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In this paper we study low-lying states of even-even N = 80 isotones including 130Sn, 132Te, 134Xe, 136Ba,
and 138Ce, within the nucleon-pair approximation of the shell model. We calculate low-lying energy levels of
these nuclei with both positive and negative parities. The wave functions of yrast 2+

1 −10+
1 states and 1−

1 −11−
1

states of these nuclei are analyzed in detail. Our calculations show that most of these states have a very simple
structure in nucleon-pair basis: the 2+

1 states of 132Te, 134Xe, 136Ba, and 138Ce are dominated by one D+ neutron
pair and spin J = 2 proton excitation; the 4+

1 and 6+
1 states of 132Te and 134Xe are dominated by the proton

excitation, while the 8+
1 and 10+

1 states are dominated by S+ pairs of protons and one spin-eight and spin-ten pair
of valence neutron holes (i.e., seniority-two excitations); for negative-parity states, the lowest states with spin
four to seven of 132Te, 134Xe, 136Ba, and 138Ce are essentially given by S+ pairs of protons and one broken pair
with spin four to seven consists of h11/2d3/2 valence neutron holes. The necessity of J = 10 pairing interaction in
the phenomenological monopole plus quadrupole shell-model Hamiltonian for N = 80 isotones is demonstrated
with analytical formulas for simple nucleon-pair configurations, and the pattern of g factors is discussed based on
simple arguments. Our calculated B(E2) transition rates and g factors of the low-lying states are well consistent
with the experimental data.

DOI: 10.1103/PhysRevC.101.014316

I. INTRODUCTION

Study of low-lying states in atomic nuclei based on the nu-
clear shell model (SM) [1–4] is one of the important subjects
in nuclear structure theory. In recent decades, the structure of
even-even nuclei with the mass number A ≈ 130 has attracted
much attention, and many efforts have been made on the study
of low-lying states of nuclei in this region [5–22], within the
nucleon-pair approximation of the shell model (NPA) [23,24].
These studies focus on the back-bending phenomenon of yrast
states at spin around 8–10, the yrast 10+ isomers, and the γ

instability in low-lying states.
The NPA with only S and D pairs (spin equals 0 and 2)

for nuclei in the A ≈ 130 region is able to describe the ground
states and the yrast 2+, 4+ states. For higher states, such as the
yrast 6+, 8+, and 10+ states, calculated energy levels in terms
of only SD nucleon pairs deviate from the experimental data,
and pairs with higher spin should be considered [12,15–18].
Since the yrast 10+ isomers have been reported in even-Z
isotones with N = 80, from 130

50 Sn up to 148
68 Er [25–32], the

neutron (h11/2)−2 configuration is suggested to represent these
isomeric states. In Ref. [9], most low-lying negative parity
states of a few even-even nuclei in this region are interpreted

*Corresponding author: ymzhao@sjtu.edu.cn

in terms of the NPA by considering SD pairs and collective
neutron pairs with negative parity and spin 3 and 8.

This paper aims at studying the low-lying states of a few
even-even nuclei with neutron number N = 80, i.e., 130Sn,
132Te, 134Xe, 136Ba, and 138Ce within the NPA. We consider
the 50–82 major shell with five single-particle orbits including
0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2. Besides S and D pairs,
we consider all the above nucleon pairs, i.e., pairs with
higher spin, neutron (h11/2)−2 configuration, and a number
of nucleon pairs with negative parity as building blocks of
the configuration space, in order to study the low-lying states
with both positive parity and negative parity for nuclei in
this region. In this paper we show that wave functions of
most yrast states for these nuclei are very simple in terms of
nucleon-pair basis states. The regular patterns of B(E2) values
and g factors are studied in terms of nucleon-pair basis states.

This paper is organized as follows. In Sec. II, we briefly
introduce the formulation of the NPA [23,24,33], includ-
ing the nucleon-pair basis states, the phenomenological SM
Hamiltonian, and operators in this approach. The calculated
results and discussions are given in Sec. III, and Sec. IV is
the summary. In Appendix A we present analytical results of
quadrupole operator, which are used in our discussions. In
Appendix B we present analytical matrix elements of two-
body interaction operators for one or two nucleon-pair basis
states.
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TABLE I. Single-particle energies (in MeV) of valence protons
and single-hole energies (in MeV) of valence neutron holes, based
on yrast state energies of 133Sb and 131Sn [44–46], respectively.

jparity 1/2+ 3/2+ 5/2+ 7/2+ 11/2−

ε jπ 2.990 2.690 0.963 0.000 2.760
ε jν 0.332 0.000 1.655 2.434 0.242

II. FRAMEWORK OF THE NPA

In this section, we give a brief introduction to the nucleon-
pair approximation of the shell model (NPA). This method
was developed by Chen [23], and was generalized to systems
with both even and odd number of nucleons [24], isospin
symmetry [34], and particle-hole configurations [35]. We note
that in recent years calculations of nucleon-pair truncated
shell model with isospin symmetry were performed by Qi
et al. [36,37] and Isacker et al. [38,39], and that generalized
seniority approach was studied by Jia [40,41] and Caprio
[42,43]. For a recent review, see Ref. [33].

A. Hamiltonian

The Hamiltonian in this paper is defined as

H = H0 + HP + HQ. (1)

The first term on the right-hand side of Eq. (1) corresponds to
the spherical single-particle (-hole) energy, i.e.,

H0 =
∑
ασ

εασC†
ασCασ . (2)

Here, C†
ασ is a creation operator and Cασ is an annihilation

operator. α = (nl jm) denotes all required quantum numbers
of a nucleus, and σ = π or ν corresponds to the degree of free-
dom of protons or neutrons. In this paper, the single-particle
energies of valence protons, ε jπ , are taken from energies of
the lowest state with spin j in 133Sb, which has one valence
proton outside the core nucleus, 132Sn. Single-hole energies
of valence neutron holes, ε jν , are taken from energies of the
lowest state with spin j in 131Sn, which has one valence
neutron hole relative to 132Sn. These single-particle (-hole)
energies, taken from Refs. [44–46], are tabulated in Table I of
this paper.

The second term in Eq. (1), HP, corresponds to residual
interactions between the like valence particles, and in this
paper we take

HP = V0 + V2 + V4 + V10. (3)

The definitions of V0, V2, V4, and V10 are as follows.

V0 = G(0)
π P (0)†

π · P̃ (0)
π + G(0)

ν P (0)†
ν · P̃ (0)

ν (4)

is the monopole pairing interaction, with

P (0)†
σ =

∑
aσ

ĵσ
2

(C†
aσ

× C†
aσ

)(0)
0 ,

P̃ (0)
σ = −

∑
aσ

ĵσ
2

(C̃aσ
× C̃aσ

)(0)
0 ,

where ĵσ = √
2 jσ + 1;

V2 = G(2)
π P (2)†

π · P̃ (2)
π + G(2)

ν P (2)†
ν · P̃ (2)

ν (5)

is the quadrupole pairing interaction, with

P (t )†
σM =

∑
aσ bσ

q(aσ bσ t )(C†
aσ

× C†
bσ

)(t )
M ,

P̃ (t )
σM = −

∑
aσ bσ

q(aσ bσ t )(C̃aσ
× C̃bσ

)(t )
M , (6)

where t = 2, M = 0, ±1, or ±2,

q(abλ) = −1

λ̂

〈
ja||rλY λ|| jb

〉
rλ

0

, (7)

with r0 being the oscillator parameter (r2
0 = 1.012A1/3 fm2),

and the expression of q(abλ) for a single- j shell is summa-
rized in Appendix A;

V4 = G(4)
ν P (4)†

ν · P̃ (4)
ν , (8)

where P (4)†
ν and P̃ (4)

ν are defined in Eq. (6) with t = 4; and

V10 = G(10)
ν P (10)†

ν · P̃ (10)
ν , (9)

where

P (10)†
ν = (C†

j × C†
j )(10)

M , P̃ (10)
ν = −(

C̃j × C̃j
)(10)

M ,

with j corresponding to the neutron h11/2 orbit.
The last term in Eq. (1) is

HQ = VQ + VQπν
. (10)

Here

VQ =
∑

σ

κ (2)
σ Q(2)

σ · Q(2)
σ (11)

corresponds to the quadrupole-quadrupole interaction be-
tween the like valence nucleons, with the operator

Q(2)
σM =

∑
ab

q(ab2)(C†
aσ

× C̃bσ
)(2)
M , (12)

where q(ab2) is given by Eq. (7). VQπν
in Eq. (10) corresponds

to the proton-neutron interaction, which is defined as

VQπν
= κQ(2)

π · Q(2)
ν . (13)

The interaction parameters for 130Sn, 132Te, 134Xe, 136Ba,
and 138Ce are tabulated in Table II.

