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Excitation-energy-dependent potential energy surfaces in the ternary breakup of 252Cf
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We study the excitation energy-dependent potential-energy surfaces (PESs) for both the spherical and
deformed fragments from the ternary fragmentation (TF) of 252Cf at four different excitation energies of
the fissioning parent nuclei. A two-dimensional minimization approach with respect to the charge numbers
(Z1, Z2, and Z3) of the fragments has been used to minimize all possible ternary combinations, which are
generated from the atomic-mass-evaluation (AME2016) data [Chin. Phys. C 41, 030003 (2017)]. To calculate the
energy-dependent TF-PES, we used the temperature-dependent binding energies (TDBE), which are calculated
as follows: the temperature-dependent (T -dependent) macroscopic liquid-drop model (LDM) energy proper
due to Krappe’s formula [Phys. Rev. C 59, 2640 (1999)] and the microscopic shell correction energies due
to the analytical estimates of Myers and Swiatecki [Nucl. Phys. 81, 1 (1966)]. Furthermore, the shell correction
energies and the nuclear deformations are also made T -dependent. In this study, the T -dependent total interaction
potential between the ternary fragments is calculated for the fragments in a collinear geometry with the lightest
fragment A3 being in the middle of the two main fission fragments A1 and A2. From the TF-PES results with
the use of spherical-shell corrections, a strong energy maximum in the PES is obtained around Z3 = 2 with
the Z1 = 50 region due to the closed-shell effects of doubly magic nuclei. In addition to this, we also obtained
some other significant energy maxima around the magic and/or semimagic numbers of nuclei. These energy
maxima extend further with increasing excitation energy of the fissioning parent nuclei. We also found that the
true-ternary-fragmentation (TTF) fragments are reasonably favored at high excitation energies. Furthermore, the
effects of T -dependent deformations and the T -dependent deformed-shell corrections in the TF-PES of 252Cf are
also studied. From the TF-PES results of deformed ternary fragments, we obtained the energy maximum around
Z3 = 16 region, which may be due to the larger β2 deformation values. Furthermore, we also studied the ternary
fragmentation yields and neutron emission from the excited fragments in the 10Be-accompanied spontaneous
ternary fission of 252Cf and compared our calculated results with the available experimental data.
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I. INTRODUCTION

Since the discovery of nuclear fission [1] in 1938, a lot
of theoretical and experimental investigations have been per-
formed to study the fission process. However, fission physics
still has interesting topics to be explored and understood. One
of them is the very rare process of nuclear ternary fission,
which is the breakup of a heavy compound nucleus into three
fragments. It is well known that the possibility of exotic
ternary decay is much less than for binary decays, which
was recently reported [2] as ≈4 × 10−3 per spontaneous
fission event. Generally, the ternary fission process can happen
in either direct (equatorial and collinear) or cascade fission
modes. The term “ternary fission” is often referred to as
the light-charged-particle–accompanied (LCP-accompanied)
fission because the emitted third fragment is very light and,
in most cases, is an α particle with the largest probability in
the perpendicular direction to the binary fission axis (equato-
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rial configuration). However, LCP-accompanied fission gives
decreasing yields as a function of increasing the mass of the
third particle. Another term “true-ternary-fission” refers to the
spontaneous breakup of a heavy nucleus into three collinear
fragments of comparable masses. Recent experimental ob-
servation [2,3] and numerous theoretical predictions [4–6]
suggest that, in a ternary decay, the collinear configuration is
comparatively favored over the equatorial configuration.

Lestone [7,8] proposed an evaporation-based model for
nuclear ternary fission, which is a blend of statistical [9]
and dynamical [10] models of nuclear fission. Using this hy-
brid model, ternary fission probabilities for thermal-neutron-
induced fission of 242Pu(nth, f) were calculated and the re-
sults agree very well with the experimental results of Koster
et al. [11]. Andreev et al. [12] studied the different LCP (4He,
10Be, 14C, and 20O) accompanied ternary fission of 252Cf
within the statistical approach of two-step binary process.
They also calculated the charge distributions in spontaneous
ternary fission of 252Cf and in induced ternary fission of 56Ni
and obtained a good comparison with the available experi-
mental data. Pyatkov et al. [2,3] experimentally observed the
true-ternary-fragmentation (TTF) in thermal-neutron-induced
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fission of 235U(nth, f) and in spontaneous fission (sf) of 252Cf
with the use of the missing-mass technique. The authors called
this process “collinear cluster tripartition” (CCT), in which
three fragments with proton magic numbers Z1 = 50, Z2 =
28, and Z3 = 20 have been observed. Furthermore, within the
concept of the dinuclear system (DNS) model, the PES for
the CCT products from the ternary fission of 235U(nth, f) and
252Cf(sf) is studied in Refs. [13–16].

Using the two-center shell model (TCSM), Zagrebaev
et al. [17,18] studied the PES for the superheavy nucleus
296
116X formed in the collision of 48Ca with 248Cm and found
that the TTF with the formation of a heavy third fragment is
possible for superheavy nuclei. In addition, they also studied
the ternary fission PES of giant nuclear systems 466,476

184X
formed in 233,238

92U + 233,238
92U low-energy collisions and re-

ported that the PES has a deep minimum for Pb + Ca +
Pb and Hg + Cr + Hg ternary configurations apart from the
Pb + No binary configuration. Karpov [19] developed the
three-center shell model (T3CSM) for a deformed nucleus to
study the potential-energy landscape for the ternary fission
of 252Cf and reported that the favorable pronounced valleys
for the ternary fission mode consists of doubly magic Sn
(with Z = 50 and N = 82) as one of the fragments and two
other magic and/or semimagic fragments. Recently, Denisov
et al. [20] studied the total interaction potential energies of
various deformed fragments formed in the ternary fission of
252Cf and compared their calculated ternary particles yield
with the available experimental data [21] for the ternary
fission reaction of 249Cf(nth, f).

Within the three-cluster model (TCM) proposed by Bal-
asubramaniam et al. [6,22–27], TF-PES for two different
arrangements of ternary fragments, viz. keeping the lightest
fragment A3 in the middle (type 1) and keeping a lighter
fragment A2 in the middle (type 2), in the collinear ternary
fission of 252Cf are discussed [26] and they reported the
various possible energetically favored ternary fission modes.
Santhosh et al. [28–30], studied the β2 deformation effects
in the α-accompanied ternary fission of even-even 238–244Pu,
244–252Cm, and 244–260Cf nuclei, using the unified ternary fis-
sion model. Based on the framework of the statistical theory of
fission, one of us (C.K.) [31] studied the ternary fragmentation
mass distribution of 252Cf for A3 = 48Ca at T = 1 and 2 MeV
and obtained the largest yield for the experimental expectation
of 132Sn + 72Ni + 48Ca ternary fragmentation. It is to be noted
here that the authors have considered these temperature values
as the temperature of the fission fragments. Furthermore,
they have not considered the T -dependence of the fission
fragments deformation. In Ref. [32], we further extended
this approach to study the mass and charge distributions of
different LCP-accompanied fission of 252Cf with A3 = 4He,
10Be, 14C, 20O, 20Ne, and 24Ne and the obtained yield values
are in good agreement with the available experimental data.

