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Transition densities and form factors in the triangular α-cluster model of 12C
with application to 12C +α scattering
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Densities and transition densities are computed in an equilateral triangular α-cluster model for 12C, in
which each α particle is taken as a Gaussian density distribution. The ground state, the symmetric vibration
(Hoyle state), and the asymmetric bend vibration are analyzed in a molecular approach and dissected into their
components in a series of harmonic functions, revealing their intrinsic structures. The transition densities in the
laboratory frame are then used to construct form factors and to compute distorted-wave Born approximation
inelastic cross sections for the 12C(α, α′) reaction. The comparison with experimental data indicates that the
simple geometrical model with rotations and vibrations gives a reliable description of reactions where α-cluster
degrees of freedom are involved.
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I. INTRODUCTION

Few nuclear systems have attracted the interest of the
scientific community as the 12C nucleus, which is remarkable
in many respects: It is the nucleus at the center of the atom
mostly associated with life on earth and yet it is produced in
the billion-kelvins hot plasma of stars. It is a crucial N = Z
even-even system that shows an unusual energy spectrum
and rotational bands and despite the large number of ex-
periments, various theoretical interpretations of data, and a
handful of models of its nuclear structure, it escapes conven-
tional descriptions such as the single-particle shell model or
the collective model. In particular, it still largely baffles the
efforts of pinning its structure down with ab initio nuclear
shell model based on realistic interactions, due to the strong
tendency of nucleons to form clusters of α particles. This is a
signal that even the most up-to-date nucleon-nucleon (NN)
interactions still miss some important ingredient that could
explain clusterization in light nuclei. Reactions involving 12C
as a target or as a projectile have been performed extensively
because it is easy to chemically or physically deal with this
abundant isotope in order to produce targets or to build ion
sources that can deliver intense ion beams. The acceleration
of these ions to various energies allows the analysis of several
types of reactions that highlight different aspects worthy of
interest, like cluster transfer reactions, nuclear rainbow, and a
number of studies aimed at measuring the nuclear S factor that
is relevant for astrophysics.

A large number of models have been constructed over
the years with several degrees of success that cover various
aspects of its complex phenomenology, but a final word has
not yet been written [1–3]. Very interestingly, instead of going
into the direction of treating the system of A = 12 particles

with individual degrees of freedom, another line of investiga-
tion has been recently pursued, the Algebraic Cluster Model
[4–12], in which a simplification in terms of rotational and vi-
brational excitations of an equilateral triangular configuration
of three α particles seems to offer a valid explanation of most
of the low-energy spectral features of 12C. These kinds of
molecular models have a long history, starting with Wheeler
in 1937 [13–16] and have been forgotten or misunderstood
in the past and left behind in favor of fully microscopic
approaches. Notably, the criticisms contained in the book by
Blatt and Weisskopf [17], which were certainly well-grounded
but have been surpassed by new accumulated knowledge,
have contributed to belittle this approach. On the other hand,
it is true, that light nuclei, those that bridge the gap from
deuterium to the mass region where the single-particle shell
model starts to work beyond any doubt, have been subject to
profound investigations both from the theoretical and exper-
imental sides that support a molecular-like interpretation. A
very important experimental work with a strong theoretical
foundation was done by W. von Oertzen and coworkers which
identified several molecular structures and rotational bands
with certainty [18–21] and they formulated a molecular orbital
theory, inspired by quantum chemical models, for the bonds of
additional neutrons that move in the force fields of α-cluster
structures. These structures, quite similarly to what happens
in molecules, can vibrate and rotate around fixed positions,
but, quite differently to what happens in molecules, are not
rigid at all. They rather are soft dynamical nuclear systems,
whose zero point motion has the same size of the nucleus
itself, and therefore the underlying geometric configurations
should be attributed to equilibrium points around which large
fluctuations occur (in other words, the Born-Oppenheimer
approximation does not work here). Rotations and vibrations
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have approximately the same energy scales and they are
intertwined with stronger ties.

