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Background: Recent advances in nuclear structure theory have led to the availability of several complementary
ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After
successful benchmarks of different approaches, the focus is moving to the development of improved models
of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of
nuclear systems. In particular, none of the existing two- plus three-body interactions is capable of satisfactorily
reproducing all the observables of interest in medium-mass nuclei.
Purpose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.
Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and
successful) two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting
potential is labeled NN+ 3N(lnl). The objective of the present work is to investigate the performance of this
new Hamiltonian across light and medium-mass nuclei.
Methods: Binding energies, nuclear radii, and excitation spectra are computed using state-of-the-art no-core
shell model and self-consistent Green’s function approaches. Calculations with NN+ 3N(lnl) are compared to
two other representative Hamiltonians currently in use, namely NNLOsat and the older NN+ 3N (400).
Results: Overall, the performance of the novel NN+ 3N(lnl) interaction is very encouraging. In light nuclei, total
energies are generally in good agreement with experimental data. Known spectra are also well reproduced with
a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way
from oxygen to nickel isotopes. Except for those involving excitation processes across the N = 20 gap, which is
overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with
NNLOsat. Although largely improving on NN+ 3N (400) results, charge radii calculated with NN+ 3N(lnl) still
underestimate experimental values, as opposed to the ones computed with NNLOsat that successfully reproduce
available data on nickel.
Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a
promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being
adjusted solely on A = 2, 3, 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent
reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well
under similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus
allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear
radii persists and will necessitate novel developments.
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I. INTRODUCTION

In the past decade, advances in many-body approaches and
internucleon interactions have enabled significant progress in
ab initio calculations of nuclear systems. At present, sev-
eral complementary methods to solve the (time-independent)
many-body Schrödinger equation are available, tailored to
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either light systems [1,2], medium-mass nuclei [3–8], or
extended nuclear matter [9–11]. New developments, which
promise to extend (most of) these methods to higher accuracy
and/or heavy nuclei, are being currently proposed [12,13].

Over the past few years, benchmark calculations have
allowed assessment of the systematic errors associated with
both the use of a necessarily finite-dimensional Hilbert space
and the truncation of the many-body expansion at play in each
of the formalisms of interest. In state-of-the-art implemen-
tations, these errors add up to at most 5%, much less than
the uncertainty attributable to the input nuclear Hamiltonian
[14–18]. As a result, ab initio calculations have also acquired
the role of diagnostic tools as the focus of the community
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is shifting toward developing improved models of nuclear
interactions.

The large majority of these developments currently takes
place in the context of chiral effective field theory (χEFT)
[19,20] based on Weinberg’s power counting (WPC) [21–23].
Building on a low-energy expansion with nucleons and pions
as explicit degrees of freedom, χEFT provides a framework in
which two- and many-nucleon interactions can be systemati-
cally derived, in principle with uncertainties associated with
each order of the expansion. This approach to χEFT suffers
from issues related to its nonrenormalizability and different
strategies have been proposed to resolve this problem, requir-
ing the use of a different power counting and a mixture of
nonperturbative and perturbative calculations [24]. However,
applications of these procedures are still in their infancy stage.
From the practical point of view, the standard implemen-
tations of χEFT interactions are much more advanced and
therefore in better position to provide useful predictions. The
present study follows the conventional approach of seeking
fully nonperturbative solutions of the many-body Schrödinger
equation and focuses on the performance of ab initio calcula-
tions for isotopes up to medium masses.

Within this framework, one of the first successful nuclear
Hamiltonians combined a next-to-next-to-next-to-leading or-
der (N3LO) two-nucleon (2N) force [25] with a local N2LO
three-nucleon (3N) interaction [26], whose associated cutoff
was subsequently reduced to 400 MeV/c to optimize its
behavior under similarity renormalization group (SRG) trans-
formations [27]. This Hamiltonian, labeled NN + 3N (400),
has constituted a standard for many early applications of
ab initio techniques in light as well as medium-mass nuclei.
As systematic calculations beyond the light sector became
available, deficiencies associated to this interaction emerged.
In particular, it was shown to lead to an underestimation of
nuclear radii and a substantial overbinding, i.e., an overesti-
mation of total binding energies in medium- and heavy-mass
nuclei [16,28,29]. Recently, this behavior was related to the
poor description of saturation properties of symmetric nuclear
matter [11,30].

While the initial success of NN + 3N (400) represented an
important breakthrough, its poor performance for isotopes
above the oxygens prompted new work aimed at improving
predictions of nuclear saturation. A successful route was put
forward by Ekström and collaborators in Ref. [31]. There, in
contrast to the standard strategy of constraining the Hamil-
tonian only on few-nucleon data, the binding energies and
charge radii of nuclei up to A = 25 were employed in the
simultaneous fit of the low-energy constants (LECs) that
enter the 2N and 3N interactions. The resulting next-to-next-
to-leading-order Hamiltonian, labeled NNLOsat, provides a
much improved description of charge radii and fair satura-
tion properties of extended matter. However, this is obtained
at the price of deteriorating certain properties of two- and
few-body systems [16,31]. Furthermore, mild underbinding
is observed in medium-mass isotopes. Another family of
Hamiltonians that have proven to perform well for either
binding energies or radii [30] was introduced by Hebeler
and collaborators in Ref. [32]. One drawback of these in-
teractions is that 2N and 3N sectors are not consistently

evolved under SRG, which introduces an additional source of
uncertainty.

In the meantime, two problematic features of NN +
3N (400) were identified, both in the 3N sector. The first one
concerns the LEC cD entering both the 3N contact operator
and the contact axial current. This constant was originally
fitted, via its contribution to the axial current in β-decay
processes, to the triton half-life [33]. Recently, an error in
the derivation of the axial current was pointed out [34,35],
which raises questions about the pertinence of the previous
fit, as well as about subsequent many-body calculations that
employed this interaction. The second point relates to possible
artifacts introduced when certain types of regulator func-
tions are used. In principle, any function suppressing high-
momentum modes could be employed. In practice, however,
it was shown [36–39] that local regulators, as employed for
3N operators in the standard NN + 3N (400) implementation,
are likely to cut off regions of the phase space that are instead
relevant. The success of NNLOsatwas also attributed in part to
the use of nonlocal regulators in the 3N interaction.

To overcome the above difficulties, a variant of the NN +
3N (400) interaction that remedies the contact axial current
fit of the LECs and employs both local and nonlocal (lnl)
3N regulators is introduced and tested in the present work.
This new Hamiltonian is labeled NN + 3N(lnl). Low-energy
constants of 2N and 3N operators are fitted to properties
of A = 2, 3, 4 nuclei, for which an excellent description is
maintained including the triton half-life once the correct
contact axial current is employed. Properties of light nuclei
are investigated by means of no-core shell model (NCSM)
[40] calculations. Encouragingly, results are generally in good
agreement with experiment. In order to assess its quality in
medium-mass nuclei, many-body calculations are performed
within the self-consistent Green’s function approach, in both
its closed-shell (i.e., Dyson) [41] and open-shell (i.e., Gorkov)
[42] versions. Three representative isotopic chains, namely
oxygen, calcium, and nickel, are addressed. Total binding
energies, two-neutron separation energies, charge radii and
density distributions, as well as one-nucleon addition and
removal spectra are systematically analyzed and compared
with calculations performed with other Hamiltonians. Overall,
for what concerns ground- and excited-state energies, the
performance of NN + 3N(lnl) is very satisfactory, in line
with NNLOsat or even superior in certain regions. Only
for radii (and densities) does the picture change, with
NN + 3N(lnl) improving with respect to NN + 3N (400) but
still underestimating experimental data and NNLOsat results.
Possible sources of such disagreement are discussed.

The paper is organized as follows. The 2N + 3N Hamilto-
nians used in the present study are described in Sec. II, with
particular emphasis on the novel NN + 3N(lnl) interaction.
Section III discusses the performance of the new Hamiltonian
in light systems, focusing on total energies and excitation
spectra across s- and p-shell nuclei. Results for medium-
mass nuclei are presented in Sec. IV. First, the employed
many-body method is introduced (Sec. IV A) and convergence
of the calculations with respect to model space (Sec. IV B)
and many-body truncations (Sec. IV C) are discussed. Next,
results for several observables are systematically studied:
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ground-state energies (Sec. IV D), charge radii and distribu-
tions (Sec. IV E), and spectra of odd-A nuclei (Sec. IV F).
Concluding remarks are presented in Sec. V.

II. HAMILTONIANS

Three different Hamiltonians are employed in this work.
The first one, labeled NN + 3N (400), is based on the chiral
N3LO nucleon-nucleon potential from Entem and Machleidt
[20,25] combined with the chiral N2LO 3N interaction with
a local regulator [26]. The 2N interaction of Ref. [25] was
built with a cutoff of 500 MeV/c; however, a 400 MeV/c
regulator was used for the 3N sector [27]. This Hamiltonian
has been employed extensively in calculations of p- and sd-
shell nuclei and describes well the binding energy of oxygen,
nitrogen, and fluorine isotopes [41,43]. Nevertheless, as also
shown in this paper, it leads to overbinding in medium-mass
nuclei starting in the calcium chain and underpredicts radii
even for O isotopes [16,28,29]. In this Hamiltonian, the 3N
low-energy constant cD had been set to −0.2 based on a 3H
half-life fit in Ref. [33]. However, recently it was pointed
out that an error was present in the relationship between the
two-body axial current LEC dR and the cD (specifically, a
missing factor of −1/4) and that the cD that actually fits the
3H half-life is 0.83(24) [35]. The cE = 0.098 LEC was deter-
mined by fitting the 4He binding energy [27] after the cutoff
was reduced to 400 MeV/c from the original 500 MeV/c
[33] to mitigate four-body terms induced by the SRG
evolution [27].

With the main goal of improving the description of radii in
medium-mass nuclei, a new chiral Hamiltonian with terms up
to N2LO was developed in Ref. [31]. It is characterized by a
simultaneous fit of 2N and 3N LECs that does not rely solely
on two-nucleon and A = 3, 4 data, but also on binding ener-
gies of 14C and 16,22,24,25O as well as charge radii of 14C and
16O. The resulting interaction, named NNLOsat, successfully
describes the saturation of infinite nuclear matter [31], the
proton radius of 48Ca [44], and the nuclear radii of neutron-
rich carbon isotopes as well as other medium mass nuclei
[16,45]. It also performed well in several other applications,
including the description of the parity inversion in 11Be [46],
the 10C(p, p)10C elastic scattering [47], electron scattering
[48,49], giant dipole resonances [50], and the derivation of
microscopic optical potentials [51]. Unlike the NN + 3N (400)
interaction, NNLOsat employs a non-local regulator.

