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Background: The nuclear charge radii provide direct information for the nuclear structures. In recent years,
many pioneering researches have been devoted to the nuclear charge radii based on the Bayesian neural networks
(BNN) method.
Purpose: The neural networks always have complex structure. To analyze the data relationships clearly, a
statistical method is introduced to study the nuclear properties by combining the sophisticated nuclear models
with the naive Bayesian probability (NBP) classifier.
Method: In the framework of the NBP method, the predicted charge radii are interpreted as the most reasonable
expectations. The prior probabilities and the condition probabilities are computed by the experimental data and
the raw results of nuclear models. The posterior probabilities of expectations are updated by the Bayesian
formula. The predicted charge radii are regarded as the expectations with maximum probability. Moreover,
the abilities of global optimizations and extrapolations of the NBP method are analyzed to demonstrate the
availability of the NBP method.
Results: For the HFB model and the semiempirical formula, the accuracy of charge radii predictions improves
41% and 32% after NBP refinements, respectively. Calculations also illustrate that the NBP method has robust
extrapolating abilities, and the charge radii of unknown regions in the nuclear chart can be predicted by the NBP
method.
Conclusions: The NBP method contains the advantages of local relations and global descriptions, which can
provide fine-tuning for the theoretical results of sophisticated nuclear models. The method proposed in this
paper can also be used for other research of nuclear properties.
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I. INTRODUCTION

Nuclear charge radii RC is an essential quantity for the
nuclear property studies, which can reflect the charge density
distributions and the Coulomb potentials in nuclei [1,2]. The
accurately nuclear charge radii are significant prerequisites
in many theoretical studies [3–7]; they can also serve as
useful guides for many different experiments, such as electron
scattering, α decay, and nuclear reactions [8–10]. There are a
large number of experimental methods to measure the nuclear
charge radii, for instance, muonic atom x rays (μ−) [11], laser
spectroscopy [12], optical isotope shifts (OIS) [13], Kα x-ray
isotope shifts (KαIS) [14], and high energy elastic electron
scattering (e−) [15]. By these methods, more and more charge
radii for the nuclei far from the β-stability line are provided
[16].

With the experimental developments, many theoretical
works have also been processed to investigate the changing

*liujian@upc.edu.cn

rules of charge radii. There are mainly three ways to describe
the RC. The first is the Garvey-Kelson (GK) relations [17–19].
The charge radii of the unknown nuclei can be predicted
according to its five neighbors. However, the GK relations are
only a local effective method, and their extrapolating ability
is poor [20,21]. The second is the semiempirical formulas
from the “liquid-drop” model (LDM) [22,23]. From the LDM
model, we can obtain the relations between the nuclear charge
radii RC and mass number A: RC(A) = r0 A1/3. By further
introducing the influences of isospin, shell effects, and odd-
even staggering, these formulas are further developed in Refs.
[13,24,25]. These developed formulas work well in global
descriptions of charge radii. However, the semiempirical for-
mulas always have many fitting parameters, and cannot reveal
the inner nuclear interactions. The third is the microscopic
nuclear structure models, which are mainly constructed from
the nuclear effective interactions, and can give microscopic
physical descriptions on nuclear inner structure and nucleon
configurations [26–28]. As representatives of this method, the
Skyrme-Hartree-Fock-Bogoliubov model and the relativistic-
mean-field model can well describe the nuclear properties
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in nuclear chart both from the β-stability line to the drip-
line [29–32]. However, the root-mean-square (RMS) radii
deviations from the microscopic nuclear structure models are
a little larger, compared with other methods.