Linear chains of α particles [22] as well as Bose-Einstein
condensate (BEC) gas of α bosons [23] have been proposed
as possible explanations of certain states or parts of the energy
spectrum. The literature is rich with theoretical interpreta-
tion: cluster models (e.g., Ref. [24]), No-Core Shell Model
(e.g., Refs. [25,26]), as well as Antisymmetrized Molecular
Dynamics (e.g., Ref. [27]), Fermion Molecular Dynamics
[28,29], Effective Field Theory [30] and lattice calculations
(e.g., Ref. [31]), and Nonlocalized Clustering [32], each with
its own merits. A lucid analysis of all these models [1]
reveals, however, that no final agreement can be reached for
the underlying geometric structure. Recently, one of us [33]
proposed a theoretical scheme based on discrete point-group
symmetries, by which a Raman fluorescence experiment in
which the depolarization ratio is measured for the excited
states might discriminate among all possible types of geomet-
ric configurations with certainty, thus offering a solution to
this conundrum.

We have dealt with nuclear structure until now, but reac-
tions of 12C are of paramount importance, because, leaving
aside the interest in understanding and modeling the reaction
mechanisms themselves, it is through dynamical processes
like collisions and absorption or emission of electromagnetic
waves that we have a handle on the structural features, from
which one could ultimately derive fundamental information
on the nuclear interactions. Thus, it appears to us that some
blending of these two wide chapters of physics has to be done
and our chosen method will be that of transition densities. One
of the earliest works in this respect, and very similar in spirit
to ours, though based on a resonating group method calcula-
tion, was that of Kamimura [34]. A folding-model analysis
of the inelastic 12C +α scattering has been performed in
Ref. [35] using Antisymmetrized Molecular Dynamics to cal-
culate wave functions and transition densities and using either
the distorted-wave Born approximation (DWBA) or coupled
channels to compute the differential cross sections. More
recently, Ito [36] linked the coupled-channels fit of inelastic
scattering data to the extended nature of the 2+

2 state in the
Hoyle band. Even more recently, Kanada-En’yo and Ogata
came up with a reanalysis of the α-scattering cross sections
in a coupled-channels formalism [37]. In this reference the
monopole and dipole excitations and several other observables
are discussed and in the conclusions it is stated that further
calculations are required to reduce the ambiguities of several
parameters entering the structure calculations.

We have given a preliminary account of some of the fea-
tures of our approach in Ref. [38]. Therefore in the present pa-
per we will proceed to investigate various aspects of structure
and reactions in connection with the occurrence of α clusters
in the 12C nucleus. We will begin by studying the equilateral
triangle model and its density and transition densities not
only for the ground-state band but also for excited vibrational
bands. Then we will use it to calculate form factors between
these states and these, in turn, will be used to compute
inelastic scattering cross sections in DWBA. Our main aim
is to show that a simple description in terms of rotations
and vibrations of triangular configurations is sufficient to

yield all the relevant features of the inelastic process. While
complicated models including NN interactions are certainly
more advanced, they are not necessary to describe the most
salient features of this process. A simple model based on
symmetry accounts for practically all of the relevant facts.

II. DENSITIES AND TRANSITION DENSITIES

The density of the α particle is taken as a Gaussian
function:

ρα (�r) =
(

α

π

)3/2

e−αr2
, (1)

with α = 0.56(2) fm−2 as in Refs. [4,5]. The three-
dimensional spherical integral of this function is normalized
to 1; therefore one should always multiply by 2 (the charge
of an α particle) when dealing with charge-related quantities
and multiply by 4 (the mass of an α), when dealing with
mass-related properties. Now, with the aim of constructing
the density of 12C as a sum of three α particles placed at the
vertices of a triangle, each particle should be displaced of the
proper amount, β, and therefore we have

