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New approach for the wobbling motion in the even-odd isotopes 161,163,165,167Lu
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A new interpretation for the wobbling bands in the even-odd Lu isotopes is given within a particle-triaxial rotor
semiclassical formalism. While in the previous papers the bands TSD1, TSD2, TSD3, and TSD4 are viewed as
the ground, one, two, and three phonon wobbling bands, respectively, here the corresponding experimental results
are described as the ground band with spin equal to I = R + j, for R = 0, 2, 4, . . . (TSD1), the ground band with
I = R + j and R = 1, 3, 5, . . . (TSD2), the one phonon excitations of TSD2 (TSD3), with the odd proton moving
in the orbit j = i13/2, and the ground band of I = R + j, with R = 1, 3, 5, . . . and j = h9/2 (TSD4). The moments
of inertia (MoI) of the core for the first three bands are the same, and considered to be free parameters. Due to the
core polarization effect caused by the particle-core coupling, the MoI’s for TSD4 are different. The energies and
the electromagnetic transitions are quantitatively well described. Also, the phase diagram of the odd system is
drawn. In the parameter space, one indicates where the points associated with the fitted parameters are located,
which is the region where the transversal wobbling mode might be possible, as well as where the wobbling
motion is forbidden.
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I. INTRODUCTION

The wobbling motion consists in a precession of the total
angular momentum of a triaxial system combined with an
oscillation of its projection on the quantization axis around
a steady position. Bohr and Mottelson described the wobbling
motion within a triaxial rotor model for high spin states, where
the total angular momentum almost aligns to the principal
axis with the largest moment of inertia [1]. This pioneering
paper was followed by a fully microscopic description due
to Marshalek [2]. Since then a large volume of experimental
and theoretical results has been accumulated [3–23]. Also, the
concept of wobbling motion has been extended to even-odd
nuclei. Experimentally, the excited wobbling states in triaxial
strongly deformed (TSD) bands are known in several even-
odd nuclei like 161,163,165,167Lu, 167Ta [16,17], 135Pr [24–26],
and 187Au [27].

In a previous publication [22] we formulated a semi-
classical formalism as to describe the main features of the
wobbling motion for a particle-triaxial-rotor system, which
was successfully applied to 163Lu. The odd particle is a proton
in the j = i13/2 orbital. Subsequently, the method was applied
to 165,167Lu [23]. Therein, each state of the TSD1 band is
determined by a time dependent variational principle equation
under the restriction of small amplitudes. The solution leads
to a phonon operator which applied successively to the ground
states with the spin I = R + j and R = 0, 2, 4, . . ., gives rise
to the so called TSD2 band. Applying twice the phonon
operator on the TSD1 states, one obtains the TSD3 band. The
states of the TSD4 have negative parity and are obtained by
acting with three phonons, two of positive and one of negative

parity, on the TSD1 states. The negative parity wobbling
phonon corresponds to a j = h9/2 proton coupled to a triaxial
rotor. The core’s moments of inertia are the same across all
four TSD bands. The phonon operator increases the spin of a
state by one unit. Also, the electromagnetic properties of the
mentioned isotopes have been well described. The approach
is consistent with the experimental result claiming that it
provides evidence of multiple wobbling phonon states [13].

By contradistinction, here the states I of TSD2 band are
obtained variationally by coupling a proton from the single
particle orbital i13/2 to the triaxial core with the angular
momentum R equal to 1,3,5, …. The phonon operator defined
for each I is then applied to the TSD2 states which results
in generating the states of the TSD3 band. In the case of
163Lu there exists a fourth band called TSD4 of negative
parity. This is the collection of the ground states of I =
R + j with R = 0, 2, 4, . . . and j = h9/2. Note that TSD1 and
TSD2 are formed from ground states of two sets of different
angular momenta, but their energies accounts, however, for
the phonon energies due to the so called zero-point energy
term. Such an effect is also involved in the structure of the
wave function used to calculate the reduced electromagnetic
transition probabilities. Indeed, this is expanded in the first
order around the classical coordinates which make the energy
function minimum. The moments of inertia characterizing
the core of the first three TSD bands are the same, since
they use an unique particle-core interaction. For the TSD4
band the moments of inertia are modified due to the specific
particle-core coupling. To characterize the agreement between
our results and the corresponding data as well as the spe-
cific wobbling features of the considered bands, additional
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magnitudes are calculated: the alignment, the dynamic mo-
ment of inertia (MoI), the relative energies to a reference axial
symmetric rotor.