Motivated by the success of NNLOsat, the objective of
the present work is to amend the original NN + 3N (400)
interaction, and in particular its 3N part. While the latter has
been shown to be problematic, its 2N part is instead believed
to perform relatively well and thus is kept unchanged. Being
based on the N3LO potential, which provides a better descrip-
tion of nucleon-nucleon data compared to the lower order
NNLOsat, it guarantees superior features in light systems, e.g.,
a better reproduction of spectroscopy of natural parity states
in p- and light sd-shell nuclei. A comparison of the different
Hamiltonians in the calculation of the ground-state energy of
4He is shown in Table I, where mean values of the five 3N
N2LO terms are displayed. Curiously, for NN + 3N (400) and
NNLOsat, 〈c3〉, 〈cD〉, and 〈cE 〉 terms contribute with opposite

TABLE I. 4He ground-state energies and mean values of the
five chiral 3N N2LO terms (in MeV) for the NN+ 3N (400) [27],
NNLOsat [31], NN+ 3N(lnl) (present work), and 2N + 3N (500)cD0.83

[35] Hamiltonians. All interactions are bare, i.e., not evolved via
SRG techniques. The experimental 4He ground-state energy is
−28.29 MeV.

4He 〈H〉 〈c1〉 〈c3〉 〈c4〉 〈cD〉 〈cE 〉
NN+ 3N (400) −28.28 −0.06 1.27 −3.93 −0.28 −0.66
NNLOsat −28.43 −0.24 −0.73 −3.76 1.39 0.42
NN+ 3N(lnl) −28.25 −0.18 −1.36 −3.27 0.74 0.43
2N + 3N (500)cD0.83 −28.36 −0.26 −1.50 −3.79 0.78 0.30

sign. This is particularly disturbing for the three-nucleon con-
tact term, cE . In fact, one might argue that this could be at the
origin of the severe overbinding generated by NN + 3N (400)
in medium-mass nuclei. Consequently, here the cD and cE

LECs are changed to 0.7 and −0.06, respectively, to get 4He
results more in line with the ones of NNLOsat. In addition, the
regulator of the 3N interaction was modified by introducing
a nonlocal regulator of the same type as that used in the
NNLOsat on top of the local one employed in NN + 3N (400).
For technical reasons, a completeness in the three-nucleon
antisymmetrized harmonic-oscillator (HO) basis was applied
to evaluate the matrix elements of the new 3N interaction. The
nonlocal regulator was set to 500 MeV/c to be consistent with
the cutoff of the N3LO 2N interaction and the local regulator
was increased from 400 to 650 MeV/c to achieve a larger
binding in A = 3, 4 systems in agreement with experiment.
With these LECs, the new interaction reproduces very reason-
ably experimental ground-state energies of 3H, 3He, and 4He,
as well as the 3H half-life.

The performance of this new interaction, named NN +
3N(lnl), in 4He is shown in Table I. One observes that all
3N terms contribute with the same sign as in NNLOsat and
the 〈cE 〉 is about the same. The NN + 3N(lnl) interaction was
already applied in Ref. [18] to the description of binding
energies of neutron-rich titanium isotopes and neighboring
isotopic chains. Later on, it was employed in the calculation
of β decays of selected light and medium-mass nuclei [52],
where it was denoted NN-N3LO + 3Nlnl. Very recently, it was
also used in a study of quasifree nucleon knockout from 54Ca
[53]. Its performance in these preliminary applications was
very promising, which is confirmed in the present systematic
and extensive study. It turns out, however, that the good
quality of this new interaction (and of NNLOsat) in medium-
mass nuclei is not just a consequence of a particular choice
of the LECs cD and/or cE . In Table I, results of the corrected
2N + 3N (500)cD0.83 interaction from Ref. [35] are also shown.
As compared to NN + 3N(lnl), this Hamiltonian has the same
c1, c3, c4 LECs [i.e., those from the 2N N3LO interaction
[25] also used in NN + 3N (400)] and almost identical cD =
0.83 and cE = −0.052, but it employs a local regulator as
the NN + 3N (400) although with a 500-MeV/c cutoff. One
can see that it gives very similar results in 4He as the
NN + 3N(lnl). However, it severely overbinds medium-mass
nuclei in many-body perturbation theory calculations [54].
Consequently, the choice of the regulator appears crucial for
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TABLE II. Values of the five LECs (c1, c3, c4 in GeV−1) that
define the 3N force at N2LO for the NN+ 3N (400) [27], NNLOsat

[31], NN+ 3N(lnl) (present work), and 2N + 3N (500)cD0.83 [35]
Hamiltonians. The c1, c3, and c4 constants enter both the 2N and
the 3N sectors of the Hamiltonian; they are equal for NN+ 3N (400),
NN+ 3N(lnl) and 2N + 3N (500)cD0.83 since these share the same
bare 2N interaction from Ref. [25].

c1 c3 c4 cD cE

NN+ 3N (400) −0.81 −3.20 5.40 −0.20 0.098
NNLOsat −1.122 −3.925 3.766 0.817 −0.040
NN+ 3N(lnl) −0.81 −3.20 5.40 0.70 −0.06
2N + 3N (500)cD0.83 −0.81 −3.20 5.40 0.83 −0.052

the correct description beyond light nuclei and perhaps a hint
of the reason of the superior performance of NN + 3N(lnl)
manifests in the 4He results by the absolute values of 〈c3〉 and
〈c4〉 reduced while the 〈cE 〉 contribution enhanced compared
to 2N + 3N (500)cD0.83. Table II summarizes the LECs used to
construct the 3N interactions of all the above Hamiltonians.

III. LIGHT NUCLEI

As an initial test of the NN + 3N(lnl) Hamiltonian, NCSM
[40] calculations of energies of s-shell and selected p-shell
nuclei were performed. In the NCSM, nuclei are considered to
be systems of A nonrelativistic pointlike nucleons interacting
via realistic two- and three-body interactions. Each nucleon is
an active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity of
the nucleus are conserved. The many-body wave function is
expanded over a basis of antisymmetric A-nucleon harmonic
oscillator (HO) states. The basis contains up to Nmax HO
excitations above the lowest possible Pauli configuration, so
that the motion of the center of mass is fully decoupled and
its kinetic energy can be subtracted exactly. The basis is
characterized by an additional parameter �, the frequency
of the HO well, and may depend on either Jacobi relative
[55] or single-particle coordinates [56]. The convergence of

the HO expansion can be greatly accelerated by applying an
SRG transformation on the 2N and 3N interactions [57–61].
Except for A = 3, 4 nuclei, here and in the following of the
paper an SRG evolution is applied to the NN + 3N (400) and
NN + 3N(lnl) interactions down to a scale of λ = 2 fm−1. On
the contrary, calculations with NNLOsat are performed with
the bare Hamiltonian.

In Figs. 1–3, the excitation energy spectra of selected Li,
Be, B, and C isotopes are displayed. A correct ordering of
low-lying levels is found for all the considered lithium and
beryllium isotopes, namely 6,7,9Li and 8,9Be. The 2+0 and
1+

2 0 states in 6Li as well as some of the excited states in
7Li and 8,9Be are broad resonances. Here, a more realistic
description of 6Li and 9Be would require a better treatment
of continuum effects; see Refs. [64] and [65], respectively,
in this regard. Let us note that all excited states of 6Li are
unbound with respect to the emission of an α particle and
that 7Li has only one excited state below the α-separation
threshold. Similarly, 8Be is never bound and even its ground
state is unstable against decay into two α. The lowest states
in 10B are known to be very sensitive to the details of nuclear
forces, and the 3N interaction in particular [66]. Here a good
description is achieved by NN + 3N(lnl), with only the 1+

2 0
state resulting incorrectly placed. The correct level ordering
is also found in 11B, with the spectrum being overall too
compressed as compared to the experimental one. Finally,
worth noting is the correct ordering of T =1 states in 12C,
also known to be sensitive to the 3N interaction. On the other
hand, the α-cluster-dominated 0+0 Hoyle state in 12C cannot
be reproduced in the limited NCSM basis employed here [67].
In general, NN + 3N(lnl) yields spectra that are in good agree-
ment with experiment. Some underestimation of level splitting
in 9Li, 11B, and 13C emerges and could be associated with a
weaker spin-orbit interaction strength. This is comparable to
what has been found with earlier parametrizations of chiral
3N forces (see, e.g., Ref. [66]).

Ground-state energies of 3H, 3,4He, and selected p-shell
nuclei from 6He to 16O are shown in Fig. 4. The calculated
values (red lines) obtained with the NN + 3N(lnl) interaction

FIG. 1. Excited-state energies of 6,7,9Li isotopes. NCSM calculations with the NN+ 3N(lnl) Hamiltonian are compared to available
experimental data. The dependence on the NCSM basis size for Nmax = 2–10 (Nmax = 2–8 for 9Li) is shown. SRG evolution with λ = 2 fm−1

and HO frequency of h̄� = 20 MeV were used. Question marks indicate experimental levels with unassigned spin-parity values.
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FIG. 2. The same as in Fig. 1 for 8,9Be and 10B. Basis sizes Nmax = 2–8 are displayed.

are compared to experiment (blue lines). Theoretical error
bars represent the NCSM extrapolation uncertainty. Over-
all, experimental data are very reasonably reproduced, with
differences of at most a few percent. The agreement is the
best for Tz = 0 and |Tz| = 1/2 nuclei. Some deficiency of
the interaction is observed with increasing |Tz|; for example,
while 4He is in perfect agreement with experiment, the 6He
and 8He are barely bound. Note, however, that, again, a
proper treatment of continuum effects, not included here, is
likely to provide additional binding to systems close to the
dripline [46]. Overall, the performance of the NN + 3N(lnl)
Hamiltonian in light nuclei is very encouraging.