B. Configuration basis

We define a noncollective nucleon pair with spin r and
projection μ,

Ar
μ(ab)† = (C†

a × C†
b )(r)

μ , (14)

where a and b are angular momenta of a single-particle orbit.
The time reversal of Ar

μ(ab)† is

Ãr
μ(ab) = −(C̃a × C̃b)(r)

μ , (15)

with the convention C̃jm = (−1) j−mCj−m.
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TABLE II. Interaction parameters of 130Sn, 132Te, 134Xe, 136Ba, and 138Ce. G(0)
ν , G(0)

π , and G(10)
ν are in units of MeV, G(4)

ν is in units of
MeV/r8

0 , and other parameters are in units of MeV/r4
0 . We adopt constant interaction parameters of G(0)

ν , G(0)
π , G(2)

π , and G(4)
ν , and assume

smooth change of G(2)
ν , G(10)

ν , κ (2)
ν , κ (2)

π , and κ with valence proton number Nπ .

G(0)
ν G(2)

ν G(4)
ν G(10)

ν κ (2)
ν

−0.168 −0.019 − 0.0005Nπ −0.0002 0.050 + 0.035Nπ −0.013 − 0.0035Nπ

G(0)
π G(2)

π κ (2)
π κ

−0.180 −0.027 −0.065 + 0.0035Nπ 0.050 + 0.005Nπ

A collective nucleon pair is defined as

Ar†
μ =

∑
ab

y(abr)(C†
a × C†

b )(r)
μ , (16)

where y(abr) is the structure coefficient of the collective pair
Ar , with the symmetry

y(abr) = (−1)a+b+r+1y(bar). (17)

There are many approaches to obtain y(abr), as introduced in
Ref. [33]. In this paper, the procedure to obtain y(abr) is same
as given in Ref. [47]. The time reversal of Ar†

μ is

Ãr
μ = −

∑
ab

y(abr)(C̃a × C̃b)(r)
μ . (18)

For a 2n identical-nucleon system, we couple n nucleon
pairs successively to construct a nucleon-pair basis state,

|τJnMn〉 ≡ AJn†
Mn

(ri, Ji )|0〉
≡ AJn†

Mn
(r1r2 · · · rn, J1J2 · · · Jn)|0〉

= [· · · (Ar1† × Ar2†)(J2 ) × · · · × Arn†](Jn )
Mn

|0〉. (19)

Here τ is the abbreviation, which represents all the necessary
intermediate quantum numbers. J1 = r1, Jn is the total angular
momentum of these 2n nucleons, and Mn is the z component
of Jn. The time reversal of the operator AJn†

Mn
(ri, Ji ) is

ÃJn
Mn

(ri, Ji ) ≡ ÃJn
Mn

(r1r2 · · · rn, J1J2 · · · Jn)

= [· · · (Ãr1 × Ãr2 )(J2 ) × · · · × Ãrn ](Jn )
Mn

. (20)

In this paper S, D, F, G, H, I , and J represent a nucleon
pair with spin 0, 2, 3, 4, 5, 6, and 7, respectively (the symbol
J , which is used to label state spin is avoided here). For
proton degree of freedom, collective S+, D+, G+, I+, and
I ′+ (the second spin-six) pairs are taken to construct the
proton nucleon-pair basis states, except for 138Ce for which
collective S+, D+ proton pairs and up to one G+ proton pair,
one I+ proton pair and one I ′+ proton pair are considered due
to computational cost. Because the spin alignment of neutron
(h11/2)−2 contributes to the yrast 10+ state and gives rise to
back bending [48,49], we construct the neutron configuration
space of 130Sn, 132Te, 134Xe, 136Ba, and 138Ce by collective
S+, S′+ (the second spin-zero) and D+ pairs together with
the noncollective (h11/2)−2

10 pairs (denoted by A(J ) with spin
J = 2, 4, 6, 8, 10). To calculate the energy levels with nega-
tive parity, we also take collective F−, G−, H−, I−, and J −
pairs for neutrons into consideration; the proton pairs with
negative parity are not important in low-lying states of these
nuclei because the single-particle energy of the proton h11/2

orbit is large (2.760 MeV, see Table I). In this paper, the basis
states based on these pairs are normalized but nonorthogonal
to each other.

C. Electromagnetic-transition operators

The electromagnetic-transition operators in this paper are
defined as

T (E2) =
∑

σ

eσ r2
σY 2

σ , (21)

T (M1) =
√

3

4π

∑
σ

(glσ �Lσ + gsσ �Sσ ). (22)

Here eσ = eπ , eν (in units of e) correspond to effective
charges (including bare charges) of valence protons and va-
lence neutron holes, respectively. glσ and gsσ (in unit of
μN/h̄) are orbital and spin gyromagnetic ratios of valence
nucleons, respectively. In this paper, we take eπ = 1.79, eν =
−0.71, glπ = 1.00, glν = 0.02, gsπ = 5.586 × 0.7, and gsν =
−3.826 × 0.7. Namely, we take the quenching factor for the
spin part of magnetic moment to be its conventional value, 0.7.
Lσ and Sσ in Eq. (22) are the total orbital angular momentum
operator and the total spin operator, and are defined as below,
respectively.

Lσ = Q(1)
lσ =

∑
ab

ql (ab1)(C†
a × C̃b)(1),

Sσ = Q(1)
sσ =

∑
ab

qs(ab1)(C†
a × C̃b)(1),

where

ql (ab1) = (−1)l+b+1/2

√
l (l + 1)

3
âb̂l̂

{
a b 1

l l 1/2

}
,

qs(ab1) = (−1)l+a+1/2

√
1

2
âb̂

{
a b 1

l/2 l/2 l

}
.

Here “{ }” denotes the six- j symbol. The magnetic moment
of state �JM is defined by

μ = 〈�JM |μ̂z|�JM〉M=J ,

μ̂ =
√

4π

3
T (M1), (23)

and the g factor equals μ/J , where J is the total angular
momentum.

014316-3



BAO, JIANG, ZHAO, AND ARIMA PHYSICAL REVIEW C 101, 014316 (2020)

FIG. 1. Energy levels of 130Sn. (a) is the experimental data [46],
and (b) is our calculated results by using the coefficients given in
Table II.

III. RESULTS AND DISCUSSIONS

In this section, we present our calculated results of 130Sn,
132Te, 134Xe, 136Ba, and 138Ce. Our calculated energy levels
for these five nuclei are plotted in Fig. 1 and Fig. 2, and
are compared with the experimental database of Ref. [46]. It
is shown that the energy levels of most low-lying states are
well reproduced. For each nucleus, we present our calculated
B(E2) transition rates (in units of W.u.) and g factors (in
unit of μN ) for low-lying states, respectively, in Table III
and Table IV, and compare them with experimental data
[26,32,46,50–52]. One sees that our calculated B(E2) and
g-factor results reasonably agree with experimental data.

Below we first discuss low-lying states of 130Sn, then go
on to discuss the 2+

1 –10+
1 states and negative parity 1−

1 –11−
1

states for 132Te, 134Xe, 136Ba, and 138Ce, and finally discuss
the robustness of parameters of the Hamiltonian.

A. 130Sn nucleus

The 130Sn nucleus has only two valence neutron holes,
matrix elements of the Hamiltonian can be calculated analyt-
ically; as shown in the Appendix B, the V0, V2, and V4 terms
of the Hamiltonian contribute to states with spin 0, 2, and 4,
respectively, but not to states with other spins. For two valence
neutron holes in the 50–82 major shell, the 8+

1 and 10+
1 states

are given by two valence neutron holes in the h11/2 orbit.
According to Eq. (A3) and Eq. (B24), one sees that the matrix
element of Q(2) · Q(2) equals 6125

484π
≈ 4.028 and 1075

44π
≈ 7.777

for J = 8 and 10, respectively. Assuming a negative value of
κ (2)

ν and the Hamiltonian defined in Eqs. (1), (3), and (10),
obviously the energy of the 8+

1 state would be lower than that
of the 10+

1 state on condition that one adopts a positive value
of G(10)

ν in the P (10)†
ν · P̃ (10)

ν term.

