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Background: The limits of the nuclear landscape are determined by nuclear binding energies. Beyond the proton
drip lines, where the separation energy becomes negative, there is not enough binding energy to prevent protons
from escaping the nucleus. Predicting properties of unstable nuclear states in the vast territory of proton emitters
poses an appreciable challenge for nuclear theory as it often involves far extrapolations. In addition, significant
discrepancies between nuclear models in the proton-rich territory call for quantified predictions.
Purpose: With the help of Bayesian methodology, we mix a family of nuclear mass models corrected with
statistical emulators trained on the experimental mass measurements. We study the impact of such model mixing
in the proton-rich region of the nuclear chart.
Methods: Separation energies were computed within nuclear density functional theory using several Skyrme
and Gogny energy density functionals. We also considered mass predictions based on two models used in
astrophysical studies. Quantified predictions were obtained for each model using Bayesian Gaussian processes
trained on separation-energy residuals and combined via Bayesian model averaging.
Results: We obtained a good agreement between averaged predictions of statistically corrected models and
experiment. In particular, we quantified model results for one- and two-proton separation energies and derived
probabilities of proton emission. This information enabled us to produce a quantified landscape of proton-rich
nuclei. The most promising candidates for two-proton decay studies have been identified.
Conclusions: The methodology used in this work has broad applications to model-based extrapolations of
various nuclear observables. It also provides a reliable uncertainty quantification of theoretical predictions.
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I. INTRODUCTION

Much of the nuclear landscape of bound nuclides remains
unexplored [1,2]. The one- and two-proton drip lines lie
relatively close to the line of beta stability due to the pres-
ence of the Coulomb barrier that has a confining effect on
the proton density. As a result, relatively long-lived, proton-
unstable nuclei can exist beyond the drip line [3–7]. The vast
territory of proton-unstable nuclides contains rich and unique
information on nuclear structure and dynamics in the presence
of the low-lying proton continuum.

Of particular interest is the phenomenon of ground state
two-proton (2p) radioactivity found in a few very proton-rich
even-Z isotopes, in which single proton decay is energeti-
cally forbidden or suppressed due to proton pairing and the
resulting odd-even binding energy effect [8]. Currently, 2p ra-
dioactivity has been detected in a handful of nuclei: 19Mg [9],
45Fe [10,11], 48Ni [12–15], 54Zn [16,17], and 67Kr [18].
In addition, several broad resonances associated with 2p
decay were reported in, e.g., 6Be [19] and 11,12O [20,21].
The unique experimental data on lifetimes and correlations

between emitted protons has triggered considerable theoreti-
cal interest [22–28].

The positions of particle decay thresholds are determined
by the nuclear binding energy through measured masses. In
the regions where experimental mass data are absent, nuclear
models must be deployed to provide the missing information
about the topography of the mass surface. In this context, the
quality of theoretical mass predictions can be significantly
improved when aided by the current experimental information
through machine learning techniques [29–39]. Recently, we
developed the statistical framework of Bayesian Gaussian
process techniques to quantify patterns of systematic devia-
tions between theory and experiment by providing statistical
corrections to average prediction values, and to develop full
uncertainty quantification on predictions through credibility
intervals [40]. The quantified predictions of individual models
enabled us to carry out Bayesian model averaging (BMA)
analysis of nuclear masses [41]. In this way, the “collective
wisdom” of several relevant models could be maximized
by providing the best prediction rooted in the most current
experimental information.
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In this paper, using several variants of BMA, we quantify
the predicted binding-energy surface in the region of 2p
radioactivity. To this end, we employ several global mass
models to determine the posterior probability for each proton-
rich nucleus to exhibit ground-state proton or 2p emission. We
find that extrapolations for proton drip-line locations are fairly
consistent across the mass models used, in spite of significant
variations between their raw predictions. In this respect, this
study should be considered as an extension of the previous
work [42,43], in which the most promising candidates for 2p
emitters were identified by considering several mass models.
Here, we limit our investigations to nuclei with Z � 82 as
it is predicted [42,43] that above lead the α-decay mode
dominates and no measurable candidates for 2p emission
are expected.

The paper is organized as follows. Section II presents the
global nuclear mass models used in our study. The statistical
methodology is described in Sec. III. The results obtained in
this study are discussed in Sec. IV. Finally, Sec. V contains a
summary and conclusions.

II. NUCLEAR MASS MODELS

Our global mass calculations are based on nuclear density
functional theory (DFT) with several energy density function-
als (EDFs). As in the previous studies [40,41], we considered
the Skyrme functionals SkM∗ [44], SkP [45], SLy4 [46], SV-
min [47], UNEDF0 [48], UNEDF1 [49], and UNEDF2 [50].
In this work, we have enriched the set of nuclear models
with two additional EDFs: D1M and BCPM. The functional
D1M [51] is a modern parametrization of the finite-range
Gogny interaction, optimized to 2149 measured masses from
the 2003 mass evaluation (AME2003) [52], charge radii, and
nuclear matter properties. In the functional BCPM [53], the
bulk part of the functional is given by a fit to the microscopic
equation of state in both neutron and symmetric nuclear mat-
ter. This formulation of the functional results in a relatively
small number of free parameters that are adjusted to reproduce
the experimental binding energies of 579 even-even nuclei of
AME2003.

