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In the present work, we examine the sensitivity of nuclear matrix elements (NMEs) for light neutrino-exchange
mechanism of neutrinoless double beta decay (0νββ) of 48Ca to the central, spin-orbit, and tensor components
of two-nucleon interaction. The NMEs are calculated in the nuclear shell-model framework in f p-model space
using frequently used GXPF1A interaction and a new effective interaction named GX1R of p f shell. The
decomposition of the shell-model two-nucleon interactions into their individual components is performed using
spin-tensor decomposition. The NMEs are calculated in closure approximation by using optimal value of the
closure energy. The results shows that the total NMEs calculated with the central component of the interactions
are of positive sign. By adding spin-orbit part to central part of the interactions, sign of the total NMEs gets
change, and in absolute value, NMEs decreases by about 15–18%. Sign change in total NMEs are again seen
by adding tensor part to the central+spin−orbit part of the interactions. Similar trends of sign change are also
observed for Fermi, Gamow-Teller, and tensor matrix elements. Thus we infer that SO and T part mostly cancel
the effects of each other in NMEs calculations. For both the interactions, the total NMEs calculated with the C
part is found to be 20% enhanced as compared to the NMEs calculated with the total interactions. With new
GX1R interaction, there is about 1–3% increments in the total NMEs as compared to NMEs with GXPF1A
interaction. This increments comes from the modifications of isospin T = 1 tensor force two-nucleon matrix
elements to bring the characteristic properties of tensor force into the GX1R interaction.
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I. INTRODUCTION

A long-standing fundamental problem of the particle
physics is to determine whether neutrinos are Majorana
fermion or Dirac fermion. The neutrinoless double beta decay
(0νββ) process is of a particular importance in this respect. If
this process is observed, then one can conclude that neutrinos
are Majorana fermions [1]. This process also puts some light
on the absolute mass of neutrino and neutrino mass hierarchy
[2,3], which has huge implications in the physics beyond
the standard model [1,4,5]. Various decay mechanisms such
as light neutrino-exchange mechanism [6,7], heavy neutrino-
exchange mechanism [8], left-right symmetric mechanism
[9,10], and supersymmetric particles exchange mechanism
[11,12] have been proposed for 0νββ. In general, the de-
cay rate in each mechanism is related to the nuclear matrix
elements (NMEs) and absolute neutrino mass. These NMEs
are calculated using theoretical nuclear many-body models
[13]. In literature, the nuclear models such as the quasiparticle
random phase approximation [8], the interacting shell model
[14–18], the interacting boson model [19,20], the generator
coordinate method [21], the energy density-functional theory
[21,22] and the projected Hartree-Fock Bogolibov model [23],
etc., have been used to calculate NMEs.

*shahariar.sarkar@iitrpr.ac.in

In the present work, NMEs for 48Ca are calculated for light
neutrino-exchange mechanism of 0νββ. The 0νββ process
for 48Ca is written as

48Ca → 48Ti + e− + e−. (1)

In Refs. [15–18], NMEs for the light neutrino-exchange
mechanism of 48Ca are calculated in the nuclear shell-model
framework. However, NMEs in those studies are calculated
using the total two-nucleon interaction. In recent years, the
contribution of individual components, i.e., central (C), spin-
orbit (SO), and tensor force (T), of shell-model two-nucleon
interaction in the single-particle energy gaps have been ex-
plored to understand the cause of shell evolution in neutron-
rich nuclei [24–28]. These studies, thus, motivate us to in-
vestigate the effects of individual components of two-nucleon
interaction on the NMEs of 0νββ.

The decomposition of effective shell-model interaction
into its C, SO, and T force components are performed using
spin-tensor decomposition (STD) [28–37]. The STD can be
applied only when the spin-orbital partners, j>(= l + 1/2)
and j<(= l − 1/2), associated with the same orbital quantum
number l is present in the model space. Except 48Ca, which
belongs to p f shell, most of the other candidates of 0νββ

belong to the higher-mass region, and the chosen model space
for them do not have spin-orbital partners. Therefore, the
present study for 48Ca is of great interest.
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In the present work, we examine the sensitivity of NMEs
of 48Ca to C, SO, and T components of GXPF1A interaction
[38,39] and a new interaction GX1R [40] of p f shell. NMEs
are calculated in the closure approximation by using the
optimal value of closure energies (〈E〉) in the denominator of
neutrino potential, which takes care of the effects of excitation
energy of a large number of states of the virtual intermediate
nucleus (48Sc in our case).

