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Static fission properties of actinide nuclei
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Fission barriers heights and excitation energies of superdeformed isomeric minima are calculated within
the microscopic-macroscopic Woods-Saxon model for 75 actinide nuclei for which the experimental data are
known. State-of-the-art methods were used: minimization over many deformation parameters for minima and
the imaginary water flow on a many-deformation energy grid for saddles, including nonaxial and reflection-
asymmetric shapes. We obtain 0.82–0.94 MeV rms deviation between the calculated and experimental barriers
and 0.53 MeV rms error in the excitation of superdeformed minima. Experimental vs theory discrepancies seem
to be of various natures and not easy to eliminate, especially if one cares about more than one or two observables.
As an example, we show that by strengthening pairing in odd systems one can partially improve agreement in
barriers, while spoiling it for masses. We also discuss the “thorium anomaly” and suggest its possible relation to
a different way in which the Ac and Th barriers are derived from experimental data.
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I. INTRODUCTION

Spontaneous fission is one of the two main causes limiting
the existence of superheavy (Z > 103) nuclei (SHN). Known
spontaneous fission half-lives T s f

1/2 of SHN are mostly in
the range of milliseconds to seconds for even-even nuclei
and 10 s to 1 h for odd ones [1]. In actinides, T s f

1/2 show
a rapid rise with a decreasing proton number, for example,
T s f

1/2 ≈ 8 s for 252No, 86 yr for 252Cf, 1014 yr for 241Am,

and reaches ≈1019 yr for the fissile 235U [1] which may
be considered practically stable against spontaneous fission.
When viewed in the picture of quantum tunneling, such enor-
mous differences result from 2–3 MeV differences in energy
landscapes. Therefore, evaluation of fission rates requires a
rather precise description of the potential energy surfaces. To
date, still the most effective way to calculate the latter are the
semiphenomenological microscopic-macroscopic methods in
which the smooth (macroscopic) part of the energy and single-
particle potential are separately fitted to, respectively, the bulk
and single-particle nuclear data.

Using such an approach based on a deformed Woods-
Saxon single-particle potential [2] and the Yukawa-plus-
exponential macroscopic energy [3], we recently [4] system-
atically calculated static fission barrier heights B f for 1305
heavy and SH nuclei beyond berkelium, including even-even,
odd-even, even-odd, and odd-odd systems. In this paper we re-
port a similar study for actinide nuclei for which experimental
fission data are available. Energy surfaces of actinides show
long barriers and various saddles, and their determination
requires accounting for many collective deformations; this
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leads to an extensive and time-consuming numerical effort.
The main goal of our present work is to compare calculated
“inner” and “outer” static fission barriers with empirical esti-
mates. Having many-dimensional energy landscapes, without
much effort we can also find the location and excitation of
superdeformed minima.

Fission barriers heights are model-dependent quantities,
and at the same time they are very useful theoretical constructs
related to fission data. It has to be remembered that while
these data are usually obtained from the neutron-induced
fission reactions which involve a few MeV excitation of
the fissioning system, theoretical calculations are performed
mostly for adiabatic configurations. Still, it is interesting to
compare empirical and evaluated static fission properties and
try to understand them. The present work is an extension of
our previous studies on barriers in even-even actinides [5,6]
to odd-A and odd-odd nuclei, while using enlarged spaces of
collective deformations. Of particular importance is the search
for saddle points by using the immersion water flow technique
(in the study of fission barriers first used in [7]), which, in
principle, should save us from inaccuracies of the minimiza-
tion method, as explained in [8–10]. From the present analysis
one can reckon the quality of our micro-macro approach and
form some idea about its predictive power in the region of
SHN.

Systematic calculations including odd-A and odd-odd ac-
tinides, with inner and outer barriers, from actinium to cali-
fornium, are rather scarce. We are aware of results of Möller
and coworkers in [10] and those of the HFB14 model by
Goriely et al. [11]. On the other hand, there are many pub-
lished calculations of fission barriers in even-even actinides,
performed within various micro-macro (e.g., the recent work
[12]), and mean-field models. Some of the latter studies
contain a careful analysis of various approximations and/or
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corrections, for example based on the SkM* force [13], us-
ing Gogny models [14–16], and using relativistic functionals
[17,18]. They widely differ in applied methodology for the
saddle point determination and included energy corrections.
Sometimes they involve arbitrary prescriptions, like for the so-
called collective energy corrections. Some of these results are
astonishingly (taking into account applied approximations)
close to the experimental estimates.

We would like to stress that experimental data on fission
barriers or isomers were never used to fit the parameters of
our model. Likewise, no single adjustment was made in the
present work to improve the agreement of calculated fission
barrier heights and excitation energies of second minima with
their experimental estimates. Examples of, and comments on,
changes in calculated quantities introduced by modifications
of selected parameters of the model are presented only to
provide some orientation on their interrelation.

The paper is organised as follows: In Sec. II we describe
the method of calculations; the results on ground state masses,
fission isomers, first and second fission barriers, the so-called
thorium anomaly, and pairing effect on barriers in odd nuclei
are given in Sec. III. Section IV contains comparisons to other
calculations and the main conclusions.