For each Skyrme EDF, the mass table of even-even nuclei
was computed self-consistently by solving the Hartree-Fock-
Bogoliubov (HFB) equations. Binding energies of odd-A and
odd-odd nuclei were obtained from the binding energy values
and average pairing gaps computed for even-even neighbors.
In this respect, this work follows closely the methodology
described in Refs. [1,40,41,43]. For D1M and BCPM, the
binding energies of odd-A and odd-odd nuclei are computed
by solving the HFB equations for one- and two-quasiparticle
configurations with the appropriate constraint on particle
number [54]. The above set of DFT models was augmented
by two mass models commonly used in nuclear astrophysics
studies: FRDM-2012 [55] and HFB-24 [56].

It is to be noted that while the proton chemical poten-
tial is positive for proton unbound nuclei, the HFB results
obtained with the discretized continuum are very stable in
the considered range of binding energies. This is because
the Coulomb barrier tends to confine the proton density in
the nuclear interior and effectively pushes the continuum up

in energy [57,58] on the proton-rich side. Consequently, the
proton separation energies S1p and S2p and the corresponding
Q values can be obtained safely from the predicted binding
energies.

The candidates for the true 2p decay were selected accord-
ing to the energy criterion used in the global survey [42]:

Q2p > 0, S1p > 0. (1)

This condition corresponds to the simultaneous emission of
two protons as the sequential emission of two protons is
energetically forbidden.

III. STATISTICAL METHODS

Our Bayesian methodology for building Gaussian process
(GP) emulators to produce quantified extrapolations of the-
oretical nuclear model predictions beyond the experimental
data range has been extensively developed in our previous
work [40,41]. Here, we incorporate two statistical innova-
tions: a nonzero GP mean parameter and a new Bayesian
calculation of model mixing weights.

A. Gaussian process

The Bayesian statistical model for the separation-energy
residuals (i.e., differences between experimental and theoreti-
cal values) yi = yexp(xi ) − yth(xi ) can be written as

yi = f (xi, θ ) + σεi, (2)

where the function f (x, θ ) represents the systematic devia-
tions and σε the statistical uncertainty propagated from the
uncertainty on the statistical model parameters.

Quantified extrapolations y∗ are obtained from the pos-
terior distribution p(y∗|y) using a stationary Markov chain.
Similarly to our previous studies, we model independently
S1p and S2p on the subsets of nuclei defined by particle-
number parities (even-even, even-odd, etc.). By doing this
we are ignoring some (slight) correlations between systematic
uncertainties.

For the function f we take a Gaussian process, i.e., a
Gaussian functional on the two-dimensional nuclear domain
indexed by x = (Z, N ), characterized by its mean μ and
covariance k:

f (x, θ ) ∼ GP (μ, kη,ρ (x, x′)). (3)

We found in a previous study [40] that Gaussian processes
overall outperform Bayesian neural networks, achieving sim-
ilar root-mean-squared (rms) deviations with a more faithful
uncertainty quantification and considerably fewer parameters.
In our previous studies, we took for simplicity the GP mean
to be uniformly zero. Here we take it as an additional scalar
parameter. The results below show that this can improve the
rms deviation by an additional 15%, compared to the initial
25% refinement brought by the GP. In order to model the
“spatial” dependence of nearby nuclei, we use an exponential
quadratic covariance kernel:

kη,ρ (x, x′) := η2e
− (Z−Z′ )2

2ρ2
Z

− (N−N ′ )2

2ρ2
N , (4)
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where the parameters θ ≡ {η, ρZ , ρN } have a straightforward
interpretation: η defines the scale and ρZ and ρN are charac-
teristic correlation ranges in the proton and neutron directions,
respectively. Consequently, our statistical model has four pa-
rameters, θ := (μ, η, ρZ , ρN ).

Samples from posterior distributions were obtained from
50 000 iterations of Monte Carlo Markov chains (MCMC),
after the stationary state was reached (50 000 samples were
previously burned in), which were used in turn to generate
10 000 mass tables. Each series of simulations required 16 128
core hours distributed on 96 machines on computing clusters.

B. Datasets

Our dataset combines all experimental masses from
AME2003 [52] and AME2016+, which contains the
AME2016 dataset [59] augmented by masses from
Refs. [60–66]. For nuclei where experiments have been
repeated, we keep the most recent value. For testing purposes
we split this dataset into a training set (AME2003) and a
testing set (AME16-03; all masses in AME2016+ that are not
in AME2003). For prediction purposes, we use the full dataset
AME2016+ for training, and carry out calculations based
on a large set of nuclei for which raw theoretical separation
energies are not too negative; this includes all proton-bound
nuclei. Nuclei with negative experimental separation energies
have not been used for training.

C. Bayesian model averaging

When combining several models Mk , the classical litera-
ture uses Bayesian posterior weights conditional to the data y
given by [67–69]

p(Mk|y) = p(y|Mk )π (Mk )∑K
	=1 p(y|M	)π (M	)

, (5)

where π (Mk ) are the prior weights and p(y|Mk ) are evidence
(integrals) obtained by integrating the likelihood over the
parameter space. In our study, we shall use uniform priors.

First, we carry out model mixing calculations with the
prior average of the models, i.e., with uniform weights. In
the absence of additional information and costly posterior
computations, the choice of uniform weights is essentially
optimal [69]. This variant is denoted as BMA-0.