This paper is organized as follows. In Sec. II, the theo-
retical formalism to calculate NMEs for the light neutrino-
exchange mechanism of 0νββ is presented. The details of
the employed effective shell-model interactions and the spin
tensor-decomposition are given in Sec. III. The results and
discussion are presented in Sec. IV. The summary of this work
is given in Sec. V. The expression for the two-body matrix
elements and the form factors used in the calculations are
given in the Appendices.

II. NUCLEAR MATRIX ELEMENTS OF 0νββ

The decay rate for light neutrino-exchange mechanism of
0νββ can be written as [3,8]

[
T 0ν

1
2

]−1 = G0ν |M0ν |2
(

mββ

me

)2

, (2)

where G0ν is a well-known phase-space factor [41], M0ν is
the nuclear matrix element, and mββ is the effective Majorna
neutrino mass defined by the neutrino mass eigenvalues mk

and the neutrino mixing matrix elements Uek:

〈mββ〉 =
∣∣∣∣∣
∑

k

mkU
2
ek

∣∣∣∣∣. (3)

The nuclear matrix element M0ν can be expressed as the
sum of Gamow-Teller (M0ν

GT), Fermi (M0ν
F ), and tensor (M0ν

T )
matrix elements as [3]

M0ν = M0ν
GT −

(
gV

gA

)2

M0ν
F + M0ν

T , (4)

where gV and gA are the vector and axial-vector constant,
respectively. M0ν

GT, M0ν
F , and M0ν

T matrix elements of the scalar
two-body transition operator Oα

12 of 0νββ can be expressed
as the sum over the product of the two-body transition den-
sity (TBTD) and antisymmetric two-body matrix elements
(〈k′

1, k′
2, JT |τ−1τ−2Oα

12|k1, k2, JT 〉A) [17]:

M0ν
α = 〈 f |τ−1τ−2Oα

12|i〉 =
∑

J,k′
1�k′

2,k1�k2

TBTD( f , i, J )

×〈k′
1, k′

2, JT |τ−1τ−2Oα
12|k1, k2, JT 〉A, (5)

where α = (F, GT, T ), J is the coupled spin of two decay-
ing neutrons or two final created protons, τ− is the isospin
annihilation operator, A denotes that the two-body matrix
elements are obtained using antisymmetric two-nucleon wave
functions, and k stands for the set of spherical quantum
numbers (n; l; j). In our case, |i〉 is 0+ ground state (g.s.) of
the parent nucleus 48Ca, | f 〉 is the 0+ g.s. of the granddaughter
nucleus 48Ti, and k has the spherical quantum numbers for
0 f7/2, 0 f5/2, 1p3/2, and 1p1/2 orbitals.

The TBTD can be expressed as [17]

TBTD( f , i, J ) = 〈 f ||[A+(k′
1, k′

2, J ) ⊗ Ã(k1, k2, J )](0)||i〉, (6)

where

A+(k′
1, k′

2, J ) = [a+(k′
1) ⊗ a+(k′

2)]J
M√

1 + δk′
1k′

2

(7)

and

Ã(k1, k2, J ) = (−1)J−MA+(k1, k2, J,−M ) (8)

are the two-particle creation and annihilation operators of rank
J , respectively.

To evaluate TBTD, one needs a large number of two
nucleon transfer amplitudes (TNA). TNA are calculated with
large set of intermediate states |m〉 of the (n − 2) nucleons
system (46Ca in the present study), where n is number of
nucleons for the parent nucleus. TBTD in terms of TNA is
expressed as [17]

TBTD( f , i, J ) =
∑

m

TNA( f , m, k′
1, k′

2, Jm)

× TNA(i, m, k1, k2, Jm), (9)

where TNA are given by

TNA( f , m, k′
1, k′

2, Jm) = 〈 f ||A+(k′
1, k′

2, J )||m〉√
2J0 + 1

. (10)

Here Jm is the spin of the allowed states of 46Ca. J0 is spin of
|i〉 and | f 〉. Jm = J when J0 = 0 [17].

