuclei, from beryllium to uranium.
A measurement of the total cross sections as a function of
energy was performed in the 800–1000 MeV energy range for
Be, C, Cu, Sn, and Pb.

In Fig. 16 INCL predictions are compared with the experi-
mental data. The first observation is a clear overestimation of
the experimental data. This overestimation is around a factor 6
for Be and about a factor 4 for the other nuclei. The prediction
of the slope is good, especially for C, Sn, and Pb. While
the agreement between model predictions and experimental
data is only fair, the major success of these calculations
is the variance reduction (see Sec. III). The effective bias
factors of these calculations are around 1000 depending on
the configuration with a maximum at 2000. This allowed
to obtain cross sections below the nanobarn scale using a
relatively short calculation time (half a day for the entire set
using parallelization). Such a result cannot be obtained in a
reasonable time without a variance reduction method.

Different explanations are possible to explain the overesti-
mation. To understand the problem, it is important to remem-
ber that the beam energies in this experiment are far below
the K+ production threshold for p + p collisions (1.582 GeV).
Therefore, the strangeness production requires strong effects
of structure, which are complex and not very well understood.
Such effects include effects related to the momentum spectra
of particles inside the nucleus and effects related to successive

collisions. Additionally, � particles seem to play a crucial
role in this experiment. An explanation for the overestima-
tion could therefore be the treatment of the � particles in
INCL, especially for the production of strange particles in
�N reactions. Another explanation could be the semiclassical
description of the nucleus by INCL, which does not consider
every quantum effect, which could play a significant role in
subthreshold processes. A following study has been carried
out to better understand the discrepancies. The effect and
limitations of the semiclassical approach cannot be tested but
modifications related to the physics of � particles or to effects
of structure showed a sensible reduction of the strangeness
production. None of the modifications, however, could fully
explain the discrepancies. Therefore, the overestimation is
likely due to a combination of the three explanations proposed
above. However, it is difficult to proof or reject this hypothesis
considering the complexity of the processes involved.

V. CONCLUSION AND FUTURE

In this paper, a full description and a detailed analysis
of the new version of INCL, INCL + +6, were presented.
First, the main new capabilities of INCL, which are the
strangeness production and the variance reduction methods,
were described. Then, the model predictions were compared
to experimental data.

In this second part, different projectiles (proton, deuteron,
and pion) were tested at various kinetic energies: from
1.6 to 13.7 GeV for protons, 1.02 GeV for pions, and
2.1 GeV/nucleon for deuteron. Various targets ranging from
9Be to 208Pb were considered and a wide range of angles was
covered.

For most of the studied cases, there is a good agreement
between experimental data and INCL predictions. Notably,
the dependence of experimental data on either energy or target
mass number is often well reproduced, which demonstrates
that the strangeness physics is well implemented. However,
slight discrepancies exist. In some cases experimental data
are overestimated. Different explanations were proposed to
understand these discrepancies, but the lack of experimental
data prevents definitive conclusions. The dominant problem
is likely in the �-induced reactions. Though, implementing
�-induced reactions significantly improved the description of
strangeness production, the cross sections used are suspected
to be overestimated at high energies, which is consistent with
the conclusions in Ref. [15].

With the validation of INCL + +6, the problem of the
statistics and computational time arose. This problem has
been solved with the implementation of a variance reduc-
tion scheme in INCL, which has been described in detail.
The developed method increases artificially the strangeness
production respecting some mathematical constraints, which
results in a better statistics for observables linked to the
strangeness physics, and therefore, to a reduction of the
required calculation time.

In addition, our new version of INCL is now implemented
in the transport code Geant4 [34]. Thus, it can be used in
the simulation of macroscopic systems, which allows other
collaborations to have a full access to the last version of our

014608-15



J. HIRTZ et al. PHYSICAL REVIEW C 101, 014608 (2020)

model. They can use it for the design of new experiments
dedicated to the study of strange particles and hypernuclei in
the foreseeable future, such as for the HypHI [35], Panda [36],
and CBM [37] experiments at the FAIR facility.