B. 2+ states

We first look at the configurations for the two lowest 2+
states of 132Te. In Ref. [53], the dominant components of
the 2+

1 state were suggested to be 0.74|ν−2, 2+〉 ⊗ |π2, 0+〉 +
0.67|ν−2, 0+〉 ⊗ |π2, 2+〉; in Ref. [54], the dominant compo-
nents of the wave function for the 2+

1 state are 0.62|ν−2, 2+〉 ⊗
|π2, 0+〉 + 0.66|ν−2, 0+〉 ⊗ |π2, 2+〉, and that of the 2+

2 state
are −0.63|ν−2, 2+〉 ⊗ |π2, 0+〉 + 0.58|ν−2, 0+〉 ⊗ |π2, 2+〉.
In our calculation, the wave functions of the 2+

1 and 2+
2 states

are ∣∣2+
1

〉 = 0.66
∣∣D+

ν ⊗ S+
π

〉 + 0.74
∣∣S+

ν ⊗ D+
π

〉 + · · · ,∣∣2+
2

〉 = −0.74
∣∣D+

ν ⊗ S+
π

〉 + 0.66
∣∣S+

ν ⊗ D+
π

〉 + · · · ,

(24)

respectively, which are in reasonable agreement with theoret-
ical results of Refs. [53,54].

According to the proton-neutron interacting boson model
[55], low-lying states of atomic nuclei are characterized by

FIG. 2. Energy levels of 132Te, 134Xe, 136Ba, and 138Ce, presented in (a), (b), (c), and (d), respectively. The left-hand side in each panel
corresponds to experimental data [46], and the right-hand side corresponds to our NPA calculated results.
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TABLE III. B(E2) values (in units of W.u.) of 130Sn, 132Te, 134Xe, 136Ba, and 138Ce. Experimental data are taken from
Refs. [26,32,46,50,51].

130Sn 132Te 134Xe 136Ba 138Ce

Ji → Jf Expt. Cal. Expt. Cal. Expt. Cal. Expt. Cal. Expt. Cal.

2+
1 → 0+

1 1.18 1.45 10(1) 9.02 15.3(11) 15.28 19+2
−1 19.75 21.2(14) 21.27

2+
2 → 0+

1 − 0.003 0.5(1) 0.49 0.74(5) 0.49 0.78(19) 0.04 1.16(8) 1.07
2+

2 → 2+
1 − 1.60 − 0.38 20(2) 8.08 15(4) 17.96 28(2) 25.36

4+
1 → 2+

1 − 0.45 − 8.32 11.6(8) 12.67 14(6) 24.14 − 28.19
6+

1 → 4+
1 − 1.13 3.3(2) 3.41 − 7.94 0.574(25) 0.28 0.113(9) 0.078

8+
1 → 6+

1 − 0.70 − <0.001 − 0.015 − 6.72 − 8.55
10+

1 → 8+
1 0.38(4) 0.26 1.05(3) 0.96 160(50)/0.64(1) 1.68 0.023(2) <0.001 0.011(3) <0.001

5−
1 → 7−

1 1.4(2)/1.16(7) 0.61 − 2.54 − 4.46 6.0(11) 5.35 290(8) 7.84

F spin. The states with maximum F spin are called the fully
symmetric states (FSSs), while the others with nonmaximum
F spin are called the mixed-symmetric states (MSSs). The
experimental data given in Ref. [54] suggest that the 2+

2 state
of 132Te decays to the ground state with a weak E2 transition
and to the 2+

1 state (FSS) with a strong M1 transition, and
in Ref. [16] the 2+

2 state of 132Te at 1.665 MeV is predicted
to be the lowest MSS. The wave functions in Eq. (24) and
calculated B(E2) values in Table III exhibit a consistent
pattern.

We calculate the overlap squared between the neutron (or
proton) excitation configuration and the wave function of the
2+

1 states, and plot them versus the mass number A in Fig. 3.
Black squares correspond to the |D+

ν 〉 ⊗ |(S+
π )Nπ /2

, Jπ = 0〉
configuration (namely neutron excitation), and red circles cor-
respond to the |S+

ν 〉 ⊗ |Jπ = 2〉 configuration (namely proton
excitation). Here the neutron excitation configuration means
that all protons are S pairs, and proton excitation configuration
means that the valence neutron hole pair in the 50–82 shell is
an S pair while the total spin of valence protons, Jπ , equals
two. One sees from Fig. 3 that these two excitation modes
are two dominant components in the wave function of the
2+

1 state of 132Te, 134Xe, 136Ba, and 138Ce, while the other
configurations are negligible.

In Fig. 4, we plot the B(E2; 2+
1 → 0+

1 ) values and g factors
of the 2+

1 states versus the mass number A. The experimental
data [32,46,50] and results of Refs. [17,18,56–58] are also
plotted for comparison. It is shown in Fig. 4(a) that the
B(E2; 2+

1 → 0+
1 ) values increase with the mass number A,

and our calculated results agree with the experimental data
very well. However, for the g2+

1
value of 138Ce given in

Fig. 4(b), neither our presented result nor the previous PTSM
calculation [17] well fit the experimental data, and this
deviation should be further investigated in the future.

C. 4+
1 and 6+

1 states

The 132Te nucleus has two valence neutron holes and two
valence protons with respect to the 132Sn nucleus, thus one
easily conjectures that the 4+

1 and 6+
1 states of 132Te might be

understood based on the low-lying levels of 130Sn and 134Te.
As the 4+

1 and 6+
1 states of 134Te (1.576 and 1.691 MeV) lie

much lower than those of 130Sn (1.996 and 2.257 MeV), the
4+

1 and 6+
1 states of the 132Te nucleus are usually assumed

to be seniority-two states of proton excitation dominantly
[59–61]; e.g., Ref. [59] suggested that |4+

1 〉 = 0.97|0+
1 (ν)〉 ⊗

|4+
1 (π )〉 and |6+

1 〉 = 0.97|0+
1 (ν)〉 ⊗ |6+

1 (π )〉, and Ref. [61]
suggested that the proton excitation configuration occupies
about 78% or 85% in the wave function of the 4+

1 state, and
about 82% or 87% of the 6+

1 state. The configuration from
D pair of two valence neutron holes is small in the wave
functions of the 4+

1 and 6+
1 states.

In our NPA calculation, the wave functions of the 4+
1 and

6+
1 states of 132Te in terms of nucleon pairs are

|4+
1 〉 = 0.86|S+

ν ⊗ G+
π 〉 + · · · ,

|6+
1 〉 = 0.97|S+

ν ⊗ Jπ = 6〉 + · · · , (25)

TABLE IV. g factors (in units of μN ) of 130Sn, 132Te, 134Xe, 136Ba, and 138Ce. Experimental data are taken from Ref. [46] except for
130Sn taken from Ref. [52].

130Sn 132Te 134Xe 136Ba 138Ce

J Expt. Cal. Expt. Cal. Expt. Cal. Expt. Cal. Expt. Cal.

2+
1 − 0.006 0.28(15)/(+)0.46(5) 0.424 0.354(7)/0.56(10) 0.484 0.34(5) 0.532 0.26(8) 0.494

4+
1 − −0.225 − 0.593 0.80(15) 0.638 − 0.619 − 0.718

6+
1 − −0.225 0.79(9) 0.682 − 0.662 − 0.679 − 0.888

8+
1 − −0.225 − −0.221 − −0.210 − 0.636 − 0.688

10+
1 − −0.225 − −0.221 − −0.216 − −0.212 −0.176(10) −0.186

7−
1 −0.054 −0.053 − −0.047 − −0.037 − −0.028 − −0.015
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FIG. 3. The overlap squared between the neutron (or proton)
excitation configuration and the NPA wave function of the 2+

1 states,
versus the mass number A. The black squares and the red circles
correspond to neutron excitation and proton excitation components,
respectively.

respectively. Clearly, the dominant components of our calcu-
lated 4+

1 and 6+
1 states are the proton excitation, with small

mixings of D+ pair consisted of two neutron holes. This result
is consistent with the picture of Ref. [61], except that our
results suggest that the configuration of proton excitation is

FIG. 4. B(E2; 2+
1 → 0+

1 ) and g factors of the 2+
1 states versus the

mass number A. The black squares, blue up triangles, gray hexagon,
orange down triangle, green diamonds, pink star, and cyan pentagon
correspond to our calculated results by using the NPA, results by the
SM 2015 [18], the SM 2013 [56], the IBM [57], the PTSM [17], the
SM 2013′ [58], and Jiang [11], respectively. Solid circles in red are
the experimental data taken from Refs. [32,46,50].

even more dominant for the 6+
1 state. This is also the reason

why one must include the collective proton G+ and I+ pairs
as building blocks of the nucleon-pair basis states.