In the last few years, the Bayesian neural network (BNN)
method is proposed to study the nuclear properties [33–40].
Based on the BNN method, Piekarewicz and Nazarewicz
et al. obtained significant improvements on predictions of
nuclear mass [33], nuclear charge radii [34], and the drip-
line locations [35,36]. The artificial neural networks have
an amount of advantages in predictions of charge radii. For
example, the artificial neural networks are proved to be “the
universal approximators,” which could achieve certain desired
accuracy for any measurable function [41]. In addition, they
can be constructed by multiple different training algorithms,
and the fault tolerance abilities are impressive because of
the distributed memory [42]. In addition to the studies of
nuclear charge radii and nuclear mass, the BNN method was
widely applied to other aspects of nuclear physics, such as
the jet energy loss distributions in heavy-ion collisions [38],
the nuclear β-decay half-lives [39], the two-photon exchange
effects [43], and the proton radii [44]. Though without proper
supervision there are problems of the under-fitting and over-
fitting for the neural networks, many techniques have been
developed to solve these problems [45]. However, the artificial
neural networks always have complicated structures, which
makes it difficult to analyze the data structure and the inner
numerical relationship. To overcome these insufficiencies, a
developed method is introduced in this paper to study the
nuclear properties by combining the nuclear structure models
with the naive Bayesian probability (NBP) classifier. The NBP
method takes no unknown nodes or layers, which makes the
physical analysis of results brief and intuitive. In addition,
there are no parameters in the frameworks of the NBP method;
therefore, the problems of under-fitting and over-fitting are
also avoided.

In this paper, we construct the frameworks of the naive
Bayesian probability classifier, and systematically predict the
nuclear charge radii by the NBP method. The NBP method
implements the refinement of the theoretical models by turn-
ing it into a “classification” problem. Primarily, the raw resid-
uals δ(Z, N ) of charge radii are provided for each nucleus.
Then, these values are classified into different classification
intervals with a certain classification table, and calibrated as
the corresponding classification values δi. For the candidate
nuclei, the probabilities P(δi| Z, N ) of different classification
values δi are calculated by the NBP formula. The classifi-
cation value δi with the maximum probability P(δi| Z, N ) is
chosen as the estimated residual. Combining the raw results
of theoretical models and the predicted residuals of the NBP
method, the charge radii of target nuclei can be refined. Both
the global and local relations on the properties of different
nuclei are taken into account in the framework of the NBP
method. Therefore, compared with other local approaches, it
can be used to extrapolate to the unexplored regions of the
nuclear chart. For the global methods such as the nuclear
structure model and liquid-drip model, the applications of the
NBP method can also offer minor modifications on the final
results by including the necessary nuclear local relationships.

With the NBP method, the theoretical charge radii from
the HFB model and Sheng’s semiempirical formula calcu-
lations are refined for nuclei in the 2013 charge radii com-
pilation [16]. To analyze the extrapolating abilities of the
NBP method, The nuclear charge radii newly added in the
2013 compilation are predicted where the data in the 2004
charge radii compilation [14] are chosen as the learning set.
In addition, the refined RC of Ca and Bi isotopes are presented
to show the predicting abilities of the NBP method for the
odd-even staggering. The results show the robust description
abilities of the NBP method for the global optimizations and
extrapolations. Therefore, the NBP method can be regarded
as a general method to predict the nuclear charge radii. The
studies in this paper can also be applied to the researches of
nuclear mass, nuclear decay, and nuclear reactions.

This paper is organized in four parts: In Sec. II, the theoret-
ical frameworks of the HFB model and the NBP classifier are
presented. In Sec. III, the numerical results and discussions
are provided. Finally, in Sec. IV, a summary is given.

II. THEORETICAL FRAMEWORK

In this section, we construct the frameworks of the naive
Bayesian probability classifier, and present its formalism to
study the nuclear charge radii. The frameworks of the Skyrme-
Hartree-Fock-Bogoliubov model are also given, which is used
to calculate the raw residuals of charge radii.

A. The Skyrme-Hartree-Fock-Bogoliubov model

The Skyrme interaction was first proposed by T. H. R.
Skyrme in the late 1950s [46]. Further developed by Vau-
therin, Brink et al. in the 1970s, the nuclear Hamiltonian can
be written as
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In this equation, ρ, τ , J are the nuclear charge density, the
kinetic energy density, and the spin density, respectively. With
the Hamiltonian in Eq. (1), the Schrodinger equations can be
deduced and expressed as[

−∇ h̄2

2m∗(r)
∇ + U (r) + UCoul(r) + 1

i
W (r)(∇ × σ )

]
ϕi(r)

= εiϕi(r), (2)

where m∗(r), U (r), and W (r) are the effective nuclear mass,
the Skyrme potential, the Coulomb potential, and the spin-
orbit potential, respectively [47]. By solving the Schrodinger
equations Eq. (2) iteratively, the single-particle wave func-
tions ϕi can be obtained. The nuclear proton densities is