In the future, a more detailed study of �-induced
strangeness production should be carried out to improve
the corresponding cross-section parametrizations. The K−
production could be improved by the implementation of
additional strangeness exchange channels. Concerning the
variance reduction methods, the safeguard can be improved
to reduce the number of edge cases exhibiting convergence
issues, what would simplify its use.
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APPENDIX: VERTEX CROSS-SECTION RATIO

In this Appendix some examples of cross-section ratio
calculations are discussed. This plans to explain the biasing
steps of the variance reduction scheme.

1. Example 1

In the first example (Fig. 17) we consider two successive
binary collisions. The two nonstrange particles at the origin of
the vertex A are considered without any history. Let us assume
that the total cross section for the vertex A is 20 mb, with
the reaction cross section for the production of strangeness
is 0.1 mb and therefore the nonstrangeness production cross
section is 19.9 mb. Our goal is an increase of the total
strangeness production by a factor 10 (= bias factor).

According to Eq. (2), to increase the probability of a
particle production by a factor 10 is to give it an importance
W = 1/10.

Since initial particles in A have no history, the probability
of strangeness production at this time of the cascade is directly
proportional to the strangeness production cross section.

FIG. 17. Example of basic intranuclear cascade represented as a
time ordered graph. Circles and arrows represent binary collisions
and the particles propagating, respectively.

Consequently, to increase the probability of strangeness pro-
duction by a factor 10, the corresponding cross section should
be multiplied by the same factor 10. Therefore, the modified
strangeness production cross section is 1 mb and, because
the total cross section should be conserved, the modified
nonstrangeness production cross section is 19 mb.

At this stage of the variance reduction scheme, the cascade
is biased. Now, the vertex cross-section ratio of the vertex
A should be determined. The vertex cross-section ratio is
the ratio of the event importance before versus after this
vertex. This ratio is directly equal to the inverse of the cross-
section multiplying factor of the chosen channel. This means
the vertex cross-section ratio will be equal, in this case, to
0.1 mb/1 mb = 0.1 if strangeness is produced and equal to
19.9 mb/19 mb � 1.047 otherwise. Let us now assume that
no strange particle is produced. At this stage, the probability
of realization for this cascade is decreased by a factor 1.047
and the importances of outgoing particles are increased by
1.047. In INCL, the cross-section ratio is registered for future
uses.

Let us assume that one of the particles produced in the
vertex A collides with another nonstrange particle without
history in the vertex B. Remember that we want to increase
the probability of creating strange particles by a factor 10.
Therefore, the importance of a strange particle produced in the
vertex B should be W = 0.1. The importance is the product of
every cross-section ratio on a path:

0.1 = W = CSR(A) × CSR(B). (A1)

Therefore, if a strange particle is produced, then the
cross-section ratio of vertex B should be CSR(B)S = 1/[10 ×
CSR(A)] � 0.095. This determines the modified strangeness
production cross section of this vertex (σ ′

S = σS/CSR(B)S),
the modified nonstrangeness production cross section (σ ′

NS =
σtot − σ ′

S), and the cross-section ratio of vertex B in case of
nonstrangeness production [CSR(B)NS = σNS/σ

′
NS].

In the general case, the cross-section ratio of a vertex
following a set K of vertices and with strange particles in its
final state should be

CSR(X ) = 1

bias ratio × ∏
I∈K CSR(I )

. (A2)

2. Example 2

The second example shown in Fig. 18 illustrates the case
of branch recombination. Continuing the case presented in
Appendix A 1, a particle coming from vertex B, which is itself
induced by a particle from vertex A, collides with a particle
directly produced by vertex A.

FIG. 18. Same as described in the caption of Fig. 17, except with
three vertices and a branch recombination.
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FIG. 19. Same as described in the caption of Fig. 18, except with
four vertices.

Equation (A2) gives CSR(C) in case of strangeness pro-
duction:

CSR(C) = 1

bias ratio × CSR(A) × CSR(B)
. (A3)

We also know CSR(B), which produced strangeness:

CSR(B) = 1

bias ratio × CSR(A)
. (A4)

Therefore, CSR(C) = 1. Consequently, the cross sections
are not modified because the probability to reach the initial

state of vertex C has already been increased by a factor equal
to the bias ratio.