The two-body matrix elements (TBMEs) are calculated
with the following scalar two-particle transition operators of
0νββ containing spin and radial neutrino potential operators
[16]:

OGT
12 = τ1−τ2−(σ1.σ2)HGT(r),

OF
12 = τ1−τ2−HF (r),

OT
12 = τ1−τ2−S12HT (r), (11)

where S12 = 3(σ1.r̂)(σ2.r̂) − (σ1.σ2), r = r1 − r2, and r =
|r| is the internucleon distance of the decaying nucleons. To
calculate the TBMEs one needs the neutrino potential that
enters into the radial matrix 〈n′, l ′|Hα (r)|n, l〉. The neutrino
potential for light-neutrino exchange mechanism of 0νββ

considering the closure approximation is given by [16]

Hα (r) = 2R

π

∫ ∞

0

jp(qr)hα (q2)qdq

q + 〈E〉 , (12)

where jp(qr) is spherical Bessel function, p = 0 for M0ν
GT

and M0ν
F , and p = 2 for M0ν

T , q is the neutrino momentum
of Majorana neutrino, R is the radius of the parent nucleus,
〈E〉 is the closure energy, and hα (q2) is the form factors
that incorporates the effects of higher-order currents (HOC)
and finite nucleon size (FNS) [7]. Detailed expression for the
TBME is given in the Appendix A. Form factors used in the
calculation are given in the Appendix B.

The short-range nature of the two-nucleon interaction is
taken care by multiplying relative harmonic oscillator wave
function ψnl with a correlation function f (r) [15]:

ψnl (r) −→ [1 + f (r)]ψnl (r), (13)
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TABLE I. Parameters for the SRC parametrization of Eq. (14).

SRC type a b c

Miller-Spencer 1.10 0.68 1.00
CD-Bonn 1.52 1.88 0.46
AV18 1.59 1.45 0.92

where f (r) can be parametrized as [42]

f (r) = −cear2
(1 − br2). (14)

The parameters a, b, and c for Miller-Spencer, Charge-
Dependent Bonn (CD-Bonn), and Argonne V18 (AV18) type
short-range correlation (SRC) parametrization are given in
Table I [15].

After including SRC correlations, the radial matrix element
of Hα (r) is written as [15]∫ ∞

0
ψn′l ′ (r)Hα (r)ψnl (r)[1 + f (r)]2r2dr. (15)

III. EFFECTIVE INTERACTION AND SPIN-TENSOR
DECOMPOSITION

In the present work, we have considered two effective
shell-model interactions of p f shell, namely GXPF1A and
GX1R, for calculating NMEs. The GXPF1A has been widely
used to study the spectroscopic properties of 20 � Z � 28
nuclei. In the literature, this interaction has also been used to
calculate NMEs for 0νββ of 48Ca [15–17].

The GX1R is the newest interaction of the GX family
and has been recently derived by K. Jha et al. [40]. In the
derivation of GX1R interaction, all isospin T = 1 tensor force
two-nucleon matrix elements and the single-particle energy
of p3/2 orbital are modified. The modification in T = 1 two-
nucleon matrix elements is done in order to bring the system-
atic properties of the total angular momentum (J) averaged
tensor force matrix elements

V̄ T
j j′ (T ) =

∑
J (2J + 1) < j j′|V (T )| j j′ >JT∑

J (2J + 1)
, (16)

into the GX1R interaction. The properties of V̄ T
j j′ (T ) matrix

elements are as follows: V̄ T
j j′ (T ) is attractive for j< j′> and

j> j′< configurations,1 whereas it is repulsive for j> j′> and
j< j′< configurations [44–46].

In GXPF1A and its other modified versions, for example,
GXPF1B [47] and GX1B1 [40], the properties of V̄ T

j j′ (T ) are
missing for 7 of 10 [40,44–46]. This particular problem has
been ameliorated in the GX1R interaction using the spin-
tensor decomposition.

The GX1R has been tested for the level structure of 47−54Ca
isotopes; the evolution of E (2+

1 ) in Ca, Ti, Cr, Fe, and Ni
isotopes; and the effect of softness of 56Ni core in the level
structure of 55Co, 56Ni, and 57Ni. The overall description of
GX1R is reasonable for the above-mentioned nuclei.

1Here j>(= l + 1/2) and j<(= l − 1/2).

FIG. 1. Low-lying states of 46Ca, 48Ca, 48Ti. Theoretical calcula-
tions are performed with GXPF1A and GX1R interactions. Experi-
mental data are taken from Ref. [43].

The purpose of considering GX1R along with the GXPF1A
for the present work is to test the validity of the GX1R
interaction for calculating NMEs of 0νββ and to determine
how much change will come in NMEs when the tensor force
component of the two-nucleon interaction has its characteris-
tic properties.