The present paper aims to extend our previous work carried
out in Ref. [35] by introducing the excitation-energy depen-
dence of the PES in the ternary fragmentation of 252Cf. For
the calculation of temperature-dependent binding energies,
we have used the T -dependent liquid-drop model (LDM)
energy proper due to Krappe’s formula [33]. In Krappe’s
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FIG. 1. The difference between the calculated ground-state bind-
ing energies with the use of the Krappe formula [33] and the experi-
mental ground-state binding energies from the AME2016 data [34] is
presented for the experimentally known 3436 nuclei. The horizontal
and vertical dotted lines correspond to the neutron (N = 154) and
proton (Z = 98) numbers of 252

98 Cf nuclei, respectively. The dashed
lines correspond to the magic numbers of proton and neutron.

formula, the Yukawa-plus-exponential mass formula is gen-
eralized to describe the Gibbs free energy of hot and fi-
nite nuclei. Furthermore, the T dependence of the main
liquid drop coefficients is obtained by fitting the results
of the T -dependent Thomas Fermi calculations. One of us
(C.K.) [36,37] has already studied the effects of Krappe’s
T -dependent formula in the binary decay of excited 56Ni∗ and
59Cu∗ nuclei. It is concluded from these studies [36,37] that
the refitting of the coefficients of the Krappe’s T -dependent
binding-energy formula is not necessary and the structural ef-
fects on the PES is the intrinsic property of the binding-energy
form one uses. Hence, we have used here the actual form of
the expression given in Ref. [33] to calculate the T -dependent
LDM energy. Besides Krappe’s macroscopic LDM energy, the
microscopic shell corrections due to the analytical estimates
of Myers and Swiatecki [38] are also added to reproduce the
ground-state experimental binding energies. The difference
between the calculated ground-state binding energies due to
Krappe’s formula and the experimental ground-state binding
energies from the AME2016 data [34] is presented in Fig. 1
for the experimentally known 3436 nuclei. From this figure,
it is seen that the binding energies calculated with the use of
Krappe’s formula has less deviation (except at the vicinity of
the magic nuclei, where the difference is noted around 5 MeV)
with respect to the experimental data for the nuclei of interest
(nuclei presented under the dotted lines). Furthermore, we can
also see that the deviations for light nuclei are slightly larger
than those for heavy nuclei, which may be due to the shortage
of LDM in describing the significant structural effects of the
light nuclei. It is to be mentioned that the difference between
the calculated and the experimental binding energies [39] is
already shown for the selective isobars with A = 12, 56, 82,
and 116 in Ref. [36].
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The organization of the paper is as follows: A brief descrip-
tion of the theoretical framework used in our calculations is
given in Sec. II. The calculations and results are discussed in
Sec. III. Finally, the summary of our results and conclusions
are given in Sec. IV.

II. THEORETICAL FRAMEWORK

The ternary fragmentation is energetically possible only if
the Q value of the reaction is positive,

Q =
3∑

i=1

BEi(T�) − BE f > 0. (1)

Here BEi(T�) (i = 1, 2, and 3) and BE f are the T -dependent
binding energies (in MeV) of the three fission fragments
and the ground-state binding energy of the fissioning nucleus
252Cf, respectively, and T� is the temperature value of the
ternary system, to be defined later. It is to be mentioned
here that the energy dependence of the fissioning nucleus
enters through its excitation energy ξ ∗

f only. The T -dependent
binding energies are calculated as

BE(T ) = LDM(T ) + δU exp
(−T 2/T 2

0

)
, (2)

where the macroscopic term LDM(T ) is the T -dependent
liquid-drop energy proper due to Krappe’s form [33] and δU
is the microscopic shell corrections due to the analytical esti-
mates of Myers and Swiatecki [38], also made T dependent to
vanish exponentially with T0 = 1.5 MeV.

In this framework, the T -dependent total interaction poten-
tial between the three touching fragments in type-1 collinear
geometry (for the details of this geometry, refer to Fig. 1 in
Ref. [35]) is the sum of the pairwise Coulomb and nuclear
interaction potentials between fragments and deformation en-
ergies of the three fission fragments, which can be written as

V =
3∑

i=1

3∑
j>i

V C
i j [Ri j, βλi(T�), βλ j (T�)]

+ V N
i j [Ri j, βλi(T�), βλ j (T�)] +

3∑
i=1

Edef
i [βλi(T�)], (3)

where V C
i j and V N

i j corresponds to the T -dependent Coulomb
and nuclear interaction potentials between fragments i and j,

respectively, and Edef
i [βλi(T�)] is the T -dependent deforma-

tion energy of fragment i. In Eq. (3), one can also include
the centrifugal-potential term. However, a recent study [25]
reported that the inclusion of centrifugal potential does not
significantly vary the structure of the potential and its role is
restricted only to shifting the potential up. Hence, we do not
consider this term in the present study.

It is to be noted that the ground-state static deformation
values βλi (λ = 2, 3, 4, and 6) of the finite-range droplet
model-2012 (FRDM2012) [40] was used in Ref. [35]. How-
ever, in order to obtain the fully energy- and/or T -dependent
TF-PES, the T -dependence of the deformation values βλi(T )
calculated as in Refs. [41–43] are considered through the
following relation:

βλi(T ) = β
g.s.
λi exp(−T/T0), (4)

where β
g.s.
λi is the ground-state deformation values and T0 is

the temperature of the nucleus at which the shell effects start
to vanish (T0 = 1.5 MeV).

The surface radius of a deformed nucleus is defined as
the distance from the origin of the coordinate system to the
point on the nuclear surface whose position is specified by the
orientation angles,

Ri(θi, T�) = R0i(T�)

[
1 +

∑
λ

βλi(T�)Y (0)
λ (θi )

]
, (5)

where R0i(T�) is the T -dependent nuclear radii of the equiva-
lent spherical nuclei, which can be written as

R0i(T�) = (
1.2536A1/3

i − 0.80012A−1/3
i − 0.0021444/Ai

)
× [

1 + (
7.62 × 10−4T 2

�

)]
, (6)

where Y (0)
λ is the spherical harmonic function and θi is the an-

gle between the symmetry axis and the radius vector Ri(θi) of
the nuclei. In this study, the orientation angles are considered
to be 0◦. The first term presented in Eq. (6) is obtained from
Ref. [44] and its T dependence is taken from Ref. [33].