3. Example 3

The last example shown in Fig. 19 is a more complex
case of branch recombination. Let us assume that no strange
particles were produced in the vertices A and B but that
strangeness production happened in vertex C. CSR(A) and
CSR(B) are determined as described in Appendix A 1 in
the case of nonstrangeness production. CSR(C) follows the
Eq. (A2) because of strangeness production:

CSR(C) = 1

bias ratio × CSR(A)
. (A5)

If strangeness is produced in vertex D, then CSR(D) also
follows Eq. (A2):

CSR(D) = 1

bias ratio × CSR(A) × CSR(B) × CSR(C)

= 1

CSR(B)
. (A6)
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[2] A. Kelić, M. V. Ricciardi, and K.-H. Schmidt, in Proceedings
of Joint ICTP-IAEA Advanced Workshop on Model Codes for
Spallation Reactions, ICTP Trieste, Italy, 4–8 February 2008,
edited by D. Filges, S. Leray, Y. Yariv et al. (IAEA, Vienna,
2008), pp. 181–221.

[3] D. Mancusi, A. Boudard, J. Cugnon, J. C. David, P. Kaitaniemi,
and S. Leray, Phys. Rev. C 90, 054602 (2014).

[4] D. Mancusi, A. Boudard, J. Carbonell, J. Cugnon, J. C. David,
and S. Leray, Phys. Rev. C 91, 034602 (2015).

[5] J. L. Rodríguez-Sánchez, J. C. David, D. Mancusi, A. Boudard,
J. Cugnon, and S. Leray, Phys. Rev. C 96, 054602 (2017).

[6] S. Pedoux and J. Cugnon, Nucl. Phys. A 866, 16 (2011).
[7] J. C. David et al., Eur. Phys. J. Plus 133, 253 (2018).
[8] V. Uzhinsky, Development of the Fritiof Model in Geant4, in

Joint International Conference on Supercomputing in Nuclear
Applications and Monte Carlo 2010 (SNA + MC2010) Hitot-
subashi Memorial Hall, Tokyo, Japan, October 17–21, 2010
(Atomic Energy Society of Japan, Tokyo, 2010).

[9] J. Hirtz, J. C. David et al., Eur. Phys. J. Plus 133, 436 (2018).
[10] A. Boudard, J. Cugnon, J. C. David, S. Leray, and D. Mancusi,

Phys. Rev. C 87, 014606 (2013).
[11] C. Patrignani et al., Chin. Phys. C 40, 100001 (2016).
[12] J. L. Rodríguez-Sánchez, J. C. David, J. Hirtz, J. Cugnon, and

S. Leray, Phys. Rev. C 98, 021602(R) (2018).
[13] V. Metag, M. Nanova, and E. Paryev, Prog. Part. Nucl. Phys.

97, 199 (2017).
[14] T. Rijken and H.-J. Schulze, Eur. Phys. J. A 52, 21 (2016).
[15] K. Tsushima, A. Sibirtsev, A. W. Thomas, and G. Q. Li, Phys.

Rev. C 59, 369 (1999); 61, 029903(E) (2000).
[16] A. Owen, Monte Carlo Theory, Methods and Examples (2013),

Chap. 9.

[17] W. Scheinast et al., Phys. Rev. Lett. 96, 072301 (2006).
[18] D. Wright and M. Kelsey, Nucl. Instrum. Meth. Phys. Res. Sec.

A 804, 175 (2015).
[19] A. Akindinov et al., JETP Lett. 72, 100 (2000).
[20] M. Büscher, V. Koptev, M. Nekipelov et al., Eur. Phys. J. A 22,

301 (2004).
[21] N. Mokhov, K. Gudima, and S. Striganov, arXiv:1409.1086.
[22] S. Schnetzer, R. M. Lombard, M. C. Lemaire, E. Moeller, S.

Nagamiya, G. Shapiro, H. Steiner, and I. Tanihata, Phys. Rev.
C 40, 640 (1989); 41, 1320(E) (1990).