The above mentioned project is achieved according to the
following plan. In Sec. II we briefly present the main ingredi-
ents of the proposed formalism. The numerical analysis of our
calculations is given in Sec. III. The nuclear phases are defined
in the parameter space associated to the model Hamiltonian
within Sec. IV, where also a short comment on the transversal
wobbling is presented. In Sec. V one summarizes the main re-
sults of our calculations, and the final conclusions are drawn.

II. THE FORMALISM

We study an odd-mass system consisting of an even-even
core described by a triaxial rotor Hamiltonian Hrot and a single
j-shell proton moving in a quadrupole deformed mean-field:

Ĥsp = ε j + V

j( j + 1)

[
cos γ

(
3 j2

3 − j2
) −

√
3 sin γ

(
j2
1 − j2

2

)]
.

(1)

Here ε j is the single particle energy and γ , the deviation
from the axial symmetric picture. In terms of the total angular
momentum I(=R + j), and the angular momentum carried by
the odd particle, j, the rotor Hamiltonian is written as

Ĥrot =
∑

k=1,2,3

Ak (Îk − ĵk )2, (2)

where Ak are half of the reciprocal moments of inertia as-
sociated to the principal axes of the inertia ellipsoid, i.e.,
Ak = 1/(2Ik ), and considered as free parameters.

The eigenvalues of interest for Ĥ (=Ĥrot + Ĥsp) are ob-
tained through a time dependent variational principle equa-
tion. Thus, the total Hamiltonian Ĥ is dequantized through
the time dependent variational principle:

δ

∫ t

0
〈�I jM |Ĥ − i

∂

∂t ′ |�I jM〉dt ′ = 0, (3)

with the trial function chosen as

|�I j;M〉 = NezÎ−es ĵ− |IMI〉| j j〉, (4)

with Î− and ĵ− denoting the lowering operators for the in-
trinsic angular momenta I and j respectively, while N is the
normalization factor. |IMI〉 and | j j〉 are extremal states for
the operators Î2, Î3, and ĵ2, ĵ3, respectively. Obviously, in
Eq. (3) the unit-system, where h̄ = c = 1, has been used.
The efficiency of the semiclassical procedure was tested in
Refs. [22,23], showing that the resulting energies agree very
well with the exact eigenvalues of the model Hamiltonian.

The variables z and s are complex functions of time and
play the role of classical phase space coordinates describing
the motion of the core, and the odd particle, respectively:

z = ρeiϕ, s = f eiψ. (5)

Changing the variables ρ and f to r and t , respectively:

r = 2I

1 + ρ2
, 0 � r � 2I; t = 2 j

1 + f 2
, 0 � t � 2 j,

(6)
the classical equations of motion acquire the canonical form:

∂H
∂r

= •
ϕ,

∂H
∂ϕ

= − •
r,

∂H
∂t

=
•
ψ,

∂H
∂ψ

= − •
t, (7)

where H denotes the average of Ĥ with the trial function
|�I jM〉, and plays the role of the classical energy having the
expression:

H ≡ 〈�I jM |H |�I jM〉 = I

2
(A1 + A2) + A3I2 + 2I − 1

2I
r(2I − r)(A1 cos2 ϕ + A2 sin2 ϕ − A3) + j

2
(A1 + A2) + A3 j2

+ 2 j − 1

2 j
t (2 j − t )(A1 cos2 ψ + A2 sin2 ψ − A3) − 2

√
r(2I − r)t (2 j − t )(A1 cos ϕ cos ψ + A2 sin ϕ sin ψ )

+ A3[r(2 j − t ) + t (2I − r)] − 2A3I j + V
2 j − 1

j + 1

[
cos γ − t (2 j − t )

2 j2

√
3(

√
3 cos γ + sin γ cos 2ψ )

]
. (8)

H is minimal [HI,min( j)] in the point (ϕ, r; ψ, t ) = (0, I; 0, j), when A1 < A2 < A3. Linearizing the equations of motion around
the minimum point of H, one obtains a harmonic motion for the system, with the frequency given by the equation


4 + B
2 + C = 0, (9)

where the coefficients B and C have the expressions

−B = [(2I − 1)(A3 − A1) + 2 jA1][(2I − 1)(A2 − A1) + 2 jA1] + 8A2A3I j

+
[

(2 j−1)(A3−A1)+2IA1+V
2 j − 1

j( j + 1)

√
3(

√
3 cos γ + sin γ )

][
(2 j − 1)(A2 − A1) + 2IA1 + V

2 j − 1

j( j + 1)
2
√

3 sin γ

]
,

(10)
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C =
{

[(2I − 1)(A3 − A1) + 2 jA1]

[
(2 j − 1)(A3 − A1) + 2IA1 + V

2 j − 1

j( j + 1)

√
3(

√
3 cos γ + sin γ )