Similarly to Ref. [41], in the context of extrapolations,
we want to select the models with the best predictive power,
and avoid overfitting. To this end, we evaluate the evidence
integrals on new independent data that are not included in
the training of any individual statistical model. (In contrast, in
the narrow sense BMA would compute the evidence based on
the whole same dataset as used in the training of each model.)

In a first variant of BMA calculations (denoted BMA-I),
in the spirit of [41] we consider simplified Bayesian weights
where the evidence is replaced by the posterior probability
that each model accounts correctly for the signs of the exper-
imental Q2p and S1p values of the five 2p emitters x2p,known

according to (1). That is, in this variant, the weights are
computed based on the ability of model Mk to predict the
set x2p,known as true 2p emitters. Here, the resulting weights

are

wk (I) ∝ p(Mk|Q2p > 0, S1p > 0 for x2p,known). (6)

In the second variant of BMA calculations (denoted BMA-
II), the evidence p(y∗|y,Mk ) is defined based on the ability of
model Mk to predict known Q2p values of five experimentally
known 2p emitters (this set of nuclei is called x2p,known ≡
{ 19Mg, 45Fe, 48Ni, 54Zn, 67Kr} in the following). The re-
sulting weights are

wk (II) ∝ p(Mk|Q2p of x2p,known). (7)

Finally, we also consider BMA-III, a trivial version of
BMA-II, consisting in the Gaussian likelihood of x2p,known

evaluated at the posterior mean and posterior variance values,
assuming that these quantities are independent. Considering
the Q2p residuals yi of the five known 2p emitters, the corre-
sponding weights are

wk (III) ∝
∏

i∈x2p,known

1√
2πσ 2

i

e− 1
2 ( yi

σi
)2

. (8)

Compared to BMA-II, this approximation neglects all corre-
lation effects as well as Gaussianity defects of the posterior
predictions at the five locations that we meticulously added to
the Gaussian process.

D. Model weights computation

The evidence integrals p(y∗|y,Mk ) are obtained by “recy-
cling” Monte Carlo samples using the estimate

wk = ̂p(y∗|y,Mk ) := 1

nMC

∑
i

p
(
y∗|y,Mk, θ

(i)
k

)
, (9)

where θ
(i)
k is the ith parameter sample of Mk . This is justified

by the formula of total probability,

p(y∗|y,Mk ) =
∫

p(y∗|y,Mk, θk )dP(θk|Mk, y). (10)

For each model, this calculation can be efficiently per-
formed in two steps. In the first step, we compute q(i)

k :=
ln p(y∗|y,Mk, θ

(i)
k ) for each MCMC sample θ

(i)
k . In the second

step, the weights are obtained as

wk = eqmax
1

n

n∑
i=1

eq(i)
k −qmax = 1

nMC

n∑
i=1

p
(
y∗|y,Mk, θ

(i)
k

)
.

The testing dataset used to compute the weights overlaps
the sets of even-N and odd-N nuclei. In our final analysis,
we have assumed that the statistical models are independent
of N parity, meaning that these datasets can be divided as
y∗ := (y∗

e , y∗
o ). From the independence of y∗

e |ye,Mk, θk and
y∗

o|ye,Mk, θk for each model it follows that

ln p
(
y∗|y,Mk, θ

(i)
k

) = ln p
(
y∗

e |ye,Mk, θ
(i)
k,e

)
+ ln p

(
y∗

o|yo,Mk, θ
(i)
k,o

)
(11)

and the final result is a sum, qi = q(e)
i + q(o)

i .
Note that the assumption of independence is an important

caveat, and that this calculation would be enhanced by better
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FIG. 1. Q2p values for the five experimentally known 2p emitters calculated with the eleven global mass models with statistical correction
obtained with GP (μ �= 0) trained on the AME2016+ dataset. Error bars on theoretical results are one-sigma credible intervals computed with
GP extrapolation. Theoretical results are listed in the following order: Skyrme models SkM∗, SkP, SLy4, SV-min, UNEDF0, UNEDF1, and
UNEDF2; new models BCPM and D1M; global mass models FRDM-2012 and HFB-24; and model mixing results BMA-0, BMA-I, BMA-II,
and BMA-III. Experimental values are shown for comparison.

estimates of the correlations between the systematic errors of
S1p and S2p.

IV. RESULTS

A. Model performance and assessment

Figure 1 shows the comparison between theoretical pre-
dictions and experimental data for 19Mg, 45Fe, 48Ni, 54Zn,
and 67Kr. We find an overall good agreement with experi-
mental values, up to error bars, for most statistically corrected
models. It is seen that individual models, e.g., SkM∗, HFB-
24, and D1M, are behaving singularly for some nuclei; this
shall impact the model weights used in the following BMA
analysis. The worst performer is the traditional SkM∗ model,
which practically misses all experimental data points. The best
performers are the UNEDF1, UNEDF2, and SLy4 models,
which provide the lowest rms deviation from experiment.

Table I illustrates the global performance of individual
models for the measured proton separation energies con-
tained in the AME16-03 testing dataset. It is seen that the
statistical-model correction brings a significant improvement
to the predictions. Namely, in the GP (μ = 0) variant, the rms
deviation is reduced by about 25%, similarly to our previous
studies [40,41], while the μ �= 0 calculation brings another
15% reduction. The improvement is most significant on the
S2p values, and for the models with the largest raw (i.e.,
statistically uncorrected) rms deviations. The improvement
for FRDM-2012 and HFB-24, optimized to the experimen-
tal mass table, is minor, and both variants of GP calcula-
tions yield practically identical results. As in the previous
work [40], the rms deviations are quite similar across models
following the statistical treatment, which suggests that most
of the systematic trends have been captured by our statistical
models.