ρp(r) =
∑

i

ϕi(εi, r)2. (3)

Folding the charge distributions of single proton ρp(r), we can
obtain the nuclear charge density [48]:

ρc(r) =
∫

ρp(r′)ρ p(|r − r′|)dr′. (4)

With the charge distributions, the nuclear charge radii can be
calculated by

RC =
[∫ ∞

0
r2ρc(r)dr

]1/2

. (5)

B. The naive Bayesian probability method

The NBP classifier, rooted in Bayesian theorem, is usually
used to describe the relationship on the conditional proba-
bilities of random events A and B. Based on the Bayesian
theorem, the conditional probability can be decomposed as
[49]

P(Ai|B) = P(B| Ai )P(Ai )∑n
i=1 P(B| Ai )P(Ai )

, (6)

where the prior probabilities P(Ai ) are not affected by the
events B, and the conditional probabilities P(Ai| B) represent
the chance that events A happened under the assumption of
events B.

In this paper, the NBP classifier is used to refine the
residuals of nuclear charge radii. The residuals represent the
deviations between the theoretical results and experimental
data. Based on the numerical order of values, the raw residuals
δ(Z, N ) are classed into several observation intervals. For each
interval, a classification value δi is provided, and the residuals
δ(Z, N ) in each interval are calibrated as corresponding clas-
sification values δi . In Table I, we present an example for the
classification table, in which the residuals are divided into 10
intervals.

Based on the classification table in Table I, the residuals
δ(Z, N ) for certain nuclei with proton number Z and neu-
tron number N can be predicted by the NBP method. The
probabilities of 10 classification values δi in Table I can be
calculated by Eq. (6). The events Ai in Eq. (6) are defined as
the classification values δi . The events B in Eq. (6) are defined
as the proton number Z and the neutron number N . Assuming

TABLE I. An example of the classification
table with 10 intervals and corresponding clas-
sification values. For nuclei whose raw residuals
δ(Z, N ) = Rth − Rexp are in the intervals, the resid-
uals are calibrated as the corresponding classifica-
tion values δi.

Intervals (fm) δi(fm)

(−∞, −0.04) δ1 = −0.070
(−0.04, −0.03) δ2 = −0.035
(−0.03, −0.02) δ3 = −0.025
(−0.02, −0.01) δ4 = −0.015
(−0.01, 0.00) δ5 = −0.005
(0.00, 0.01) δ6 = 0.005
(0.01, 0.02) δ7 = 0.015
(0.02, 0.03) δ8 = 0.025
(0.03, 0.04) δ9 = 0.035
(0.04, +∞) δ10 = 0.070

that the events are independent of others, the naive Bayesian
probability formula can be rewritten as

P(δi| Z, N ) = P(δi )P(Z| δi )P(N | δi )

P(Z ) P(N )
. (7)

The prior probabilities P(δi ) are the occurrence frequency of
classification values δi . P(Z ) and P(N ) are the occurrence
frequency of features Z and N in the sample set, respectively.
The conditional probabilities P(Z| δi) and P(N | δi) represent
the occurrence frequency of features Z and N in the intervals
with the classification values δi. By comparing the posterior
probabilities P(δi| Z, N ) of 10 classification values δi, the
predicted residual for the nucleus (Z, N ) is regarded as the
expectation with maximum probability.

The HFB model is chosen as an example to illustrate the
applications of the NBP method. There are 896 nuclei with
the mass number A > 3 in the 2013 compilation [16], whose
experimental data are known. These theoretical nuclear charge
radii are calculated by the HFB model, and the raw residuals
δ(Z, N ) of these nuclei can be obtained. We refine the theo-
retical RC of 104Mo to show the calculation processes of the
NBP classifier. The experimental RC of 104Mo is 4.525 fm,
and the theoretical result from the HFB model is 4.446 fm.
The raw residual δ(Z, N ) is −0.079 fm. All the nuclei in
the 2013 compilation except 104Mo are chosen as the sample
set. According to the raw residuals δ(Z, N ), the nuclei in
the sample set are classed into 10 intervals in Table I. The
residuals of the charge radii in these intervals are calibrated
as corresponding classification values δi. With these data
in the sample set, the prior probabilities P(δi ), P(Z = 42),
P(N = 62), and the conditional probabilities P(Z = 42| δi ),
P(N = 62| δi ) are presented in Table II. The posterior prob-
abilities P(δi| Z = 42, N = 62) of 10 classification values δi

are calculated by Eq. (7), and the results are also shown in
Table II.