ρgs(�r, {�rk}) =
3∑

k=1

ρα (�r − �rk ), (2)

with �r1 = (β, π/2, 0), �r2 = (β, π/2, 2π/3), and �r3 =
(β, π/2, 4π/3) in spherical polar coordinates (r, θ, φ),
where the colatitude is always π/2 because we have chosen
a triangle lying in the {xy} plane with the particle labeled
as 1 on the positive x axis. Once the angular position of the
α particles has been decided, the dependence on the nine
variables contained in the three vectos {�rk} is reduced to the
single radial variable that we have called β. With the proviso
made above, the integral of this density is normalized to 3,
and therefore, once again, one should properly multiply by
2 or 4 depending on the aim of the calculations. The shape
of this “static” ground-state density, labeled gs, is associated
with the fully symmetric representation, A, of D3h with 0
quanta of excitation [11,12]. In the following, β will be set to
a constant value; therefore the explicit dependence on it can
be dropped. Thus the density can be expanded in spherical
harmonics as

ρgs(�r) =
∑
λμ

ρλ,μ
gs (r)Yλ,μ(θ, ϕ), (3)

where ρλ,μ
gs are the intrinsic radial transition densities that

depend on λ,μ. Our choice of coordinates is such that only
those multipoles that are allowed by the D3h symmetry appear
in the sum. This is different from Ref. [4] where the z axis
was instead chosen to pass through particle 1 and the center
of the triangle. In setting up this model and Eqs. (1)–(3), we
did not worry about the effect of the Pauli exclusion principle,
which is expected to generate some repulsion between the α’s
at short distances, because of the phenomenological nature
of our approach. This repulsion can be simulated with a
change in the effective densities for overlapping particles,
which should not appreciably affect the profile of densities
and transition densities on the tails, where they are important
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FIG. 1. Calculated values of B(E2; 2+
1 → 0+

1 ) (dashed) and
B(E3; 3+

1 → 0+
1 ) (solid) are shown as blue and red thick lines,

while experimental values (without error bands) are shown as light
horizontal lines of the same color and type. Units are on the left
vertical axis; notice that the E2 has been multiplied by two. We plot
in green dot-dashed lines the rms radius and only one experimental
value for reference (units on the right vertical axis). The black
vertical line at β = 1.82 marks the value adopted in this paper.

for reaction calculations. Once the densities are known in the
intrinsic frame, they should be transformed into the laboratory
frame, where the dependence on μ is lost. Details on how to
accomplish this are given in the Appendix. The laboratory-
frame radial transition densities allow the calculation of sev-
eral intraband observables, such as the reduced electromag-
netic transitions B(Eλ) in terms of the corresponding matrix
elements M(Eλ) defined as:

M(E2; 2+
1 → 0+

1 ) = Z
∫

ρλ=2
gs (r)r4dr, (4)

where Z = 2 is the charge of a single α particle and more
generally,

M(Eλ; λ → 0+
1 ) = Z

∫
ρλ

gs(r)r (λ+2)dr, (5)

B(Eλ; λ → 0+
1 ) = 1

2λ + 1
| M(Eλ; λ → 0+

1 ) |2, (6)

and the diagonal matrix elements and root-mean-square radius
defined as:

M(E0) =
√

4πZ
∫

ρ0
gs(r)r4dr, (7)

〈r2〉1/2
0+

1
=

[√
4π

∫
ρ0

gs(r)r4dr/N
]1/2

, (8)

where N = √
4π

∫
ρ0

gs(r)r2dr = 3 is a normalization integral
that just counts the number of α particles.

Now one might take the radial parameter for distance as
β = 1.74(4) fm for k = 3 clusters as in Ref. [4,5], but we
prefer to choose β = 1.82 fm because this allows us to fix
both the ground-state radius and the B(E2) to the first excited
2+ state. The change of calculated values with β is compared
with available experimental data in Fig. 1. Horizontal colored
lines are measurements, while the vertical black line is the

FIG. 2. Contour plot of density in fm−3 (cut on the z = 0 plane),
ρgs in Eq. (2), of the ground-state static triangular configuration (with
A symmetry).

adopted value, i.e., a compromise between B(E2) and the
root-mean-square radius. Experimental values for B(E3) are
either too small or too large and in any case they do not agree
with each other, but our adopted value falls in the middle.