IV. MEDIUM-MASS NUCLEI

A. Self-consistent Green’s function theory

In standard, i.e., Dyson, self-consistent Green’s func-
tion theory (DSCGF) [3,68], the solution of the A-body
Schrödinger equation is achieved via its rewriting in terms of
one-, two-,..., A-body objects named propagators or, indeed,
Green’s functions (GFs). Green’s functions are expanded in a
perturbative series, which in self-consistent schemes is recast
in terms of the exact GFs so that a large portion of nonskeleton
diagrams are implicitly resummed. One is mostly interested

in the one-body Green’s function since this provides access to
all one-body observables and to the ground-state energy via
the so-called Galitskii-Migdal-Koltun sum rule [69,70]. The
latter can be properly generalized to account for three-body
forces [71]. In addition, the one-body GF contains informa-
tion on neighboring nuclei. Specifically, the residues from
its Lehmann representation are related to transition matrix
elements for one-nucleon addition and removal, while the
poles give direct access to ground and excited states of (A ±
1)-nucleon systems. Note that in all calculations the intrinsic
form of the Hamiltonian is employed; i.e., the center-of-mass
kinetic energy is subtracted from the start. Since the latter
depends on the number of nucleons at play, different cal-
culations are performed with the Hamiltonian corresponding
to mass number A or A ± 1 depending on whether ground-
state quantities or nucleon addition or removal spectra are
computed, as detailed in Ref. [72].

The one-body GF is obtained by solving the Dyson equa-
tion that is intrinsically nonperturbative and in which the
irreducible self-energy encodes all nontrivial many-body cor-
relations arising from the interactions of a nucleon with
the nuclear medium. The self-energy is particularly impor-
tant since it encodes information on both the A-nucleon
ground state and the scattering states of the A + 1 system.

FIG. 3. The same as in Fig. 1 for 11B and 12,13C. Basis sizes Nmax = 2–8 are displayed. The importance-truncated NCSM [62,63] was used
in the Nmax = 8 space for carbon isotopes.
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FIG. 4. Ground-state energies of s-shell and selected p-shell
nuclei calculated with the NN+ 3N(lnl) Hamiltonian (red lines) com-
pared to experiment (blue lines). The error bars indicate uncertainties
of the NCSM extrapolation. SRG evolution with λ = 2 fm−1 and HO
frequency of h̄� = 20 MeV were used.

Hence, it provides a natural ab initio approach for consistent
calculations of structure and reactions [51,73]. In this work,
the self-energy is computed in the so-called algebraic dia-
grammatic construction [ADC(n)] approach up to order n = 3
[68,74,75]. This entails including all perturbative contribution
up to nth order plus any additional resummation needed to
preserve its spectral representation. At first order, ADC(1)
includes only mean-field terms and it is nothing else than
the standard Hartree-Fock (HF) approximation. The higher
orders, ADC(2) and ADC(3), add dynamical correlations in
terms of 2p1h and 2h1p configurations. However, these re-
main minimally included and noninteracting at ADC(2) while
ADC(3) includes infinite-order resummations of both particle-
particle/hole-hole and particle-hole ladders. Generally speak-
ing, ADC(n) defines a truncation scheme that is systematically
improvable up to ADC(∞), where exact results are recovered
by definition.

In Dyson GF theory, the diagrammatic expansion builds
on top of a reference state that is particle-number conserving
and that typically respects spherical symmetry. While such
an expansion can suitably address doubly closed-shell sys-
tems, it becomes inefficient or even breaks down in open-
shell systems due to the degeneracy of the reference state
with respect to particle-hole excitations. With the wish to
retain the simplicity of a single-reference method, a pos-
sible solution consists in working, from the outset, with a
symmetry-breaking reference state. In particular, breaking
U(1) symmetry associated with particle number conservation1

while maintaining spherical symmetry allows us to efficiently
capture pairing correlations, thus gaining access to (singly)
open-shell nuclei.

In this spirit, Ref. [76] generalized DSCGF to a
U(1) symmetry-breaking scheme based on the use of a

1In the case of atomic nuclei, proton and neutron numbers are
conserved individually, and therefore it is always intended U(1)N ⊗
U(1)Z where one of the two or both are broken.

Hartree-Fock-Bogolyubov reference state and we refer to this
approach as Gorkov self-consistent Green’s function
(GSCGF) theory. The resulting four (two normal and two
anomalous) Gorkov propagators can be conveniently recast in
a 2 × 2 matrix notation via Nambu formalism [77]. Hence, all
standard GF equations are rewritten in a Nambu-Gorkov
matrix form. Moreover, Dyson diagrammatics can be
generalized to a Gorkov framework, with minor complications
arising from the presence of the four different one-body
propagators [42]. The introduction of a chemical potential
guarantees that the number of particles is the correct one on
average. Eventually, the broken symmetry has to be restored.
While symmetry-restored formalism has been developed for
other (post-Hartree-Fock) many-body methods [78–82], it
remains to be formulated for GSCGF.

GSCGF theory has been recently implemented in the con-
text of nuclear physics within the ADC(2) truncation scheme
[42,83,84]. Thus, the present paper reports results of DSCGF
calculations up to ADC(3) and GSCGF calculations up to
ADC(2).2

B. Model-space convergence

The present calculations are performed using a spherical
HO model space that includes up to the emax ≡ max (2n +
l ) = 13 shell. Any k-body operator is to be represented in
the same space and one should truncate the corresponding
k-body basis consistently according to ekmax = k emax. The
matrix elements of one- and two-body operators are always
included in full. However, this is not feasible for three-body
interactions due to the rapid increase in the number of their
matrix elements and therefore these are restricted to e3max =
16 < 3 emax. The dependence on the basis parameters was
tested by computing ground-state observables for different
harmonic oscillator frequencies, h̄�, and model space sizes,
emax. Results for ground-state energies, E , and root-mean-
square (rms) radii, 〈r2

ch〉1/2, computed at the ADC(2) trun-
cation level are displayed in Fig. 5 for two representative
nuclei, 36Ca and 68Ni, and for NN + 3N(lnl) and NNLOsat

Hamiltonians.
Focusing on ground-state energies, both interactions show

a typical convergence pattern consisting in curves that gradu-
ally become independent of h̄� and closer to each other as the
basis increases. For both nuclei, the change from emax = 9 to
emax = 13 at the h̄� minimum is larger for NNLOsat than for
NN + 3N(lnl), consistent with the SRG-evolved character of
the latter. In 36Ca, going from emax = 11 to emax = 13 results
in a 1.5 MeV gain for NNLOsat and a 300 keV gain for
NN + 3N(lnl). In 68Ni gains are 4.9 and 2 MeV respectively.
Note that the basis limitations on three-body forces do not
affect the lighter systems considered in this work and e3max =
16 is normally sufficient to converge isotopes around 40,48Ca.
However, this truncation can introduce some uncertainties for
heavier masses. We shall quantify these errors in Sec. IV D,
when discussing the neutron-rich nuclei in the p f shell.

2When closed-shell systems are considered, a Gorkov calculation
automatically reduces to a Dyson one.
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FIG. 5. Ground-state energy computed at the ADC(2) level with
the NN+ 3N(lnl) and NNLOsat Hamiltonians as a function of the
harmonic oscillator spacing h̄� and for increasing size emax of the
single-particle model space for the cases of 36Ca (a) and 68Ni (b).
Rms radii from the same calculations are displayed for 36Ca and 68Ni
in panels (c) and (d) respectively.

Charge radii also show their usual convergence pattern, with
the h̄� dependence decreasing as the model space trunca-
tion increases. For emax = 13 calculations, the NN + 3N(lnl)
curves are already rather flat in an interval including both
the energy minimum and smaller values of h̄�. Results with
NNLOsat, on the other hand, still present a manifest h̄� depen-
dence. Hence, a precise determination of the rms charge radius
would require the use of extrapolation techniques. As the
conclusions of the large-scale systematic analyses presented
in this work would not be impacted, such extrapolation is not
performed here and is left for future studies.

C. Many-body convergence

Next, let us investigate convergence with respect to the
many-body truncation. In Fig. 6, energies per nucleon and rms
charge radii computed within ADC(1), ADC(2), and ADC(3)
approximations are displayed for the same two representa-
tive cases of 36Ca and 68Ni. A clear convergence pattern
is visible in all cases. For ground-state energies, ADC(1)
results depend strongly on the interaction, with the softer
NN + 3N(lnl) more bound than NNLOsat. ADC(2) calcula-
tions are already sufficient to grasp the bulk of correlation
energy. Interestingly, ADC(2) values from the two interactions
are similar, which reflects the ability of this self-consistent
scheme to resum relevant many-body contributions even in
the presence of an SRG-unevolved (though relatively soft)
interaction. Going from ADC(2) to ADC(3) results in a further
gain in correlation energy, which shows that the ADC(3)
truncation level is necessary for precise estimates of total
ground-state energies even when evolved or soft interactions

FIG. 6. Ground-state energies per particle (top panels) and rms
charge radii (bottom panels) of 36Ca and 68Ni computed within
different ADC(n) truncation schemes. Results for the NNLOsat and
NN+ 3N(lnl) interactions are displayed.

are employed. Quantitatively, when going from ADC(2) to
ADC(3), one gains 7.6 MeV (9.2 MeV) absolute energy in
36Ca and 16.2 MeV (20.1 MeV) in 68Ni with NN + 3N(lnl)
(NNLOsat).3 Extrapolating this convergence sequence, one
may expect ADC(n) with n � 4 to add as little as ≈1%
correlation energy. As discussed further in Secs. IV D and
IV E, while corrections from ADC(3) are important when
confronting total ground-state energies, they tend to remain
rather constant across whole isotopic chains. This implies
that ADC(2) already yields reliable predictions for trends
and differential quantities such as two-nucleon separation
energies. On the other hand, the ADC(3) is also known to
be important to reproduce affinities and ionization spectra
in molecules [85] and, correspondingly, it gives significant
corrections to the spectra of dominant quasiparticle states
discussed in Sec. IV F.

In the case of calculations performed in the Gorkov frame-
work, an additional source of error comes from the fact that
the broken U(1) symmetry is not presently restored. While the
number of particles remains the correct one on average, this
leads to a dispersion in N and/or Z depending on the open-
shell nature of neutron or protons. Here, only calculations in
semimagic nuclei are reported, for which the proton variance
remains zero. At the ADC(2) level, the maximum variance in
neutron number amounts to σ 2

N ≈ 1.2, 1.6, and 1.9 for oxygen,
calcium, and nickel chains respectively (independently of the
employed interaction).