In Table II, one can see the classification value δ1 =
−0.070 fm has the maximum posterior probability P(−0.070
fm| 42, 62) = 0.844 in 10 different classification values δi.
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TABLE II. The posterior probabilities P(δi| Z = 42, N = 62) for 10 different classification values δi of 104Mo based on the Table I. The
895 nuclei with the mass number A > 3 in the 2013 compilation [16] except itself are chosen as the sample set. The prior probabilities P(δi ) ,
P(Z = 42), P(N = 62) and the corresponding conditional probabilities P(Z = 42| δi ), P(N = 62| δi ) are also provided in this table.

δi(fm) P(δi ) P(Z = 42) P(N = 62) P(Z = 42| δi ) P(N = 62| δi ) P(δi| Z = 42, N = 62)

−0.070 0.203 0.016 0.011 0.032 0.023 0.844
−0.035 0.078 0.016 0.011 0 0.029 0
−0.025 0.099 0.016 0.011 0.011 0.011 0.072
−0.015 0.100 0.016 0.011 0.022 0.011 0.142
−0.005 0.126 0.016 0.011 0 0.009 0
0.005 0.141 0.016 0.011 0.024 0.008 0.152
0.015 0.115 0.016 0.011 0.010 0 0
0.025 0.073 0.016 0.011 0.015 0 0
0.035 0.035 0.016 0.011 0 0 0
0.070 0.035 0.016 0.011 0 0 0

Therefore, we choose δ1 = −0.070 fm as its predicted resid-
ual. For 104Mo, the true residual δ(Z, N ) is −0.079 fm,
which has a large difference from the experimental data. The
predicted residual from the NBP method is very close to
the true residual. The refined RC is 4.516 fm for the HFB
model. Comparing with the raw result of the HFB model, the
accuracy of charge radii predictions improves 89%.

The results of Table II are obtained based on the clas-
sification intervals in Table I. In addition to Table I, other
classification tables can also be used to refine the charge radii.
During the calculations, we used 100 different classification
tables with different intervals for the predictions. The final
NBP predicted 〈RC〉 for the target nuclei are the average of all
the estimates that are generated from different classification
tables. The statistical uncertainty can also be quantified for
the predictions,

�RC =
√〈

R2
C

〉 − 〈RC〉2, (8)

where 〈R2
C〉 is evaluated following the same procedure de-

scribed before.

III. RESULTS

With the naive Bayesian probability method described in
Sec. II, the nuclear charge radii calculated by the microscopic
nuclear structure model and the semiempirical formula are
refined in this section. One hundred classification tables are
chosen for the predictions. We first discuss the properties of
global optimizations for the NBP method, where 896 nuclei
with mass number A > 3 in the 2013 compilation [16] are
chosen as the entire set. Next, the extrapolating abilities of the
NBP method are analyzed. In the last, the refined charge radii
of Ca and Bi isotopes are presented to show the predicting
abilities of the NBP method for the odd-even staggering.

A. Global optimization of the NBP method

In the 2013 compilation, there are 896 nuclei, which has
the experimental data of charge radii. These nuclei are chosen
as the entire set. The global deviations for the charge radii
between the theoretical results and experimental data can be

represented as standard deviation σrms:

σ 2
rms = 1

X

X∑
x=1

[
R exp

C (x) − R th
C (x)

]2
. (9)

1. The NBP refinements for the HFB predictions

With the Skyrme-Hartree-Fock-Bogoliubov theories, we
calculate the nuclear charge radii for the 896 nuclei in the
entire set, and obtain the raw residuals δ(Z, N ) for each
nucleus. In Table III, we present the standard deviation σpre

of charge radii from the HFB model. The theoretical results
from the HFB model are further refined by the NBP method.