In Fig. 1, the calculated and the experimental low-lying en-
ergy levels of 46Ca, 48Ca, and 48Ti are shown. The calculated
energy levels are obtained with both GXPF1A and GX1R
interactions. The results of both the interactions are found
to be nearly the same, although the group of levels in 46Ca
and 48Ca from 4 to 4.7 MeV predicted by GX1R are slightly
shifted toward lower energy. With respect to experimental
data, prediction of GX1R is also found to be satisfactory.

In the present study, we have employed spin-tensor de-
composition [28–37] to decompose GXPF1A and GX1R in-
teractions into their central (C), spin-orbit (SO), and tensor
(T) force components. In spin-tensor decomposition, the in-
teraction between two-nucleon is defined as the linear sum of
the scalar product of configuration space operator Q and spin
space operator S of rank k [30]:

V =
2∑

k=0

V (k) =
2∑

k=0

Qk · Sk, (17)

where rank k = 0, 1, and 2 represent central, spin-orbit, and
tensor force, respectively. Using the LS-coupled two-nucleon
wave functions, the matrix element for each V (k) can be
calculated from the matrix element of V [29]:

〈(ab), LS; J|V (k)|(cd ), L′S′; J〉 = (2k + 1)(−1)J

×
{

L S J
S′ L′ k

}∑
J ′

(−1)J ′
(2J ′ + 1)

{
L S J′
S′ L′ k

}

× 〈(ab), LS; J ′|V |(cd ), L′S′; J ′〉, (18)

where a refers to the set of quantum numbers (na, la).
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FIG. 2. Dependence of total closure and mixed NME for 0νββ (light neutrino-exchange mechanism) of 48Ca on average closure energy
〈E〉, calculated with GXPF1A interaction for different SRC parametrization.

IV. RESULTS AND DISCUSSION

We have calculated the TBTD in terms of TNA using
shell-model code NushellX@MSU [48]. The calculation of
the required TBMEs has been done using the program written
by us. We have considered the first 100 states of 46Ca for each
allowed spin-parity (Jπ ) to calculate TBTD. It is expected that
the first 100 states may give TBTD with good accuracy and
NMEs with almost constant value. A detailed description of
the variation of NMEs with the number of states of 46Ca is
given latter in this section.

For the closure approximation, we have used the optimal
value of the closure energy (〈E〉). At the optimal 〈E〉, the
NMEs calculated with the closure method and with the mixed
method, described in Refs. [16,49–51], have the same value.
The mixed method has fast NMEs convergence property,
and it is the combination of three different methods, namely
running nonclosure, running closure, and closure method.

In Ref. [16], the approximate value of the optimal 〈E〉 for
the light neutrino-exchange mechanism of 0νββ was reported
about 0.5 MeV for 48Ca. However, the exact value is given
in Fig. 3 of Ref. [49] where it is around 0.2 MeV. Value
of the optimal 〈E〉 given in Refs. [16,49] was for GXPF1A
interaction with CD-Bonn and AV18 SRC parametrizations.

For our calculations, we have extracted the optimal value
of 〈E〉 for both GXPF1A and GX1R interactions with dif-
ferent SRC parametrizations by examining the dependence
of closure and mixed NMEs of 48Ca with 〈E〉. The running

nonclosure and running closure part of the mixed method were
performed using the formalism outlined in Ref. [16]. In these
methods, the first 150 states of the intermediate nucleus (48Sc)
for each allowed spin-parity were considered to calculate the
one body transition densities. The vector constant gV = 1 and
the axial-vector constant gA = 1.27 were used. The closure
method part of the mixed method was performed using the
formalism discussed in the present article and in Ref. [17].
The first 100 states of the intermediate nucleus (46Ca) for each
allowed spin-parity were considered for TNA calculations.

The variation of the closure and the mixed method NMEs
of 48Ca with the closure energy 〈E〉 for different SRC
parametrizations is shown in Fig. 2 and Fig. 3. In these
figures, the results are obtained using GXPF1A and GX1R
interactions, respectively. It can be discerned from these fig-
ures that at optimal 〈E〉 (where the solid black line crosses
dashed red line), the NMEs calculated with mixed method and
closure method have the same value. In the case of GXPF1A
interaction, the optimal 〈E〉 are found to be 0.143 MeV
for FNS + HOC, 0.356 MeV for CD-Bonn, and 0.209 MeV
for AV18 type SRC parametrization. For GX1R interaction,
these values are found to be 0.171, 0.399, and 0.252 MeV,
respectively. The NMEs obtained at these optimal 〈E〉 are
given in Table II for both the interactions.