3This corresponds to a 7.9% (4.5%) increase of correlation energy
in 36Ca and a 9.0% (4.7%) increase in 68Ni with NN+ 3N(lnl)
(NNLOsat).
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TABLE III. Comparison between the ground-state energies of
16O (in MeV) as computed with the ADC(2) and ADC(3) many-
body approximations and with the NCSM. The SCGF results are
obtained in a full emax = 13 space and one could expect resid-
ual errors of a few % due to the many-body truncations beyond
ADC(3), as detailed in the text. The NCSM results for NNLOsat and
NN+ 3N(lnl) show uncertainties arising from Nmax extrapolation and
importance-truncation. The NCSM result for NN+ 3N (400) is taken
from Ref. [43].

Eg.s. (16O) ADC(2) ADC(3) NCSM

NN+ 3N (400) −128.54 −130.81 −130(2)
NNLOsat −124.63 −126.23 −125(5)
NN+ 3N(lnl) −123.91 −127.27 −126(2)
Experiment −127.62

For rms radii, the convergence pattern results are even
more favorable. While ADC(1) already provides a reasonable
account of the charge radius, ADC(2) is necessary to reach
an essentially converged value, especially in the case of
NNLOsat. Eventually, ADC(3) adds at most 1.2% to the rms
radii that is well converged with respect to the many-body
truncation for both NN + 3N(lnl) and NNLOsat. The above
findings on both spectra and radii are consistent with the
analysis performed on 34Si and 36S in Ref. [17]. The same
formalism applied in the context of quantum chemistry also
showed a similar ADC convergence behavior [85–88].

Table III displays a benchmark between the NCSM and
SCGF for 16O and the three Hamiltonians. This isotope is still
light enough that it can be computed using the importance-
truncated NCSM [62,63], although the presence of matrix
elements from the 3N interaction limits the largest possible
basis truncation to Nmax = 10. This issue is more severe
for the harder NNLOsat interaction. Thus, the NCSM results
have been extrapolated using a standard exponential trend
with respect to Nmax and a polynomial dependence on the
importance-truncation parameter κmin [62]. Table III reports
the extrapolated values together with the uncertainties esti-
mated from this procedure by repeating the extrapolations
with different subsets of data. Taking these uncertainties
under consideration, the comparison among the two ab initio
approaches is extremely satisfactory and confirms the relia-
bility of SCGF for the computation of medium-mass isotopes
presented in the following. From Table III, one also notices
that the NN + 3N (400)—which was the first Hamiltonian
to successfully predict the oxygen ground-state energies ab
initio—already displays a slight tendency to overbind, even
for this nucleus. The NNLOsat and NN + 3N(lnl) correct this
effect, with the latter performing a bit better in comparison to
the experiment.

D. Ground-state energies

The following subsections study the performances of
the three Hamiltonians—NN + 3N (400), NN + 3N(lnl), and
NNLOsat—along three representative medium-mass isotopic
chains, namely oxygen, calcium, and nickel. Based on the
considerations of Secs. IV B and IV C, all the following

FIG. 7. Total binding energies (a) and two-neutron separation
energies (b) of oxygen isotopes computed within the ADC(2) ap-
proximation with the NN+ 3N (400), NN+ 3N(lnl), and NNLOsat in-
teractions. ADC(3) calculations with the NN+ 3N(lnl) and NNLOsat

interactions are also displayed for closed-shell nuclei as horizontal
bars. Calculations are compared to measured as well as extrapolated
data from the 2016 atomic mass evaluation (AME) [89,90]. The esti-
mated computational errors due to model space truncations are below
1% of the total binding energy for NNLOsat and below 0.5% for
NN+ 3N(lnl) and NN+ 3N (400). Note that the ADC(3) truncation
accounts for an additional 2–3% of the total binding energies with
respect to ADC(2), for all interactions and throughout this chain.

calculations are performed with an emax = 13 model space
(14 shells), e3max = 16, and oscillator frequencies fixed at
h̄� = 20 MeV for NNLOsat and h̄� = 18 MeV for NN +
3N(lnl). Similar studies have shown that NN+ 3N (400) has an
optimal minimum at h̄� = 28 MeV [84], which is used here
for this Hamiltonian. For the three isotopic chains, protons
maintain a good closed-shell character; i.e., all isotopes are
at least semimagic, which generally ensures that deformation
does not play a major role.4 Ground-state properties (total
binding energies, charge radii, density distributions) of even-
even nuclei as well as excitation spectra of odd-even nuclei
are investigated to provide a comprehensive benchmark of the
three interactions.

Total ground-state energies of oxygen, calcium, and nickel
isotopes are displayed in Figs. 7(a), 8(a), and 9(a), respec-
tively. ADC(2) results (colored points and lines), covering

4A possible exception is represented by some nickel isotopes
between 56Ni and 68Ni, as discussed later.
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FIG. 8. Same as Fig. 7 but for calcium isotopes. Values for the
recently measured masses of 55−57Ca were taken from Ref. [91]. The
estimated computational errors due to model space truncations are
≈1% of the total binding energy for NNLOsat and 0.5% for NN+
3N(lnl) and NN+ 3N (400).

all even-even isotopes, are shown together with ADC(3)
calculations in doubly closed-shell nuclei (colored horizontal
bars) and compared to available experimental data (black
points). Corresponding two-neutron separation energies are
shown in Figs. 7(b), 8(b) and 9(b). Following the analysis
of Secs. IV B and IV C, model-space convergence errors for
NNLOsat [NN + 3N(lnl)] are estimated to be at most 1%
(0.5%) of the total binding energy up to the calcium isotopes
and 2% (1%) for the nickels up to 68Ni. Many-body trunca-
tion errors are 4% for ADC(2) and below 1% for ADC(3),
generally underestimating the binding energy. Uncertainties
for NN + 3N (400) are the same as for NN + 3N(lnl).

All three interactions yield similar results for ground-state
energies of the oxygen isotopes and are generally close to ex-
perimental values. While for NN + 3N (400) and NNLOsat the
agreement is excellent through the whole chain, NN + 3N(lnl)
shows some mild underbinding for the most neutron-rich
systems. Although additional correlations coming in at the
ADC(3) level tend to provide additional binding, one notices
that this effect is not large in oxygen. For all interactions,
the dripline at 24O is correctly reproduced, as also visible
in Fig. 7(b). For the model space parameters used here, the
two N3LO Hamiltonians predict 28O to be less bound than
26O, while the opposite is found for NNLOsat. However, we
find that computed ground-state energies for the unbound 28O
depend sensibly on emax and h̄� which is consistent with a
discretization of the continuum imposed by the HO space. For

FIG. 9. Same as Fig. 7 but for nickel isotopes. The estimated
computational errors due to model space truncations are below 2% of
the total binding energy for NNLOsat and below 1% for NN+ 3N(lnl)
and NN+ 3N (400). Note that the ADC(3) truncation accounts for
an additional 2–3% of the total binding energies with respect to
ADC(2), for all interactions throughout this chain.

heavier systems like calcium and nickel, the NN + 3N (400)
Hamiltonian is known to produce strong overbinding with
respect to experimental data [28,29]. This is confirmed by
present calculations as visible in Figs. 8(a) and 9(a). Instead,
one notices that the two most recent Hamiltonians, NNLOsat

and NN + 3N(lnl), largely correct for this overbinding. For
instance, on the light-mass side, the ADC(2) energy for 36Ca
goes from 20.4 MeV (7.2%) overbinding for NN + 3N (400)
to 11.8 MeV (4.1%) underbinding for NNLOsat and 7.0 MeV
(2.4%) underbinding for NN + 3N(lnl). Among the heav-
ier isotopes, 68Ni goes from 64.8 MeV (10.9%) overbind-
ing for NN + 3N (400) to 45.0 MeV (7.6%) underbinding
for NNLOsat and 15.9 MeV (2.6%) underbinding for NN +
3N(lnl).

Many-body correlations beyond ADC(2) provide addi-
tional binding and ground-state energies of all considered
isotopes are lower by 2–3% when switching to ADC(3).
While this aggravates the overbinding of NN + 3N (400) [28],
it is expected to reduce the underbinding of the other two
potentials. The latter expectation is corroborated by ADC(3)
results of closed-shell nuclei along the two chains. Once
ADC(3) corrections are included, binding energies computed
with both NNLOsat and NN + 3N(lnl) Hamiltonians are in
excellent agreement with experimental data. For the above
examples, differences with experiment reduce to 0.9% and
0.2% in 36Ca and to 4.2% and 0.05% in 68Ni for NNLOsat
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and NN + 3N(lnl) respectively and are comparable with the
theoretical uncertainties due to the model-space convergence.
The extra binding obtained within ADC(3) is therefore crucial
if one is after precise comparisons on total ground-state
energies. In accordance with the findings of Sec. IV C,
ADC(3) corrections are systematically larger for the SRG-
unevolved NNLOsat than for the SRG-evolved NN + 3N(lnl).
Note that Ref. [92] already reported very poor convergence of
the 78Ni isotope with NNLOsat, mainly due by the truncation
of three-body matrix elements. Here, it is found that changing
e3max from 14 to 16 leads to a ≈40 MeV variation, which adds
to the model space uncertainties discussed in Sec. IV B. All
isotopes beyond 68Ni are likely to be affected in an analogous
way.

Further insight can be gained by looking at energy dif-
ferences. Two-neutron separation energies along the two
chains are displayed in Figs. 8(b) and 9(b). For calcium,
the effects of overbinding in NN + 3N (400) cancels out to a
large extent, with the residual mass dependence showing up
in the most proton- and neutron-rich isotopes. Calculations
with NNLOsat and NN + 3N(lnl) lead to similar values and
closely follow experimental data. Interestingly, all major gaps
correctly emerge. While the N = 20 gap is quantitatively well
reproduced by NNLOsat, it appears somewhat overestimated
with NN + 3N(lnl). The opposite holds for the N = 28 gap,
with NN + 3N(lnl) providing a very accurate description. One
compelling question, attracting much attention both exper-
imentally and theoretically, relates to the position of the
dripline in calcium isotopes. Very recently, the experimental
knowledge was extended with the mass measurements of
55–57Ca [91] and the first evidence of a bound 60Ca [93].
While the present theoretical framework is in principle able
to be applied beyond 60Ca, convergence problems were en-
countered with the present settings and the (inconclusive)
results beyond 60Ca are not shown here. In particular, the
SRG evolution of three-body operators is performed in a
three-body HO space in Jacobi coordinates [55] and requires
very high total angular momenta (up to J = 35/2) to resolve
all matrix elements up to e3max = 16 used in the SCGF model
space. Calculations for isotopes above 60Ca were found to be
affected by model space truncations in two different ways:
One is the direct dependence on e3max in the SCGF basis and
the other is the truncations needed to evolve NN + 3N(lnl)
through SRG. As an example, in Fig. 10 total energies of 40Ca
and 70Ca are displayed as a function of e3max for two different
ways of truncating the Jacobi basis during the SRG evolution.
While calculations in 40Ca are converged with respect to both
variations, in 70Ca a clear dependence on the latter parameter
is visible. This problem arises only beyond N = 40 for the
two SRG-evolved Hamiltonians and is also responsible for
a lack of binding in neutron-rich nickel isotopes, which is
reflected in an evident kink in the binding energy curve after
68Ni (see Fig. 9). Future technical improvements as well as
a better treatment of the continuum, which appears to be
crucial beyond 60Ca, are therefore necessary for a correct
determination of the calcium dripline.