The Coulomb interaction energy V C
i j defines the force of

repulsion between the two interacting charges of fragments,
i and j. The expression of the Coulomb interaction of the
two deformed arbitrarily oriented axial-symmetric nuclei [45]
is rewritten in Ref. [35] by taking into consideration higher-
order deformations as well as the 0◦ orientation angle, and its
T dependence is given by

V C
i j [Ri j, βλi(T�), βλ j (T�)]

= ZiZ je2

Ri j

{
1 + 3

[
R2

0i(T�)β2i(T�) + R2
0 j (T�)β2 j (T�)

]
2
√

5πR2
i j

+ 3
[
R3

0i(T�)β3i(T�) + R3
0 j (T�)β3 j (T�)

]
2
√

7πR3
i j

+
[
R4

0i(T�)β4i(T�) + R4
0 j (T�)β4 j (T�)

]
2
√

πR4
i j

+ 3
[
R6

0i(T�)β6i(T�) + R6
0 j (T�)β6 j (T�)

]
2
√

13πR6
i j

+3
[
R2

0i(T�)β2
2i(T�) + R2

0 j (T�)β2
2 j (T�)

]
7πR2

i j

+ 9
[
R4

0i(T�)β2
2i(T�) + R4

0 j (T�)β2
2 j (T�)

]
14πR4

i j

+ 27R2
0i(T�)β2i(T�)R2

0 j (T�)β2 j (T�)

10πR4
i j

}
, (7)
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where e2 = 1.44 MeV fm, Zi and Zj are, respectively, the
number of protons in nuclei i and j, and Ri j is the distance
between the mass centers of nuclei i and j: Ri j = Ri(θi, T�) +
Rj (θ j, T�) fm.

The T -dependent nuclear interaction potential V N
i j between

two deformed nuclei [20] can be written as

V N
i j [Ri j, βλi(T�), βλ j (T�)]

≈ S[βλi(T�), βλ j (T�)]V N
0i j

{
d0i j

[
Rsph

i j , R0i(T�), R0 j (T�)
]}

.

(8)

Here S[βλi(T�), βλ j (T�)] relates to the modification of the
strength of nuclear interaction of the deformed nuclei induced
by the surface deformations, which depends on the mean
curvature of nuclear surfaces at the closest points and is given
by

S[βλi(T�), βλ j (T�)] =
R2

i (π/2,T� )R2
j (π/2,T� )

R2
i (π/2,T� )Rj (0,T� )+R2

j (π/2,T� )Ri (0,T� )

R0i (T� )R0 j (T� )
R0i (T� )+R0 j (T� )

.

The factor S = 1, S < 1, and S > 1 corresponds to both
spherical, both prolate deformed, and both oblate deformed
interacting nuclei, respectively. The second term in Eq. (8)
represents the nuclear part of the interaction potential between
the same nuclei, but with spherical shape [44], and is defined
as

V N
0i j

{
d0i j

[
Rsph

i j , R0i(T�), R0 j (T�)
]} = ν1C + ν2C1/2

1 + exp
( d0i j

d1+d2/C

) ,

where ν1 = −27.190 MeV fm−1, ν2 = −0.93009 MeV
fm−1/2, d1 = 0.78122 fm, d2 = −0.20535 fm2, C =

R0i (T� )R0 j (T� )
R0i (T� )+R0 j (T� ) fm, and Rsph

i j = R0i(T�) + R0 j (T�) fm. Here d0i j

is the closest distance between the surfaces of two interacting
nuclei, and it is taken as zero for the collinear touching
fragments. The nuclear interaction between fragments A1 and
A2 is not considered here, because of the short-range nuclear
interaction.

Furthermore, the deformation energy of the fission frag-
ment consists of the surface and Coulomb contributions
caused by deviation from spherical shape [46,47] and is

Edef
i [βλi(T�)] =

∑
λ

[
(λ − 1)(λ + 2)bsurf A

2/3
i

4π

− 3(λ − 1)e2Z2
i

2π (2λ + 1)R0i(T�)

]
β2

λi(T�)

2
, (9)

where bsurf is the surface energy coefficient of the mass
formula taken from Ref. [40].

The total excitation energy (E∗) of three fission fragments
is related to the Q value as follows:

E∗ = ξ ∗
f + Q − V. (10)

Here ξ ∗
f is the excitation energy of the fissioning parent nu-

cleus and V is the total interaction potential between the three
interacting fragments. To see the variation of TF-PES as a
function of excitation energy and/or temperature, we consider
here four different excitation energies of the fissioning parent

nucleus, i.e., ξ ∗
f = 0 MeV (for spontaneous fission), 6.17 MeV

(for thermal-neutron-induced fission), 25 MeV, and 50 MeV.
Generally, in binary-fission studies, the total excitation

energy is assumed to be distributed between the two fission
fragments proportional to their masses or level-density pa-
rameters. The same assumption is extended here for ternary
fission fragments and it is given by

E∗
i = E∗ai

a1 + a2 + a3
. (11)

The above assumption was already applied by Denisov
et al. [20] for the yield calculation of various ternary frag-
ments in the fission of 252Cf. It is to be noted that Eq. (11)
is different from Eq. (12) of Ref. [12], where the excitation
energy of the third fragment is assumed to be small. However,
in this study, it is calculated as that of the primary fragments
by using Eq. (11).

The level-density parameter ai [12,48] is calculated as

ai = ãi(Ai )

[
1 + 1 − exp(−E∗/ED)

E∗ δUi

]
. (12)

Here ãi(Ai ) = 0.114Ai + 0.098A2/3
i MeV−1 [49] and the

damping constant ED = 18.5 MeV. The temperature value of
the ternary system is calculated as, T� = √E∗

i /ai. The T� value
is the same for all three fragments in a particular ternary decay
but varies for different ternary decay with the various mass
and charge combinations of the ternary fragments. Since the
binding energies BEi of the ternary fragments and the total in-
teraction potential V between them depend on the temperature
T� of the corresponding ternary system, the total excitation
energy E∗ is calculated with Eq. (10) by using an iteration
procedure: i.e., first, the ternary fragments binding energies
and the total interaction potentials are calculated with T =
0 MeV and a new value of E∗ is obtained from Eq. (10).
Then, with this E∗, we calculate the T� value of each ternary
system. For each ternary system with its corresponding T�, we
calculate Q and V which leads to a new value of E∗. A similar
approach is already done in Refs. [12,50] and reported that a
nice accuracy was obtained in finding E∗.