Figure 4 shows the dependency of closure NMEs on 〈E〉.
The NMEs are calculated for AV18-type SRC parametriza-
tion. It is found that NMEs decrease by about 10% for 〈E〉 = 0
to 10 MeV for both GXPF1A and GX1R interactions. A
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FIG. 3. Dependence of total closure and mixed NME for 0νββ (light neutrino-exchange mechanism) of 48Ca on average closure energy
〈E〉, calculated with GX1R interaction for different SRC parametrization.

similar dependency is also found in our calculations for other
SRC parametrizations.

It can also be noted from Fig. 2–4 that the NMEs decreases
by less than 1% when 〈E〉 = 0.5 MeV is used at the place of
optimal 〈E〉. Hence, for simplicity, in the rest of our calcu-
lations, we have used 〈E〉 = 0.5 MeV. This value of 〈E〉 was

TABLE II. NMEs for 0νββ (light neutrino-exchange mecha-
nism) of 48Ca, calculated in closure approximation using optimal
values of closure energy 〈E〉 with GXPF1A and GX1R interaction
for different SRC parametrization. Values of 〈E〉 are in MeV unit.

NME SRC 〈E〉 GXPF1A 〈E〉 GX1R

M0ν
F None 0.143 −0.216 0.171 −0.224

M0ν
F CD-Bonn 0.356 −0.233 0.399 −0.242

M0ν
F AV18 0.209 −0.213 0.252 −0.222

M0ν
GT None 0.143 0.778 0.171 0.792

M0ν
GT CD-Bonn 0.356 0.807 0.399 0.823

M0ν
GT AV18 0.209 0.743 0.252 0.756

M0ν
T None 0.143 −0.077 0.171 −0.074

M0ν
T CD-Bonn 0.356 −0.079 0.399 −0.076

M0ν
T AV18 0.209 −0.080 0.252 −0.077

M0ν None 0.143 0.834 0.171 0.857

M0ν CD-Bonn 0.356 0.872 0.399 0.896

M0ν AV18 0.209 0.795 0.252 0.817

also used in earlier calculations of 48Ca [16–18]. In the present
work, with this value of 〈E〉, we can coherently compare
the results for the different components of the GXPF1A and
GX1R interactions.

The quenching of axial-vector constant gA in 0νββ is an
important issue. By using a quenched value of gA = 1 or even
much less will have a great effect on NMEs and even greater
effects in predicted half-lives of 0νββ. But, at present, the
quenching of axial vector constant gA in 0νββ is still an

FIG. 4. Variation of NME for 0νββ (light neutrino-exchange
mechanism) of 48Ca with closure energy 〈E〉, calculated in closure
approximation with total GXPF1A and GX1R interaction for AV18
SRC parametrization.
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TABLE III. NMEs calculated with different parts (C, C+SO, and C+SO+T) of GXPF1A and GX1R interaction for 0νββ (light neutrino-
exchange mechanism) of 48Ca with different SRC parametrization. NMEs are calculated in closure approximation with closure energy 〈E〉 =
0.5 MeV.

GXPF1A GX1R

NME SRC C C+SO C+SO+T C C+SO C+SO+T

M0ν
F None −0.272 0.232 −0.215 −0.283 0.222 −0.224

M0ν
F Miller-Spencer −0.190 0.156 −0.144 −0.198 0.149 −0.150

M0ν
F CD-Bonn −0.293 0.250 −0.232 −0.304 0.240 −0.242

M0ν
F AV18 −0.270 0.229 −0.213 −0.281 0.220 −0.221

M0ν
GT None 0.915 −0.799 0.772 0.981 −0.775 0.787

M0ν
GT Miller-Spencer 0.647 −0.551 0.539 0.703 −0.538 0.546

M0ν
GT CD-Bonn 0.953 −0.834 0.805 1.021 −0.809 0.821

M0ν
GT AV18 0.877 −0.763 0.738 0.941 −0.741 0.752

M0ν
T None −0.082 0.071 −0.077 −0.080 0.079 −0.074

M0ν
T Miller-Spencer −0.083 0.072 −0.078 −0.082 0.081 −0.075

M0ν
T CD-Bonn −0.084 0.073 −0.079 −0.083 0.082 −0.076

M0ν
T AV18 −0.084 0.073 −0.079 −0.083 0.082 −0.077

M0ν None 1.002 −0.872 0.828 1.076 −0.834 0.852

M0ν Miller-Spencer 0.682 −0.575 0.550 0.744 −0.550 0.564

M0ν CD-Bonn 1.051 −0.916 0.869 1.126 −0.876 0.895

M0ν AV18 0.960 −0.832 0.791 1.032 −0.796 0.813

open research problem and there is no definitive quenched
value of gA. Hence, in the present calculations, we have used
bare value of gA. In literature different bare value of gA has
been used such as gA = 1.25 [6,15,52], 1.254 [8,16,17], 1.269
[50], and gA = 1.27 [18,53,54]. We have used bare gA = 1.27.
With modern bare gA = 1.27, NMEs decreased by less than
1% as compared to NMEs calculated with bare gA = 1.25.
Details of the critical issue of quenching of gA, its value,
and its implications in β, ββ, and 0νββ decays are given in
Refs. [13,54–56].