II. METHOD OF THE CALCULATION

We used exactly the same microscopic-macroscopic ap-
proach as in our previous global calculations of static fission
barrier heights for the heaviest nuclei 98 � Z � 126, [4].
Thus, the Yukawa-plus-exponential model was taken for the
macroscopic part of the energy, and the Strutinsky shell cor-
rection, based on the Woods-Saxon single-particle potential
was used for its microscopic part. All parameters used in the
present work, that have been fixed previously (see [4] and
references therein), were kept unchanged. In particular, the
pairing correlations were taken into account without any new
adjustments. We use the seniority interaction with the con-
stant matrix elements Gn(p) = (g0n(p) + g1n(p)I )/A, with I =
(N − Z )/A, g0n = 17.67 MeV, g1n = −13.11 MeV, g0p =
13.40 MeV, g1p = 44.89 MeV. The BCS equations were
solved in the space of the lowest N (for neutrons) and Z
(for protons) single-particle levels. For systems with an odd
number of protons, neutrons, or both, we used the blocking
method; the BCS equations were solved on a set of N −
1 (Z − 1) levels, after removing the blocked one. Other details
of the approach are also specified in [4,19].

To describe nuclear shapes we used a standard β

parametrization, which consists of the expansion of the nu-
clear radius vector in spherical harmonics:

R(ϑ, ϕ) = cR0

⎧⎨
⎩1 +

∞∑
λ=1

+λ∑
μ=−λ

βλμYλμ(ϑ, ϕ)

⎫⎬
⎭, (1)

where c is the volume-fixing factor depending on deformation
and R0 is the radius of a spherical nucleus. For large elonga-
tions this parametrization cannot be very efficient; however,
our tests and comparisons with other parametrizations, such
as the modified “funny hills” [20] or three quadratic surfaces
(e.g., [10]), indicate that it is still good and effective in the

region of the second barrier. One should realize that the
superdeformed and the second saddle shapes in actinides are
still rather compact. On the other hand, with an increasing
elongation the relative importance of different spherical har-
monics changes along the fission path. A dependence of the
potential energy at the ground state, of the saddle point, and of
the fission barrier on the high-rank multipolarity deformations
up to the order 8 was investigated in [21] (see Fig. 3 there).
The role of the higher multipolarity deformations was also
studied in [22]. For example, the deformation β6μ was taken
into account in [23]. Various saddle point shapes of heavy
and superheavy nuclei were shown in [24,25]. Based on these
studies, the searches for minima and the first and second
saddles were performed independently, by using different
deformation sets. This allowed us to reduce the computational
effort, making calculations feasible while still preserving the
reliability of the results. The shape parametrizations used
in different regions of potential energy surfaces (PESs) are
detailed below.

A. Ground states and second minima

For nuclear ground states (g.s.), based on our previous tests
and results [26], we confined our analysis to axially symmetric
shapes with expansion of the nuclear radius (1) truncated
at β80 :

R(ϑ, ϕ) = cR0{1 + β20Y20 + β30Y30 + β40Y40

+β50Y50 + β60Y60 + β70Y70

+β80Y80}, (2)

where here and in the following the angular dependence of
spherical harmonics is suppressed. In, this case, the energy
was minimized over seven degrees of freedom specified in
(2), by using the conjugate gradient method. To avoid falling
into local minima, the minimization was repeated dozens of
times for each nucleus, with randomly selected starting defor-
mations. For odd systems, the additional minimization over
configurations was performed at every step of the gradient
procedure.

Exactly the same procedure and deformation space (2)
were used to determine isomeric, superdeformed (SD) minima
and their excitation energies E∗ relative to the ground states.
Starting points did not have to be guessed as this minimization
was done after we had calculated the full energy grids (see
Sec. II C ). The gradient method is, however, more accurate
and therefore, in order to determine the location of these
minima as precisely as possible, we have applied it for the
relevant points read from the energy maps. As it turned
out, the obtained secondary minima are exclusively mass
symmetric: their final deformations β30, β50, β70 are equal
zero. In addition, we have also systematically checked that
the nonaxiality plays no role in the region of SD minima. This
result is in line with our previous conclusions in [6].

B. First saddle points

Much more demanding is to find all saddle points on
energy grids (hypercubes). It is well known that in the region
of the first barrier the triaxiality is very important [13,27–34].
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So, in order to find proper first saddle points we used a
five-dimensional deformation space, with the expansion of the
nuclear radius

R(ϑ, ϕ) = cR0

{
1 + β20Y20 + β22√

2
[Y22 + Y2−2]

+β40Y40 + β60Y60 + β80Y80

}
, (3)

where the quadrupole nonaxiality β22 is included explicitly.
For each nucleus we generated the five-dimensional grid of
deformations

β20 = 0.00 (0.05) 0.60,

β22 = 0.00 (0.05) 0.45,

β40 = −0.20 (0.05) 0.20,

β60 = −0.10 (0.05) 0.10,

β80 = −0.10 (0.05) 0.10 (4)

of 29 250 points (nuclear shapes); the numbers in the paren-
theses specify the grid steps. Additionally, for odd and odd-
odd nuclei, at each grid point we were looking for low-
lying configurations by blocking particles on levels from the
tenth below to the tenth above the Fermi level. Then, our
primary grid (4) was extended by fivefold interpolation in all
directions. Finally, we obtained the interpolated energy grid of
more than 50 million points. To find the first saddles on such
a giant grid we used the imaginary water flow method (see,
e.g., [4,10]). It is worth mentioning that for all those saddles
we carried out an additional test of their stability against mass
asymmetry. This was done by a three-dimensional energy
minimization with respect to β30, β50, and β70, around each
saddle. The result of this minimization indicates no effect
of the mass asymmetry at the first saddle point, similarly to
our previous study of superheavy nuclei [4]. This justifies the
omission of the mass-asymmetric shapes in the definition (3)
of the nuclear radius.