TABLE I. Model performance. The rms deviations for S1p and S2p (in MeV) for individual models Mk, and the four BMA variants used,
calculated on even-N nuclei. Shown are the uncorrected (raw) and GP-corrected (with the GP mean μ = 0 and μ �= 0) model rms values with
respect to the AME16-03 testing dataset. The training dataset used here is AME2003. The raw BMA results correspond to simple averages of
the uncorrected model predictions according to the model weights. When the BMA weights corresponding to μ = 0 and μ �= 0 are different,
both raw values are given. For compactness, the following abbreviations are used: UNEn = UNEDFn (n = 0, 1, 2) and FRDM = FRDM-2012.

SkM* SkP SLy4 SV-min UNE0 UNE1 UNE2 BCPM D1M FRDM HFB-24 BMA-0 BMA-I BMA-II BMA-III

raw S1p : 0.86 0.44 0.50 0.46 0.57 0.54 0.44 0.72 0.56 0.44 0.79 0.39 0.40 0.43/0.47 0.47/0.43
S2p: 1.87 0.69 0.61 0.55 0.75 0.62 0.67 0.80 0.61 0.71 0.67 0.43 0.40 0.57/0.60 0.47/0.42

μ = 0 S1p: 0.65 0.39 0.49 0.43 0.49 0.47 0.42 0.66 0.47 0.40 0.71 0.40 0.39 0.41 0.46
S2p: 1.14 0.57 0.51 0.48 0.60 0.50 0.51 0.69 0.45 0.55 0.65 0.38 0.36 0.48 0.43

μ �= 0 S1p: 0.54 0.39 0.50 0.43 0.49 0.38 0.40 0.49 0.47 0.40 0.71 0.38 0.38 0.38 0.39
S2p: 0.76 0.44 0.50 0.43 0.60 0.39 0.42 0.64 0.45 0.55 0.65 0.36 0.35 0.37 0.34
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FIG. 2. Uni- and bivariate distributions of the 50 000 MCMC
posterior samples for the four-dimensional parameter vector of our
Bayesian statistical model [Eqs. (3) and (4)] for UNEDF1 (upper
triangle, red) and SLy4 (lower triangle, blue) using the training S2p

dataset of even-even nuclei from AME2003. The parameters are
plotted relative to their mean values (corresponding to zero on the
plots). The diagonal plots show the univariate sample distributions of
the GP parameters (histograms) as well as the KDE estimates (lines).
Posterior mean and standard deviation are indicated by numbers. The
off-diagonal plots show the KDE estimates of the bivariate posterior
distributions of the GP parameter samples (color map) as well as
the 95% (outer green line) and 50% (inner purple line) HDRs. The
numbers mark the posterior correlation coefficients.

B. Gaussian process parameters

To gain some insight into our statistical model, Fig. 2
shows the univariate and bivariate distributions of the pos-
terior samples of μ, η, ρZ , and ρN computed for SLy4 and
UNEDF1. Kernel density estimates (KDEs) are classically
obtained using a Gaussian kernel. Bivariate highest density
regions (HDRs) are taken as level lines of the continuous
KDE [70].

We can see that the parameters are both well constrained
and uncorrelated. The only exception is the pair (η, ρN ) for
which the correlation coefficient reaches 0.59 for SLy4, which
indicates a fairly low correlation. The dependence of GP
parameters on the nuclear model used is also weak, with
UNEDF1 producing slightly more localized KDEs. Similar
distributions of posterior samples were obtained for other
models considered.

The posterior mean and standard deviation of the GP pa-
rameters for the two-proton separation energies of even-even
nuclei are listed in Table II. We observe an overall stability of
the parameters ρZ and ρN , with correlation effects occurring
within the range of ±(2–3) particle numbers. Symmetri-
cally to what we have earlier noticed for neutron separation

TABLE II. Posterior mean and standard deviation (in parenthe-
ses) of parameters of our Bayesian statistical model of S2p for the
nuclear mass models used in this study. μ and η are in MeV and ρZ

and ρN are dimensionless. The last column (#m) gives the number of
nuclear masses used in nuclear model optimization. For SkM∗, SkP,
and SLy4 only spherical masses were used.

Model μ η ρZ ρN #m

SkM∗ 1.33(0.09) 1.38(0.05) 0.71(0.10) 1.90(0.05) 7
SkP 0.38(0.07) 1.11(0.04) 0.65(0.09) 1.71(0.07) 2
SLy4 −0.06(0.06) 1.10(0.04) 0.63(0.08) 1.64(0.07) 5
SV-min 0.24(0.06) 1.01(0.04) 0.61(0.08) 1.53(0.07) 64
UNE0 0.07(0.06) 1.05(0.04) 0.64(0.09) 1.62(0.06) 72
UNE1 −0.45(0.04) 0.83(0.03) 0.60(0.08) 1.29(0.07) 75
UNE2 −0.38(0.05) 0.88(0.03) 0.61(0.08) 1.37(0.07) 76
BCPM 0.21(0.06) 1.03(0.04) 0.76(0.11) 1.47(0.06) 579
D1M 0.15(0.05) 0.87(0.03) 0.66(0.09) 1.55(0.05) 2149

HFB-24 0.01(0.03) 0.50(0.02) 0.64(0.09) 1.29(0.06) 729
FRDM 0.04(0.03) 0.53(0.02) 0.67(0.09) 1.78(0.05) 2149

energies [40,41], we see that the correlations effects are here
substantially smaller in the proton direction than the neutron
direction, consistently with variations in the proton separation
energies, which are stronger overall in the Z direction than
along N .