For each target nucleus in the entire set, we select all the
nuclei except the target nucleus as the sample set. The residu-
als of nuclei in the sample set are calibrated as a corresponding
classification value δi for a certain classification table. The
prior probabilities P(Z ), P(N ), and P(δi ) and the conditional
probabilities P(Z| δi ), P(N | δi ) are calculated based on the
classification table. With these probabilities, the posterior
probabilities P(δi| Z, N ) for different classification values δi

are calculated by Eq. (7). The classification value δi with the
maximum posterior probability P(δi| Z, N ) is chosen as the
estimated residual of the HFB model for the target nucleus.
Following the same procedure, new estimated residuals for the
target nucleus can be obtained, if different classification tables
are used. During the calculations, 100 different classification
tables are used for the prediction. Averaging all the results,
the final predicted residual can be achieved. With the final

TABLE III. The standard deviations σpre(fm)
of RC obtained from different nuclear charge radii
models, and the standard deviations σpost(fm) after
the NBP refinements. All the 896 nuclei with A >

3 in the 2013 compilation [16] are chosen as the
entire set.

Models HFB Sheng

σpre 0.0409 0.0287
σpost 0.0239 0.0195
�σ/σpre 41% 32%
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FIG. 1. (a) The charge radii residuals δ(Z, N ) = Rth − Rexp from the experimental data as a function of mass number A. The gray squares
denote the raw results from the HFB calculations, and the blue dots denote the predicted residuals after the NBP refinements. (b) The same as
(a), but for the results from Sheng’s formula Eq. (10).

predicted residuals from the NBP method, the theoretical
results of HFB model can be refined.

In Fig. 1(a), we show the refined results of all nuclei. The
gray squares represent the raw residuals from the HFB model,
and the blue dots represent the predicted residuals after the
NBP refinements. From this figure one can see the accuracy of
charge radii predictions has noticeable improvements by the
NBP method, especially for the heavy nuclei. We calculate
the σpost of predicted RC after the NBP refinements, and the
results are presented in Table III. With the NBP method, the
accuracy of charge radii predictions form the HFB model
improves 41%.

2. The NBP refinements for the semiempirical formula predictions

The semiempirical formula is another common method to
describe the nuclear charge radii [24,25]. In this paper, the
semiempirical formula of Sheng et al. in Ref. [25]:

RC = r0

[
1 − a

(
N − Z

A

)
+ b

1

A
+ c

P

A

]
A1/3 (10)

is selected to discuss the abilities of global optimizations of
the NBP method, where r0 = 1.2320 fm, a = 0.1542, b =
1.3768, and c = 0.4286. The Casten factor P is defined as
Nn × Np/(Nn + Np), where Nn and Np are the valence protons
and valence neutrons, respectively [25]. The following magic
numbers are used to calculate the Casten factor P : ZM =
2, 6, 14, 28, 50, 82; NM = 2, 8, 14, 28, 50, 82, 126 [50,51]. In
Eq. (10), the theoretical RC of 896 nuclei in the entire set are
calculated, and the standard deviation σpre of charge radii from
Sheng’s formula is 0.0287 fm.

The NBP method is further applied to refine the results
of Sheng’s semiempirical formula. For each target nucleus in
the entire set, the sample set is also selected as all the nuclei
except itself. The residuals δ(Z, N ) from the semiempirical
formula of 896 nuclei are calibrated as different classification
values δi for certain classification tables. With Eq. (7), we
calculate the posterior probabilities P(δi|Z, N ) for the clas-
sification values δi by the prior probabilities P(Z), P(N ),
P(δi ) and the conditional probabilities P(Z| δi ), P(N | δi ). The
estimated residuals are chosen as the classification values δi

with the maximum posterior probability. Averaging all the
estimated residuals from different classification tables, the
final predicted residuals and the refined RC can be obtained.
For Sheng’s formula, the standard deviation of charge radii
after the NBP refinements is σpost = 0.0195 fm, which is also
presented in Table III. Comparing σpre and σpost from Sheng’s
formula, the accuracy of charge radii predictions improves
32% by applying the NBP method.

In Fig. 1(b), we also present the refined results for Sheng’s
semiempirical formula. The gray squares represent the raw
results from the Sheng’s formula, and the blue dots represent
the predicted residuals after the NBP refinements. Similar to
Fig. 1(a), there are also improvements for the accuracy of
charge radii predictions by applying the NBP method.