C. Second saddle points

To determine the second saddle point, we used the follow-
ing expansion of the nuclear radius:

R(ϑ, ϕ) = cR0{1 + β20Y20 + β30Y30 + β40Y40

+β50Y50 + β60Y60 + β70Y70

+β80Y80}, (5)

where additionally the dipole distortion β10, important for
large elongations with a sizable mass asymmetry [35,36], was
used. It was treated as a constraint: for each set of other
deformations the value of β10 was fixed by setting the center
of mass of the nucleus to zero (the origin of coordinates).
The imaginary water flow analysis was performed on the
seven-dimensional grid. The following values of deformation
parameters were used on the grid:

β20 = 0.15 (0.05) 1.50,

β30 = 0.00 (0.05) 0.45,

β40 = −0.15 (0.05) 0.35,

β50 = −0.20 (0.05) 0.25,

β60 = −0.15 (0.05) 0.15,

β70 = −0.15 (0.05) 0.15,

β80 = −0.10 (0.05) 0.10, (6)

with the steps given in the parentheses. These made a grid
of 7 546 000 points for a given nucleus. In this case, we could
afford a twofold interpolation. However, in performed tests we
found that it had only a minor effect on heights of the second
barriers. Therefore, we performed calculations on the original
grid. As previously, for odd systems, the minimization over
configurations (by blocking particles on levels from the tenth
below to the tenth above the Fermi level) was performed at
each point of the grid (6). Moreover, in selected nuclei we
checked that the quadrupole nonaxiality, omitted in (5), plays
a minor role at elongations close to the second saddle. We
reached a similar conclusion in [6] for even-even actinides.
Therefore, our analysis, confined here to only axially sym-
metric shapes, should still be reliable.

III. RESULTS

A. Ground state masses

The present model was used for a description of the exper-
imental g.s. masses of 252 nuclei with Z � 82 in [19]. This
was an extension to odd-A and odd-odd nuclei of the version
used previously for even-even heavy nuclei, whose parameters
were fixed by a mass fit in [37]. Although excitation energies
and fission barriers are calculated relative to g.s. energy, it
makes sense to see the quality of the mass fit. Differences
between measured [38] and calculated g.s. masses are shown
in Fig. 1; even-even, odd-even, even-odd, and odd-odd nuclei
are indicated by different colors and shapes. A quite pro-
nounced odd-even staggering in these differences signals a
different degree of accuracy in reproducing g.s. masses in
various groups of nuclei. The differences are the smallest for
even-even nuclei (this was the result of the original fit in [37]),
while the largest, up to 1.2 MeV, occur for odd-odd systems,
especially for Pa isotopes. One can also notice a systematic
underestimate of the experimental masses in lighter elements
that means that the calculated binding energies (meaning
their absolute values) are too large there. Thus, we have
overbinding in lighter elements, which is more pronounced
in odd and odd-odd nuclei

One could think that this even-odd difference in the mass
fit might be related to the blocking method, which leads to a
too strong reduction in the pairing gap. However, one should
notice that the binding in odd nuclei is overestimated more
than in even ones, so it has another cause. One can notice that
an increase in pairing strength for all nuclei would decrease
the staggering in the binding error between odd and even
ones (as a stronger pairing increases the effect of blocking on
energy) but would also deteriorate the relatively good mass fit
for even-even nuclei.

On the other hand, the blocking effect may cause too high
barriers in the odd systems, as a weaker pairing produces
higher fission barriers. To compensate for this one could
assume a slightly stronger pairing interaction for odd particle
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FIG. 1. Difference between experimental [38] and theoretical (our) ground state masses for 75 considered actinides in separate groups of
even-even, odd-even, even-odd, and odd-odd nuclei.

numbers. Such a test will be discussed in Sec. III F. Although
the effect is not negligible, to keep the consistency with our
previous papers, all other presented results were obtained with
the previously used parameters (including pairing).

B. Fission isomers

Fast fissioning states discovered in actinides by Polikanov
et al. [39] were soon afterwards interpreted as the secondary
minima at large elongation in corresponding nuclei [40,41].
Their existence disclosed a double-hump shape of fission
barriers. The lowest and excited nuclear states at second min-
imum are extremely short-lived, with characteristic half-lives
in the range of 10 ps to 10 ms, what makes their experimental
study very difficult. A more detailed structure of these states
(quadrupole moments, energy levels) is known only in a few
nuclei. Recently, quite extensive experimental results were
collected on many energy levels in the second minimum of
240Pu [42–44].

Deformation of shape isomers is a primary piece of infor-
mation for any description of nuclear structure in the second
well. The excitation energies of these minima have effects on
calculations of barrier transmission. Thus, it is interesting to
compare the experimental and calculated excitation energies,
E∗th

II = E th
II − E th

gs . This is also a test of the predictive power of
our model, as its parameters were not adjusted to these data.

This comparison is provided in Table I and shown in Fig. 2.
The experimental data [45] are concentrated in Pu, Am, and
Cm nuclei; only a few fission isomers are known in the
lighter and heavier actinides. One can also remark that the
isomer excitation energies are measured with widely varying
accuracy, many with uncertainties of 0.2–0.4 MeV.