There are more disparities on the parameters μ and η,
which are directly related to the scale of the statistical correc-
tions. The parameter μ is maximal at more than 1 MeV for the
model SkM∗ and within one standard deviation of zero for the
more phenomenological models HFB-24 and FRDM-2012.
The values of η are also significantly higher for SkM∗ and
lower for the two phenomenological models. This confirms
the common-sense expectation that there is not much left for
a GP to capture when the nuclear model has already exploited
enough of the data structure.

The scale of the mean and scale parameters μ and η

appear consistent with the rms improvement in the second
row of Table I. As stated above, their largest values were
obtained for SkM∗, for which the rms improvement is also
the best. In this case only seven masses of spherical nuclei (in
addition to other observables) were used in its optimization
process. Interestingly, the performance of SkP and SLy4 is
outstanding, considering their limited mass input datasets.
In contrast these parameter values are particularly low for
HFB-24 and FRDM-2012, which were optimized to very large
sets of masses. This confirms that the statistical correction has
a balanced autoscaling, and is itself robust to overfitting.

A slightly different argument applies to D1M and BCPM,
for which the values of μ and η are relatively large in spite
of these functionals being optimized to a large set of nuclei.
It is to be noted, however, that the rotational corrections were
added atop the HFB binding energies during the optimization
process of D1M and BCPM. Since such corrections result
in unphysical staggering of separation energies in transi-
tional nuclei [71], they have been neglected in this work.
This resulted in increased values of the mean and scale GP
parameters.
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TABLE III. Model posterior weights obtained in the variants BMA-I (6), BMA-II (7), and BMA-III (8) of our BMA calculations based on
the AME16+ (top) and AME03 (bottom) training datasets.

BMA variant SkM* SkP SLy4 SV-min UNE0 UNE1 UNE2 BCPM D1M FRDM HF-B24

BMA-I 0.00 0.03 0.08 0.05 0.04 0.14 0.12 0.04 0.16 0.17 0.17
BMA-II 0.00 0.00 0.00 0.00 0.01 0.71 0.27 0.00 0.00 0.00 0.00
BMA-III 0.00 0.05 0.17 0.10 0.11 0.16 0.35 0.05 0.00 0.00 0.00

BMA-I 0.00 0.02 0.07 0.04 0.04 0.14 0.12 0.04 0.16 0.19 0.19
BMA-II 0.00 0.00 0.00 0.00 0.01 0.51 0.47 0.00 0.00 0.00 0.00
BMA-III 0.00 0.04 0.15 0.08 0.11 0.19 0.38 0.06 0.00 0.00 0.00

The error bars produced for HFB-24 and FRDM-2012,
which are scaled by η2, must be taken with caution, and
are certainly undervalued in the propagation of the training
error. Indeed, the rms deviations are among the highest on the
test data (including points more recent than the models) for
HFB-24, both before and after statistical correction.

C. Model mixing performance and assessment

The model weights obtained in the BMA variants used are
listed in Table III. The weights of BMA-I are rather uniformly
distributed, with the highest values for UNEDF1, UNEDF2,
D1M, FRDM-2012, and HFB-24; the weight 0 for SkM∗ is
due to the fact that it misses completely the sign of the second
and third testing points (see Fig. 1), which is eliminatory. In

the case of the likelihood-based BMA-II, only the Skyrme
models UNEDF1 and UNEDF2 practically contribute. This
can be explained by the concavity of the evidence with respect
to the data, which heavily penalizes large deviations at single
locations.

Figure 1 shows the results of BMA for the five true 2p
emitters considered. It is encouraging to see that the BMA
predictions agree well with experimental values, i.e., their
standard error bars overlap. As expected theoretically [72],
the BMA results should achieve the lowest rms deviations
among all models. This is confirmed in Table I, which shows
that the rms deviations for S1p and S2p obtained in all BMA
calculations are indeed below those of individual nuclear mass
models.
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20 28 50 82

FIG. 3. The quantified nuclear binding-energy landscape in the proton-rich region obtained in BMA-I (top) and BMA-II (bottom) model
averaging calculations. The color marks the probability pex that these nuclei are bound with respect to proton decay. For each proton number,
pex is shown along the isotopic chain versus the relative neutron number N0(Z ) − N , where N0(Z ), listed in Tables IV and V, is the neutron
number of the lightest proton-bound isotope for which an experimental one- or two-proton separation energy value is available. The domain
of nuclei that have been experimentally observed (both proton-bound and proton-unbound) is marked by open stars; those within FRIB’s
experimental reach are marked by dots. See text for details.
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We see in Table I that all BMA variants perform very
similarly overall: the rms deviations are around 0.38 keV for
S1p and 0.36 MeV for S2p. It may be thus tempting to associate
these values with the precision limit that current EDFs can
achieve in the description of proton separation energies. Inter-
estingly, the simple models BMA-0 and BMA-III yield rms
deviations comparable to, if not lower than, the other elaborate
variants. This is not entirely surprising: the posterior weights
favor by construction the statistically corrected models best
fitted at locations y∗. Indeed, some of the nuclear models
employed, such as HFB-24 and FRDM-2012 are less robust
to out-of-sample testing data, which can possibly be linked to
some overfitting.