In Ref. [31], the ternary fragmentation probability is con-
sidered to be proportional to the product of nuclear level
densities (ρ) of three fission fragments,

P(Aj, Zj ) ∝
3∏

i=1

ρi. (13)

The nuclear level density ρi at an excitation energy E∗
i is given

by

ρi(E∗
i ) =

√
π

12

exp(2
√

aiE∗
i )

a1/4
i E∗5/4

i

. (14)

The neutron emission from the excited fission fragments
can be calculated as in Ref. [12],

νi = E∗
i /

(
Si

n + 2T�

)
, (15)

where Si
n is the separation energy of the neutron in the

fragment i, calculated as the ground-state binding-energy
difference between the fragments (Ai, Zi ) and (Ai − 1, Zi ).
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III. RESULTS AND DISCUSSION

In this study, one of the important features is the use of T -
dependent binding energies due to Krappe’s formula. This for-
mula has already been successfully applied in the dynamical
cluster-decay model (DCM) by one of us (C.K.) [36,37] for
the calculation of binary fragmentation potential energies of
56Ni∗ and 59Cu∗ nuclei at different temperatures. The detailed
description of the DCM can be found in Ref. [51]. Here, we
extended the works carried out in Refs. [35–37] to analyze the
excitation-energy dependence of the potential-energy surfaces
for the ternary fragmentation of 252Cf.

A. Calculation of total excitation energy E∗

At first, all possible ternary fragment combinations for the
ternary fragmentation of 252Cf are generated with the use of
AME2016 data by imposing the conditions such that always,
A1 + A2 + A3 = AF and Z1 + Z2 + Z3 = ZF (to conserve the
mass and charge numbers in a ternary fission reaction), and
A1 � A2 � A3 and Z1 � Z2 � Z3 (to avoid the repetition
of fragment combinations). Here, AF , A1, A2, and A3 and ZF ,
Z1, Z2, and Z3 correspond to the mass and charge numbers of
the fissioning parent nucleus and the three fission fragments,
respectively. Furthermore, A1 and A3 are denoted as the heav-
iest and the lightest of the three fragments, respectively. For
all possible thus-generated ternary fragment combinations,
the macroscopic liquid-drop energy proper due to Krappe’s
formula [33], microscopic shell correction energies due to
the analytical estimates of Myers and Swiatecki [38], and
the total interaction potential between the three fragments are
calculated with the use of the theoretical formalism presented
in Sec. II. In the present study, the calculations are carried out
for four different excitation energies of the fissioning parent
nucleus considered. As mentioned in the earlier section, the
binding energies of the ternary fragments and the total interac-
tion potential between them depend on the excitation energy
and/or temperature. Hence, for each ξ ∗

f , the total excitation
energy E∗ of every possible ternary fragmentation is calcu-
lated by using an iteration procedure; viz. first, the ternary
fragments binding energies and the total interaction potentials
are calculated with T = 0 MeV by using Eqs. (2) and (3),
respectively, and a new value of E∗ is found from Eq. (10).
Then, with this E∗, we calculate the temperature T� value of
each ternary fragmentation with the use of Eqs. (11) and (12).
Finally, for each ternary fragmentation with its corresponding
T�, we calculate the ternary fragments T -dependent binding
energies and T -dependent total interaction potential which
leads to a new value of E∗. In this study, the ternary fragmen-
tation potential-energy surface in terms of the total excitation
energy of the three fission fragments is considered. Further-
more, for the minimization of all possible ternary fragment
combinations on the potential-energy surface we have used
the same two-dimensional approach as done in our earlier
work [35] but for the charge numbers (Z1, Z2, and Z3) of
the three fission fragments. The ternary fragment combination
with the highest value of E∗ is considered to be the most
favorable ternary fragment configuration. It is to be mentioned
here that in Ref. [35], we presented V − Q as the driving

potential and reported the smallest driving potential as a
favorable region. However, we present here ξ ∗

f + Q − V as
the ternary fragmentation PES. Hence we focus the maximum
PES to identify the favorable ternary configuration.

It is important to mention that, in Ref. [52], the authors
studied the charge distribution in the ternary fragmentation
of 252Cf at four different excitation energies of the parent
nucleus. Furthermore, the total excitation energy of the frag-
ments involved in each ternary fragmentation was kept the
same as that of the excitation energy of the parent nucleus.
This has been achieved by the iterative computation of tem-
perature values of the fragments presented in each ternary
fragmentation. However, in the present study, the total exci-
tation energy of the fragments has derived from the energy
conservation [as defined in Eq. (10)] in a ternary fission
reaction, and it is found varying as a function of mass and
charge numbers of the three fragments. Consequently, the PES
has different temperature values as a function of mass and
charge numbers of the three fragments.

B. Effect of spherical-shell corrections on the ternary
fragmentation potential-energy surface

We now discuss the effect of spherical-shell corrections
on the T -dependent potential-energy surfaces for the ternary
fragmentation of 252Cf at different excitation energies of the
fissioning parent nucleus. Here the fragments are considered
to be spherical and the shell corrections are also made T de-
pendent. With the use of the theoretical formalism presented
in Sec. II, we calculate the binding energies and the total
interaction potentials of every possible ternary combination.
By using an iterative process as discussed earlier, we cal-
culate the excitation energies for all possible ternary frag-
ment combinations. The influence of T -dependent spherical-
shell corrections on the TF-PES of two-dimensional proton
minimized ternary fragment combinations are presented in
the ternary plots of Fig. 2. Figures 2(a)–2(d) correspond to
the four different excitation energies of the fissioning parent
nucleus. Here the proton magic numbers are shown as dashed
lines to see the importance of spherical-shell correction en-
ergies due to the closed-shell effects. The number of ternary
fragment combinations (which have E∗ > 0) presented in
each panel increases with the increase of ξ ∗

f . For the spon-

taneous fission of 252Cf, the ternary charge combinations
Cd + Ge + Ar, Sn + Zn + Ar, Te + Zn + S, and Sn + Ni +
Ca also possesses larger excitation energy and reasonably
favored. This is in line with the experimental observation.
Furthermore, for ξ ∗

f = 0 MeV, the occurrence of heavier third
fragments is less probable and it is experimentally known.
However, from ξ ∗

f � 25 MeV, a region of TTF fragments with
larger excitation energy is also obtained. In other words, the
occurrence of heavier third fragments increases with rising
ξ ∗

f . Irrespective of the ξ ∗
f considered, the largest excitation

energy maximum in the PES is seen around Z3 = 2–4 with
Z2 = 40–48 and Z1 = 48–54 region due to the closed-shell
effects of the doubly magic numbers of nuclei, 4

2He and 132
50 Sn.

Interestingly, this energy maximum increases further with the
increase in ξ ∗

f . Besides this energy maximum, some other no-
table energy maxima are also found around Z3 = 12–14 with
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FIG. 2. T -dependent PES of proton minimized spherical collinear touching fragments from the ternary fragmentation of 252Cf nuclei.
Panels (a)–(d) correspond to the different excitation energies of the fissioning parent nuclei, such as ξ ∗

f = 0 (sf), 6.17 (nth, f ), 25, and 50 MeV,
respectively. The dashed lines correspond to the proton magic numbers.