Returning now to the density defined above, Fig. 2 shows a
contour plot of the static triangular configuration associated
with the ground-state band, while Fig. 3 shows the three
lowest-order radial functions of the expansion in spherical
harmonics for {λμ} = {00, 20, 33}. The function labeled 00
represents the ground-state density while the others represent
the change in density for transitions to higher-lying states of
the ground-state band. The properties of the ground-state band
can be derived from the knowledge of the transition densities.
We collect in Table I the calculated values of the rms radius,
B(E2), and B(E3) obtained with β = 1.82 fm.

It is very important also to investigate what happens when
the particles are displaced a small amount along the directions
of the vectors of normal modes of motion, which are of
two types: singly degenerate fully symmetric, A, and doubly

FIG. 3. Radial transition densities, ρλ,μ
gs in Eq. (2) of the ground-

state band with A symmetry.
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TABLE I. Calculated observables within the
ground-state band.

〈r2〉1/2
0+

1
2.45 (fm)

B(E2; 2+
1 → 0+

1 ) 7.86 (e2 fm4)

B(E3; 3−
1 → 0+

1 ) 65.07 (e2 fm6)

B(E4; 4+
1 → 0+

1 ) 96.99 (e2 fm8)

degenerate, E . For example, we can obtain the first symmetric
vibrational band of A type (with n = 1) by adding a small
displacement 
βA along the arrows of the inset in Fig. 6. It
amounts to redefining the radial variable in �r1,2,3 in Eq. (2) as
β + 
βA, namely:

A �rk + 
�rA
k → β + 
βA. (9)

We should set this displacement by fitting a datum that
corresponds to an intrinsic property of the A-vibration band.
Unfortunately, neither the radius of the Hoyle state 〈r2〉2

0+
2

nor the transition rate B(E2; 2+
2 → 0+

2 ) are measured (there
are, however, several theoretical calculations). We show the
variation of these two quantities with respect to the extent
of vibration in Fig. 4. By choosing an intermediate value of

βA = 1.2 fm that gives a radius of 3.43 fm (about 1 fm more
than the ground state as in Ref. [36]) and a transition rate of
about 59.6 e2 fm4, which is comparable with the calculations
of Ref. [35], we can compute the density of the Hoyle state,
shown in Fig. 5. The expansion of this density in spherical
harmonics, with an expression analogous to Eq. (2), is given
in Fig. 6, where one can see the difference of the λμ = 00
term with respect to the ground state. The central region is
depleted and clusterization is more evident.

The transition density connecting the ground-state band
with the Hoyle band, with A symmetry, can be obtained as

FIG. 4. Calculated values of B(E2; 2+
2 → 0+

2 ) (upper panel in
e2 fm4) and 〈r2〉2

0+
2

(lower panel, in fm) as a function of 
βA.

FIG. 5. Density of the Hoyle state, that is, the first A-type vibra-
tion in this model, with the α’s caught at the moment of maximum
elongation.

an expansion in the small displacements at leading order:

δρgs→A(�r) = χ1
d

dβ
ρgs(�r, β ). (10)

To calculate the transition rates between the ground-state band
and the first excited A-type band, one must set the intrinsic
transition matrix element χ1, akin to the parameter used in
Ref. [6], Table I. We set χ1 = 0.247255 using the value of
the monopole matrix element M(E0) in Table II fixed at
5.4 e fm2, that is, the value measured in Refs. [39,40]. There
are other values for this matrix element, namely, in Ref. [41],
the isoscalar dipole transition is given as an isoscalar energy-
weighted sum-rule strength of 0.08 ± 0.02(%).

The transition density from the ground-state band to the
first excited A band takes the form:

δρgs→A(�r) =
∑
λμ

δρ
λμ
gs→A(r)Yλμ(θ, ϕ) (11)

FIG. 6. Radial transition densities, δρ
λ,μ
gs→A(r) of Eq. (11), within

the excited A band.
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TABLE II. Quantities calculated in the present
work for the Hoyle band using the values of β and
χ1 given in the text.