Figure 1 shows that the posterior means of BMA-III are,
by construction, close to the experimental Q2p values. The
disadvantage of this approximation to BMA-II is that it ne-
glects all correlation effects and long range dependencies
meticulously added to the GP. Consequently, the differences
between the BMA-II and BMA-III weights can be large for
some models; cf. the weights for SLy4 and UNEDF1 in
Table III. This result can be traced back to nonzero covari-
ances between the five locations and Gaussianity defaults.
First, the (posterior) covariances between the different Q2p

values are nonzero in the actual samples, but assumed to be
uniformly zero in BMA-III. Second, the evidence calculation
in BMA-II includes an integration over the parameter space,
which is absent in BMA-III. For instance, the parameter ρN

is 27% larger for SLy4 than in UNEDF1, and this means that
one more neighbor in the neutron direction is roughly included
in the GP calculations based on SLy4. While the parameter
difference is not dramatic, it does significantly impact both
the predictions and model weight estimates.

D. Predictions of BMA calculations: Quantified
landscape of proton-rich nuclei

The quantified nuclear binding-energy landscape for
proton-rich nuclei, predicted in BMA-I and BMA-II, is dis-
played in Fig. 3. To facilitate the presentation, the information
for each isotope is given relative to the neutron number N0 of
the lightest proton-bound isotope for which an experimental
one- or two-proton separation energy value is available. In
analogy with Ref. [41] we show the probability pex that a
given isotope is proton bound, i.e., that S2p > 0 for even-Z
nuclei and S1p > 0 for odd-Z nuclei. Formally, in the Bayesian
language, this quantity can be defined as

pex := p(S∗
1p/2p > 0|S1p/2p). (12)

The proton drip line corresponds to pex = 0.5. The reference
values of N0(Z ) are listed in Tables IV (for even-Z nuclei)
and V (for odd-Z nuclei), together with the range of observed
nuclei and proton drip-line nuclei.

Figure 3 and Tables IV and V also show the isotopes that
will be accessible at the future Facility for Rare Isotope Beams
(FRIB) [73,74]. FRIB will accelerate ion species up to 238U
with energies of no less than 200 MeV/u (beam power up
to 400 kW). The FRIB production rates have been calculated
with the LISE++ code [75] designed to predict intensity and
purity for future experiments using rare beams with in-flight

TABLE IV. Reference table to Fig. 3: even-Z elements. For each
atomic element with even-Z , we show the neutron number N0 of
the lightest isotope for which an experimental one- or two-proton
separation energy value is available, the neutron number Nobs of the
lightest isotope observed, the neutron number Ndrip of the predicted
drip line isotope in BMA-I, and the neutron number NFRIB marking
the reach of FRIB.

Z N0 Nobs Ndrip NFRIB

16 S 12 11 11 10
18 Ar 14 11 13 12
20 Ca 16 15 15 14
22 Ti 18 17 18 17
24 Cr 21 18 19 18
26 Fe 23 19 20 19
28 Ni 25 20 22 20
30 Zn 28 24 25 23
32 Ge 31 27 28 25
34 Se 33 29 30 28
36 Kr 35 31 32 31
38 Sr 37 35 35 33
40 Zr 40 37 37 35
42 Mo 43 39 39 36
44 Ru 46 41 41 38
46 Pd 48 44 43 40
48 Cd 50 46 45 42
50 Sn 50 49 47 45
52 Te 53 52 53 52
54 Xe 55 54 55 54
56 Ba 58 58 58 57
58 Ce 68 63 60 57
60 Nd 70 65 62 60
62 Sm 73 67 66 63
64 Gd 76 71 69 66
66 Dy 77 73 72 69
68 Er 78 76 75 74
70 Yb 81 79 78 74
72 Hf 84 82 80 77
74 W 86 83 83 80
76 Os 88 85 86 84
78 Pt 90 88 90 87
80 Hg 94 91 94 88
82 Pb 98 96 97 93

separators. The EPAX2.15 cross-section systematics [76] and
the LISE++ 3EER abrasion-fission model [77,78] were used to
calculate production cross sections for projectile fragmenta-
tion and fission reactions respectively. The multistep reactions
in thick targets were taken into account. In this process, the
projectile undergoes a series of successive reactions until the
fragment of interest is produced. FRIB rates and details of
their calculations are available online [79]. In our estimates,
we assumed the experimental limit for the confirmation of
existence of an isotope to be 1 event/2.5 days.

In general, the drip-line predictions of BMA-I and BMA-II
are very similar; some differences can be seen for the elements
just below Pb, with BMA-I calculating slightly higher values
of pex. In this region of nuclei, FRIB is expected to have a
particularly high discovery potential: by exploring the vast
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TABLE V. Reference table to Fig. 3: odd-Z elements. Similar to
Table IV but for odd-Z isotopes.