Now we examine the sensitivity of NMEs to the various
components (C, SO, and T) of two-nucleon interaction. We
have first calculated the NMEs with the C component of both
the effective interactions. Then we have calculated them after
adding the SO component to the C component. To evaluate
the effect of tensor force on NMEs, we have considered
the results of the total GXPF1A and GX1R interactions, since
C + SO + T is equal to the total two-nucleon interaction. The
NMEs have been calculated by incorporating the effects of
FNS, HOC, and SRC. Results for NMEs are summarized in
Table III.

For both GXPF1A and GX1R interactions, it is found that
the total NMEs calculated with the C part has a positive
value. The phase of these NMEs gets changed when they are
calculated with the C + SO part. About 15-18% decrement in
the absolute value of the NMEs is also found. This phase shift
is once again seen in NMEs when they are calculated with
the C + SO + T (total) part, although in magnitude, NMEs
changed by a very small amount. A similar trends of phase
shift of NMEs are also observed for Fermi, Gamow-Teller,
and tensor type NMEs. Therefore, it can be inferred that the
SO and T parts of the two-nucleon interactions negate the
effects of each other in NME calculations. For both the inter-

actions, the total NMEs calculated with the C part is found
to be 20% enhanced as compared to the NMEs calculated
with the total interactions. Further, in GXPF1A and GX1R
interaction, there is a little positive push (about 1-3%) in total
NMEs for all interaction parts of GX1R interaction. These
small changes are due to the different T = 1 two-nucleon
matrix elements of GX1R interaction.

We further decompose NMEs in terms of partial nuclear
matrix elements as a function of coupled spin-parity (Jπ ) of
two decaying neutrons or two created protons:

M0ν
α =

∑
J

M0ν
α (Jπ ), (19)

where one can define M0ν
α (Jπ ) using Eq. (5) as

M0ν
α (Jπ ) =

∑
k′

1�k′
2,k1�k2

TBTD( f , i, Jπ )

×〈k′
1, k′

2, Jπ T |τ−1τ−2Oα
12|k1, k2, Jπ T 〉A. (20)

It should be noted that jπ in the above equation also
represents the spin-parity of the states of intermediate nucleus
46Ca. The partial NMEs [M0ν

α (Jπ )] for each Jπ calculated for
AV18 SRC parametrization using C, C + SO, and the total
two-nucleon interaction are shown in Figs. 5–7, respectively.
These figures contain results of both the effective interactions.
The dominant contributions in NMEs mostly come from Jπ =
0+ and 2+ states. However, it comes with the opposite sign re-
sulting in reduction of total NMEs. It is important to mention
that in the dominant contribution of 0+ and 2+ states, the bulk
part comes from the first 0+ (ground state) and 2+ state of
46Ca. A small contribution in NMEs comes from Jπ = 4+ and
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FIG. 5. NMEs for different coupled Jπ of two initial neutrons
or two final protons, calculated with C part of GXPF1A and GX1R
interaction for AV18 SRC parametrization with closure energy 〈E〉 =
0.5 MeV.

6+ states. There is mostly negligible contributions of odd-J+
states to NMEs in comparison to even-J+ state. The pairing
effect is responsible for such a notable contribution of even-J+
states [17]. Similar patterns of dependency of NMEs with Jπ

are also found for other types of SRC parametrizations.
The variation of NMEs with the number of states of the

intermediate nucleus can be studied by defining the NMEs as:

M0ν
α (NC ) =

∑
Nm�NC

M0ν
α (m), (21)

where NC is the cutoff number of state of intermediate nucleus
46Ca (|m〉). One can define matrix element M0ν

α (m) using
Eq. (5) and Eq. (9) as

M0ν
α (m) =

∑
J,k′

1�k′
2,k1�k2

TNA( f , m, k′
1, k′

2, J )TNA(i, m, k1, k2, J )

×〈k′
1, k′

2, JT |τ−1τ−2Oα
12|k1, k2, JT 〉A. (22)

FIG. 6. NMEs for different coupled Jπ of two initial neutrons
or two final protons, calculated with C + SO part of the GXPF1A
and GX1R interaction for AV18 SRC parametrization with closure
energy 〈E〉 = 0.5 MeV.