The proton excitation picture of the 132Te nucleus can
be understood from a simple perspective of single- j shells
(protons in the g7/2 orbit and neutron holes in the h11/2 orbit).
This single- j assumption is supported by their single-particle
energies (see I): for protons the lowest single-particle orbit
is the g7/2, and the next single-particle orbit d5/2 is higher
than the g7/2 by 0.963 MeV; for valence neutron holes, there
are three single-particle orbits, s1/2, d3/2, and h11/2, whose
energy is very low, and by using two neutron holes in these
three orbits (i.e., neglecting the two higher orbits, d5/2 and
g7/2), the only possible way to construct nucleon-pair with
spin 4 and 6 is the configuration of (h11/2)2. As shown in
Sec. II B, we denote these pairs by G+

π , I+
π , A(4)

ν , and A(6)
ν ,

respectively.
To proceed our discussion, for both valence protons and

valence neutrons, we consider the S+ and G+ (A(4)) pairs in
the 4+

1 state, the S+ and I+ (A(6)) pairs in the 6+
1 state. By

using Eqs. (B13) and (B24) in Appendix B, or alternatively
by using the coefficients of fractional parentage for a j =
7/2 orbit in Ref. [62], we analytically obtain energies of the
Hamiltonian HP and HQ in single- j shells (and H0 in many- j
shells), and present them in Table V. Here for HP and HQ,
we accordingly assume that the valence protons occupy the
g7/2 orbit and the valence neutron holes occupy the h11/2 orbit.
According to Table V, for the 4+ state,

〈S+
ν ⊗ G+

π |H |S+
ν ⊗ G+

π 〉 ≈ −0.883 MeV,〈A(4)
ν ⊗ S+

π

∣∣H ∣∣A(4)
ν ⊗ S+

π

〉 ≈ −0.488 MeV, (26)

where we have suppressed the quantum numbers Jπ , Jν , and J
in nucleon-pair basis states without confusion. One sees that
the energy of |A(4)

ν ⊗ S+
π 〉 is higher than that of |S+

ν ⊗ G+
π 〉

by 0.395 MeV. Then it is understandable that the lowest 4+
state is dominated by |S+

ν ⊗ G+
π 〉 configuration, i.e., the proton

excitation. Similarly, from Table V, for the 6+ state,〈
S+

ν ⊗ I+
π |H |S+

ν ⊗ I+
π

〉 ≈ −0.908 MeV,〈A(6)
ν ⊗ S+

π

∣∣H ∣∣A(6)
ν ⊗ S+

π

〉 ≈ −0.283 MeV, (27)

namely, the energy of |A(6)
ν ⊗ S+

π 〉 is higher than that of
|S+

ν ⊗ I+
π 〉 by 0.625 MeV. Thus 6+

1 state is also expected to
be dominated by the proton excitation.

For the 134Xe nucleus, our calculated wave functions of the
4+

1 and 6+
1 states are,

|4+
1 〉 = 0.87|S+

ν ⊗ Jπ = 4〉 + · · · ,

|6+
1 〉 = 0.94|S+

ν ⊗ Jπ = 6〉 + · · · , (28)

respectively (here the quantum numbers Jν and J are sup-
pressed). Again, our calculated wave functions of these two
states are also dominated by the proton excitation. Below we
present an explanation of this picture in terms of single- j
shells, as above for the 4+

1 and 6+
1 states of 132Te. By using

Eqs. (B15) and (B25) in Appendix B, we obtain analytically
energies of the Hamiltonian in the nucleon-pair basis states
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TABLE V. Matrix elements (in MeV) of H0, V0, V2, and VQ, for a few simple nucleon-pair basis states with the phenomenological SM
Hamiltonian. Results on the left part correspond to 132Te, and those on the right part correspond to 134Xe. The matrix elements of single-particle
energies H0 are calculated in many- j shells. The results of V0, V2, V4, and VQ are for single- j shells, valence protons in the g7/2 orbit and two
valence neutron holes in the h11/2 orbit; these matrix elements are derived analytically by using Eqs. (B13), (B15) and Eqs. (B23), (B25) in
Appendix B. Both V10 and VQπν

equal zero in these nucleon-pair basis states with such single- j shells, and are not included here. Here we
exemplify the user manual of this Table by the matrix element 〈S+

ν ⊗ G+
π |H |S+

ν ⊗ G+
π 〉 as follows. 〈S+

ν ⊗ G+
π |H |S+

ν ⊗ G+
π 〉 = 〈S+

ν |H0 + V0 +
VQ|S+

ν 〉 + 〈G+
π |H0 + VQ|G+

π 〉 = 0.637 − 126
125 − 91

88π
+ 0.039 − 3509

5040π
� −0.883 MeV.

132Te H0 −V0 −V2 −V4 −VQ
134Xe H0 −V0 −V2 −V4 −VQ

126
125

91
88π

126
125

2457
1760π

S+
ν 0.637 0 0 S+

ν 0.638 0 0
819

2200π

635
968π

819
2200π

3429
3872πA(4)

ν 0.484 0 0 A(4)
ν 0.484 0 0

371
968π

10017
19360πA(6)

ν 0.484 0 0 0 A(6)
ν 0.484 0 0 0

18
25

3509
1680π

27
25

363
560π

2057
840π

S+
π 0.740 0 0 S+

π S+
π 1.647 0

3509
5040π

9
25

363
560π

2057
1680π

G+
π 0.039 0 0 0 S+

π G+
π 1.179 0

3509
5040π

9
25

363
560π

2057
1680π

I+
π 0.014 0 0 0 S+

π I+
π 1.171 0

with the same single- j shells as for 132Te, and list the results
in Table V. Here we consider results for three basis states, i.e.,
|S+

π S+
π 〉, |S+

π G+
π 〉 and |S+

π I+
π 〉. According to Table V,

〈A(4)
ν ⊗ S+

π S+
π

∣∣H ∣∣A(4)
ν ⊗ S+

π S+
π

〉 ≈ −0.335 MeV,〈
S+

ν ⊗ S+
π G+

π

∣∣H ∣∣S+
ν ⊗ S+

π G+
π

〉 ≈ −0.591 MeV,〈A(6)
ν ⊗ S+

π S+
π

∣∣H ∣∣A(6)
ν ⊗ S+

π S+
π

〉 ≈ −0.100 MeV,〈
S+

ν ⊗ S+
π I+

π |H |S+
ν ⊗ S+

π I+
π

〉 ≈ −0.599 MeV.