The calculated second minima in most cases lie too low and
the spread of calculated points around experimental values
is quite large. The mean deviation of theoretical values from
experimental ones is 0.46 MeV while δrms = 0.53 MeV. The
largest difference of 1.1 MeV between our results and experi-
mental data occurs in 239Pu. However, when one discards the
largest discrepancies—too low E∗th

II in 239,240Pu and 240Am,
and too high E∗th

II in 245Pu and 246Am—the remaining calcu-
lated points lie within ≈0.5 MeV from the experimental ones.
If one additionally allows for experimental uncertainties, the
overall agreement looks better. Still, it is better than what
can be achieved by most of the various Skyrme density func-

tionals, for which differences between theoretical E∗th
II and

experimental E∗exp
II excitation energy of the second minimum

can be as high as 4 MeV [46].
Some qualitative features of the data are reproduced by

our calculations. For example, the obtained excitation of the
SD minimum in 233Th is smaller than in 236,238U, as it is in
experiment [45]. One can also notice that both experimental
and theoretical E∗

II are relatively low in the vicinity of N ≈
147 (unfortunately, there is only one data point for Bk: 245Bk).
Quadrupole deformations βSD

20 of SD minima are shown in
Fig. 3. One can see that this variable changes linearly with A.
Such a behavior of βSD

20 , together with a more steady position,
β20 ≈ 0.75–0.85, of the second saddle, is partially responsible
for a reduction of the outer barrier width with increasing A.
Although the effect seems small, it can significantly influence
tunnelling probabilities, i.e., fission half-lives.

C. First fission barrier heights

The presently calculated (black circles) and experimen-
tal, EXP1 [47] and EXP2 [48] (blue and red dots, respec-
tively), first fission barrier heights BI

f are shown in Fig. 4.
Their numerical values are given in Table I, including results
for 226,227,228Ac. The latter nuclei will be discussed later
(Sec. III E) in more detail.

The calculated barriers BI
f in Th nuclei are clearly too

low compared to the experimental estimates. The difference is
especially large in lighter isotopes. This discrepancy occurred
in many other theoretical studies, e.g., [7,10,17,33,49], and
will be discussed separately in Sec. III E. Better agreement
between calculated barriers and data occurs for protactinium
and uranium isotopes, for which our results lie quite close
to, and sometimes between, two sets of experimental points.
In neptunium and plutonium nuclei our barriers become
systematically higher than the empirical ones and they stay
so in heavier actinides. The largest model vs experimental
deviation can be observed in odd-odd americium isotopes,
with discrepancies up to 1.6 MeV. With Z , the discrepancy
between our results and data decreases in Cm, rises in Bk, and
becomes smaller again in Cf.

Statistical parameters describing the deviation of calcu-
lated values of BI

f from the experimental estimates can be
found in Table II. Due to the lack of the empirical data for Ac
isotopes, the comparison concerns nuclei from Th to Cf. In
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TABLE I. Ground state masses: calculated M th
gs and measured Mexp

gs [38]. Calculated first B(I )th
f and second B(II )th

f fission barrier heights
compared with two sets of empirical compilations: EXP1 [47] and EXP2 [48]. Excitation energy of the SD minimum, E∗th

II , relative to the
ground state; experimental values of E∗exp

II are taken from [45].