It should be mentioned that the NBP method cannot predict
the charge radii for all the nuclei. When the prior probability
P(Z ) or P(N ) is zero, the predicted residual cannot be given
(i.e., the proton number Z or neutron number N of target
nucleus is vacant in the sample set). There are 878 nuclei in
the entire set. For the HFB model and Sheng’s semiempirical
formula, we obtain 711 and 769 predicted results of charge
radii, respectively.

By applying to the raw results of charge radii from the
microscopic structure model and semiempirical formula, the
global optimizations of the NBP method have convincing
improvements, which can be seen in Table III and Fig. 1.
Although the NBP method is only a fine-tuning for the charge
radii, it could correct the defects even if the raw residuals are
large.

B. Extrapolating ability of NBP method

Extrapolations are always riskier than global optimiza-
tions. The properties of global optimizations of the NBP
method were discussed in the previous section. In this part,
the suitability of the NBP method is further analyzed by the
extrapolations to the unknown regions of the nuclear chart.
To show the extrapolating abilities of the NBP method, the
nuclei in the entire set are divided into the learning set and
validation set. In the 2004 compilation [14], there are 892
nuclei with mass number A > 3, which have the experimental
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TABLE IV. The standard deviations σpre(fm) of RC obtained from
different nuclear charge radii models, and the standard deviations
σpost(fm) after the NBP refinements. All the 896 nuclei with A > 3 in
the 2013 compilation [16] are chosen as the entire set, the 787 nuclei
with mass number A > 3 in the 2004 compilation [14] are chosen
as the learning set, and the remnant 109 nuclei in the entire set are
chosen as the validation set.

Learning set Validation set Entire set

Models HFB Sheng HFB Sheng HFB Sheng

σpre 0.0415 0.0294 0.0332 0.0244 0.0409 0.0287
σpost 0.0240 0.0200 0.0251 0.0196 0.0239 0.0195
�σ/σpre 42% 32% 24% 20% 41% 32%

data of charge radii. The 786 nuclei in the 2004 compilation
are chosen as the learning set, and the remnant 106 nuclei in
the entire set are chosen as the validation set. Some adjust-
ments are made that the nuclei 92Mo, 94−97Mo in the 2004
compilation are put into the validation set and the 90Y is put
into the learning set.

1. Extrapolations based on the HFB results

The extrapolation property of the NBP method is first
discussed based on the HFB results. With the HFB model,
we calculate the standard deviations σpre for the learning set
and validation set, and the results are presented in Table IV.
For the learning set, the raw predictions from the HFB model
generate σpre = 0.0415 fm; for the validation set, the raw
predictions from HFB model generate σpre = 0.0332 fm. This
means the HFB model has extrapolating ability, and is a global
method to describe the nuclear charge radii. By applying the
NBP method, the standard deviations of RC for the learning
set is σpost = 0.0234 fm, and the accuracy of charge radii
predictions improves 42%.

With the raw residuals from the HFB model in the learning
set, the residuals of charge radii in the validation set are
predicted by the NBP method. In Table IV, we present the
standard deviations for the predicted RC of validation set
σpost = 0.0251 fm, and the accuracy of charge radii predic-
tions improves 24%. By comparing the �σ/σpre of the learn-
ing set and the validation set, one can see the NBP method
has good extrapolating ability, and can be used to predict the
charge radii of unknown regions in the nuclear chart.

For the nuclei with raw residuals |δraw| > 0.05 fm in
the validation set, their refined residuals |δrefi| are presented
in Table V. The predicted charge radii RC with error bars
�Rrefi

C after the NBP refinement are also presented in this
table to compared with the experimental data. One can see
that there are significant improvements in the charge radii
predictions after the NBP refinements. This is because of the
local relations for nuclei with the same proton number Z or
neutron number N . The HFB model is constructed by the
mean field approximations, and the residual interactions of
nucleons are not included in the model [27]. However, in the
naive Bayesian formula Eq. (7), the inner relations of RC for
nuclei with the same Z or N are reflected by means of the

TABLE V. All nuclei in the validation set with the raw residuals
|δraw| > 0.05 fm from the HFB model, and the corresponding refined
residuals |δrefi| from the NBP method. The corresponding refined
charge radii RC together with the errors �Rrefi

C are also presented in
this table.