We can see that the energy of |S+
ν ⊗ S+

π G+
π 〉 is much lower

than that of |A(4)
ν ⊗ S+

π S+
π 〉, and the energy of |S+

ν ⊗ S+
π I+

π 〉
is much lower than that of |A(6)

ν ⊗ S+
π S+

π 〉. Therefore, one
expects that the 4+

1 and 6+
1 states of 134Xe are dominated by

the proton excitation.
On the other hand, from single- j shell assumption one gets

degenerate states for |S+
ν ⊗ G+

π 〉 and |S+
ν ⊗ I+

π 〉 of 132Te, and
for |S+

ν ⊗ S+
π G+

π 〉 and |S+
ν ⊗ S+

π I+
π 〉 of 134Xe, as shown in

the matrix elements of V0,V2,V4, and VQ. This degeneracy
is removed by configuration mixings of other single-particle
orbits. The mixings from the d5/2 orbit play an important role
in collective G+

π and I+
π pairs, and this can be easily seen from

the matrix elements of 〈G+
π |H0|G+

π 〉 and 〈I+
π |H0|I+

π 〉, which
are sizably lower than 〈A(4)

ν |H0|A(4)
ν 〉 and 〈A(6)

ν |H0|A(6)
ν 〉. For

134Xe, the proton excitation configurations of the 4+
1 state has

considerably large mixings of |S+
π G+

π 〉 and |G+
π G+

π , Jπ = 4〉.
Our numerical results show that this leads to a relatively larger
energy splitting between the 4+

1 and 6+
1 states. Figures 2(a)

and 2(b) well represent both the quasidegeneracy of the 4+
1

and 6+
1 states for 132Te, and the relatively larger splitting of

the 4+
1 and 6+

1 states for 134Xe.
The overlap squared of the proton excitation components,

namely, |S+
ν 〉 ⊗ |Jπ = 4〉 for the 4+

1 states and |S+
ν 〉 ⊗ |Jπ = 6〉

for the 6+
1 states, with our NPA corresponding wave functions,

versus the mass number A, are plotted in Fig. 5. The black

squares and the red circles correspond to the 4+
1 and 6+

1 states,
respectively. One sees that for all these nuclei the 6+

1 states
are dominated by the proton excitation; on the other hand, the
4+

1 states of these nuclei (in particular for 136Ba and 138Ce)
are not well represented by proton excitations, and neutron
excitations become more and more important. That is partly
the reason why our calculated B(E2; 6+

1 → 4+
1 ) is reasonably

large for 132Te and 134Xe, and becomes sizably smaller for
136Ba and 138Ce, as given in Table III.

We now discuss the g factors of the 4+
1 and the 6+

1 states by
using the method given by Lawson [62], according to which

FIG. 5. The overlap squared between the proton (neutron) exci-
tation configuration and the NPA wave function, versus mass number
A. The solid squares and circles correspond to proton excitation, and
the open triangles and diamonds correspond to neutron excitation.
The black squares, red circles, blue triangles and green diamonds
correspond to |S+

ν 〉 ⊗ |Jπ = 4〉 for the 4+
1 states, |S+

ν 〉 ⊗ |Jπ = 6〉 for
the 6+

1 states, |A(8)
ν 〉 ⊗ |(S+

π )Nπ /2〉 for the 8+
1 states and |A(10)

ν 〉 ⊗
|(S+

π )Nπ /2〉 for the 10+
1 states, respectively.
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the g factor of a state with configuration[
(π j)Nπ

Jπ
× (ν j′)Nν

Jν

]
JM (29)

can be written as

g = 1
2 [gπ ( j) + gν ( j′)] + 1

2 [gπ ( j) − gν ( j′)]X J
Jπ Jν

.

Here X J
Jπ Jν

= Jπ (Jπ+1)−Jν (Jν+1)
J (J+1) , and valence protons and neu-

trons occupy the j and j′ orbits, respectively. Nσ and Jσ

(σ = π, ν) are particle numbers and spins. J is the total
angular momentum and M is the z component of J . gπ (or
gν) is the g factor for a single proton (or neutron) in the j
(or j′) orbit. For a system with proton excitation, Jν = 0, J =
Jπ , X J

Jπ Jν
= 1; for a system with neutron excitation, Jπ = 0,

J = Jν , X J
Jπ Jν

= −1. For protons in the g7/2 orbit and neu-
trons in the h11/2 orbit, gπ (g7/2) = 0.857 μN and gν (h11/2) =
−0.232 μN (taken from g factors of the lowest states with spin
j in 133Sb and 131Sn, respectively). From these results, we
have

g =
∑
Jπ Jν

A2(Jπ , Jν )(0.313 ± 0.545)

=
{

0.857 μN for proton excitation
−0.232 μN for neutron excitation.

(30)

A(Jπ , Jν ) is the amplitude of the configuration. Because the
4+

1 and the 6+
1 states of 132Te and 134Xe are dominated by

the proton excitation, g = 0.857 μN for both the 4+
1 and 6+

1
states of 132Te and 134Xe. This value is quite close to the
experimental data (0.79 and 0.80 μN ) in Table IV.

D. 8+
1 and 10+

1 states

In Ref. [61], the 8+
1 and 10+

1 states of 132Te were sug-
gested to be of neutron excitations. Numerical calculations in
Ref. [59] suggested that |8+

1 〉 = 0.96|A(8)
ν ⊗ S+

π 〉 and |10+
1 〉 =

0.95|A(10)
ν ⊗ S+

π 〉 − 0.24|A(10)
ν ⊗ D+

π 〉. In the 50–82 major
shell, if one constructs a nucleon pair with spin 8 or 10 and
parity positive, the two valence nucleons (holes) must occupy
the h−

11/2 orbit. According to Table I, the single-particle energy
of the h−

11/2 orbit for protons (2.760 MeV) is much higher than
that of neutrons (0.242 MeV). It is expected that the dominant
components of the 8+

1 and 10+
1 states in 132Te are of neutron

excitations. Our calculated wave functions of these two states
for 132Te are∣∣8+

1

〉 = −0.98
∣∣A(8)

ν ⊗ S+
π

〉 − 0.10
∣∣A(8)

ν ⊗ D+
π

〉
− 0.15

∣∣A(6)
ν ⊗ D+

π

〉 + · · · ,∣∣10+
1

〉 = −0.96
∣∣A(10)

ν ⊗ S+
π

〉 − 0.25
∣∣A(10)

ν ⊗ D+
π

〉
− 0.10

∣∣A(8)
ν ⊗ D+

π

〉 + · · · , (31)

respectively, which are very close to the results of Ref. [59].
On the other hand, weak mixings of proton D+ pairs lead
to an enhancement of B(E2; 10+

1 → 8+
1 ) values from 130Sn

to 132Te, as observed experimentally [26]. Our calculated
B(E2; 10+

1 → 8+
1 ) values reproduced this tendency very well,

as shown in Table III.
In Fig. 5, we plot the overlap squared of the neutron

excitation components, namely, |A(8)
ν 〉 ⊗ |(S+

π )Nπ /2〉 for the 8+
1

states and |A(10)
ν 〉 ⊗ |(S+

π )Nπ /2〉 for the 10+
1 states, with the

NPA wave functions, versus the mass number A, denoted by
blue triangles and green diamonds, respectively. According to
Fig. 5, dominant components of the 10+

1 states are the neutron
excitation for all these four nuclei. However, the 8+

1 states
are dominated by the neutron excitation only for 132Te and
134Xe, and for 136Ba and 138Ce proton excitations becomes
dominant. This change is represented in Table III, where our
calculated B(E2; 10+

1 → 8+
1 ) values have a sudden decrease

from 134Xe to 136Ba. This sudden change is given by the rapid
decrease of neutron excitation components in the 8+

1 state of
the 136Ba nucleus, as shown in Fig. 5. Because the 10+

1 state
of 138Ce is dominated by the neutron excitation, according to
Eq. (30),

g = −0.232 μN .

This is close to the corresponding experimental data
(−0.176 μN ), as listed in Table IV. Our calculated g factors
of the 10+

1 state for the other nuclei in Table IV are also close
to this value. On the other hand, our calculated g factors of
the 8+

1 states in Table IV for 136Ba and 138Ce (≈0.64-0.69)
are far from this value; this is consistent with the feature of
their wave functions, which are not of neutron excitations, as
pointed out above.