Z2 = 32–36 and Z1 = 50–52, Z3 = 8 with Z1 = 50–52, and
Z2 = 20 with Z3 = 2 region, due to the closed-shell effects of
the magic and/or semimagic numbers of nuclei. In the manner
of the largest-energy maximum found around Z3 = 2–4, these
maxima are also increasing further with the increase of ξ ∗

f .
Due to the variation of T� for each ternary fragmentation, the
vanishing of shell structures at higher excitation energies is
not noticeable.

C. Effect of deformed-shell corrections on the ternary
fragmentation potential-energy surface

The effect of T -dependent deformations and the T -
dependent deformed-shell corrections on the TF-PES of 252Cf
is presented in the ternary plots of Fig. 3. Figures 3(a)–
3(d) correspond to the four different excitation energies of
the fissioning parent nucleus, respectively. The calculation
procedure for the total excitation energy E∗ of deformed
ternary fragments is similar to the spherical ternary frag-
ments, except that the fragment-deformation effects are also
considered instead of the spherical fragments. Furthermore,
the shell correction energies made dependence on the de-
formation as well as the temperature. For the spontaneous
fission studies, the ground-state deformations are taken from
the FRDM2012 [40] data, and for other excitation energies,
the T -dependent deformation energies of the fragments are
considered through Eq. (4). It is to be noted that the deforma-

tion values are considered for A � 16 and Z � 8 nuclei and
not for lighter systems with A < 16 and Z < 8. Furthermore,
the inclusion of β2 deformation is sufficient since it has a
larger effect on the PES than the other higher-order (β3,
β4, and β6) deformations [35]. To maintain consistency with
our earlier work [35], we considered here all higher-order
deformations as well. In Fig. 3, a strong energy maximum
in the TF-PES is found around Z3 = 16 with Z2 = 38–34
and Z1 = 44–48 region. It is worth to be mentioned that
the ternary fragments presented in this region have larger
β2 deformation values, particularly for Z3 = 16. Because of
this larger β2 deformations, the total interaction potential
energy of these ternary fragments got reduced, and hence
it has a larger total excitation energy. Furthermore, a strong
maximum also appears around Z3 = 2–4 with Z2 = 42–48
and Z1 = 48–52 region with increasing excitation energy of
the fissioning nucleus. From ξ ∗

f � 25 MeV, apart from true-
ternary-fragmentation region, Z3 = 8 with Z2 = 44 and Z1 =
46, and Z2 = 20 with Z3 = 2 region fragments also possesses
larger excitation energy.

D. Ternary fragmentation yields and neutron emission

Based on the experimental [53] and theoretical [23,32,54]
investigations, we have studied the ternary fragmentation
yields for the spontaneous ternary fission of 252Cf with 10Be
as the third fragment. Since the third fragment is fixed
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FIG. 3. Same as Fig. 2 but for the deformed collinear touching ternary fragments with the use of T -dependent deformations and the
T -dependent deformed-shell correction energies.

with A3 = 10 and Z3 = 4, the other two fragments’ mass
and charge numbers (A1, Z1 and A2, Z2) are obtained by
satisfying the conservation of mass and charge numbers of
the fissioning nucleus and the three fission fragments, re-
spectively. Here the fragments are assumed to be spheri-
cal. For these obtained ternary fragment combinations, the
ternary fragmentation yields are calculated by normalizing
the ternary fragmentation probability to 200%, which is the
production yield of the other two main fragments for a fixed
third fragment 10Be. In Fig. 4, we present the comparison
of our calculated ternary fragmentation yield results (open
circles) for the 10Be-accompanied spontaneous ternary fis-
sion of 252Cf with the available experimental data (solid
circles) [53] of the measured fragmentation channels. From
this figure, it is seen that our calculated yields are compa-
rable with the experimental data for the following fragmen-
tation channels: 102Zr + 140Xe + 10Be, 104Zr + 138Xe + 10Be,
and 106Mo + 136Te + 10Be. However, for the fragmentation
channels 108Mo + 134Te + 10Be, 110Ru + 132Sn + 10Be, and
112Ru + 130Sn + 10Be, our result differ by three orders of
magnitude from the experimental data due to the presence of
closed-shell effects (Z = 50 and/or N = 82). For other frag-
mentation channels, our results have two orders of magnitude
variation.

Due to the excitation energy, the fission fragment can emit
several neutrons after fission. In Fig. 5, we also present a
comparison of our calculated neutron emission (open circles)

from the excited fragments in the 10Be-accompanied spon-
taneous ternary fission of 252Cf with the available experi-
mental data (solid circles). Here, the results are calculated
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FIG. 4. The calculated ternary fragmentation yields for the 10Be
accompanied spontaneous ternary fission of 252Cf are compared with
the experimental data of the observed fragments. The experimental
data [53] and the calculated results are presented by solid and open
circles, respectively.
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FIG. 5. Neutron emission from individual fragments in the 10Be-
accompanied spontaneous fission of 252Cf as a function of the
fragment mass number. The experimental data and the calculated
results are presented by solid and open circles, respectively.

for spherical fragments only and the presented experimental
data are retrieved from Fig. 9 of Ref. [12]. From Fig. 5, it
is seen that our calculated results for ν(A) are comparable
with the experimental data, except for some fragment cases.
Furthermore, our results overestimate the experimental data
for the fragments mass number around 130–140 because it has
larger excitation energies due to the closed-shell effects. It is
to be mentioned that our calculated neutron emission results
also have a saw-tooth structure that is similar to that of the
experiment.

IV. SUMMARY AND CONCLUSIONS

In this study, the complete energy and/or T -dependent
potential-energy surface for the ternary fragmentation of 252Cf
have been analyzed at four different excitation energies of
the fissioning parent nucleus, such as ξ ∗

f = 0 MeV (for
spontaneous fission), 6.17 MeV (for thermal-neutron-induced
fission), 25 MeV, and 50 MeV. Since the binding energies
and the total interaction potential are dependent on the ex-
citation energy and/or temperature, we have calculated the
total excitation energy of each ternary fragmentation by using
an iterative process. We have presented our results for both
the spherical and the deformed ternary fragments as well.
From the TF-PES results with the use of T -dependent shell

correction energies, we have obtained the highest energy
maximum around Z3 = 2–4 with Z2 = 40–48 and Z1 = 48–54
region due to the closed-shell effects of the doubly magic
numbers of nuclei. This energy maximum extends further with
the increase in ξ ∗

f . Besides, some other energy maxima are
also obtained around magic and/or semimagic numbers of
nuclei. Furthermore, a ternary fragment combination with a
heavier third fragment can appear with reasonable probability
at a high excitation energy of the fissioning parent nuclei; in
particular, the appearance of TTF is found for ξ ∗

f � 25 MeV
because the heavier third fragments have larger potential V
than its ternary reaction Q value. In other words, the total
excitation energy of the ternary system with heavier third
fragments is E∗ < 0, for ξ ∗

f < 25 MeV. To emit these heavier
third fragments, the high excitation energy of the fissioning
nucleus may be needed.