[23] HADES Collaboration, Eur. Phys. J. A 50, 81 (2014).
[24] HADES Collaboration, Phys. Rev. C 90, 054906 (2014).
[25] S. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
[26] O. Buss et al., Phys. Rep. 512, 1 (2012).
[27] C.-M. Herbach et al., Nucl. Instrum. Meth. Phys. Res. Sec. A

562, 729 (2006).
[28] M. Benabderrahmane et al., Phys. Rev. Lett. 102, 182501

(2009).
[29] K. Tsushima, A. Sibirtsev, and A. W. Thomas, Phys. Rev. C 62,

064904 (2000).
[30] W. Cassing et al., Phys. Rep. 308, 65 (1999).
[31] W. Cassing et al., Nucl. Phys. A 614, 415 (1997).
[32] T. Abbott et al. (E-802 Collaboration), Phys. Rev. D 45, 3906

(1992).
[33] V. Koptev et al., Zh. Eksp. Teor. Fiz. 94, 1 (1988) [JETP 67,

2177 (1988)].
[34] Geant4 Collaboration, Geant4 Physics Reference Manual Re-

lease 10.5.
[35] T. Saito et al., in Proceedings of the IX International Confer-

ence on Hypernuclear and Strange Particle Physics (Springer,
Berlin/Heidelberg, 2007).

[36] J. Messchendorp, JPS Conf. Proc. 13, 010016 (2017).
[37] V. Friese, Proc. Sci. 47, 56 (2008).