FIG. 7. NMEs for different coupled Jπ of two initial neutrons
or two final protons, calculated with total (C + SO + T) GXPF1A
and GX1R interaction for AV18 SRC parametrization with closure
energy 〈E〉 = 0.5 MeV.

Figure 8 shows the variation of NMEs with the cutoff number
NC of the states of 46Ca. As an example, we have here
presented the results for NMEs with AV18 SRC parametriza-
tion. The results are obtained using GXPF1A and GX1R
interactions. It is found that the contribution in NMEs mainly
comes from the few initial low-lying states. To Nc = 10,
NMEs keep changing depending on the contribution of each
Jπ . However, NMEs become almost constant at sufficiently
large number of states. Thus, it connotes that NC = 50 could
be an optimum number to obtain a good TBTD and a constant
NME. A similar patterns of variation were also observed in
our calculations with C, C + SO, parts of GXPF1A and GX1R
interactions, and for other SRC parametarizations.

We have also presented the variations of NMEs with ex-
citation energy of the states of 46Ca. Now the NMEs can be
written as a function of cutoff excitation energy of 46Ca states:

M0ν
α (EC ) =

∑
Em�EC

M0ν
α (m), (23)

where EC is the cutoff excitation energy of 46Ca states. The
M0ν

α (m) is defined in Eq. (22).
Figure 9 shows the variation of NMEs with the cutoff

excitation energy (EC) of the states of 46Ca. Here we have
presented the results for the AV18 type SRC parametrization
case, obtained using both the effective interactions. It is found
from Fig. 9 that NMEs vary largely up to 10 MeV of exciation
energy of 46Ca, and after that, it starts attaining a constant
value. Thus, considering states of 46Ca up to EC = 15 MeV
is reasonable to obtain a good TBTD and a constant NMEs.
The NMEs are less sensitive to high excitation energy states
because of the large momentum of the Majorana neutrino
(∼100-200 MeV), which is sitting in the denominator of the
neutrino potential in Eq. (12).
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FIG. 8. Variation of NMEs for 0νββ of 48Ca with cutoff number of states (NC) of 46Ca. NMEs are calculated with total GX1R and GXPF1A
interaction for AV18 SRC parametrization with closure energy 〈E〉 = 0.5 MeV.

V. SUMMARY AND CONCLUSIONS

We have examined the sensitivity of NMEs for light
neutrino-exchange mechanism of 0νββ of 48Ca with C, SO,
and T components of the GXPF1A interaction and the GX1R,
a modified f p model-space interaction. All isospin T = 1
tensor force two-nucleon matrix elements and the single-
particle energy of p3/2 orbital were modified to bring the
characteristic properties of tensor force component into new
GX1R interaction.

The NMEs were calculated in closure approximation by
using the optimal value of closure energy (〈E〉). Optimal value
of 〈E〉 was extracted by examining the dependence of closure
and mixed NMEs with 〈E〉 for both the interactions with
different SRC parametrizations.

It was found that the total NMEs calculated with the C part
of both the interactions is of positive sign. On the addition of
SO part to C part, the sign of the total NMEs got changed,
and in absolute value NMEs reduced by about 15-18%. The
phase shift was also seen in NMEs, calculated by adding the
T part to the C + SO part of the interactions. Similar trends
of phase shift were observed for Fermi, Gamow-Teller, and
tensor matrix elements. Thus, we infer that SO and T parts
of the two-nucleon interaction mostly negate the effects of
each other in NMEs calculation. The total NMEs, calculated
with C part of the interactions were enhanced by about 20% as
compared to the NMEs with the total interactions. With new
GX1R interaction, about 1-3% increments in the total NMEs

were seen as compared to NMEs with GXPF1A interaction
for different SRC parametrization. These increments came
from the modifications of the isospin T = 1 tensor force
two-nucleon matrix elements of GX1R interaction to bring the
characteristic properties of tensor force into it.

NME for Jπ = 0+ and 2+ of two initial neutrons or two
final protons dominate the contributions to the total NME, and
they come with opposite sign reducing the total NMEs.