E. Negative parity states

We first look at negative parity states of 132Te, plotted in
Fig. 2(a). For this nucleus, the 5−

1 and 7−
1 states have been

suggested to have two-neutron excitations [59–61,63,64],
i.e., |1h11/22d3/2, Jν〉 (J = Jν = 5 and 7). This is consistent
with the experimentally observed tiny B(E1, 7−

1 → 6+
1 ) ≈

10−9 W.u. [65], if the 6+
1 state is dominant of the proton

excitation. According to Ref. [59], |5−
1 〉 = 0.97|H−

ν ⊗ S+
π 〉

and |7−
1 〉 = 0.96|J −

ν ⊗ S+
π 〉 − 0.22|J −

ν ⊗ D+
π 〉. In Ref. [61],

the 7−−13− states are suggested to be nucleon-pair basis
states of |J −

ν ⊗ Jπ 〉 with Jπ = 0 - 6, where Jπ is one proton
pair with spin Jπ ; for the 9−

1 state the proton pair is mainly D+
and G+, and for the 11−

1 state the proton pair is mainly G+
and I+. According to our calculation, the wave functions of
the lowest negative parity states are

|1−
1 〉 = 0.94|G−

ν ⊗ G+
π 〉 + · · · , |2−

1 〉 = −0.98|G−
ν ⊗ D+

π 〉 + · · · ,

|3−
1 〉 = −0.98|G−

ν ⊗ D+
π 〉 + · · · , |4−

1 〉 = −0.95|G−
ν ⊗ S+

π 〉 + · · · ,

|5−
1 〉 = −0.96|H−

ν ⊗ S+
π 〉 + · · · , |6−

1 〉 = −0.97|I−
ν ⊗ S+

π 〉 + · · · ,

|7−
1 〉 = −0.96|J −

ν ⊗ S+
π 〉 + · · · , |8−

1 〉 = −0.97|J −
ν ⊗ D+

π 〉 + · · · ,

|9−
1 〉 = 0.98|J −

ν ⊗ D+
π 〉 + · · · , |10−

1 〉 = 0.86|J −
ν ⊗ Jπ = 6〉 + · · · ,

|11−
1 〉 = 0.83|J −

ν ⊗ Jπ = 6〉 + · · · . (32)
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FIG. 6. The overlap squared between simple configurations of some J−
1 states in Eq. (32) and the NPA wave function, versus the mass

number A. (a): |J−
ν ⊗ (S+

π )Nπ /2〉 (J−
ν denotes G−

ν , H−
ν , I−

ν , and J −
ν for 4−

1 , 5−
1 , 6−

1 , and 7−
1 states, respectively). (b): |J −

ν 〉 ⊗ |Jπ = 2〉 configuration
for the 8−

1 , 9−
1 states, and |J −

ν 〉 ⊗ |Jπ = 6〉 configuration for the 10−
1 , 11−

1 states.

The energy levels of the 5−
1 , 6−

1 , and 7−
1 states are close to

degenerate, and our calculated results have well reproduced
these levels, as shown in Fig. 2(a). According to the above
NPA wave functions, the 4−

1 −7−
1 states are dominated by the

neutron excitation, with weak mixings of proton D+ pairs.
Thus, these four states are the lowest negative parity states
of 132Te. The dominant components of the 8−

1 −11−
1 states are

|J −
ν ⊗ D+

π 〉 for 8−
1 −9−

1 and |J −
ν ⊗ I+

π 〉 for 10−
1 −11−

1 , with
small mixings of proton G+ pairs. This is consistent with the
results given in Ref. [61]. For the 1−

1 −3−
1 states, the dominant

components are G− pair for the neutron part, and G+ (for 1+
1 ),

D+ pairs (for 2+
1 and 3+

1 ) for the proton part.
In Fig. 6, we plot the overlap squared versus the mass

number A of a few negative-parity states for these nuclei.
Figure 6(a) is the overlap squared between the neutron excita-
tion configuration of the 4−

1 −7−
1 states, i.e., |J−

ν ⊗ (S+
π )Nπ /2〉

(J−
ν represents G−, H−, I−, and J − pair of neutron holes,

respectively, for 4−
1 , 5−

1 , 6−
1 , and 7−

1 states) and corresponding
NPA wave function of these four nuclei. It is shown that the
4−

1 −7−
1 states of these four nuclei are all dominated by the

neutron excitation. In Fig. 6(b), we plot the overlap squared
between |J −

ν ⊗ Jπ = 2〉 (the total spin of protons is two)
configuration and the NPA wave function for the 8−

1 , 9−
1 states,

and those between |J −
ν ⊗ Jπ = 6〉 (the total spin of protons

is six) configuration and the NPA wavefunction for the 10−
1 ,

11−
1 states, respectively. The hollow black squares, red circles,

blue triangles, and pink stars correspond to the 8−
1 , 9−

1 , 10−
1 ,

and 11−
1 states, respectively. One sees that the 8−

1 and 9−
1

states are all dominated by |J −
ν ⊗ Jπ = 2〉 configuration for

these nuclei. On the other hand, |J −
ν ⊗ Jπ = 6〉 configuration

in the 10−
1 and 11−

1 states is dominant only for the 132Te
nucleus.

F. Robustness of our calculated wave functions

In the above sections, we have constructed very simple
nucleon-pair wave functions for yrast states, it is then very
interesting and necessary to investigate the sensitivity of these
results to the parameters optimized in Table II of this paper,
in particular, the relative energies of valence proton pairs
and valence neutron-hole pairs are apparently decisive to the

dominant configurations of these states. Towards that goal, we
have examined the robustness of these wave functions with
respect to the modifications of the present parameters. Here,
in order to save the computing time, for 136Ba and 138Ce
we have not considered the contribution from the I ′+ (the
second lowest spin-6) pair of proton, as it has been known
that the I ′+ pair would not play any essential roles in the yrast
states.

Our study of the above robustness is performed
by two numerical experiments. The first experiment is
done by adjusting one of two-body interaction parame-
ters with other parameters fixed. Here, κ (2)

π (0), κ (2)
ν (0),

G(2)
π (0), and G(2)

ν (0) are used to label the parameters em-
ployed in Secs. III A–E, whose values are given in Ta-
ble II. The ranges of our parameters are as follows.
κ (2)

π (0) − 0.005 � κ (2)
π � κ (2)

π (0) + 0.005, κ (2)
ν (0) − 0.005 �

κ (2)
ν � κ (2)

ν (0) + 0.005, G(2)
π (0) − 0.002 � G(2)

π � G(2)
π (0) +

0.002, and G(2)
ν (0) − 0.002 � G(2)

ν � G(2)
ν (0) + 0.002. The

parameters of monopole pairing interaction and proton-
neutron quadrupole-quadrupole interaction have been long
well refined and we do not make modifications in our nu-
merical experiments. This numerical experiment shows that
the only possible exception is the 8+

1 states of 136Ba and
138Ce, which are dominated by the neutron excitation, but
this artificial exception would not arise in reality, as it would
contradict with the very small value of B(E2, 10+

1 → 8+
1 ): the

10+
1 states of 136Ba and 138Ce are mainly given by the neutron

excitation, and if the 8+
1 states were the neutron excitation, the

value of B(E2, 10+
1 → 8+

1 ) would be large.
Our second numerical experiment is done by adopting

the parameters κ (2)
π , κ (2)

ν , G(2)
π , and G(2)

ν randomly with the
same ranges as in the above first numerical experiment. We
have performed several sets of random κ (2)

π , κ (2)
ν , G(2)

π , and
G(2)

ν , and adopt the same values for monopole pairing and
quadrupole-quadrupole force between valence protons and
valence neutron holes, for 132Te, 134Xe, and 136Ba, respec-
tively. This numerical experiment yields almost essentially the
same results as our conclusion discussed above. According
to our calculations, larger range of parameters may yield
large deviations between calculated results and experimental
values.
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IV. SUMMARY

In this paper, we study the low-lying states of five even-
even N = 80 isotones including 130Sn, 132Te, 134Xe, 136Ba,
and 138Ce within the nucleon-pair approximation (NPA). The
low-lying energy spectra with both positive and negative
parities are calculated, and most of them agree with the
experimental data very well. P (10)†

ν · P̃ (10)
ν pairing interaction

is shown to be necessary in reproducing the yrast 10+ state
by the analysis of 130Sn by using a phenomenological pairing
plus quadrupole Hamiltonian.

The wave functions of yrast 2+
1 −10+

1 states and 1−
1 −11−

1
states of these nuclei are analyzed in detail. Most of these
states have a very simple configuration in nucleon-pair ba-
sis. The 2+

1 states of 132Te, 134Xe, 136Ba, and 138Ce are
dominated by one D+ neutron pair and Jπ = 2 proton ex-
citation. The 4+

1 and 6+
1 states of 132Te and 134Xe are well

reproduced, and all these states are dominated by the proton
excitation, while the 8+

1 and 10+
1 states are dominated by S+

pairs of protons and one Jparity = 8+ and 10+ neutron pair,
i.e., seniority-two excitation. For the negative parity states,
the 4−

1 −7−
1 states of 132Te, 134Xe, 136Ba, and 138Ce are

dominated by S+ pairs of protons and one Jparity = 4−−7−
neutron pair, and the dominant configuration of the 8−

1 −9−
1

states is |J −
ν ⊗ Jπ = 2〉. The robustness of our parameters of

Hamiltonian is discussed with two numerical experiments.
We calculate B(E2) transition rates and g factors of low-

lying states, which have a good agreement with experimental
data. The calculated g factors are discussed based on single-
j shells and Lawson’s method. Some of the unknown B(E2)
values and g factors for low-lying states of these nuclei are
predicted based on the NPA wave functions obtained in this
paper.
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APPENDIX A: EXPRESSION OF q( j jλ)
IN THE CASE OF SINGLE- j SHELL

In this Appendix, we give the expression of q(abλ), which
is defined in Eq. (7) in the special case.