014608-17

https://doi.org/10.3938/jkps.59.791
https://doi.org/10.3938/jkps.59.791
https://doi.org/10.3938/jkps.59.791
https://doi.org/10.3938/jkps.59.791
https://doi.org/10.1103/PhysRevC.90.054602
https://doi.org/10.1103/PhysRevC.90.054602
https://doi.org/10.1103/PhysRevC.90.054602
https://doi.org/10.1103/PhysRevC.90.054602
https://doi.org/10.1103/PhysRevC.91.034602
https://doi.org/10.1103/PhysRevC.91.034602
https://doi.org/10.1103/PhysRevC.91.034602
https://doi.org/10.1103/PhysRevC.91.034602
https://doi.org/10.1103/PhysRevC.96.054602
https://doi.org/10.1103/PhysRevC.96.054602
https://doi.org/10.1103/PhysRevC.96.054602
https://doi.org/10.1103/PhysRevC.96.054602
https://doi.org/10.1016/j.nuclphysa.2011.07.004
https://doi.org/10.1016/j.nuclphysa.2011.07.004
https://doi.org/10.1016/j.nuclphysa.2011.07.004
https://doi.org/10.1016/j.nuclphysa.2011.07.004
https://doi.org/10.1140/epjp/i2018-12079-9
https://doi.org/10.1140/epjp/i2018-12079-9
https://doi.org/10.1140/epjp/i2018-12079-9
https://doi.org/10.1140/epjp/i2018-12079-9
https://doi.org/10.1140/epjp/i2018-12312-7
https://doi.org/10.1140/epjp/i2018-12312-7
https://doi.org/10.1140/epjp/i2018-12312-7
https://doi.org/10.1140/epjp/i2018-12312-7
https://doi.org/10.1103/PhysRevC.87.014606
https://doi.org/10.1103/PhysRevC.87.014606
https://doi.org/10.1103/PhysRevC.87.014606
https://doi.org/10.1103/PhysRevC.87.014606
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/PhysRevC.98.021602
https://doi.org/10.1103/PhysRevC.98.021602
https://doi.org/10.1103/PhysRevC.98.021602
https://doi.org/10.1103/PhysRevC.98.021602
https://doi.org/10.1016/j.ppnp.2017.08.002
https://doi.org/10.1016/j.ppnp.2017.08.002
https://doi.org/10.1016/j.ppnp.2017.08.002
https://doi.org/10.1016/j.ppnp.2017.08.002
https://doi.org/10.1140/epja/i2016-16021-6
https://doi.org/10.1140/epja/i2016-16021-6
https://doi.org/10.1140/epja/i2016-16021-6
https://doi.org/10.1140/epja/i2016-16021-6
https://doi.org/10.1103/PhysRevC.59.369
https://doi.org/10.1103/PhysRevC.59.369
https://doi.org/10.1103/PhysRevC.59.369
https://doi.org/10.1103/PhysRevC.59.369
https://doi.org/10.1103/PhysRevC.61.029903
https://doi.org/10.1103/PhysRevC.61.029903
https://doi.org/10.1103/PhysRevC.61.029903
https://doi.org/10.1103/PhysRevLett.96.072301
https://doi.org/10.1103/PhysRevLett.96.072301
https://doi.org/10.1103/PhysRevLett.96.072301
https://doi.org/10.1103/PhysRevLett.96.072301
https://doi.org/10.1016/j.nima.2015.09.058
https://doi.org/10.1016/j.nima.2015.09.058
https://doi.org/10.1016/j.nima.2015.09.058
https://doi.org/10.1016/j.nima.2015.09.058
https://doi.org/10.1134/1.1316808
https://doi.org/10.1134/1.1316808
https://doi.org/10.1134/1.1316808
https://doi.org/10.1134/1.1316808
https://doi.org/10.1140/epja/i2004-10036-6
https://doi.org/10.1140/epja/i2004-10036-6
https://doi.org/10.1140/epja/i2004-10036-6
https://doi.org/10.1140/epja/i2004-10036-6
http://arxiv.org/abs/arXiv:1409.1086
https://doi.org/10.1103/PhysRevC.40.640
https://doi.org/10.1103/PhysRevC.40.640
https://doi.org/10.1103/PhysRevC.40.640
https://doi.org/10.1103/PhysRevC.40.640
https://doi.org/10.1103/PhysRevC.41.1320
https://doi.org/10.1103/PhysRevC.41.1320
https://doi.org/10.1103/PhysRevC.41.1320
https://doi.org/10.1140/epja/i2014-14081-2
https://doi.org/10.1140/epja/i2014-14081-2
https://doi.org/10.1140/epja/i2014-14081-2
https://doi.org/10.1140/epja/i2014-14081-2
https://doi.org/10.1103/PhysRevC.90.054906
https://doi.org/10.1103/PhysRevC.90.054906
https://doi.org/10.1103/PhysRevC.90.054906
https://doi.org/10.1103/PhysRevC.90.054906
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1016/j.nima.2006.02.033
https://doi.org/10.1016/j.nima.2006.02.033
https://doi.org/10.1016/j.nima.2006.02.033
https://doi.org/10.1016/j.nima.2006.02.033
https://doi.org/10.1103/PhysRevLett.102.182501
https://doi.org/10.1103/PhysRevLett.102.182501
https://doi.org/10.1103/PhysRevLett.102.182501
https://doi.org/10.1103/PhysRevLett.102.182501
https://doi.org/10.1103/PhysRevC.62.064904
https://doi.org/10.1103/PhysRevC.62.064904
https://doi.org/10.1103/PhysRevC.62.064904
https://doi.org/10.1103/PhysRevC.62.064904
https://doi.org/10.1016/S0370-1573(98)00028-3
https://doi.org/10.1016/S0370-1573(98)00028-3
https://doi.org/10.1016/S0370-1573(98)00028-3
https://doi.org/10.1016/S0370-1573(98)00028-3
https://doi.org/10.1016/S0375-9474(96)00461-7
https://doi.org/10.1016/S0375-9474(96)00461-7
https://doi.org/10.1016/S0375-9474(96)00461-7
https://doi.org/10.1016/S0375-9474(96)00461-7
https://doi.org/10.1103/PhysRevD.45.3906
https://doi.org/10.1103/PhysRevD.45.3906
https://doi.org/10.1103/PhysRevD.45.3906
https://doi.org/10.1103/PhysRevD.45.3906
https://doi.org/10.7566/JPSCP.13.010016
https://doi.org/10.7566/JPSCP.13.010016
https://doi.org/10.7566/JPSCP.13.010016
https://doi.org/10.7566/JPSCP.13.010016