Nucleus

Z N A M th
gs Mexp

gs B(I )th
f B(I )EXP1

f B(I )EXP2
f E∗th

II E∗exp
II B(II )th

f B(II )EXP1
f B(II )EXP2

f

89 137 226 23.58 24.31 4.07 3.05 7.16 7.8
89 138 227 25.48 25.85 3.94 2.78 6.96 7.4
89 139 228 28.25 28.90 4.38 3.01 6.80 7.1
90 137 227 25.15 25.81 3.74 5.9 2.87 6.30 6.6
90 138 228 26.62 26.77 3.57 6.2 2.48 6.14 6.5
90 139 229 29.06 29.59 4.17 5.9 2.90 6.13 6.3
90 140 230 30.71 30.86 3.98 6.1 6.1 2.62 6.17 6.1 6.8
90 141 231 33.33 33.82 4.78 6.0 6.0 2.35 6.34 6.1 6.7
90 142 232 35.31 35.45 4.55 5.8 5.8 2.11 6.33 6.2 6.7
90 143 233 38.36 38.73 5.21 6.1 5.1 1.49 1.85(±0.25) 6.35 6.3 6.65
90 144 234 40.47 40.61 5.03 6.1 1.62 6.33 6.3
91 139 230 31.01 32.17 5.10 5.4 5.6 3.91 6.81 5.4 5.8
91 140 231 32.60 33.43 4.98 5.7 5.5 3.66 6.91 5.7 5.5
91 141 232 34.85 35.95 5.72 6.0 5.0 3.44 7.05 6.1 6.4
91 142 233 36.80 37.49 5.54 6.0 5.7 3.13 6.95 6.0 5.8
91 143 234 39.55 40.34 6.23 6.3 2.45 6.87 6.15
92 139 231 33.07 33.81 4.64 5.2 4.4 3.41 5.84 5.2 5.5
92 140 232 34.30 34.61 4.52 5.4 4.9 3.10 5.95 5.3 5.4
92 141 233 36.40 36.92 5.29 5.7 4.35 2.86 6.23 5.7 5.55
92 142 234 37.98 38.15 5.12 5.9 4.8 2.57 6.16 5.7 5.5
92 143 235 40.57 40.92 5.86 6.0 5.25 1.94 6.14 5.8 6.0
92 144 236 42.28 42.45 5.69 5.6 5.0 2.05 2.75(±0.01) 6.13 5.6 5.67
92 145 237 45.04 45.39 6.45 6.2 6.4 1.92 6.49 5.9 6.15
92 146 238 47.15 47.31 6.06 6.0 6.3 1.94 2.56 6.27 5.8 5.5
92 147 239 50.23 50.57 6.70 6.3 6.45 2.02 7.05 6.0 6.0
92 148 240 52.66 52.72 6.13 6.1 2.04 6.59 5.8
93 140 233 37.53 37.95 5.14 5.0 3.46 5.86 5.1
93 141 234 39.25 39.96 6.10 5.5 3.31 6.35 5.4
93 142 235 40.71 41.04 5.89 5.5 3.06 6.24 5.5
93 143 236 42.89 43.38 6.79 5.8 5.9 2.58 6.40 5.6 5.4
93 144 237 44.48 44.87 6.54 5.7 6.0 2.69 2.80(±0.40) 6.44 5.5 5.4
93 145 238 46.70 47.46 7.41 6.0 6.5 2.67 6.98 5.9 5.75
93 146 239 48.87 49.31 6.98 5.8 2.56 6.60 5.4
94 141 235 41.78 42.18 5.64 5.7 2.64 3.00(±0.20) 5.37 5.1
94 142 236 42.88 42.90 5.49 5.7 2.42 ≈3.00 5.32 4.5
94 143 237 44.95 45.09 6.26 5.6 5.10 1.92 2.60(±0.20) 5.48 5.4 5.15
94 144 238 46.16 46.16 6.24 5.9 5.6 2.04 ≈2.40 5.55 5.2 5.1
94 145 239 48.31 48.59 7.08 6.2 6.2 2.02 3.10(±0.20) 6.01 5.5 5.7
94 146 240 50.06 50.13 6.61 5.8 6.05 1.94 ≈2.80 5.71 5.3 5.15
94 147 241 52.66 52.96 7.08 6.2 6.15 1.94 ≈2.20 6.53 5.6 5.50
94 148 242 54.65 54.72 6.60 5.7 5.85 1.97 ≈2.20 6.09 5.3 5.05
94 149 243 57.66 57.76 6.70 5.9 6.05 2.17 1.70(±0.30) 6.80 5.5 5.45
94 150 244 59.80 59.81 6.37 5.5 5.7 2.14 6.35 5.2 4.85
94 151 245 62.88 63.11 6.58 5.5 5.85 2.81 2.00(±0.40) 7.13 5.4 5.25
94 152 246 65.43 65.40 6.02 5.4 2.44 6.50 5.3
95 144 239 49.42 49.39 6.94 6.3 6.00 2.19 2.50(±0.20) 5.44 4.9 5.40
95 145 240 51.17 51.51 7.72 6.4 6.10 2.19 3.00(±0.20) 6.00 5.2 6.00
95 146 241 52.81 52.94 7.46 6.2 6.00 2.10 ≈2.20 5.63 5.1 5.35
95 147 242 55.02 55.47 7.82 6.4 6.32 2.02 2.20(±0.08) 6.57 5.4 5.78
95 148 243 56.94 57.18 7.31 6.1 6.40 2.07 2.30(±0.20) 6.09 5.4 5.05
95 149 244 59.59 59.88 7.44 6.2 6.25 2.41 2.80(±0.40) 6.68 5.4 5.9
95 150 245 61.66 61.90 6.93 6.1 2.23 2.40(±0.40) 6.23 5.2
95 151 246 64.42 64.99 7.02 5.8 2.86 ≈2.00 6.98 5.0
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TABLE I. (Continued).

Nucleus

Z N A M th
gs Mexp

gs B(I )th
f B(I )EXP1

f B(I )EXP2
f E∗th

II E∗exp
II B(II )th

f B(II )EXP1
f B(II )EXP2

f

95 152 247 66.92 (67.15) 6.56 5.7 2.43 6.26 4.8
96 145 241 53.65 53.70 7.33 6.4 7.15 1.65 ≈2.30 5.14 4.3 5.5
96 146 242 54.88 54.81 6.96 6.0 6.65 1.64 1.90(±0.20) 4.85 4.0 5.0
96 147 243 56.99 57.18 7.34 6.5 6.33 1.57 1.90(±0.30) 5.76 4.6 5.4
96 148 244 58.51 58.45 6.91 6.1 6.18 1.66 ≈2.20 5.36 4.3 5.10
96 149 245 61.01 61.00 7.10 6.3 6.35 1.97 2.10(±0.30) 6.04 4.9 5.45
96 150 246 62.72 62.62 6.68 6.0 6.0 1.89 5.63 4.7 4.80
96 151 247 65.29 65.53 6.98 6.1 6.12 2.60 6.53 4.9 5.10
96 152 248 67.44 67.39 6.38 5.9 5.8 2.24 5.89 5.0 4.80
96 153 249 70.94 70.75 6.02 5.7 5.63 2.20 5.83 4.7 4.95
96 154 250 73.04 72.99 5.72 5.4 2.12 5.52 4.4
97 147 244 60.36 60.72 7.68 6.6 1.26 5.42 4.2
97 148 245 61.79 61.82 7.19 6.4 1.37 ≈1.56 5.07 4.2
97 149 246 63.88 63.97 7.40 6.5 1.85 5.78 4.7
97 150 247 65.51 65.49 7.02 6.5 1.66 5.38 4.6
97 151 248 67.66 (68.08) 7.49 6.3 2.31 6.22 4.8
97 152 249 69.77 69.85 6.77 6.1 1.98 5.53 4.5
97 153 250 72.92 72.95 6.35 6.1 1.69 5.04 4.1
98 152 250 71.28 71.17 6.67 5.6 1.83 5.14 3.8
98 153 251 74.35 74.13 6.25 6.2 1.63 4.58 3.9
98 154 252 76.08 76.03 5.97 5.3 1.58 4.21 3.5
98 155 253 79.41 79.30 5.61 5.4 1.06 3.59 3.5

summary, the average discrepancy and the root-mean-square
deviation do not exceed 1 MeV for both available sets of data.
The inclusion of odd nuclei into consideration, without any
tuning of parameters, worsens agreement with data compared
the case of only even-even nuclei.