For nucleons in a single- j shell,

q( j jλ) = − ĵ

λ̂
R( j jλ)Y ( j jλ), (A1)

where

R( j jλ) = (2l + λ + 1)!!

(2l + 1)!!
2−λ/2,

Y ( j jλ) = (−1) j−1/2 ĵλ̂√
4π

(
j λ j

− 1/2 0 1/2

)
.

Here “()” in the right-hand side of Y ( j jλ) denotes the 3 j
symbol.

In the case of λ = 2, Eq. (A1) can be written as

q( j j2) = − ĵ

2̂
R( j j2)Y ( j j2)

= − ĵ

2̂

2l + 3

2
(−1) j−1/2 ĵ2̂√

4π

(
j 2 j

− 1/2 0 1/2

)

= (−1) j+1/2 (2 j + 1)(2l + 3)

4
√

π

(
j 2 j

− 1/2 0 1/2

)
.

For the g7/2 orbit, j = 7
2 and l = 4, thus

q

(
7

2

7

2
2

)
= 22√

π

(
7/2 2 7/2

− 1/2 0 1/2

)

= 11

2

√
10

21π
. (A2)

For the h11/2 orbit, j = 11
2 and l = 5, thus

q

(
11

2

11

2
2

)
= 39√

π

(
11/2 2 11/2

− 1/2 0 1/2

)

= 13

2

√
105

143π
. (A3)

In the case of λ = 4, Eq. (A1) can be written as

q( j j4) = − ĵ

4̂
R( j j4)Y ( j j4)

= − ĵ

4̂

(2l + 5)(2l + 3)

4
(−1) j−1/2 ĵ4̂√

4π

×
(

j 4 j

− 1/2 0 1/2

)

= (−1) j+1/2 (2 j + 1)(2l + 5)(2l + 3)

8
√

π

×
(

j 4 j

− 1/2 0 1/2

)
.

For the h11/2 orbit, j = 11
2 and l = 5, thus

q

(
11

2

11

2
4

)
= 585

2
√

π

(
11/2 4 11/2

− 1/2 0 1/2

)

= −195

√
7

286π
. (A4)

Equations (A2), (A3), and (A4) are used in Sec. III and
Appendix B.

APPENDIX B: OVERLAPS AND MATRIX ELEMENTS OF
THE HAMILTONIAN FOR ONE AND TWO PAIRS

In this Appendix, we give expressions of the overlaps and
matrix elements of P(s)† · P(s) and Q(t ) · Q(t ) for one and two
pairs, based on Ref. [24].

014316-10
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1. Overlaps

The expressions of the overlap for one and two pairs
derived from Eq. (3.1) in Ref. [24] are the same as those given
in Ref. [23]. According to Eq. (A.1) in Ref. [23], the overlap
for one pair is

〈s1; J ′
1|r1; J1〉 = 2δs1,r1

∑
ab

y(abr1)y(abs1). (B1)

For nucleons in a single- j shell, Eq. (B1) can be further
simplified to

〈s1; J ′
1|r1; J1〉 = 2δs1,r1 y( j jr1)y( j js1). (B2)

According to Eq. (A.2) in Ref. [23], the overlap for two
pairs is

〈s1s2; J ′
1J ′

2|r1r2; J1J2〉 = 4δs1,r1δs2,r2

[
1 + (−1)r1+r2+J2 pr1,r2

] ∑
aba′b′

y(a′b′r1)y(a′b′s1)y(abr2)y(abs2)

− 16r̂1r̂2ŝ1ŝ2

∑
aa′bb′

y(a′as1)y(b′bs2)y(a′b′r1)y(abr2)

⎧⎪⎨
⎪⎩

a′ a s1

b′ b s2

r1 r2 J2

⎫⎪⎬
⎪⎭, (B3)

where pr1,r2
is a permutation operator, which represents the exchange between r1 and r2, and “{ }” denotes the 9 j symbol. For

nucleons in a single- j shell, Eq. (B3) can be further simplified to

〈s1s2; J ′
1J ′

2|r1r2; J1J2〉 = 4δs1,r1δs2,r2

[
1 + (−1)r1+r2+J2 pr1,r2

]
y( j jr1)y( j js1)y( j jr2)y( j js2)

− 16r̂1r̂2ŝ1ŝ2y( j js1)y( j js2)y( j jr1)y( j jr2)

⎧⎪⎨
⎪⎩

j j s1

j j s2

r1 r2 J2

⎫⎪⎬
⎪⎭. (B4)

2. Matrix elements of P(s)† · P(s)

According to Eq. (5.8) in Ref. [24], the matrix elements of P(s)† · P(s) for an even system with 2n nucleons are

〈s1 · · · sn; J ′
1 · · · J ′

n|P(s)† · P(s)|r1 · · · rn; J1 · · · Jn〉

= δJn,J ′
n

1∑
k=n

[
ŝϕ0δrk ,s〈s1 · · · sn; J ′

1 · · · J ′
n|r1 · · · rk−1srk+1 · · · rn; J1 · · · Jn〉

−
1∑

i=k−1

∑
tr′

i Li···Lk−1

(−1)t−s−rk
t̂

r̂k
U (Jk−1tJks; Lk−1rk )Qk−1(t ) · · · Qi+1(t )M̄i(tr′

i )

×〈s1 · · · sn; J ′
1 · · · J ′

n|r1 · · · r′
i · · · rk−1srk+1 · · · rn; J1 · · · Ji−1Li · · · Lk−1Jk · · · Jn〉

⎤
⎦, (B5)

where

M̄i(tr′
i ) = U (ritJi−1Li; r′

i Ji ), (B6)

Qi(t ) = (−1)Ji−1+Li−Ji−Li−1U (riLiJi−1t ; Li−1Ji ), (B7)

with the convention

Qn(t ) · · · Qk+1(t ) =
{

1, for k = n,

Qn(t ), for k = n − 1.

Here U (abdc; e f ) = ê f̂ W (abdc; e f ), where W (abdc; e f ) is
Racha coefficient. ϕ0 in Eq. (B5) is defined as

ϕ0 = 2

ŝ

∑
ab

y(abs)ys(abs), (B8)

where ys(abs) equals δab ĵa/2 or q(abt ) for s = 0 or t (t = 2
or 4). In the last line of Eq. (B5), r′

i ≡ Br′
i † represents a new

collective pair, i.e.,

Br′
i † =

∑
aa′

y′(aa′r′
i )A

r′
i †(aa′), (B9)

where

y′(aa′r′
i ) = z(aa′r′

i ) − (−1)a+a′+r′
i z(a′ar′

i ), (B10)

z(aa′r′
i ) = 4r̂i r̂k ŝt̂

∑
bb′

ys(bb′s)y(abrk )y(a′b′ri)

×
{

rk s t

b′ a b

}{
ri t r′

i

a a′ b′

}
. (B11)

When n = 1, Eq. (B5) for one pair can be simplified to

〈s1; J ′
1|P(s)† · P(s)|r1; J1〉 = δJ1,J ′

1
δs1,sŝϕ0〈s1; J ′

1|s; J1〉.
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Substituting Eqs. (B1) and (B8) into the above formula, and the matrix element

〈s1; J ′
1|P(s)† · P(s)|r1; J1〉 = 4δJ1,J ′

1
δs1,s

[∑
ab

y(abs1)ys(abs)

]2

(B12)

can be obtained. For nucleons in a single- j shell, Eq. (B12) can be further simplified to

〈s1; J ′
1|P(s)† · P(s)|r1; J1〉 = 4δJ1,J ′

1
δs1,s

[
y( j js1)ys( j js)

]2
. (B13)

When n = 2, Eq. (B5) for two pairs can be simplified to

〈s1s2; J ′
1J ′

2|P(s)† · P(s)|r1r2; J1J2〉 = δJ2,J ′
2

⎧⎨
⎩δk,1ŝϕ0δr1,s〈s1s2; J ′

1J ′
2|sr2; J1J2〉 + δk,2

⎡
⎣ŝϕ0δr2,s〈s1s2; J ′

1J ′
2|r1s; J1J2〉

− δi,1

∑
tr′

1L1

(−1)t−s−r2
t̂

r̂2
U (J1tJ2s; L1r2)M̄1

(
tr′

1

) 〈
s1s2; J ′

1J ′
2

∣∣r′
1s; L1J2

〉⎤⎦
⎫⎬
⎭.