Two-neutron separation energies in the nickel chain are
generally less accurate. The old NN + 3N (400) Hamiltonian
struggles to catch the experimental trend, with an unrealistic

FIG. 10. Ground-state energies of 40Ca (upper panels) and 70Ca
(lower panels) for NN+ 3N(lnl) as a function of the size of the three-
body basis e3max. Calculations are shown for two different truncation
schemes used in SRG evolution: “ramp #1” refers to including Jacobi
states with Nmax � 30 up to J = 25/2 and Nmax = 16 up to J = 35/2,
while “ramp #2” retains Nmax = 30 states up to J = 31/2. Note the
different energy scales in the upper and lower panels.

large gap appearing at N = 32. The other two interactions
show a clear improvement. Interestingly, both of them predict
a flat trend for proton-rich isotopes, in contrast with the
AME data extrapolation. For NN + 3N(lnl), the agreement
with experiment between 56Ni and 64Ni is remarkable. As
explained above, after 68Ni the results appear to be affected
by convergence issues. For NNLOsat, the description remains
reasonable except for most neutron-rich systems. The repro-
duction of experimental data also deteriorates between N =
28 and N = 40, which is likely to be linked with the onset of
deformation, although this does not appear to be problematic
for the soft NN + 3N(lnl) interaction.

E. Charge radii and density distributions

Next, let us examine rms charge radii 〈r2
ch〉1/2. In the

present approach, rms charge radii are computed from rms
point-proton radii by correcting for the finite charge distribu-
tions of protons and neutrons, as well as for the Darwin-Foldy
term (see Ref. [72] for details). ADC(2) results for absolute
rms charge radii of oxygen, calcium, and nickel isotopes are
displayed in Figs. 11(a), 12(a), and 13(a), all compared to
available experimental data. Relative rms radii 	〈r2

ch〉1/2, i.e.,
charge radii differences5 relative to a reference isotope, are
shown in Figs. 11(b), 12(b) and 13(b). Following the analysis
of Secs. IV B and IV C, conservative errors for NNLOsat

5Note that the relative rms radii used here, differences of 〈r2
ch〉1/2,

differ from the mean square shifts δ〈r2〉 sometimes found in the
literature, defined as differences of 〈r2

ch〉.
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FIG. 11. Rms charge radii of oxygen isotopes (a) and differential
radii relative to 16O (b) computed within the ADC(2) approximation
with the NN+ 3N (400), NN+ 3N(lnl), and NNLOsat interactions.
ADC(3) calculations with the NN+ 3N(lnl) and NNLOsat interac-
tions are shown for closed-shell nuclei as horizontal bars. Available
experimental data [94] are also displayed. The estimated computa-
tional errors due to model space truncations are less than 1.5% of
the charge radius for NNLOsat, while calculations are substantially
converged for NN+ 3N(lnl) and NN+ 3N (400) (see Fig. 5). The
corrections to radii due to many-body truncation beyond ADC(3) are
larger for NN+ 3N(lnl) than for NNLOsat and remain <0.01 fm for
all cases (see Fig. 6).

[NN + 3N(lnl) and NN + 3N (400)] are estimated to amount
up to 1.8% (1.5%) of the charge radius up to the calcium
isotopes and 2.6% (1%) for the nickels, including 78Ni. Note
that these errors are dominated by model space convergence
in the case of NNLOsat and by the many-body truncations for
NN + 3N(lnl) and NN + 3N (400).

For what concerns absolute radii, a large variation between
the different interactions is observed in all cases. For oxygen
isotopes, studies with NN + 3N (400) and NNLOsat exist in the
literature [16,72], where it was shown that already in these
light systems NN + 3N (400) leads to a strong underestimation
of the size of nuclei. From Fig. 11(a), one notices that the new
NN + 3N(lnl) interaction improves on NN+ 3N (400) results,
producing charge radii that are ≈0.1 fm larger, reducing by a
factor 2 or better the discrepancy with experiment. A similar
picture emerges from the analysis of calcium and nickel
chains. In calcium isotopes, see Fig. 12(a), NN + 3N (400)
strongly underestimates measured radii, with discrepancies of
about 12–15% along the whole chain. NN + 3N(lnl) signifi-
cantly improves on NN + 3N (400) results, producing charge
radii that are ≈0.3 fm larger. Still, experimental data are

FIG. 12. Same as Fig. 11 but for calcium isotopes. In panel (b),
differential radii are relative to 48Ca. Experimental data are taken
from Refs. [94–96]. The estimated computational errors due to model
space truncations are ≈1.5% of the charge radius for NNLOsat,
while calculations are substantially converged for NN+ 3N(lnl) and
NN+ 3N (400) (see Fig. 5). The corrections to radii due to many-
body truncation beyond ADC(3) are larger for NN+ 3N(lnl) than for
NNLOsat and remain <0.01 fm for all cases (see Fig. 6).

underestimated by about 5–6% across all isotopes. NNLOsat,
on the other hand, succeeds in reproducing the bulk values
of Ca rms radii, thus maintaining for this observable the
good performances already observed for lighter nuclei [17].
Importantly, the present results with NNLOsat are in good
agreement with previous coupled-cluster calculations per-
formed on closed-shell and neighboring isotopes [95]. Similar
conclusions can be inferred by inspecting results for nickel
isotopes, reported in Fig. 13(a). Absolute rms charge radii
obtained with NNLOsat maintain their good agreement with
data even for this mass region. A kink is visible at 56Ni,
in accordance with its good closed-shell character. Beyond
this point, the calculation follows the trend of the limited
available data, slightly departing from experiment as neutron
number increases. Radii obtained with the other two inter-
actions, again, severely underestimate experimental results.
Discrepancies are in line with what observed in calcium
isotopes; namely, NN+ 3N (400) is more than 15% off and
NN + 3N(lnl) about 8–9% off. For all chains, ADC(3) calcula-
tions for closed-shell systems are also shown. Contrary to total
ground-state energies, radii are essentially converged at the
ADC(2) truncation level and additional ADC(3) correlations
do not change the overall picture. In particular, it is clear
that the discrepancies with experiment cannot be removed by
improving the many-body truncation.
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FIG. 13. Same as Fig. 11 but for nickel isotopes. In panel
(b), shifts are relative to 64Ni. Experimental data are taken from
Refs. [94]. The estimated computational errors due to model space
truncations are below 2.5% of the charge radius for NNLOsat,
while calculations are substantially converged for NN+ 3N(lnl) and
NN+ 3N (400) (see Fig. 5). The corrections to radii due to many-
body truncation beyond ADC(3) are larger for NN+ 3N(lnl) and for
NNLOsat and remain <0.01 fm for all cases (see Fig. 6).

When comparing radii obtained with SRG-evolved and
bare Hamiltonians, an important caveat relates to the present
omission of potentially relevant higher body radius oper-
ators induced by the SRG transformation. In some recent
calculations [97,98], such induced operators have been prop-
erly included for the NN + 3N (400) interaction but have not
led to any sizable improvement. Thus, although it remains
to be seen whether the same holds for NN + 3N(lnl), the
discrepancies with the experimental data point to intrinsic
deficiencies of the Hamiltonian that will have to be addressed
in the future.

The systematic flaws in the underestimation of radii appear
to be uniform across each isotopic chain. Thus, one may
expect that they cancel out to a good extent in differential
quantities, putting in evidence the isospin dependence for each
interaction. In Fig. 11(b), rms radii differences relative to
16O are shown for oxygen. Clearly, the spread of results is
appreciably reduced, with small discrepancies showing up for
the less stable systems. Radii along the calcium chain, relative
to 48Ca, are shown in Fig. 12(b). The lightest isotopes 34–40Ca
are the most sensible to the employed interaction, with rather
different trends. Interestingly, recent measurements in 36–38Ca
[96] appear to be in better agreement with NN + 3N(lnl)
results rather than the ones obtained with NNLOsat, which

predict a somewhat steeper slope. Both interactions based on
the N3LO two-nucleon force of Ref. [25] predict an inversion
of this trend when going down to mass A = 34 while NNLOsat

does the opposite. All calculations roughly reproduce the fact
that charge radii for 40Ca and 48Ca are basically the same.
However, none of them is capable of accounting for the
parabolic behavior between these two isotopes. This is not sur-
prising since this feature has been associated, in the contexts
of particle-vibration coupling and shell model calculations
[99,100], to the presence of highly collective many particle-
many hole configurations that are missing in the many-body
approach employed here. Energy density functionals are also
striving to reproduce the experimental trend, with only recent
applications based on Fayans functionals [101] able to capture
the peculiar behavior. After 48Ca, NNLOsat and NN + 3N(lnl)
do improve on the poor trend of NN + 3N (400) but still fail
to reproduce quantitatively the steep slope leading to 52Ca.
The charge radius of the latter, recently measured in laser
spectroscopy experiments [95], thus remains a challenge for
many-body calculations. Relative radii in nickel isotopes can
be examined in Fig. 13(b). Here, two distinct regions can be
identified. Below 58Ni, we find a similar behavior to the one
of Ca: NN + 3N (400) and NN + 3N(lnl) follow similar trends
and actually predict an increase of rms radii with decreasing
neutron number, while NNLOsat does the opposite and de-
creases toward 48Ni. More experimental data on both proton-
rich Ca and Ni would be very useful to pin down this effect.
Above 58Ni, NN + 3N(lnl) and NNLOsat predict a very similar
behavior, while NN + 3N (400) shows a rather steep increase
all the way up to 78Ni. The limited amount of available data
gives stronger support to the former trend. Also in this respect,
an extension of our experimental knowledge to some of the
neutron-rich nickel isotopes would be very valuable.