〈r2〉1/2
0+

2
3.44 (fm)

B(E2; 2+
2 → 0+

1 ) 0.58 (e2 fm4)

B(E2; 0+
2 → 2+

1 ) 2.90 (e2 fm4)

B(E3; 3−
2 → 0+

1 ) 70.42 (e2 fm6)

M(E0; 0+
2 → 0+

1 ) 5.4 (e fm2)

and this is shown in Fig. 7. The radial components of the
expansion in spherical harmonics are shown in Fig. 8 for the
allowed values of the projection of the angular momentum
K = 0, 3, 6 · · · [5,6]. The cut in Fig. 7 shows the moment
at which the particles oscillate away from the center in a
synchronous fashion, thus depleting the central region (neg-
ative transitions density) and enhancing the external regions
(positive transition density). We give in Table II the calculated
values for other observables.

Together with the A-type normal mode, there is another
doubly degenerate normal mode with E symmetry. The two
panels of Fig. 9 show the densities of the doubly degenerate E-
type band, whereas the panels of Fig. 10 show the correspond-
ing transition densities. The vector displacements associated
with this mode are shown in the insets of Fig. 11. This picture
shows the expansion of the densities of the two degenerate
components of the 1−

1 state. Now one cannot simplify the
notation to the radial variable only as in the preceding case,
because these vectors do not point along the radial direction,
and therefore in principle one should take:

E �rk + 
�rE
k

∣∣
�rE
k

∣∣ → η, (12)

but since the direction of the vectors is fixed, we will consider
only the magnitude of the displacements, which we call η. In
Fig. 9, the amplitude of the vibration has been arbitrarily set
to 1.2 fm, i.e., the same value that was used in the A-band to

FIG. 7. Transition density for the first A-type vibration.

FIG. 8. Transition densities for the first A-type vibration and
expansion in the lowest-order spherical harmonics.

set a rms radius about 1 fm larger than in the ground state, for
the sake of illustrating the fact that this vibration corresponds
to the channel forming 8Be plus an α particle: In fact, in
both plots, one of the α’s retains its density almost intact and
detaches from the rest. With this choice, the rms radius for the

FIG. 9. Densities for the first doubly degenerate E-type vibra-
tion. The amplitude of the vibration has been arbitrarily set to 1.2 fm,
the same value used for the A band, for the sake of illustration.
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FIG. 10. The doubly degenerate E-type vibrations have two
transition densities δρ corresponding to the two normal modes of
motions shown in the inset of Fig. 11.

E band is intermediate between the ground-state and Hoyle
values.

The intrinsic transition density from the ground to the E
band takes a form similar to Eq. (10), namely

δρgs→E (�r) = χ2
d

dη
ρgs(�r, η), (13)

where the value of χ2 should be set using some experimental
observable. This is difficult to accomplish here, as the only
information easily accessible is the model-dependent isoscalar
dipole matrix element value given in Refs. [35,41] and ex-
tracted in α-scattering experiments. In the present case we
adopt χ2 = 0.136 and obtain the value M(IS1; 0+

1 → 1−
1 ) �

0.31 e fm3. The isoscalar dipole transitions are calculated
using the definition of the matrix element as:

M(IS1; 0+
1 → 1−) = Z

∫
δρ1

gs→E (r)

(
r3 − 5

3
〈r2〉r

)
r2dr.

(14)

FIG. 11. Densities of the two degenerate modes of the E-type
vibration. The two dominating λμ = 00 components are given in
the first panel for both degenerate states, while the others are given
separately in the second and third panels. Notice the different vertical
scales.