We have also presented the variation of NMEs with the
number of states and excitation energy of 46Ca, which is used
as an intermediate nucleus for calculating TBTD in terms of
TNA. It was found that taking first 50 states of 46Ca or states
whose excitation energy goes up to 15 MeV is enough to get
the accurate value of TBTD, thus a constant NMEs.
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APPENDIX A: TWO-BODY MATRIX ELEMENTS
OF LIGHT NEUTRINO-EXCHANGE 0νββ

One can write antisymmetric two-body matrix elements
for transition operator Oα

12 of 0νββ in nuclear shell
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FIG. 9. Variation of NMEs for 0νββ of 48Ca with cutoff excitation energy (EC) of states of 46Ca. NMEs are calculated with total GX1R
and GXPF1A interaction for AV18 SRC parametrization with closure energy 〈E〉 = 0.5 MeV.

model as

〈n′
1l ′

1 j′1, n′
2l ′

2 j′2 : JT |τ−1τ−2Oα
12|n1l1 j1, n2l2 j2 : JT 〉A

= 1√
(1 + δ j′1 j′2 )[(1 + δ j1 j2 )

(〈n′
1l ′

1 j′1, n′
2l ′

2 j′2 : JT |τ−1τ−2Oα
12|n1l1 j1, n2l2 j2 : JT 〉 − (−1) j1+ j2+J〈n′

1l ′
1 j′1, n′

2l ′
2 j′2 : JT |

× τ−1τ−2Oα
12|n2l2 j2, n1l1 j1 : JT 〉], (A1)

where

〈n′
1l ′

1 j′1, n′
2l ′

2 j′2 : J|Oα
12|n1l1 j1, n2l2 j2 : J〉

=
∑
S′,S

∑
λ′,λ

⎡
⎢⎣

l ′
1

1
2 j′1

l ′
2

1
2 j′2

λ′ S′ J

⎤
⎥⎦

⎡
⎢⎣

l1
1
2 j1

l2
1
2 j2

λ S J

⎤
⎥⎦ ∑

n′,l ′,N ′,L′

∑
n,l,N,L

∑
J

1√
2S + 1

1√
2J+1

U (L′, l ′, J, S′ : λ′J )

×U (L, l, J, S : λJ )〈n′, l ′, N ′, L′|n′
1, l ′

1, n′
2, l ′

2〉λ′

×〈n, l, N, L|n1, l1, n2, l2〉λ〈l ′, S′ : J ||Sα
12||l, S : J 〉〈n′, l ′|Hα (r)|n, l〉. (A2)

One can write in terms of 9 j symbol⎡
⎣l ′

1
1
2 j′1

l ′
2

1
2 j′2

λ′ S′ J

⎤
⎦ =

√
(2 j′1 + 1)(2 j′2 + 1)(2λ′ + 1)(2S′ + 1) ×

⎧⎨
⎩

l ′
1

1
2 j′1

l ′
2

1
2 j′2

λ′ S′ J

⎫⎬
⎭. (A3)

In terms of the 6 j symbol one can write

U (L′, l ′, J, S′ : λ′J ) = (−1)L′+l ′+S′+J
√

2λ′ + 1
√

2J + 1

{
L′ l ′ λ′
S′ J J

}
. (A4)

〈n′, l ′, N ′, L′|n′
1, l ′

1, n′
2, l ′

2〉λ′ is the harmonic oscillator bracket used to convert the radial integral of neutrino potential from
individual coordinate system of nucleons to relative and center of mass coordinate system of the nucleons.
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APPENDIX B: FORM FACTORS

Form factors that include the higher-order terms in the nucleon currents are given by [7,42]

hF (q2) = g2
V (q2), (B1)

hGT(q2) = g2
A(q2)

g2
A

[
1 − 2

3

q2

q2 + m2
π

+ 1

3

(
q2

q2 + π2

)2
]

+ 2

3

g2
M (q2)

g2
A

q2

4m2
p

, (B2)

hT (q2) = gA(q2)

g2
A

[
2

3

q2

q2 + m2
π

− 1

3

(
q2

q2 + m2
π

)2
]

+ 1

3

g2
M (q2)

g2
A

q2

4m2
p

. (B3)

The effects of FNS are included with gV (q)2, gA(q2), and gM (q2) form factors, which, in the dipole approximation, are given by
[15]

gV (q2) = gV(
1 + q2

M2
V

)2 , (B4)

gA(q2) = gA(
1 + q2

M2
A

)2 , (B5)

gM (q2) = (μp − μn)gV (q2). (B6)

μp − μn = 4.7, MV = 850 MeV, MA = 1086 MeV; mp and mπ are the mass of protons and pions.
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