Substituting Eqs. (B6) and (B8) into the above formula, and the matrix element

〈s1s2; J ′
1J ′

2|P(s)† · P(s)|r1r2; J1J2〉 = δJ2,J ′
2

⎧⎨
⎩2[1 + (−1)r1+r2+J2 pr1,r2

]δr2,s

∑
ab

y(abs)ys(abs)〈s1s2; J ′
1J ′

2|r1s; J1J2〉

−
∑
tr′

1

(−1)t−s−r2 t̂ r̂′
1W (J1tJ2s; r′

1r2)〈s1s2; J ′
1J ′

2|r′
1s; r′

1J2〉
⎫⎬
⎭ (B14)

can be obtained. The overlaps for two pairs in the above formula are given by Eq. (B3), with y(abr2) replaced by ys(abs), and
y(a′b′r1) in the second overlap replaced by y′(a′b′r′

1), which is defined in Eq. (B10). For nucleons in a single- j shell, Eq. (B14)
can be further simplified to

〈s1s2; J ′
1J ′

2|P(s)† · P(s)|r1r2; J1J2〉 = δJ2,J ′
2

⎧⎨
⎩2[1 + (−1)r1+r2+J2 pr1,r2

]δr2,sy( j jr2)ys( j js)〈s1s2; J ′
1J ′

2|r1s; J1J2〉

−
∑
tr′

1

(−1)t−s−r2 t̂ r̂′
1W (J1tJ2s; r′

1r2)〈s1s2; J ′
1J ′

2|r′
1s; r′

1J2〉
⎫⎬
⎭. (B15)

Here the overlaps are given by Eq. (B4), with y( j jr2) replaced by ys( j js), and y( j jr1) in the second overlap replaced by y′( j jr′
1),

where

y′( j jr′
1) = [1 + (−1)r′

1 ]4r̂1r̂2ŝt̂ ys( j js)y( j jr2)y( j jr1)

{
r2 s t

j j j

}{
r1 t r′

1

j j j

}
.

3. Matrix elements of Q(t ) · Q(t )

According to Eq. (5.5) in Ref. [24], the matrix elements of Q(t ) · Q(t ) for an even system with 2n nucleons is

〈s1 · · · sn; J ′
1 · · · J ′

n|Q(t ) · Q(t )|r1 · · · rn; J1 · · · Jn〉

=
1∑

k=n

⎡
⎣∑

r′
k

(−1)r′
k−rk−t r̂′

k

r̂k
〈s1 · · · sn; J ′

1 · · · J ′
n|r1 · · · rkrk+1 · · · rn; J1 · · · Jn〉

+
1∑

i=k−1

∑
r′

i r
′
kLi···Lk−1

2
r̂′

k

r̂k
U (Jk−1tJkr′

k; Lk−1rk )Qk−1(t ) · · · Qi+1(t )M̄i(tr′
i )

× 〈s1 · · · sn; J ′
1 · · · J ′

n|r1 · · · r′
i · · · r′

k · · · rn; J1 · · · Ji−1Li · · · Lk−1Jk · · · Jn〉
⎤
⎦. (B16)
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Here rk ≡ B̃
rk (r′

k ), which is defined as

B̃
rk (r′

k ) = [Ãr′
k , Q(t )](rk ) = [[Ãrk , Q(t )](r′

k ), Q(t )]

=
∑

ab

ȳ(abrk )Ãrk (ab), (B17)

with

ȳ(abrk ) = z̄(abrk ) − (−1)a+b+rk z̄(bark ), (B18)

z̄(abrk ) = 2r̂′
k r̂k (2t + 1)

∑
dd ′

y(dd ′rk )q(d ′bt )q(dat )

{
rk t r′

k

b d d ′

}{
rk t r′

k

d b a

}
. (B19)

In the last line of Eq. (B16), r′
i and r′

k are defined as

Ãr′
k = [Ãrk , Q(t )](r′

k ) =
∑
ad

y′(dar′
k )Ãr′

k (da),

where

y′(dar′
k ) = z(dar′

k ) − (−1)d+a+r′
k z(adr′

k ), (B20)

z(dar′
k ) = r̂kt̂

∑
b

y(abrk )q(bdt )

{
rk t r′

k

d a b

}
. (B21)

When n = 1, Eq. (B16) for one pair can be simplified to

〈s1; J ′
1|Q(t ) · Q(t )|r1; J1〉 =

∑
r′

1

(−1)r′
1−r1−t r̂′

1

r̂1
〈s1; J ′

1|r1; J1〉

= 2δs1,r1

∑
r′

1

(−1)r′
1−r1−t r̂′

1

r̂1

∑
ab

ȳ(abr1)y(abs1), (B22)

where ȳ(abr1) is given by Eq. (B18). For nucleons in a single- j shell with t = 2, Eq. (B22) can be further simplified to

〈s1; J ′
1|Q(2) · Q(2)|r1; J1〉 = 2δs1,r1

∑
r′

1

(−1)r′
1−r1−t r̂′

1

r̂1
ȳ( j jr1)y( j js1), (B23)

with

ȳ( j jr1) = 20r̂′
1r̂1y( j jr1)[q( j j2)]2

{
r1 2 r′

1

j j j

}2

. (B24)

For j = 7/2 or 11/2, the value of q( j j2) is given in Eq. (A2) or Eq. (A3).
When n = 2, Eq. (B16) for two pairs can be simplified to

〈s1s2; J ′
1J ′

2|Q(t ) · Q(t )|r1r2; J1J2〉 = δk,1

∑
r′

1

(−1)r′
1−r1−t r̂′

1

r̂1
〈s1s2; J ′

1J ′
2|r1r2; J1J2〉 + δk,2

⎡
⎣∑

r′
2

(−1)r′
2−r2−t r̂′

2

r̂2
〈s1s2; J ′

1J ′
2|r1r2; J1J2〉

+ δi,1

∑
r′

1r′
2L1

2
r̂′

2

r̂2
U (J1tJ2r′

2; L1r2)M̄1(tr′
1)〈s1s2; J ′

1J ′
2|r′

1r′
2; L1J2〉

⎤
⎦.

Substituting Eq. (B6) into the above formula, and the matrix element

〈s1s2; J ′
1J ′

2|Q(t ) · Q(t )|r1r2; J1J2〉 = [
1 + (−1)r1+r2+J2 pr1,r2

]∑
r′

1

(−1)r′
1−r1−t r̂′

1

r̂1
〈s1s2; J ′

1J ′
2|r1r2; J1J2〉

+
∑
r′

1r′
2

2r̂′
1r̂′

2W (J1tJ2r′
2; r′

1r2)〈s1s2; J ′
1J ′

2|r′
1r′

2; r′
1J2〉 (B25)
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can be obtained. Here overlaps for two pairs in the above
formula are given by Eq. (B3), with y(a′b′r1) in the first
overlap replaced by ȳ(a′b′r1), which is defined in Eq. (B18),
and y(a′b′r1) and y(abr2) in the second overlap replaced
by y′(a′b′r′

1) and y′(abr′
2), which are defined in Eq. (B20),

respectively. For nucleons in a single- j shell with t = 2, the
overlaps are given by Eq. (B4), with y( j jr1) in the first overlap
replaced by ȳ( j jr1), i.e., Eq. (B24), and y( j jrk ) (k = 1 and 2)

in the second overlap replaced by y′( j jr′
k ), where

y′( j jr′
k ) = 2

√
5r̂ky( j jrk )q( j j2)

{
rk 2 r′

k

j j j

}
.

For j = 7/2 or 11/2, the value of q( j j2) is in Eq. (A2) or
Eq. (A3).
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