Another observation concerns the odd-even staggering in
barriers which is definitely too strong compared to the data.
This effect was signalled in Sec. III A and related to a too
large decrease in the pairing gap due to blocking. Sill, to better
understand a source of this effect, in Sec. III F the role of
the pairing interaction will be additionally tested in selected
cases.

D. Second fission barrier heights

A comparison between experimental and calculated second
barrier heights BII

f is presented in Fig. 5 as well as in the last
columns of Table I. It should be emphasized that the two sets
of experimental data for second fission barriers differ more
than 0.5 MeV in Th and Cm; for example, in 242Cm this
difference amounts to 1 MeV. They also differ in a subtle way:
the Am data taken from [48] indicate a quite strong odd-even
staggering while those from [47] do not. In Cm nuclei the
odd-even staggering for both experimental data sets is already
similar.
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FIG. 2. Excitation energy of SD minimum; theory vs experiment.
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As one can see, our BII
f are almost always higher than

the experimental ones. In uranium and neptunium isotopes
the general trend of the experimental data seems to be re-
produced quite well. The largest discrepancy of 1.5–2 MeV

TABLE II. Statistical parameters of the comparison of our first
fission barrier heights B(I )th

f with experimental estimates taken from
[47,48]. The average discrepancy �̄ and the rms deviation δrms are in
MeV, and N is the number of considered nuclei.

Comparison for Z = 90–98

B(I )th
f vs EXP1 [47] B(I )th

f vs EXP2 [48]

N 71 45
�̄ 0.80 0.73
δrms 0.94 0.85

between calculated and experimental barriers occurs for odd-
odd americium isotopes (as for the first barriers) and for
odd-neutron Pu and Cm chains.

There are also discrepancies suggesting more involved
reasons. In Pu and Am isotopes the barriers increase with
N , while no such effect is observed in the data. A similar
increase was also produced in other micro-macro [10,33] and
nonrelativistic self-consistent calculations; see [14,15] and
[50] (in Fig. 3, for Sly6 interaction). This problem seems to
be absent in the relativistic mean-field (RMF) approach; see
[18] and [50] for NL-Z2 and NL3 models.
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FIG. 4. Calculated first fission-barrier heights HN (black circles) for different isotopic chains compared with two sets of experimental data:
EXP1 [47] (red dots) and EXP2 [48] (blue dots).
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FIG. 5. Calculated second fission-barrier heights HN (black circles) for different isotopic chains compared with two sets of experimental
data: EXP1 [47] (red dots) and EXP2 [48] (blue dots).

It is worth noting that for light actinides the odd-even
staggering in second barriers is practically absent. It becomes
more pronounced for the mass numbers greater than 238,
and is clearly visible in plutonium isotopes, as well as in the
heavier isotopic chains. Then, it disappears for the neutron
numbers greater than 152.

The mean discrepancy and rms deviation of the second
barriers BII

f can be found in Table III. Comparison was done
starting from Ac and ending at Cf nuclei. As for the first
barriers before, the statistical deviations between our second
fission barriers and data are less than 1 MeV. For the even-
even systems, the present barriers can be compared with our

TABLE III. The same as in Table II but for our second fission
barrier heights B(II )th

f .

Comparison for Z = 89–98

B(II )th
f vs EXP1 [47] B(II )th

f vs EXP2 [48]

N 71 48
�̄ 0.82 0.70
δrms 0.92 0.82

previous results [6]. Despite the fact that the currently used
method is slightly different in including the dipole deforma-
tion β10, the second barriers stay as they were.

E. Fission barriers of Ac and Th isotopes

As mentioned before, the calculated first fission barriers
(BI

f ) in light Th nuclei are significantly lower than the second
ones (BII

f ) and, at the same time, much smaller than the

experimental first barriers; see Table I. For example, in 228Th
the latter difference is greater than 2 MeV. Curiously, the
three experimental inner barriers in 227–229Th show a reversed
odd-even staggering, with the highest barrier in the even-even
isotope.

To study the intriguing puzzle of too-low first fission barri-
ers in light thorium nuclei, the so-called thorium anomaly, we
turned to comparisons of PESs obtained for Th with those for
slightly lighter Ac isotopes. According to the empirical data,
the outer fission barrier in (pre)actinides is much higher than
the first (inner) one [51] and this is probably why in many
experimental studies the single-humped barrier is considered
to be the correct one; cf .Table I for 226–228Ac, where the single
experimental barriers are close to our calculated second bar-
riers rather than the first. In Fig. 6, we show energy surfaces
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for 227Ac and 228Th obtained, as other PESs presented below,
from the seven-dimensional grid (6) by the energy mini-
mization over five not-displayed deformations (with dipole
deformation β10 fixed by the center of mass condition). The
ground state in 227Ac is calculated at β20 ≈ 0.20, the second
minimum at β20 ≈ 0.50, and a very shallow third minimum at
β20 ≈ 1.00, β30 ≈ 0.25. As can be seen in the map, the second
fission barrier is much higher and more elongated than the
rather unprominent first one. It should be also kept in mind
that the first barrier is still reduced by the triaxiality, not in-

cluded in Fig. 6. The PES for 228Th, also in Fig. 6, is very sim-
ilar to that of 227Ac, and both second barriers are close to the
experimental estimates. From the point of view of our results
it would be natural to interpret barriers in both nuclei in the
same manner. However, in the empirical interpretation there
is no first barrier in 227Ac, while the one in 228Th is nearly as
high (6.2 MeV) as the second one (6.5 MeV). Surely, it would
be good to understand the reason of such an abrupt change.