We have also studied the effect of deformations and its T
dependence on the ternary-fragmentation excitation energies
of 252Cf. Here, the shell correction energies are made defor-
mation dependent as well as the T dependence. From the TF-
PES results of deformed ternary fragments, we have obtained
the energy maximum around Z3 = 16 with Z2 = 38–34 and
Z1 = 44–48 region due to the presence of higher β2 deforma-
tion values. In addition, a strong maximum is also obtained
around Z3 = 2–4 with Z1 = 48–52 and it starts extending
with the increase of ξ ∗

f . Due to the variation of T� for each
ternary fragmentation, the vanishing of shell structures and
deformations at higher excitation energies are not noticeable.

Furthermore, we have also studied the ternary fragmenta-
tion yields and neutron emission from the excited fragments
in the 10Be-accompanied spontaneous ternary fission of 252Cf
and the results are compared with the available experimental
data. Due to the closed-shell effects, our calculated yields are
larger than the experimental data for fragments with Z = 50
and/or N = 82. For the neutron emission, a similar trend of
experimental data is also predicted from our results.

ACKNOWLEDGMENTS

This work is supported by the National Key Research
and Development Program of China under Grants No.
2018YFA0404403 and No. 2016YFE0129300; the National
Natural Science Foundation of China under Grants No.
11975167, No. 11761161001, No. 11535004, and No.
11881240623; and the Science and Technology Development
Fund of Macau under Grant No. 008/2017/AFJ.

[1] O. Hahn and F. Strassman, Naturwissenschaften 27, 11 (1939).
[2] Yu. V. Pyatkov, D. V. Kamanin, W. von Oertzen, A. A.

Alexandrov, I. A. Alexandrova, O. V. Falomkina, N. A.
Kondratjev, Yu. N. Kopatch, E. A. Kuznetsova, Yu. E. Lavrova,
A. N. Tyukavkin, W. Trzaska, and V. E. Zhuhcko, Eur. Phys. J.
A 45, 29 (2010).

[3] Yu. V. Pyatkov, D. V. Kamanin, W. von Oertzen, A. A.
Alexandrov, I. A. Alexandrova, O. V. Falomkina, N. Jacobs,
N. A. Kondratjev, E. A. Kuznetsova, Yu. E. Lavrova, V. Malaza,

Yu. V. Ryabov, O. V. Strekalovsky, A. N. Tyukavkin, and V. E.
Zhuchko, Eur. Phys. J. A 48, 94 (2012).

[4] H. Diehl and W. Greiner, Nucl. Phys. A 229, 29 (1974).
[5] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Nucl. Phys.

A 747, 182 (2005).
[6] K. Manimaran and M. Balasubramaniam, Phys. Rev. C 83,

034609 (2011).
[7] J. P. Lestone, Phys. Rev. C 70, 021601(R) (2004).
[8] J. P. Lestone, Int. J. Mod. Phys. E 17, 323 (2008).

014603-8

https://doi.org/10.1007/BF01488241
https://doi.org/10.1007/BF01488241
https://doi.org/10.1007/BF01488241
https://doi.org/10.1007/BF01488241
https://doi.org/10.1140/epja/i2010-10988-8
https://doi.org/10.1140/epja/i2010-10988-8
https://doi.org/10.1140/epja/i2010-10988-8
https://doi.org/10.1140/epja/i2010-10988-8
https://doi.org/10.1140/epja/i2012-12094-5
https://doi.org/10.1140/epja/i2012-12094-5
https://doi.org/10.1140/epja/i2012-12094-5
https://doi.org/10.1140/epja/i2012-12094-5
https://doi.org/10.1016/0375-9474(74)90673-3
https://doi.org/10.1016/0375-9474(74)90673-3
https://doi.org/10.1016/0375-9474(74)90673-3
https://doi.org/10.1016/0375-9474(74)90673-3
https://doi.org/10.1016/j.nuclphysa.2004.09.104
https://doi.org/10.1016/j.nuclphysa.2004.09.104
https://doi.org/10.1016/j.nuclphysa.2004.09.104
https://doi.org/10.1016/j.nuclphysa.2004.09.104
https://doi.org/10.1103/PhysRevC.83.034609
https://doi.org/10.1103/PhysRevC.83.034609
https://doi.org/10.1103/PhysRevC.83.034609
https://doi.org/10.1103/PhysRevC.83.034609
https://doi.org/10.1103/PhysRevC.70.021601
https://doi.org/10.1103/PhysRevC.70.021601
https://doi.org/10.1103/PhysRevC.70.021601
https://doi.org/10.1103/PhysRevC.70.021601
https://doi.org/10.1142/S0218301308009045
https://doi.org/10.1142/S0218301308009045
https://doi.org/10.1142/S0218301308009045
https://doi.org/10.1142/S0218301308009045


EXCITATION-ENERGY-DEPENDENT POTENTIAL ENERGY … PHYSICAL REVIEW C 101, 014603 (2020)

[9] P. Fong, Phys. Rev. C 3, 2025 (1971).
[10] I. Halpern, in Proceedings of the Second IAEA Symposium on

Physics and Chemistry of Fission, Salzburg 1965 (International
Atomic Energy Agency, Vienna, 1965), Vol. 2, p. 369.

[11] U. Köster, H. Faust, G. Fioni, T. Friedrichs, M. Groß, and
S. Oberstedt, Nucl. Phys. A 652, 371 (1999).

[12] A. V. Andreev, G. G. Adamian, N. V. Antonenko, S. P. Ivanova,
S. N. Kuklin, and W. Scheid, Eur. Phys. J. A 30, 579 (2006).

[13] R. B. Tashkhodjaev, A. K. Nasirov, and W. Scheid, Eur. Phys.
J. A 47, 136 (2011).

[14] A. K. Nasirov, W. von Oertzen, A. I. Muminov, and R. B.
Tashkhodjaev, Phys. Scr. 89, 054022 (2014).

[15] W. von Oertzen and A. K. Nasirov, Phys. Lett. B 734, 234
(2014).

[16] R. B. Tashkhodjaev, A. I. Muminov, A. K. Nasirov, W. von
Oertzen, and Yongseok Oh, Phys. Rev. C 91, 054612 (2015).

[17] V. I. Zagrebaev and W. Greiner, Int. J. Mod. Phys. E 17, 2199
(2008).

[18] V. I. Zagrebaev, A. V. Karpov, and W. Greiner, Phys. Rev. C 81,
044608 (2010).

[19] A. V. Karpov, Phys. Rev. C 94, 064615 (2016).
[20] V. Yu. Denisov, N. A. Pilipenko, and I. Yu. Sedykh, Phys. Rev.

C 95, 014605 (2017).
[21] I. Tsekhanovich, Z. Büyükmumcu, M. Davi, H. O. Denschlag,

F. Gönnenwein, and S. F. Boulyga, Phys. Rev. C 67, 034610
(2003).

[22] K. Manimaran and M. Balasubramaniam, Phys. Rev. C 79,
024610 (2009).