The transition densities for the E-type vibrations are ex-
panded in multipoles

δρgs→E (�r) =
∑
λμ

δρ
λμ
gs→E (r)Yλμ(θ, ϕ) (15)

and the radial part of the transition densities for the first
few states, having K = 1 or K = 2 (and, more in general, all
values of K that are not divisible by 3), are shown in Fig. 12.
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FIG. 12. Radial transition densities δρ
λμ
gs→E (r) to the E-type band

for the first type of motion (inset). The corresponding transition
densities for the second type of motion can be obtained by changing
sign for 11 and 31.

Notice that the curves are the same for the two degenerate
modes. The smaller one, i.e., the {λμ} = {31} component, has
been magnified three times to make it comparable with the
others.

III. FORM FACTORS

The densities and transitions densities described above
in the equilateral triangular cluster model contain all the
structure information to compute form factors for inelastic
excitation processes such as the α + 12C scattering, provided
one chooses a suitable NN potential. We construct the real part
of the nuclear optical model potential using a double-folding
prescription as in Refs. [42,43], namely

VN (R) =
∫∫

ρα (�r1 − �R) ρT (�r2) vN (r12) d�r1d�r2, (16)

where ρα,T are the densities of projectile and target and
the effective interaction vN is a function of the NN dis-
tance r12. In this case the α particle is an isoscalar probe
(N = Z system); therefore only the isoscalar part of the
interaction will contribute to the integral. The widely used
density-dependent Reid-type M3Y NN interaction is used
for vN [42,44]. Of course, due to the density dependence,
the folding potential is different for each combination of
projectile and target densities: In our case the α particle
is always in the ground state for low energies, while the
target can be in any of the selected low-energy states. The
potential might differ significantly in the interior but is quite
similar on the surface region, as shown in Fig. 13, that is,
the relevant one for grazing processes. The potential in the
case of the Hoyle state has a slightly longer tail, due to
the fact that the densities of Fig. 5 show indeed a larger
range with respect to the ground state. In the figure we give
also the potential used in the case of the two degenerate 1−
states that are almost identical. The inset shows the same
potentials in logarithmic scale to appreciate the differences on
the tail.

Using the transition densities calculated above, one can
also compute nondiagonal matrix elements and calculate the

0 2 4 6 8 10
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(r

) 
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0
+
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0
+
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-
1 E
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-2

10
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N
(r

)|
 (
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)

FIG. 13. Double folding nuclear potentials for the system α +
12C for the ground (red dot-dashed line), the “Hoyle” (blue dashed),
and the E-type (dotted) band states. The inset shows the same
quantity (absolute values) in logarithmic scale to appreciate the
different radial extension on the tails.

form factors by double folding:

Fi j ( �R) = Fi j (R)Yλμ(R̂)

=
∫∫

ρα (�r1 − �R) v(r12) δρi→ j (�r2) d�r1d�r2, (17)

where v contains the nuclear and coulomb interactions. We
show in Fig. 14 a few lowest form factors in linear scale
to appreciate the difference in magnitude and range, and
we show in Fig. 15 a compilation of form factors in loga-
rithmic scale, where the nuclear and Coulomb contributions
are shown together with the total. Clearly, the 0+

gs → 0+
2

monopole transition has only the nuclear part.
In these figures the excitation processes of interest are

those related to the 2+ states in the ground and “Hoyle” bands.
The comparison between the intra- and interband transitions
shows that the form factor for the transition from 0+

2 to 2+
2 has

a larger radial extension than the other two transitions taken
into consideration. As a consequence the angular distribution
for this transition may cover a reduced angular range com-
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N
(r
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)

FIG. 14. Absolute value of radial form factor for the system
α + 12C for the three excitation processes shown in the legend. The
quadrupole states are the one built on top of the ground state (2+

1 )
and on top of the 0+

2 “Hoyle” state (2+
2 ).
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FIG. 15. Form factors in logarithmic scale for a few inelastic
excitation processes of interest. We show the nuclear, Coulomb, and
total form factors.

pared to the other ones and therefore might give a hint on the
radial extension of the 2+

2 state as pointed out in Ref. [36]. The
strong in-band coupling could give rise instead to a significant
interference between the direct population of the 2+

2 state
and the two-step process via the 0+

2 state. This interference,
once plugged into a coupled-channels calculation, could give
information on the different radial size of the ground and
Hoyle bands as a function of scattering angle and bombarding
energy.