A sequence of four maps in Fig. 7 for odd-neutron thorium
isotopes illustrates the calculated evolution—i.e. heights and

7

7

7

7

6

6

6

6

6

5

5

5

5

5
5

4

44
4

4

4

3

3

3

3

3

3

2

2

2

2

1
1

0-1
-2

 0.2  0.4  0.6  0.8 1.0  1.2  1.4
β20

0.0

 0.1

 0.2

 0.3

 0.4

β 3
0

-11

-6

-1

 4

 9

 14

 19

 24

227Th

7

7

7

7

6

6

6

6

5

5

5

5

5

4

4

4

4

4

4
4

3

3

3

3
3

3

2

2

2

2

1 1

1

0-1-2

 0.2  0.4  0.6  0.8 1.0  1.2  1.4
β20

0.0

 0.1

 0.2

 0.3

 0.4

β 3
0

-11

-6

-1

 4

 9

 14

 19

 24

229Th

7

7

7

7

6

6

6

6

5

5

5

5

5

4

4

4

4
4

3

3 33

3

3

2

2 2 2

2

1 1

1

0
0

0

-1-2

 0.2  0.4  0.6  0.8 1.0  1.2  1.4
β20

0.0

 0.1

 0.2

 0.3

 0.4

β 3
0

-11

-6

-1

 4

 9

 14

 19

 24

231Th

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

4
4

3

3
33

3

3

2

2 2 2

2

1 1

1

0 0

0

-1

-1

-2

 0.2  0.4  0.6  0.8 1.0  1.2  1.4
β20

0.0

 0.1

 0.2

 0.3

 0.4

β 3
0

-11

-6

-1

 4

 9

 14

 19

 24

233Th

FIG. 7. The same as in Fig. 6 but for 227,229,231,233Th.
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FIG. 8. The same as in Fig. 6 but for 235U and 251Cf.

mutual positions—of the first and second fission saddles (the
PESs for even-even thorium isotopes show very similar pic-
ture). As one can see, with increasing neutron number, the first
fission barrier, corresponding to β20 ≈ 0.30–0.40, becomes
more pronounced while the initially shallow second minimum
becomes more deep. For 231,233Th, the second fission barrier
splits into two peaks divided by a shallow third minimum
about 0.5 MeV deep. For heavier actinides, the second barrier
becomes much shorter and the first one becomes dominant.
Two representative cases of such different energy landscapes
are shown in Fig. 8: in 235U, both calculated barrier heights
BI

f and BII
f are similar, while in 251Cf the second peak nearly

vanishes. This illustrates the evolution of both fission barriers
in actinides with increasing number of protons.

The calculated evolution of the barriers is not fully re-
flected in experimental evaluations. In particular, the curvature
of the fission barrier (at the saddle point), on which the
transmission coefficient depends exponentially, was assumed
constant for groups of nuclei in [48], with the following values
(in MeV):

nucleus

even-even odd odd-odd

inner hump 0.9-1.0 0.8 0.6
outer hump 0.6 0.5 0.4

A conceptual difficulty in comparing calculated and ex-
perimental fission barriers is the multidimesionality, i.e., a
multitude of deformation parameters involved in the fission
process. While inherent in the PES approach, it is omitted in
the empirical estimates which are based on one-dimensional
models. This can be clearly appreciated when viewing one of
the maps, e.g., for 235U in Fig. 8, where it may be seen that
the curvature at the saddle will depend on the direction it is
traversed; in this map it will be the choice of the direction in
the quadrupole-octupole (β20, β30) plane, but in general it will
involve all employed deformations. This relates to the nature
of fission as a dynamic process, while the picture used here is
static.

Finally, the occurrence of the third minimum and the third
barrier additionally complicates the description of fission. In
these calculations, the third barriers in 227–229Th are smaller
than 0.5 MeV, while for 231–233Th they are larger than 0.5 MeV
and visible in Fig. 7. One should note, however, that the third
barriers come out lower when one allows for an independent
change in β10 (i.e., when β10 is not fixed by the center-of-mass
condition as here), as in [35,36].

F. Effect of the pairing-strength increase

Here, we address the already mentioned overestimate of
the calculated fission barriers in odd-Z and/or odd-N systems
by a too large effect of blocking. We stress that we do not
consider an overall (i.e., through all nuclei) increase of the
pairing strengths. Certainly this would decrease all barriers,
bringing them into a better statistical agreement with the data,
but, as indicated in Sec. III A, at the cost of spoiling the fit to
atomic masses.

In order to evaluate the effect on the barriers in odd and
odd-odd nuclei we repeated the whole calculation for Am
isotopes with pairing 5% stronger for odd protons and odd
neutrons. The results—inner and outer barrier heights, marked
by orange circles—are shown in Fig. 9, together with the
previous ones (black circles) and experimental data. As one
can see, the calculated barriers are now lowered by up to
0.6 MeV, and are thus closer to the experimental estimates.
This change in Am nuclei leads to a decrease in statistical
deviations of our barriers from the two sets of experimental
data given in Tables II and III: by ≈0.05–0.07 MeV for the
first and by 0.02–0.04 MeV for the second barriers.