Z N0 Nobs Ndrip NFRIB

17 Cl 14 11 14 14
19 K 16 16 16 16
21 Sc 19 18 19 18
23 V 20 20 20 19
25 Mn 22 21 22 21
27 Co 24 23 24 23
29 Cu 27 26 27 25
31 Ga 30 29 29 28
33 As 33 31 31 31
35 Br 35 34 33 33
37 Rb 37 35 35 35
39 Y 40 37 37 37
41 Nb 42 41 41 39
43 Tc 44 43 43 40
45 Rh 47 44 45 42
47 Ag 49 45 47 44
49 In 51 47 49 47
51 Sb 55 52 55 52
53 I 57 55 57 55
55 Cs 62 57 61 57
57 La 67 60 61 58
59 Pr 69 62 65 61
61 Pm 72 67 68 64
63 Eu 74 67 71 67
65 Tb 76 70 75 69
67 Ho 79 73 78 72
69 Tm 82 76 81 75
71 Lu 85 79 83 76
73 Ta 87 82 87 78
75 Re 91 84 90 81
77 Ir 95 87 93 84
79 Au 97 91 97 87
81 Tl 102 95 102 90

territory of proton-unstable isotopes, it will extend the domain
of known nuclei considerably.

The territory of the true 2p emitters predicted in our BMA
calculations is shown in Fig. 4. Here, the quantity of interest
is the posterior probability p2p that S2p < 0 and S1p > 0:

p2p := p(S∗
2p < 0 ∩ S∗

1p > 0|S1p/2p); (13)

see Eq. (1). Again, BMA-I and BMA-II predictions are close.
The isotopes that are potential candidates for 2p radioactivity
lie in a band corresponding to p2p � 0.5. Most of those
isotopes are within the range of FRIB.

E. Two-proton radioactivity: Lifetime considerations

In the previous sections, the discussion of proton radioac-
tivity was solely based on energy arguments. However, the
energy relations do not tell the full story. Indeed, the proton
decays corresponding to very large Q1p/2p values are going to
be too fast to be observed. If the Q1p/2p values are very low,
the proton-decay rate is going to be negligible compared to
other decay modes, such as β or α decays. When it comes to
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16
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20 28 50 82

FIG. 4. Probability of true 2p emission for the even-Z proton-
rich isotopes. The color gives the posterior probability of 2p emis-
sion, i.e., that S2p < 0 and S1p > 0, according to the posterior aver-
age models. For each proton number, the relative neutron number
N0(Z ) − N is shown, where N0(Z ), listed in Tables IV and V, is
the neutron number of the lightest proton-bound isotope for which
an experimental two-proton separation energy value is available.
The dotted line represents the predicted drip line (corresponding to
pex = 0.5). The domain of nuclei which have been experimentally
observed is marked by stars (the experimentally observed 2p emitters
45Fe, 48Ni, 54Zn, and 67Kr are indicated by closed stars); those
within FRIB’s experimental reach are marked by dots. See text for
details.

2p decay, the practical range of lifetimes is [42]

10−7 < T2p < 10−1 s. (14)

The lower bound of 100 ns corresponds to the typical sensitiv-
ity limit of in-flight, projectile-fragmentation techniques. The
upper bound of 100 ms ensures that the 2p decay will not be
dominated by β decay.

To get an order-of-magnitude estimate of 2p lifetimes,
we used the simple semiclassical Wentzel-Kramers-Brillouin
(WKB) approximation, and assumed a diproton decay with
	 = 0. For details of the WKB calculations, see [42,80]. The
value of the proton overlap O2 has been fitted to match
the measured lifetimes of 19Mg, 45Fe, 48Ni, 54Zn, yielding
O2 = 0.0011. Our WKB approach agrees very well with the
semiclassical effective liquid drop model analysis of Ref. [81].

Figure 5 shows the Q2p values predicted in BMA-I to-
gether with the lifetime range (14). It is important to note
that the uncertainties on the predicted values of Q2p usually
correspond to several decades of the 2p-decay lifetime. As
seen in Fig. 5, the known 2p emitters 45Fe, 48Ni, 54Zn, and
67Kr consistently fall within the lifetime range (14). The most
promising other candidates for the true 2p radioactivity are
30Ar, 34Ca, 39Ti, 42Cr, 58Ge, 62Se, 66Kr, 70Sr, 74Zr,
78Mo, 82Ru, 86Pd, 90Cd, and 103Te.
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FIG. 5. Q2p values predicted in BMA-I for even-even isotopes with 16 � Z � 80. The thick solid lines mark the lifetime range (14). The
mass numbers of selected isotopes are shown. The nuclei with the probability p2p > 0.4 are indicated by dots. Here, we used this value of p2p

rather than p2p > 0.5 because the criterion (13) of the true 2p emission is slightly more restrictive than the energy criterion previously adopted
in Ref. [43].

For nuclei with Z � 54 that are within the lifetime
range (14), our calculations predict p2p < 0.4, i.e., low proba-
bility of true 2p emission. Indeed, for heavy nuclei, because of
the large Coulomb barriers, the condition of p2p > 0.4 corre-
sponds to low Q2p values and very long lifetimes resulting in
small 2p widths. According to the results shown in Figs. 4
and 5, such a situation is expected in, e.g., 107Xe, 112Ba,
116Ce, 120Nd, 126Sm, 136Dy, 140Er, 146Yb, 150Hf, 154W,
155W, 158Os, 159Os, and 166Pt.

It is also to be noted that many of the extremely proton-rich
nuclei in Fig. 5 with small p2p values, such as 131,132Dy,
134,135Er and 144,145Hf, are excellent candidates for the se-
quential emission of two protons (pp) [43].