In order to illustrate that the simple geometrical model is
able to capture the main features in reactions where α-cluster
degrees of freedom are involved, we have computed DWBA
differential cross sections for α + 12C inelastic scattering. In
Fig. 16 we show the differential cross section (or ratio to
Rutherford in the elastic case) for the ground-state elastic
scattering and for the excitation to the first excited 2+ and
3− states for the α + 12C reaction. In these calculations we
have set the imaginary part of the optical potentials and form
factors to 1/2 of the real part. The experimental data [41]
are retrieved through the EXFOR database. Among the many
possible bombarding energies, we have taken the dataset at
240 MeV as an example of the ability of the α-cluster model
to reproduce correctly the shape and magnitude of these cross
sections. There is some deviation of the calculated line with
respect to the data at angles above the grazing angle, but
the overall behavior is well reproduced. These results are
encouraging and indicate that, despite the complications that
one might invoke in other models, the present simple approach
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FIG. 16. Differential cross section for the elastic scattering and
the transitions 0+

1 → 2+
1 and 0+

1 → 3+
1 at 240-MeV bombarding

energy. Data are from Ref. [41] (retrieved through EXFOR).

is enough to explain the data, a symptom that α clustering
plays a vital role here. In Fig. 17, we give the calculations and
data for the 0+

1 → 0+
2 transition (ground to Hoyle): In this case

we have explored the sensitivity of the DWBA calculations
to the depth of the imaginary part of the potential. The three
curves (dotted red, solid blue, and dashed black) correspond
to the imaginary parts set to 1/4, 1/2, and equal to the depth
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FIG. 17. Differential cross section for the transition 0+
1 → 0+

2 at
240-MeV bombarding energy. Data are from Ref. [41] (retrieved
through EXFOR) and the three curves have different factors for the
depth of the imaginary part as indicated in the figure.
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1 → 1−
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240-MeV bombarding energy. Data are from Ref. [41] (retrieved
through EXFOR). The dashed colored curves show the cross section
to the two degenerate components, indicated with E and E ′ and the
black solid curve shows the sum.

of the real part. The shape of the curve is again very good and
clearly the best agreement is found for values between 1/2
and 1. This is an indication that not only the description of
the ground-state band is good, but also the description of the
Hoyle band in terms of breathing vibration finds confirmation
in reaction data.

In Fig. 18 we show the differential cross section to the
bandhead of the E-type band, that is, the sum of two com-
ponents. Despite the geometrical differences, the averaged
integrals give the same results for the two components. The
comparison with data is good at very small angles but fails
to reproduce the peak at around 4◦–5◦. Clearly, this depends
on the choice of the χ2 parameter, which we had previously
fixed to the matrix element of the model-dependent isoscalar
electric dipole transition. A change by a factor of two (that
would take χ2 to about the same value of χ1) would reproduce
the peak and slightly overestimate the cross section at the
smallest angles. We have checked that a change of η within
the range 1.0–1.4 does not affect appreciably the final result.
Instead, a change in the imaginary part of the potential does
change the differential cross section to the 1−

1 state but mostly
at larger scattering angles. The change within the extent of the
data is not very relevant.

We have confined ourselves to DWBA calculations in the
present paper for the sake of illustrating the validity of the
approach. Coupled-channels effects show up if one includes
higher excited states, as shown in Ref. [37] and in Ref. [45]
for the 0+

2 state, but they are not strictly necessary to the
present discussion. For instance, our DWBA calculations do
not reproduce the data for the 1−

1 state at angles around 5◦ in
Fig. 18, while they give a reasonable reproduction at smaller
angles. The same is observed in Ref. [35], where, in addition,
coupled-channels calculations are performed that better fit
the existing data. Clearly a simple DWBA approach, based
only on the direct transitions from the ground state cannot be

satisfactory in the presence of strong second-order couplings.
A typical example is the population of the 2+

2 state in the
Hoyle band, where, due to the strong B(E2; 0+

2 → 2+
2 ), the

direct transition competes with the strong two-step process
passing through the 0+

2 state [36,37].