[23] K. Manimaran and M. Balasubramaniam, J. Phys. G 37, 045104
(2010).

[24] K. Manimaran and M. Balasubramaniam, Eur. Phys. J. A 45,
293 (2010).

[25] K. R. Vijayaraghavan, M. Balasubramaniam, and W. von
Oertzen, Phys. Rev. C 90, 024601 (2014).

[26] K. R. Vijayaraghavan, M. Balasubramaniam, and W. von
Oertzen, Phys. Rev. C 91, 044616 (2015).

[27] M. Balasubramaniam, K. R. Vijayaraghavan, and K.
Manimaran, Phys. Rev. C 93, 014601 (2016).

[28] K. P. Santhosh, S. Krishnan, and B. Priyanka, J. Phys. G 41,
105108 (2014).

[29] K. P. Santhosh, S. Krishnan, and B. Priyanka, Phys. Rev. C 91,
044603 (2015).

[30] K. P. Santhosh and S. Krishnan, Eur. Phys. J. A 52, 108 (2016).

[31] M. Balasubramaniam, C. Karthikraj, S. Selvaraj, and N.
Arunachalam, Phys. Rev. C 90, 054611 (2014).

[32] C. Karthikraj and Z. Ren, J. Phys. G 44, 065102 (2017).
[33] H. J. Krappe, Phys. Rev. C 59, 2640 (1999).
[34] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and

X. Xu, Chin. Phys. C 41, 030003 (2017).
[35] C. Karthikraj and Z. Ren, Phys. Rev. C 96, 064611 (2017).
[36] C. Karthikraj, N. S. Rajeswari, and M. Balasubramaniam,

Phys. Rev. C 86, 014613 (2012).
[37] C. Karthikraj and M. Balasubramaniam, Phys. Rev. C 87,

024608 (2013).
[38] W. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).
[39] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729,

337 (2003).
[40] P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data

Nucl. Data Tables 109, 1 (2016).
[41] G. Sawhney, R. Kumar, and M. K. Sharma, Phys. Rev. C 86,

034613 (2012).
[42] M. Rashdan, A. Faessler, and W. Wadia, J. Phys. G 17, 1401

(1991).
[43] M. Münchow and W. Scheid, Nucl. Phys. A 468, 59 (1987).
[44] V. Yu. Denisov, Phys. Rev. C 91, 024603 (2015).
[45] V. Yu. Denisov and N. A. Pilipenko, Phys. Rev. C 76, 014602

(2007).
[46] V. Yu. Denisov, T. O. Margitych, and I. Yu. Sedykh, Nucl. Phys.

A 958, 101 (2017).
[47] A. Bohr and B. Mottelson, in Nuclear Structure (W. A. Ben-

jamin Inc., New York, Amsterdam, 1974), Vol. II.
[48] S. Hilaire, Phys. Lett. B 583, 264 (2004).
[49] O. A. P. Tavares and E. L. Medeiros, J. Phys. G 30, 395

(2004).
[50] A. V. Andreev, G. G. Adamian, N. V. Antonenko, S. P. Ivanova,

and W. Scheid, Eur. Phys. J. A 22, 51 (2004).
[51] R. K. Gupta, in Clusters in Nuclei, Lecture Notes in Physics Vol.

818, edited by C. Beck (Springer, Berlin, Heidelberg, 2010),
Vol. 1, pp. 223–265, http://doi.org/10.1007/978-3-642-13899-
7_6.

[52] M. T. Senthil Kannan and M. Balasubramaniam, Eur. Phys. J.
A 53, 164 (2017).

[53] J. H. Hamilton et al., Prog. Part. Nucl. Phys. 38, 273 (1997).
[54] A. Sandulescu, F. Cârstoiu, S. Misicu, A. Florescu, A. V.

Ramayya, J. H. Hamilton, and W. Greiner, J. Phys. G 24, 181
(1998).