Our BMA findings are fairly consistent with predictions
of other papers. The nuclei 39Ti (p2p = 0.74) and 42Cr
(p2p = 0.60) are expected to be excellent 2p-decay candidates
according to the phenomenological analysis based on the
modified Kelson-Garvey mass relations [82] and shell model
analysis [83]. As discussed in [13], 39Ti primarily decays
by beta disintegration. This is not inconsistent with the low
Q2p value predicted in BMA-I. Other 2p-decay candidates
predicted by BMA-I discussed in the literature include 26S,
29–31Ar [24], 34Ca [81], 58Ge, 62Se, and 66Kr [84]. The
nucleus 103Te, which has been predicted [43] to exhibit a com-
petition between alpha decay and 2p radioactivity, is expected
to have T2p > 0.1 s. In 145Hf, alpha decay is predicted [43] to
compete with sequential pp emission.

V. CONCLUSIONS

In this paper, we employed the Bayesian model averaging
framework to quantify the proton stability of the nucleus.
To this end, we introduced the probability pex, which is the
Bayesian posterior probability that the one- or two-proton
separation energy of a nucleus is positive. We also evaluated
the posterior probability p2p that a nucleus is a true 2p emitter.

We demonstrate that the statistical-model correction im-
proves predictions significantly. Overall, for the testing
dataset AME16-03, the rms deviation from experimental S2p

values is in the 400–600 keV range in the GP (μ �= 0) variant
across theoretical models employed in this study. This is
consistent with the previous analysis of S2n values [40] and
indicates that our GP model captures a significant part of
the systematics and brings a sound refinement to the nuclear
theory models.

Following the model averaging, the rms deviations from
experiment for proton separation energies are surprisingly
similar for all the BMA variants used: they are around
360 keV for S2p and 380 keV for S1p. This result suggests that
the further rms reduction cannot probably be expected without
dramatic improvements of fidelity of nuclear mass models.

In general, our results are fairly consistent with the current
experimental data on the proton drip-line position and the
appearance of 2p radioactivity. Our calculations suggest that
no true 2p emission is expected in the lifetime range (14)
above Z = 54.
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In contrast to an increasing number of studies apply-
ing directly statistical models to nuclear physics observ-
ables [85–88], the sound nuclear physics model underneath
our statistical emulators, trained on the residuals, guaran-
tees that our predictions are globally consistent with known
physics. The GP parameters are well constrained with rel-
atively weak posterior variances and correlations, and the
additional mean parameter brings another reduction of rms
deviation. The GP could potentially be refined in future stud-
ies by including additional degrees of freedom to describe
different regions of the nuclear domain.

As we emphasized in our previous studies [40,41], statis-
tics is not magic, and no statistical model can do more than
reproducing patterns found in the existing data (in our case,
model residuals). In this context, far extrapolations must rely
on quality nuclear modeling. We believe that the key in our
approach is the evaluation of posterior predictive distributions
(instead of predicted values) where the mean value itself is of
less importance compared to credibility intervals.

In the course of this study, it has appeared that a nonzero
value of the GP mean prediction μ allows one to reproduce
more consistently the extrapolative data (kept away during
the training). In our opinion, the GP extension to nonzero μ

is more reasonable than hypothesizing a more elaborate tail
model, which—if not substantiated by physics—would either
be speculative or lead to overfitting.

We proposed Bayesian average models obtained by using
several variants of the BMA weights; the weights are cali-
brated on independent test data, and thus directly related to
the extrapolative power of each model. While we observe sig-
nificant variations in the weights obtained for different BMA
variants, all average models achieve a lower rms deviation
than individual model constituents. This validates empirically
the essence of the recent BMA analysis [72], where it has
been established that the BMA estimator achieves the lowest
posterior variance among all models and all model combi-
nations. This result suggests that even the simplest uniform
model mixing carried out in several previous studies involving
different quantities [1,2,41,89,90] can provide very valuable
information.

It may appear statistically disappointing that the BMA-0,
BMA-I, and BMA-III variants achieve the better testing rms

performance as compared to the most sophisticated BMA-II
method. Surely the comparison of the BMA weights (BMA-
II) with their counterparts obtained from model conditional
likelihoods taken at posterior mean values (BMA-III) high-
lights the Gaussianity defects and correlations, hidden in a
standard analysis of rms deviations and error bands. The
philosophy of using model mixing to attenuate the individual
defects of individual models makes it desirable to include
a greater diversity of models, and our results suggest that
difficulties are to be expected when none of the proposed sta-
tistical models gives an accurate description of the covariance
structure between data points.

In the context of BMA-based extrapolations, we wish to
emphasize that nothing can be stated with certainty in the
domain where no experimental data are available. However
it is clear that, on our testing dataset (which corresponds to
the outer boundary of the current experimental knowledge,
and was not used for training) BMA outperforms every single
model (see Table I). Again, based on general considera-
tions [72], BMA should on average outperform individual
models.

The extrapolation outcomes discussed in this study will be
tested by experimental data from rare-isotope facilities. As
illuminated by our Bayesian analysis, experimental discover-
ies of new proton-rich nuclides will be crucial for delineating
the detailed behavior of the nuclear mass surface in the vast
unexplored region of the nuclear landscape beyond the proton
drip lines.
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