IV. CONCLUSIONS

We have investigated the performance of the α-cluster
model for 12C in reproducing structure and reaction observ-
ables. We have set up the densities of the α cluster and the
carbon-12 nucleus as an equilateral triangular arrangement
according to the recent prescriptions used in the Algebraic
Cluster Model. We have constructed transition densities to
the states of the ground band and to the states of excited A
and E bands. In doing so, we have chosen some parameters
to reproduce a minimal set of known matrix elements or
electromagnetic transition rates, and we have seen that the
model is able to give a quantitative interpretation of almost all
the available data. The densities have been used to generate
double folding potentials between the α particle and the
12C nucleus. Form factors for several transitions have been
computed and used in DWBA calculations to show that this
molecular model with a very simple geometry is indeed able
to reproduce the shape and magnitude of many scattering data.
Notably, the ground-to-Hoyle 0+

1 → 0+
2 transition, which

involves a static equilateral triangular configuration in the
ground state and an oscillating equilateral triangle breathing
mode for the Hoyle state, provides a satisfactory explanation
for the scattering data if one allows for a slightly deeper-than-
usual imaginary part of the optical potential. We have also
investigated the cross section to the doubly degenerate E band.
Despite the quite significant geometrical differences between
the two components of Fig. 9, their form factors and reaction
observables look practically the same.

In conclusion, α clusters, if properly described in a fully
quantal molecular approach, not only play a role in the Hoyle
state, as it was commonly believed until a few years ago, but
they are strongly involved in the structure of the ground state
and in a large part of the lowest excited states. The role of
the fermionic degrees of freedom and the Pauli principle does
not seem to be crucial for the description of structure and
reactions where the cluster degrees of freedom are involved.
In addition to the structure properties, this model can be
effectively applied to reaction observables, thus significantly
enlarging the amount of data that can be described in the
molecular approach that includes rotations and vibrations of
a simple triangular cluster configuration.

It is worth noting that the present approach does not take
into account the unbound nature of 12C states above the
three-α threshold, starting with the Hoyle state. Three-body
calculations with α-α scalar interactions, including continuum
effects explicitly, could provide more insight into the structure
properties of this nucleus. Work along these lines is ongoing
and will be presented elsewhere, together with full coupled-
channels calculations for the α + 12C inelastic excitation
within both approaches, which is definitely essential in the
population of, e.g., the 2+

2 state.
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APPENDIX

The states in the laboratory frame can be written as

|IM, nAnE 〉

=
∑

K

√
2I + 1

16π2(1 + δK,0)︸ ︷︷ ︸
NK

[D(I )∗
MK + (−1)KD(I )∗

M,−K

]|nAnE 〉,

(A1)

where the intrinsic state |nAnE 〉 is labeled by the number of
phonons of each type, such that the ground state is |00〉,while

the bandheads of the A- and E -type first vibrations are |10〉
and |01〉, respectively.

The transition density in the laboratory frame can be re-
lated to that into the intrinsic frame with

〈I f M f , nAnE |ρ̂|IiMi, nAnE 〉
=

∑
λμ

δρλμ(r)
∑
Ki,Kf

N ∗
Kf
NKi

∑
κ

CYλκ (θϕ), (A2)

where the summations are taken on non-negative values of K’s
and where

C = 8π2

(2I f + 1)
〈I f λIi | M f μMi〉[〈I f λIi | Kf κKi〉

+ (−1)Kf 〈I f λIi | (−Kf )κKi〉+(−1)Ki〈I f λIi | Kf κ (−Ki)〉
+ (−1)Kf +Ki〈I f λIi | (−Kf )κ (−Ki )〉]. (A3)

From this, one can calculate reduced matrix elements and
probabilities.
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