An even more stringent test for many-body calculations is
represented by the description of the charge density distribu-
tions, from which rms charge radii have been traditionally
extracted. Charge distributions are experimentally accessed
via electron scattering measurements and thus currently lim-
ited to stable nuclei, although considerable progress is being
made toward extending this technique to unstable systems
[102]. In the present framework, the nuclear charge density
is computed through the folding of the nuclear point-proton
density distribution with the charge density distribution of the
proton; see Ref. [17] for details. One representative isotope for
each of the three chains is studied, namely 16O, 40Ca, and 58Ni,
respectively displayed in Figs. 14–16. In all cases, unsurpris-
ingly, NNLOsat calculations are the closest to experiment. For
16O and 40Ca, the agreement is remarkable. The description
slightly deteriorates for 58Ni where, in spite of an excellent
reproduction of the experimental charge radius, the theoretical
result mildly deviates from the measured distribution. As
for charge radii, NN + 3N(lnl) calculations largely improve
on the poor performance of NN + 3N (400) but fail to reach
the accuracy achieved by NNLOsat. ADC(3) calculations are
also reported (dashed lines) in the case of 16O and 40Ca. As
for radii, one concludes that density distributions are largely
converged at the ADC(2) level, although ADC(3) correlations
do provide a refined description, e.g., in the central region
of 16O.
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FIG. 14. Charge density distribution of 16O computed in ADC(2)
(solid lines) and ADC(3) (dashed lines) with the NN+ 3N (400),
NN+ 3N(lnl) and NNLOsat interactions, together with the experi-
mental distribution [103].

F. Excitation spectra

Spectroscopic properties reflect some of the general fea-
tures of a Hamiltonian (for instance, the ability to reproduce
magic gaps) but at the same time are sensitive to finer de-
tails, e.g., depending on the spin and parity of the excited
state. In Green’s function theory, one-nucleon addition and
removal (i.e., separation) energies are naturally accessed from
the spectral representation of the one-body propagator; see
Refs. [3,68] for details. The generalization to Gorkov Green’s
functions allows for an analogous spectral form that also
contains information on separation energy spectra of odd-
even neighbours [42]. While the ADC(2) approximation does
introduce dynamical correlations that induce a fragmentation

FIG. 15. Same as Fig. 14 but for 40Ca. Experimental data are
taken from Refs. [103,104].

FIG. 16. Same as Fig. 14 but for 58Ni. Experimental data are
taken from Ref. [103].

of the mean-field spectral function, one might ask whether
such correlations are too crude for a quantitative description
of (low-lying) excitation spectra. The ADC(3) truncation
scheme, by coupling the bare two particle–one hole (2p1h)
and 2h1p (or three-quasiparticle in Gorkov theory) configura-
tions introduced in ADC(2), stabilizes dominant quasiparticle
peaks, usually compresses the spectra, and generates further
fragmentation [72,85].

In order to test the two levels of approximation, one-
neutron removal (addition) spectra from (to) 48Ca are studied
in detail in Fig. 17 using NNLOsat and NN + 3N(lnl) Hamilto-
nians. Starting with one-neutron removal, i.e., states in 47Ca,
one first notices that, for both interactions, ADC(2) spectra
are too spread out, with the first excited states at 5–6 MeV to
be compared with about 2 MeV in experiment. Since such
states are associated to the removal of a neutron in the sd
shell, this is a direct consequence of the overestimation of
the N = 20 gap; see Fig. 8(b). Note that the overestimation is
more severe in NN + 3N(lnl) calculations, which is reflected
in higher excitation energies and a larger splitting between
the 1/2+ and 3/2+ states as dictated by its underestimation
of radii. Including ADC(3) correlations helps in compressing
the spectrum, although the effect of an overestimated N = 20
gap remains. Interestingly, in NNLOsat calculations the correct
ordering of 1/2+ and 3/2+ states is re-established. In addition,
negative-parity states 1/2− and 3/2− appear. As opposed to
the positive-parity levels that are obtained as a simple removal
from the sd shell, such states correspond to more complex
configurations involving particle-hole excitations across the
N = 28 gap and are not captured by the simpler ADC(2)
approximation.

The situation is different for one-neutron addition spectra,
displayed in Figs. 17(c) and 17(d). Here low-lying states
computed at the ADC(2) level are already in reasonably good
agreement with experimental values for both interactions.
Again, the quality of the description is correlated with the
(excellent) reproduction of the N = 28 and N = 32 gaps over
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FIG. 17. One-neutron removal [panels (a) and (b)] and addition [panels (c) and (d)] spectra from and to 48Ca. ADC(2) and ADC(3)
calculations with NNLOsat and NN+ 3N(lnl) interactions are compared to available experimental data [105,106]. Computed low-lying states
with spectroscopic factor larger than 1% and corresponding experimental energies are displayed.

which the excitations take place. ADC(3) correlations mainly
impact NNLOsat results, with the position and splitting of
1/2− and 5/2− changing by a few hundreds keV and moving
closer to data. An exception is represented by the 9/2+ state,
which is high lying in ADC(2) and gets shifted down by a few
MeV in ADC(3).

Following this analysis, let us turn to the case of 54Ca and
look at all one-nucleon removal and addition spectra, i.e., at
its four possible odd-even neighbors. These isotopes are of
significant interest, with experiments that either have been
recently performed or that are planned for the near future, and
should complement the currently scarce data in the region.
Results from both ADC(2) and ADC(3) calculations with
NNLOsat and NN + 3N(lnl) are reported in Fig. 18. In 53Ca,
two excited states have been measured around 2 MeV with
tentative spin-parity assignments of 5/2− and 3/2− [107,108].
Both interactions yield the two states and support the spin

assignments. However, NN + 3N(lnl) does a better job in
reproducing both the position and the energy splitting between
them. In 55Ca, in addition to one-neutron addition states to
54Ca, one-neutron removal states from 56Ca in the ADC(2)
approximation are also shown. The spectra generated by the
two interactions display the same low-lying states, although
the one from NNLOsat is more compressed than the one from
NN + 3N(lnl). In both cases, the excited state corresponding to
the main one-neutron addition quasiparticle, with spin-parity
9/2+, shows a large correction from ADC(3). In 53K, the
two Hamiltonians predict a different ground state, with NN +
3N(lnl) agreeing with the tentative experimental assignment.
Finally, in 55Sc it is the first excited states to be different, with
NNLOsat and NN + 3N(lnl) predicting, respectively, 3/2− and
5/2− states on top of the 7/2− ground state.

The identification of the ground-state spin in 53K is of
particular interest and is related to a series of present-day

FIG. 18. One-nucleon addition and removal spectra from and to 54Ca. Available experimental values are displayed as black thick lines, in
the left column of each panel. ADC(2) calculations are represented by blue (second column) and green (third column) thick lines for NNLOsat

and NN+ 3N(lnl) respectively. The red thin lines are ADC(3) energies for both Hamiltonians, with shaded areas connecting the corresponding
ADC(2) and ADC(3) values where available. For 55Ca, states obtained via one-neutron removal from 56Ca in the ADC(2) approximation are
also shown. Low-lying states with Ex < 5 MeV and spectroscopic factor larger than 10% are displayed.
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FIG. 19. Evolution of ground and first excited states along even-
N potassium isotopes. GSCGF ADC(2) calculations performed with
three different interactions are compared to existing experimental
data.

experimental efforts along potassium isotopes. From 37K up
to 45K, the ground-state spins have been known to be 3/2+,
as a naive shell model picture would suggest. Several years
back, 47K was shown to have a 1/2+ ground state via a
laser spectroscopy experiment [109], with 3/2+ becoming a
low-lying excited state at 360 keV. Recently, high-resolution
collinear laser spectroscopy measurements determined that
the ground-state spin inversion is maintained in 49K but a
reinversion occurs for 51K [110]. Available experimental data
are summarized in Fig. 19, where the energy difference be-
tween 1/2+ and 3/2+ states is displayed for even N potassium
isotopes. At the time, GSCGF calculations were performed
with the NN + 3N (400) interaction [111], which resulted in
the red curve reported in Fig. 19. Although the calculations
parallel the experimental trend, the energy gap between the
two states is largely overestimated, and the spin inversion in
47K is absent. The same observables have been computed here
using the two more recent interactions. NNLOsat captures the
trend as N increases but presents a shift compared to data
that generates the inversion already at 43K. After that, the
ground state is predicted to have always spin parity 1/2+.
Instead, NN + 3N(lnl) succeeds in reproducing experimental
data, including the inversion and reinversion of the ground-
state spin parity and the position of the first excited state with
remarkable accuracy. Note that Fig. 19 displays results at the
ADC(2) level. The ADC(3) corrections for the 53K gap, from
Fig. 18, are of at most 0.4 MeV and suggest that missing
many-body truncations could shift slightly these curves but
are unlikely to alter our conclusions.

V. DISCUSSION AND CONCLUSIONS

Figure 20 summarizes the performance of the three Hamil-
tonians on the different observables considered in the present
work. Representative ground-state energies, rms charge radii,
and one-nucleon separation energies are displayed. The older
NN + 3N (400) interaction served as a workhorse in the early

FIG. 20. Ratio of theoretical and experimental values for various
observables computed with the NN+ 3N (400), NN+ 3N(lnl), and
NNLOsat interactions. Binding energies and one-nucleon separation
energies (rms charge radii) are evaluated at the ADC(3) [ADC(2)]
level. For NNLOsat, radii are calculated at h̄� = 14 MeV, which rep-
resents the optimal value in terms of model-space convergence (see
Fig. 5). All other observables are taken from the sets of calculations
presented above. Excitation energies computed with NN+ 3N (400)
lie outside the range shown in the figure. For all observables and
interactions, uncertainties coming from model-space and many-body
truncations are of the order of the symbol sizes in the plot.

applications of ab initio calculations with chiral 2N + 3N
forces, with empirical success in light isotopes, up to oxygen
isotopes and neighboring elements. In particular, a notable
achievement was the correct reproduction of the oxygen
dripline [41,43,112]. Typically employed in combination with
SRG evolution, it has allowed important benchmarks between
many-body methods, both nonperturbative and perturbative,
that gave the practitioners confidence in the quality of the
different many-body approximations [15]. However, its flaws
appeared evident early on with strong overbinding being
generated as mass number increases [29] and a severe under-
estimation of nuclear radii even for oxygen isotopes [16]. Fur-
thermore, formal issues were recently raised [34,35], which
question the consistency of the calculations that employed
this interaction. The overbinding and underestimation of radii
emerging in NN + 3N (400) calculations are clearly visible in
Fig. 20.