Z N |δraw| |δrefi| Rexpt
C Rrefi

C �Rrefi
C

38 39 0.050 0.020 4.257 4.277 0.004
42 60 0.066 0.023 4.491 4.468 0.018
42 62 0.079 0.053 4.525 4.472 0.008
42 66 0.074 0.037 4.561 4.524 0.015
52 64 0.051 0.050 4.709 4.659 0.003
70 99 0.064 0.006 5.277 5.283 0.005
70 105 0.060 0.010 5.313 5.323 0.004
72 99 0.062 0.008 5.304 5.312 0.004
84 132 0.053 0.035 5.636 5.601 0.002

statistical method. Therefore, the NBP method can be seen as
the combination of local relations and global descriptions.

2. Extrapolations based on the semiempirical formula’s results

The extrapolating ability of the NBP method is further
tested with the results of the semiempirical formula. With
Sheng’s formula in Eq. (10), the standard deviations σpre of
the learning set and validation set are also calculated to be
0.0294 fm and 0.0244 fm, respectively, and the results are
shown in Table IV. By comparing the σpre of the learning
set and the validation set from Sheng’s formula, one can
see that Sheng’s semiempirical formula can provide global
descriptions for the nuclear charge radii.

Based on the raw results of Sheng’s formula in the learning
set, the NBP method is further applied to predict the residuals
of the validation set. The standard deviations for the predicted
RC of the validation set are presented in Table IV. The
accuracy of the predicted charge radii in the validation set
improves 20% after the NBP refinements. By comparing the
�σ/σpre of the learning set and the validation set, it can be
seen that the NBP method has extrapolating ability, when
applied to the results of the semiempirical formula.

From Tables IV and V, it can be concluded that the NBP
method has good extrapolating abilities. Based on both the
advantages of the local relations and global descriptions, the
charge radii of unknown regions of the nuclear chart can be
predicted by the NBP method. There are also inadequacies
for the NBP extrapolations. For certain nuclei in the validation
set, their charge radii cannot be refined by the NBP method,
when the proton number Z or neutron number N is vacant in
the learning set. There are 109 nuclei in the validation set.
We obtain 71 refined charge radii for the HFB model, and 82
refined charge radii for the Sheng’s semiempirical formula.

C. The NBP refinements for the isotopes

The odd-even effect are common phenomena in many
nuclear properties, and the phenomena can also be observed
in nuclear charge radii and nuclear mass [25]. The interactions
between the last proton and the last neutron of nuclei lead
to the statistical odd-even features in nuclear properties [21].
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FIG. 2. (a) The theoretical and experimental charge radii RC for Ca isotopes. Predictions are displayed without error bars for the raw results
of the HFB model, and with error bars after the NBP refinements. (b) The same as (a), but for the predictions from Sheng’s semiempirical
formula.

After illustrating the global descriptions and extrapolating
abilities of the NBP method, the refined charge radii of Ca
and Bi isotopes are further displayed to reflect the predicting
abilities of the NBP method for the odd-even staggering. The
results of Ca isotopes are presented in Fig. 2, and reflect the
cases of even-even and odd-A nuclei; the results of Bi isotopes
are presented in Fig. 3 and reflect the cases of odd-A and
odd-odd nuclei.

The studies on the trend of charge radii RC of the Ca iso-
topic chain is a very interesting topic in nuclear physics, which
can reflect many underlying physics in the nuclear structure
[52]. The RC of 40Ca and 48Ca are also most identical, and
the odd-even effects are more evident for the Ca isotopes
between N = 20 to N = 28 compared with other observables
in the nuclear chart. For isotopes beyond N = 28, there is
a noticeable increase in charge radii. However, the results

from the mean-field models fail to describe these properties
of charge radii of Ca isotopes, which can be seen in Fig. 2
of this paper and Fig. 4 of Ref. [53]. Based on the results of
the HFB model the refined RC from the NBP method can well
reproduce the changing feathers of Ca isotopes, which can be
seen in Fig. 2(a). Not just the results from the HFB model,
the refinements on the semiempirical formla are provided in
Fig. 2(b), which also coincide with the experimental data.
The results in Fig. 2 show that the effects of the pairing
correlations and other nucleon-nucleon relations on charge
radii of Ca isotopes can be reflected in the NBP method.