A larger increase in pairing strengths for odd-particle
number systems would lead to the inversion of the odd-even
staggering in barriers that is not seen in the data, and would
be counterintuitive in the face of longer fission half-lives
in odd-A nuclei [1]. So, the test indicates 0.5–0.6 MeV as
the maximal possible overestimate of barrier heights in odd
and odd-odd nuclei introduced by blocking. Quite similar
conclusion were obtained earlier in the region of superheavy
nuclei [4]. It may be mentioned that the applied increase in the
pairing strengths only moderately increases the discrepancy
between calculated and experimental g.s. masses: on average
by 0.1, up to 0.3 MeV.
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IV. DISCUSSION AND SUMMARY

We have systematically determined inner and outer fission
barrier heights for 75 actinides, within the range from ac-
tinium to californium, including odd-A and odd-odd systems,
for which experimental estimates were accessible. Obtained
barriers are in most cases higher than the experimental esti-
mates. For odd- and odd-odd nuclei, a (smaller) part of this
effect may be a consequence of the decrease in the pairing
gap due to blocking. Our tests performed for Am nuclei have
shown that blocking can rise barriers by up to 0.6 MeV, which
is consistent with our previous tests and results in the region
of superheavy nuclei.

A statistical comparison of our fission barrier heights
with available experimental estimates gives the average dis-
crepancy and the rms deviation not greater than 0.82 and
0.94 MeV, respectively. This concerns both first and second
fission barriers. Determined excitation energies of superde-
formed secondary minima reproduce quite well the general
trends of experimental data. The largest discrepancies do not
exceed 1.1 MeV.

The most direct comparison of our results with other
calculations is possible with [10] and [11]. The second fission
barriers calculated by Möller et al. [10] show only a slightly
larger statistical deviation from the experimental values than
ours (δrms = 1.07 and 0.90 MeV for sets I and II, respec-
tively); their first barriers are statistically more distant from
the evaluated data (δrms = 1.48 and 1.36 MeV for sets I and
II). On the other hand, the rms deviations obtained within
the HFB Skyrme model in [11] are astonishingly small, 0.67
and 0.65 MeV, for the “primary” and “secondary” barriers,
respectively. However, it is important to notice that the terms
“primary” and “secondary” refer in [11] to the highest and
second highest, not the first and second barriers [52]. The
comparison of results of [11] and ours is even more obscured
by the fact that different nuclei are included (52 with primary
barriers, but only part of them actinides, and a much smaller
number for secondary barriers; cf. Fig. 5 in [11]). The rel-
atively small rms deviation from the experimental data was
obtained in [11] thanks to the subtraction of a purely phe-
nomenological collective correction term. Effective mostly at
large deformations, it served exclusively to correct the Skyrme
BSk14 HFB fission barriers, without spoiling the mass fit too
much.

Concerning the results for even-even actinides obtained
by other authors, their agreement with the (smaller number
of) data seems to depend on corrections applied to the pure
mean-field results. Generally, the self-consistent nonrelativis-
tic models produce too large barriers if one defines them as the
energy difference between the saddle and the g.s. minimum.
They can be brought to a better agreement with experimental
estimates when additional corrections are applied, like the
subtraction of the collective rotational energy. A very careful
analysis of such corrections for SkM* interaction was given
in [13] and the obtained agreement with experimental barriers
illustrated for six actinide nuclei. The dependence of results
obtained with the Gogny force on the assumed corrections,
i.e., the way the barrier is interpreted, is well documented in
[14–16]. The barriers obtained in [15] with the D1M inter-
action for 14 nuclei are overestimated by 2–4 MeV. Second
barriers obtained in calculations with the D1S force [14] are
overestimated by 1–2 MeV for N � 144. The first barriers
were either too high when calculated in a more standard way,
or closer to the data when defined, rather arbitrarily, as the
energy difference between the 0+ state with the wave function
concentrated in the barrier region and the 0+ ground state.
In the recent study [16], the first and second barriers in 14
actinide nuclei were reproduced with the rms deviations of
0.52 and 0.45 MeV, respectively, when the collective energy
correction with adiabatic mass parameters was applied. It has
to be mentioned though that the triaxiality was included in a
rather crude way in this latter study. The relativistic mean-field
calculations with the NL3* interaction [17] reproduced 22
first barriers with the average deviation from experimental val-
ues of 0.76 MeV. An even better agreement with experimental
data of calculated 19 first and 15 second barriers was obtained
in the RMF model with the PC-PK1 interaction in [18].

One can notice that the overall increase in pairing strengths
would bring our calculated barriers closer on average (e.g.,
in the sense of rms deviation) to the experimental estimates.
However, it would deteriorate the agreement between the
calculated and experimental masses in actinides. Moreover,
the statistical improvement would be accompanied by local
deteriorations. This concerns most the of Pa and U isotopes,
where calculated first fission barriers would become too low
vs empirical estimates. Already large discrepancies in inner
barriers for Th isotopes would increase.
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It should be stressed that some discrepancies seem com-
mon to many models. It is the case of the Th anomaly. In
calculations, there is a gradual change in widths and heights
of inner and outer barriers with Z/N . In Th, inner barriers
gain prominence with N , while in experimental evaluations
high and wide inner barriers are assumed in all Th isotopes.
As we pointed out, in nearby Ac nuclei, calculated PESs
are similar to those in Th, while the inner barrier vanishes
from experimental evaluations. Such an abrupt change in
assumptions between Ac and Th seems mysterious.

The other example is an increase with N in the second
barriers in Pu and Am, resulting from many micro-macro
and nonrelativistic self-consistent calculations, but not seen
in data. It seems to point to a more general problem in models
or in our understanding.

There is also an intriguing question of third minima, which
in our calculations, if they appear at all, are rather shallow: in
most cases they do not exceed 0.5–0.6 MeV in depth. Again,
there were experimental evaluations claiming much deeper
third minima; see, e.g., [53,54].

Finally, it seems that while a moderate reduction in de-
viation of the calculated fission barriers from experimental
estimates is still possible in our and other models, it is not
obvious how to achieve it without spoiling other observables
one would also like to reproduce.
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