Present results also confirm the overall empirical quality
of the NNLOsat interaction. Ground-state energies are well re-
produced even beyond the light nuclei that were used in the fit
of its coupling constants. A mild underbinding is observed for
heavier nickel isotopes. However, before drawing definitive
conclusions a careful study of model-space convergence (in
terms of the one- and three-body truncations emax and e3max,
see also Figs. 5 and 10) has to be performed. Nevertheless,
contributions to charge radii are excellently reproduced by this
interaction, even for nickel isotopes. The fact that radii, their
associated density distributions, and trends in the ground-state
energies are already well converged at the ADC(2) opens the
way to systematic calculations of full isotopic chains within
the GSCGF approach. Concerning spectroscopic properties,
NNLOsat had proven very accurate in the neutron p f shell for
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34Si and 36S [17]. This is to a good extent confirmed here in
the neutron addition and removal spectra of 52Ca and 54Ca.
The agreement with experiment, however, deteriorates when
looking at the sd shell below N = 20, with this Hamiltonian
struggling to reproduce the observed inversion and reinversion
of the ground and first excited states along potassium isotopes.

So far, the novel NN + 3N(lnl) interaction had been ap-
plied only to specific cases [18,52,53] but never tested in a
systematic way. In the present work, its main ground-state
properties as well as some selected excitation spectra have
been studied extensively in light and medium-mass nuclei.
Results in light systems are very encouraging, with NCSM
calculations in overall good agreement with experiment even
for spectra that are known to be particularly sensitive to
nuclear forces. Total energies are well reproduced across
the whole light sector of the nuclear chart. In medium-mass
nuclei, present calculations focused on three representative
isotopic chains. Total binding energies are found to be in
remarkable agreement with experimental values all the way up
to nickel isotopes once ADC(3) correlations are included, thus
correcting for the overbinding generated with NN + 3N (400).
ADC(2) calculations of differential quantities, where ADC(3)
contributions essentially cancel out, are also very satisfac-
tory and are able to capture main trends and magic gaps in
two-neutron separation energies along all three chains. As
evidenced in Fig. 20, although largely improving on NN +
3N (400), rms charge radii obtained with the NN + 3N(lnl)
interaction still underestimate experimental results and do not
reach the quality of NNLOsat. On the other hand, this inter-
action yields an excellent spectroscopy, also where NNLOsat

strives to give even a qualitatively correct account of exper-
imental data. One-nucleon addition and removal spectra in
neutron-rich calcium are well reproduced. Impressively, the
evolution of the energy differences between the ground and
first excited states along potassium isotopes follows closely
the experimental measurements.

Further insight can be gained by gauging the importance
of 3N operators in the two interactions. In Fig. 21, the ratio
of 3N over 2N contributions to the total energy is displayed
for a selection of nuclei as a function of mass number A for
NNLOsat and NN + 3N(lnl). In the former, 3N operators are
much more relevant, reaching almost 20% of the 2N contribu-
tion in heavier systems. In contrast, the ratio stays rather low,
around 5%, for NN + 3N(lnl). This has first of all practical
consequences, as in the majority of many-body calculations
the treatment of 3N operators is usually not exact, following
either a normal-ordered two-body approximation (see, e.g.,
Ref. [27]) or some generalization of it [71]. Hence, a strong
3N component is in general not desirable. On top of that, one
might worry about the hierarchy of many-body forces from
the standpoint of EFT and possible need to include subleading
3N or 4N operators that could have a sizable effect.

Finally, let us compare NN + 3N(lnl) and NNLOsat to an
interaction that has been extensively employed in nuclear
structure studies in the past few years. Usually labeled as
1.8/2.0 (EM) and first introduced in Ref. [32], it has proven
to yield an accurate reproduction of ground-state energies (as
well as low-energy excitation spectra) over a wide range of
nuclei [30,52,113,114]. Furthermore, it leads to a satisfactory

FIG. 21. Ratio of expectation values of three- (V3N) and two-
body (V2N) operators in the NNLOsat and NN+ 3N(lnl) Hamiltonians.
In V2N, the two-body part of the center-of-mass kinetic energy
has been subtracted. For the NN+ 3N(lnl) interaction, V3N con-
tains original (i.e., SRG-unevolved) three-body forces while induced
three-body operators have been included in V2N. Calculations are
performed at the ADC(2) level. Results are shown for N = Z =
{8, 16, 20, 24, 28, 40} nuclei (full symbols), plus 48S and 78Ni (empty
symbols).

description of infinite nuclear matter properties [11,32,115].
In Fig. 22, binding energies per particle obtained within in-
medium similarity renormalization group (IM-SRG) calcula-
tions with the 1.8/2.0 (EM) interaction [30] are compared,
for a set of closed-shell systems, to the ones computed at the
ADC(3) level with NN + 3N(lnl) and NNLOsat. The three sets
of calculations achieve an overall excellent reproduction of
experimental data. While NNLOsat is superior in light nuclei,
it tends to slightly underbind some of the heavier systems. One
also notices a striking resemblance of the results obtained with
the NN + 3N(lnl) and 1.8/2.0 (EM) interactions (with the only

FIG. 22. Binding energy per particle for a set of doubly closed-
shell nuclei computed with three different NN + 3N interactions and
compared to available experimental data. NNLOsat and NN+ 3N(lnl)
values come from the present work and refer to ADC(3) calculations.
1.8/2.0 (EM) results were obtained via full-space IM-SRG(2) calcu-
lations and originally published in Ref. [30].
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exception of 60Ca, for which no experimental measurement
exists) all the way up to 68Ni. The two potentials indeed
present several similarities. First, the bare NN part is the
same [25], even though NN+ 3N(lnl) and 1.8/2.0 (EM) are
subsequently SRG evolved to different scales, λ = 2 fm−1

and λ = 1.8 fm−1 respectively. Second, the 3N part builds on
N2LO operators and, in the case of 1.8/2.0 (EM), nonlocal
regulators are applied. A difference comes from the fact that
for 1.8/2.0 (EM) 3N forces are not SRG evolved consistently
with the NN operators but rather the LECs of the three-body
contact terms are refitted a posteriori to the energy of 3H and
the charge radius of 4He. In the end, this results in values
(cD = 1.264 and cE = −0.120) that are not very different
from the ones of NN + 3N(lnl) (see Table II).

The present systematic analysis shows that the novel NN +
3N(lnl) Hamiltonian represents a promising alternative to
existing nuclear interactions. In particular, it has the favorable
features of (i) being adjusted solely on A = 2, 3, 4 systems,
thus complying with the ab initio strategy, (ii) yielding an
excellent reproduction of experimental energies all the way
from light to medium-heavy nuclei, and (iii) behaving well
under similarity renormalization group transformations, with
small induced four-nucleon forces, thus allowing calculations
up to medium-heavy systems with moderate computational
costs. A first large-scale application with SCGF calculations
along few isotopic chains around Z = 20 is already under
way and confirms its excellent phenomenological properties

[116]. In the short term, having such high-quality interactions
at hand allows us to make useful predictions and to test in
depth existing and forthcoming many-body methods. In the
long term, such efforts aim to contribute to the long-standing
goal of performing simulations of atomic nuclei with fully
controlled theoretical uncertainties.
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[55] P. Navrátil, G. P. Kamuntavičius, and B. R. Barrett, Phys. Rev.

C 61, 044001 (2000).
[56] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. C 62,

054311 (2000).
[57] F. Wegner, Ann. Phys. 506, 77 (1994).
[58] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75,

061001(R) (2007).
[59] H. Hergert and R. Roth, Phys. Rev. C 75, 051001(R) (2007).
[60] S. Bogner, R. Furnstahl, and A. Schwenk, Prog. Part. Nucl.

Phys. 65, 94 (2010).
[61] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys. Rev.

Lett. 103, 082501 (2009).
[62] R. Roth and P. Navrátil, Phys. Rev. Lett. 99, 092501 (2007).
[63] R. Roth, Phys. Rev. C 79, 064324 (2009).
[64] G. Hupin, S. Quaglioni, and P. Navrátil, Phys. Rev. Lett. 114,

212502 (2015).
[65] J. Langhammer, P. Navrátil, S. Quaglioni, G. Hupin, A. Calci,

and R. Roth, Phys. Rev. C 91, 021301(R) (2015).
[66] P. Navrátil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, and

A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).
[67] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Phys. Rev.

Lett. 106, 192501 (2011).
[68] C. Barbieri and A. Carbone, in An Advanced Course in Com-

putational Nuclear Physics, edited by M. Hjorth-Jensen, M.
Lombardo, and U. van Kolck, Lecture Notes in Physics, Vol.
936 (Springer, Cham, 2017).

[69] V. M. Galitskii and A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 139
(1958).

[70] D. S. Koltun, Phys. Rev. Lett. 28, 182 (1972).
[71] A. Carbone, A. Cipollone, C. Barbieri, A. Rios, and A. Polls,

Phys. Rev. C 88, 054326 (2013).