014603-9

https://doi.org/10.1103/PhysRevC.3.2025
https://doi.org/10.1103/PhysRevC.3.2025
https://doi.org/10.1103/PhysRevC.3.2025
https://doi.org/10.1103/PhysRevC.3.2025
https://doi.org/10.1016/S0375-9474(99)00115-3
https://doi.org/10.1016/S0375-9474(99)00115-3
https://doi.org/10.1016/S0375-9474(99)00115-3
https://doi.org/10.1016/S0375-9474(99)00115-3
https://doi.org/10.1140/epja/i2006-10145-2
https://doi.org/10.1140/epja/i2006-10145-2
https://doi.org/10.1140/epja/i2006-10145-2
https://doi.org/10.1140/epja/i2006-10145-2
https://doi.org/10.1140/epja/i2011-11136-x
https://doi.org/10.1140/epja/i2011-11136-x
https://doi.org/10.1140/epja/i2011-11136-x
https://doi.org/10.1140/epja/i2011-11136-x
https://doi.org/10.1088/0031-8949/89/5/054022
https://doi.org/10.1088/0031-8949/89/5/054022
https://doi.org/10.1088/0031-8949/89/5/054022
https://doi.org/10.1088/0031-8949/89/5/054022
https://doi.org/10.1016/j.physletb.2014.05.067
https://doi.org/10.1016/j.physletb.2014.05.067
https://doi.org/10.1016/j.physletb.2014.05.067
https://doi.org/10.1016/j.physletb.2014.05.067
https://doi.org/10.1103/PhysRevC.91.054612
https://doi.org/10.1103/PhysRevC.91.054612
https://doi.org/10.1103/PhysRevC.91.054612
https://doi.org/10.1103/PhysRevC.91.054612
https://doi.org/10.1142/S0218301308011343
https://doi.org/10.1142/S0218301308011343
https://doi.org/10.1142/S0218301308011343
https://doi.org/10.1142/S0218301308011343
https://doi.org/10.1103/PhysRevC.81.044608
https://doi.org/10.1103/PhysRevC.81.044608
https://doi.org/10.1103/PhysRevC.81.044608
https://doi.org/10.1103/PhysRevC.81.044608
https://doi.org/10.1103/PhysRevC.94.064615
https://doi.org/10.1103/PhysRevC.94.064615
https://doi.org/10.1103/PhysRevC.94.064615
https://doi.org/10.1103/PhysRevC.94.064615
https://doi.org/10.1103/PhysRevC.95.014605
https://doi.org/10.1103/PhysRevC.95.014605
https://doi.org/10.1103/PhysRevC.95.014605
https://doi.org/10.1103/PhysRevC.95.014605
https://doi.org/10.1103/PhysRevC.67.034610
https://doi.org/10.1103/PhysRevC.67.034610
https://doi.org/10.1103/PhysRevC.67.034610
https://doi.org/10.1103/PhysRevC.67.034610
https://doi.org/10.1103/PhysRevC.79.024610
https://doi.org/10.1103/PhysRevC.79.024610
https://doi.org/10.1103/PhysRevC.79.024610
https://doi.org/10.1103/PhysRevC.79.024610
https://doi.org/10.1088/0954-3899/37/4/045104
https://doi.org/10.1088/0954-3899/37/4/045104
https://doi.org/10.1088/0954-3899/37/4/045104
https://doi.org/10.1088/0954-3899/37/4/045104
https://doi.org/10.1140/epja/i2010-11000-7
https://doi.org/10.1140/epja/i2010-11000-7
https://doi.org/10.1140/epja/i2010-11000-7
https://doi.org/10.1140/epja/i2010-11000-7
https://doi.org/10.1103/PhysRevC.90.024601
https://doi.org/10.1103/PhysRevC.90.024601
https://doi.org/10.1103/PhysRevC.90.024601
https://doi.org/10.1103/PhysRevC.90.024601
https://doi.org/10.1103/PhysRevC.91.044616
https://doi.org/10.1103/PhysRevC.91.044616
https://doi.org/10.1103/PhysRevC.91.044616
https://doi.org/10.1103/PhysRevC.91.044616
https://doi.org/10.1103/PhysRevC.93.014601
https://doi.org/10.1103/PhysRevC.93.014601
https://doi.org/10.1103/PhysRevC.93.014601
https://doi.org/10.1103/PhysRevC.93.014601
https://doi.org/10.1088/0954-3899/41/10/105108
https://doi.org/10.1088/0954-3899/41/10/105108
https://doi.org/10.1088/0954-3899/41/10/105108
https://doi.org/10.1088/0954-3899/41/10/105108
https://doi.org/10.1103/PhysRevC.91.044603
https://doi.org/10.1103/PhysRevC.91.044603
https://doi.org/10.1103/PhysRevC.91.044603
https://doi.org/10.1103/PhysRevC.91.044603
https://doi.org/10.1140/epja/i2016-16108-0
https://doi.org/10.1140/epja/i2016-16108-0
https://doi.org/10.1140/epja/i2016-16108-0
https://doi.org/10.1140/epja/i2016-16108-0
https://doi.org/10.1103/PhysRevC.90.054611
https://doi.org/10.1103/PhysRevC.90.054611
https://doi.org/10.1103/PhysRevC.90.054611
https://doi.org/10.1103/PhysRevC.90.054611
https://doi.org/10.1088/1361-6471/aa6599
https://doi.org/10.1088/1361-6471/aa6599
https://doi.org/10.1088/1361-6471/aa6599
https://doi.org/10.1088/1361-6471/aa6599
https://doi.org/10.1103/PhysRevC.59.2640
https://doi.org/10.1103/PhysRevC.59.2640
https://doi.org/10.1103/PhysRevC.59.2640
https://doi.org/10.1103/PhysRevC.59.2640
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1103/PhysRevC.96.064611
https://doi.org/10.1103/PhysRevC.96.064611
https://doi.org/10.1103/PhysRevC.96.064611
https://doi.org/10.1103/PhysRevC.96.064611
https://doi.org/10.1103/PhysRevC.86.014613
https://doi.org/10.1103/PhysRevC.86.014613
https://doi.org/10.1103/PhysRevC.86.014613
https://doi.org/10.1103/PhysRevC.86.014613
https://doi.org/10.1103/PhysRevC.87.024608
https://doi.org/10.1103/PhysRevC.87.024608
https://doi.org/10.1103/PhysRevC.87.024608
https://doi.org/10.1103/PhysRevC.87.024608
https://doi.org/10.1016/0029-5582(66)90639-0
https://doi.org/10.1016/0029-5582(66)90639-0
https://doi.org/10.1016/0029-5582(66)90639-0
https://doi.org/10.1016/0029-5582(66)90639-0
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1103/PhysRevC.86.034613
https://doi.org/10.1103/PhysRevC.86.034613
https://doi.org/10.1103/PhysRevC.86.034613
https://doi.org/10.1103/PhysRevC.86.034613
https://doi.org/10.1088/0954-3899/17/9/013
https://doi.org/10.1088/0954-3899/17/9/013
https://doi.org/10.1088/0954-3899/17/9/013
https://doi.org/10.1088/0954-3899/17/9/013
https://doi.org/10.1016/0375-9474(87)90319-8
https://doi.org/10.1016/0375-9474(87)90319-8
https://doi.org/10.1016/0375-9474(87)90319-8
https://doi.org/10.1016/0375-9474(87)90319-8
https://doi.org/10.1103/PhysRevC.91.024603
https://doi.org/10.1103/PhysRevC.91.024603
https://doi.org/10.1103/PhysRevC.91.024603
https://doi.org/10.1103/PhysRevC.91.024603
https://doi.org/10.1103/PhysRevC.76.014602
https://doi.org/10.1103/PhysRevC.76.014602
https://doi.org/10.1103/PhysRevC.76.014602
https://doi.org/10.1103/PhysRevC.76.014602
https://doi.org/10.1016/j.nuclphysa.2016.11.007
https://doi.org/10.1016/j.nuclphysa.2016.11.007
https://doi.org/10.1016/j.nuclphysa.2016.11.007
https://doi.org/10.1016/j.nuclphysa.2016.11.007
https://doi.org/10.1016/j.physletb.2003.12.067
https://doi.org/10.1016/j.physletb.2003.12.067
https://doi.org/10.1016/j.physletb.2003.12.067
https://doi.org/10.1016/j.physletb.2003.12.067
https://doi.org/10.1088/0954-3899/30/4/002
https://doi.org/10.1088/0954-3899/30/4/002
https://doi.org/10.1088/0954-3899/30/4/002
https://doi.org/10.1088/0954-3899/30/4/002
https://doi.org/10.1140/epja/i2004-10017-9
https://doi.org/10.1140/epja/i2004-10017-9
https://doi.org/10.1140/epja/i2004-10017-9
https://doi.org/10.1140/epja/i2004-10017-9
http://doi.org/10.1007/978-3-642-13899-7_6
https://doi.org/10.1140/epja/i2017-12355-9
https://doi.org/10.1140/epja/i2017-12355-9
https://doi.org/10.1140/epja/i2017-12355-9
https://doi.org/10.1140/epja/i2017-12355-9
https://doi.org/10.1016/S0146-6410(97)00037-9
https://doi.org/10.1016/S0146-6410(97)00037-9
https://doi.org/10.1016/S0146-6410(97)00037-9
https://doi.org/10.1016/S0146-6410(97)00037-9
https://doi.org/10.1088/0954-3899/24/1/022
https://doi.org/10.1088/0954-3899/24/1/022
https://doi.org/10.1088/0954-3899/24/1/022
https://doi.org/10.1088/0954-3899/24/1/022