In addition to the Ca isotopes, the charge radii RC of Bi
isotopes from the HFB model and Sheng’s semiempirical
formula are presented in Fig. 3. The refined charge radii
by the NBP method are also presented in these figures for
comparison. In Fig. 3(a), one can see for the HFB model,

FIG. 3. (a) The theoretical and experimental charge radii RC for Bi isotopes. Predictions are displayed without error bars for the raw results
of the HFB model, and with error bars after the NBP refinements. (b) The same as (a), but for the predictions from Sheng’s semiempirical
formula.
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the predicted accuracy of charge radii of the odd-A and
odd-odd Bi isotopes have definite improvements after NBP
refinements. Similar results are also displayed in Fig. 3(b) for
Sheng’s semiempirical formula, and the improvements for the
predicted accuracy of charge radii are also impressive.

Figures 2 and 3 reflect the essence of the NBP method.
The HFB model and the semiempirical formula can provide
robust global descriptions on the nuclear charge radii, and
these descriptions can be systematically improved by the NBP
method. That is from the local correlations of nuclear proper-
ties for the nuclei with the same Z or N . The odd-even features
of raw residuals in Figs. 2 and 3 reflect the interactions
between the last proton and last neutron in nuclei, which are
neglected in the HFB model and Sheng’s formula. From the
Bayesian formula, these odd-even features can be considered
by the statistical approach, which lead to reasonable results
in RC descriptions. The charge radii predictions in Figs. 2
and 3 have satisfactory improvements, and show the abilities
of the NBP method for the odd-even staggering. Therefore,
the unknown charge radii of isotopes can be predicted by the
NBP method.

IV. SUMMARY

The nuclear charge radii are an important quantity to study
the nuclear structure. There are many methods to describe the
nuclear charge radii, such as the microscopic nuclear structure
models and the semiempirical formulas. In the last few years,
many pioneering studies are carried out to analyze the nuclear
properties based on the Bayesian neural network method. To
better study the data structure and analyze the inner numerical
relationships, a developed method is proposed in this paper
by combining the nuclear structure models with the naive
Bayesian probability (NBP) classifier.

Several sets are chosen to test the reliabilities of the NBP
method, which are the entire set (896 nuclei in the 2013 com-
pilation), the learning set (787 nuclei in the 2004 compilation),
and the validation set (109 nuclei calibrated from 2004 to
2013). The properties of global optimizations for the NBP
method are discussed first. For the entire set, the standard
deviations are presented in Table III. The accuracy of charge
radii descriptions improves 41% and 32% for the HFB and
Sheng’s semiempirical formula, respectively. Secondly, the
extrapolating abilities of the NBP method are analyzed. The

standard deviations σpre of the learning set and validation set
are presented in Table IV, which are calculated from the raw
results of the HFB model and Sheng’s formula. With the NBP
method, the charge radii for the validation set are predicted by
the raw residuals of the learning set, and the corresponding
σpost are also presented in Table IV. One can see that the
NBP method has reliable extrapolating abilities by comparing
the �σ/σpre of the learning set and validation set. Finally,
we analyze the predicting abilities of the NBP method for
the isotopic chains. The changing feathers of the charge radii
for Ca and Bi isotopes can be well reproduced by the NBP
method.

The accuracy of charge radii predictions has impressive
improvements with the application of the NBP method, which
is because of the statistical relationship in the NBP method.
The nuclear model can fully describe the main changing
trends of charge radii, and the NBP method can offer nec-
essary fine-tuning. Based on the global descriptions, the local
statistical association of the nuclear properties with the same
proton number Z or neutron number N are taken into account
statistically in the framework of the NBP method. Combining
the global descriptions with the local correlations, the NBP
method shows reliable capacities in predicting the nuclear
charge radii for both the interpolation and extrapolation. It
should be noted that there are limitations for applying the
NBP method. Because the predictions are directly connected
with the experimental data, the RC of certain nuclei cannot be
estimated if the corresponding prior probabilities and condi-
tional probabilities are missing in the data sets. In the case
of interpolation, 769 results are obtained for 878 candidates,
and in the case of extrapolation, 82 results are obtained for
109 candidates. The NBP method developed in this paper can
also be used to study other nuclear properties, such as nuclear
mass, nuclear decay, and nuclear reactions.
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