014318-18

https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevLett.103.102502
https://doi.org/10.1103/PhysRevLett.103.102502
https://doi.org/10.1103/PhysRevLett.103.102502
https://doi.org/10.1103/PhysRevLett.103.102502
https://doi.org/10.1103/PhysRevLett.122.029901
https://doi.org/10.1103/PhysRevLett.122.029901
https://doi.org/10.1103/PhysRevLett.122.029901
https://doi.org/10.1103/PhysRevLett.122.029901
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.94.034001
https://doi.org/10.1103/PhysRevC.94.034001
https://doi.org/10.1103/PhysRevC.94.034001
https://doi.org/10.1103/PhysRevC.94.034001
https://doi.org/10.1103/PhysRevC.96.054007
https://doi.org/10.1103/PhysRevC.96.054007
https://doi.org/10.1103/PhysRevC.96.054007
https://doi.org/10.1103/PhysRevC.96.054007
https://doi.org/10.1016/j.physletb.2019.134863
https://doi.org/10.1016/j.physletb.2019.134863
https://doi.org/10.1016/j.physletb.2019.134863
https://doi.org/10.1016/j.physletb.2019.134863
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.1103/PhysRevLett.110.242501
https://doi.org/10.1103/PhysRevLett.110.242501
https://doi.org/10.1103/PhysRevLett.110.242501
https://doi.org/10.1103/PhysRevLett.110.242501
https://doi.org/10.1038/nphys3529
https://doi.org/10.1038/nphys3529
https://doi.org/10.1038/nphys3529
https://doi.org/10.1038/nphys3529
https://doi.org/10.1103/PhysRevLett.117.102501
https://doi.org/10.1103/PhysRevLett.117.102501
https://doi.org/10.1103/PhysRevLett.117.102501
https://doi.org/10.1103/PhysRevLett.117.102501
https://doi.org/10.1103/PhysRevLett.117.242501
https://doi.org/10.1103/PhysRevLett.117.242501
https://doi.org/10.1103/PhysRevLett.117.242501
https://doi.org/10.1103/PhysRevLett.117.242501
https://doi.org/10.1103/PhysRevLett.118.262502
https://doi.org/10.1103/PhysRevLett.118.262502
https://doi.org/10.1103/PhysRevLett.118.262502
https://doi.org/10.1103/PhysRevLett.118.262502
https://doi.org/10.1103/PhysRevC.98.025501
https://doi.org/10.1103/PhysRevC.98.025501
https://doi.org/10.1103/PhysRevC.98.025501
https://doi.org/10.1103/PhysRevC.98.025501
https://doi.org/10.1103/PhysRevC.100.062501
https://doi.org/10.1103/PhysRevC.100.062501
https://doi.org/10.1103/PhysRevC.100.062501
https://doi.org/10.1103/PhysRevC.100.062501
https://doi.org/10.1103/PhysRevC.99.054327
https://doi.org/10.1103/PhysRevC.99.054327
https://doi.org/10.1103/PhysRevC.99.054327
https://doi.org/10.1103/PhysRevC.99.054327
https://doi.org/10.1103/PhysRevLett.123.092501
https://doi.org/10.1103/PhysRevLett.123.092501
https://doi.org/10.1103/PhysRevLett.123.092501
https://doi.org/10.1103/PhysRevLett.123.092501
https://doi.org/10.1038/s41567-019-0450-7
https://doi.org/10.1038/s41567-019-0450-7
https://doi.org/10.1038/s41567-019-0450-7
https://doi.org/10.1038/s41567-019-0450-7
https://doi.org/10.1103/PhysRevLett.123.142501
https://doi.org/10.1103/PhysRevLett.123.142501
https://doi.org/10.1103/PhysRevLett.123.142501
https://doi.org/10.1103/PhysRevLett.123.142501
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.62.054311
https://doi.org/10.1103/PhysRevC.62.054311
https://doi.org/10.1103/PhysRevC.62.054311
https://doi.org/10.1103/PhysRevC.62.054311
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.051001
https://doi.org/10.1103/PhysRevC.75.051001
https://doi.org/10.1103/PhysRevC.75.051001
https://doi.org/10.1103/PhysRevC.75.051001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevC.79.064324
https://doi.org/10.1103/PhysRevC.79.064324
https://doi.org/10.1103/PhysRevC.79.064324
https://doi.org/10.1103/PhysRevC.79.064324
https://doi.org/10.1103/PhysRevLett.114.212502
https://doi.org/10.1103/PhysRevLett.114.212502
https://doi.org/10.1103/PhysRevLett.114.212502
https://doi.org/10.1103/PhysRevLett.114.212502
https://doi.org/10.1103/PhysRevC.91.021301
https://doi.org/10.1103/PhysRevC.91.021301
https://doi.org/10.1103/PhysRevC.91.021301
https://doi.org/10.1103/PhysRevC.91.021301
https://doi.org/10.1103/PhysRevLett.99.042501
https://doi.org/10.1103/PhysRevLett.99.042501
https://doi.org/10.1103/PhysRevLett.99.042501
https://doi.org/10.1103/PhysRevLett.99.042501
https://doi.org/10.1103/PhysRevLett.106.192501
https://doi.org/10.1103/PhysRevLett.106.192501
https://doi.org/10.1103/PhysRevLett.106.192501
https://doi.org/10.1103/PhysRevLett.106.192501
https://doi.org/10.1103/PhysRevLett.28.182
https://doi.org/10.1103/PhysRevLett.28.182
https://doi.org/10.1103/PhysRevLett.28.182
https://doi.org/10.1103/PhysRevLett.28.182
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326


NOVEL CHIRAL HAMILTONIAN AND OBSERVABLES IN … PHYSICAL REVIEW C 101, 014318 (2020)

[72] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. C 92,
014306 (2015).

[73] C. Barbieri and B. K. Jennings, Phys. Rev. C 72, 014613
(2005).

[74] J. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A 28,
1237 (1983).

[75] F. Raimondi and C. Barbieri, Phys. Rev. C 97, 054308 (2018).
[76] L. P. Gorkov, Sov. Phys. JETP 34, 505 (1958).
[77] Y. Nambu, Phys. Rev. 117, 648 (1960).
[78] T. Duguet, J. Phys. G: Nucl. Part. Phys. 42, 025107 (2014).
[79] T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017).
[80] Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria, J. Chem.

Phys. 147, 064111 (2017).
[81] Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria, J. Chem.

Phys. 149, 164108 (2018).
[82] Y. Qiu, T. M. Henderson, T. Duguet, and G. E. Scuseria, Phys.

Rev. C 99, 044301 (2019).
[83] V. Somà, C. Barbieri, and T. Duguet, Phys. Rev. C 87,

011303(R) (2013).
[84] V. Somà, C. Barbieri, and T. Duguet, Phys. Rev. C 89, 024323

(2014).
[85] W. von Niessen, J. Schirmer, and L. Cederbaum, Comput.

Phys. Rep. 1, 57 (1984).
[86] D. Danovich, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1,

377 (2011).
[87] M. Degroote, D. Van Neck, and C. Barbieri, Phys. Rev. A 83,

042517 (2011).
[88] C. Barbieri, D. Van Neck, and M. Degroote, Phys. Rev. A 85,

012501 (2012).
[89] W. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and

X. Xu, Chin. Phys. C 41, 030002 (2017).
[90] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and

X. Xu, Chin. Phys. C 41, 030003 (2017).
[91] S. Michimasa, M. Kobayashi, Y. Kiyokawa, S. Ota, D. S. Ahn,

H. Baba, G. P. A. Berg, M. Dozono, N. Fukuda, T. Furuno, E.
Ideguchi, N. Inabe, T. Kawabata, S. Kawase, K. Kisamori, K.
Kobayashi, T. Kubo, Y. Kubota, C. S. Lee, M. Matsushita, H.
Miya, A. Mizukami, H. Nagakura, D. Nishimura, H. Oikawa,
H. Sakai, Y. Shimizu, A. Stolz, H. Suzuki, M. Takaki, H.
Takeda, S. Takeuchi, H. Tokieda, T. Uesaka, K. Yako, Y.
Yamaguchi, Y. Yanagisawa, R. Yokoyama, K. Yoshida, and S.
Shimoura, Phys. Rev. Lett. 121, 022506 (2018).

[92] G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev. Lett.
117, 172501 (2016).

[93] O. B. Tarasov, D. S. Ahn, D. Bazin, N. Fukuda, A. Gade,
M. Hausmann, N. Inabe, S. Ishikawa, N. Iwasa, K. Kawata,
T. Komatsubara, T. Kubo, K. Kusaka, D. J. Morrissey, M.
Ohtake, H. Otsu, M. Portillo, T. Sakakibara, H. Sakurai, H.
Sato, B. M. Sherrill, Y. Shimizu, A. Stolz, T. Sumikama, H.
Suzuki, H. Takeda, M. Thoennessen, H. Ueno, Y. Yanagisawa,
and K. Yoshida, Phys. Rev. Lett. 121, 022501 (2018).

[94] I. Angeli and K. Marinova, At. Data Nucl. Data Tables 99, 69
(2013).

[95] R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström,
N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D.
Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz,
R. Neugart, G. Neyens, W. Nörtershäuser, T. Papenbrock, J.
Papuga, A. Schwenk, J. Simonis, K. A. Wendt, and D. T.
Yordanov, Nat. Phys. 12, 594 (2016).

[96] A. J. Miller, K. Minamisono, A. Klose, D. Garand, C. Kujawa,
J. D. Lantis, Y. Liu, B. Maaß, P. F. Mantica, W. Nazarewicz,
W. Nörtershäuser, S. V. Pineda, P. G. Reinhard, D. M. Rossi, F.
Sommer, C. Sumithrarachchi, A. Teigelhöfer, and J. Watkins,
Nat. Phys. 15, 432 (2019).

[97] M. D. Schuster, S. Quaglioni, C. W. Johnson, E. D. Jurgenson,
and P. Navrátil, Phys. Rev. C 90, 011301(R) (2014).

[98] T. Miyagi, T. Abe, M. Kohno, P. Navrátil, R. Okamoto, T.
Otsuka, N. Shimizu, and S. R. Stroberg, Phys. Rev. C 100,
034310 (2019).

[99] F. Barranco and R. Broglia, Phys. Lett. B 151, 90 (1985).
[100] E. Caurier, K. Langanke, G. Martinez-Pinedo, F. Nowacki, and

P. Vogel, Phys. Lett. B 522, 240 (2001).
[101] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328

(2017).
[102] T. Suda and H. Simon, Prog. Part. Nucl. Phys. 96, 1 (2017).
[103] H. De Vries, C. W. De Jager, and C. De Vries, Atom. Data

Nucl. Data Tabl. 36, 495 (1987).
[104] H. Emrich, G. Fricke, G. Mallot, H. Miska, H.-G. Sieberling,

J. Cavedon, B. Frois, and D. Goutte, Nucl. Phys. A 396, 401
(1983).

[105] T. Burrows, Nucl. Data Sheets 108, 923 (2007).
[106] T. Burrows, Nucl. Data Sheets 109, 1879 (2008).
[107] F. Perrot, F. Maréchal, C. Jollet, P. Dessagne, J.-C. Angélique,

G. Ban, P. Baumann, F. Benrachi, U. Bergmann, C. Borcea, A.
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