]
− 4I jA2

3

}

×
{

[(2I − 1)(A2 − A1) + 2 jA1]

[
(2 j − 1)(A2 − A1) + 2IA1 + V

2 j − 1

j( j + 1)
2
√

3 sin γ

]
− 4I jA2

2

}
. (11)

Under certain restrictions for MoI’s, the dispersion Eq. (9)
admits two real and positive solutions. Hereafter, these will
be denoted by 
I

1 and 
I
1′ for j = i13/2 and 
2 and 
2′

for j = h9/2. These energies are ordered as: 
I
1 < 
I

1′ and

I

2 < 
I
2′ . Energies of the states in the four bands are defined

as

ETSD1
I = ε13/2 + HI,min(13/2) + 1

2

(

I

1 + 
I
1′
)
,

I = 13/2, 17/2, 21/2, . . . . .

ETSD2
I = ε13/2 + HI,min(13/2) + 1

2

(

I

1 + 
I
1′
)
,

I = 27/2, 31/2, 35/2, . . . . .

ETSD3
I = ε13/2 + HI−1,min(13/2) + 1

2

(
3
I−1

1 + 
I−1
1′

)
,

I = 33/2, 37/2, 41/2, . . . . .

ETSD4
I = ε9/2 + HI,min(9/2) + 1

2

(

I

2 + 
I
2′
)
,

I = 47/2, 51/2, 55/2, . . . . . (12)

The excitation energies are obtained by subtracting ETSD1
13/2

from the above expressions.

III. NUMERICAL RESULTS

A. Parameters

From Eq. (12), one sees that the excitation energies depend
on the MoI’s, the strength of the particle-core interaction,
V , and the triaxial shape parameter γ . These are considered
as free parameters to be fixed by a fitting procedure. Fitting
the experimental data for the excitation energies, one obtains
the parameters mentioned above, with the results collected
in Table I. Aiming at appraising the quality of the fit, we
also mention the root-mean square (r.m.s.) values of results
deviation from the experimental excitation energies, and the
number of states belonging to the bands under consideration.
One may conclude that the energy description is fairly good.
To evidence the MoI dependence on the isotope mass number
A, data from Table I are visualized in Fig. 1, where a change of

the MoI’s ordering at A = 163 is noticed, which may suggest
a phase transition taking place at A = 163. It is worth noting
that the MoI’s order which is specific for 161Lu, is also valid
for 163Lu, but only for the band TSD4. As for the other bands,
the I2 and I3 ordering specific for 161Lu is changed for the
other nuclei. In fact this reflects the critical point dependence
on the excited band [28]. Note that for the bands TSD1,
TSD2, and TSD3, the excitation energies do not depend on
the single particle energies. On the contrary, the excitation
energies for the TSD4 states, in 163Lu, contain the constant
term ε9/2 − ε13/2 = −0.334 MeV.

The adopted option of fitting the MoI’s is naturally required
by the observation that the experiment indicates that they are
neither irrotational nor rigid but satisfy the relation I irr

1 <

I1 < I rig
1 . Note the MoI’s provided by the fitting procedure

take care of the particle-core interaction. In that respect the
fact that the maximal MoI is I1 does not necessarily imply
that the system motion is of longitudinal character. Indeed,
even though for the noninteracting core the ordering is I2 >

I1 > I3, as the microscopic studies show, the particle-core
interaction renormalizes the bare MoI’s which results in a
strong increasing of I1 (due to the alignment) and only a
moderate decreasing of I2 (caused by the pairing interaction),
ending with the dominance of the new I1, characterizing the
whole system [10]. Then, one can assert that the interaction
with the odd proton stabilizes the system into a large deformed
shape and moreover drives it to a longitudinal-like motion
where the maximal MoI is the normalized I1. This change in
the rotation regime is caused by both the angular momentum
alignment and the pairing interaction. The transition from a
transversal to a longitudinal wobbling motion is not abruptly
achieved, but only at a certain critical angular momentum Icr.
Note that the MoI’s were fixed such that the best agreement
with the corresponding experimental data is obtained for
energies of the whole spectrum and therefore no angular
momentum dependence can be inferred. Furthermore, the
study of the phase transition, transversal-longitudinal, cannot
be performed with the present formalism. However, due to
this feature one may say that the present formalism does
not exclude the possible transversal wobbling motion in the

TABLE I. The MoI’s, the strength of the single particle potential (V ), and the triaxial parameter (γ ) as provided by the adopted fitting
procedure.

Isotope j Bands I1[h̄2/MeV] I2[h̄2/MeV] I3[h̄2/MeV] V [MeV] γ [degrees] nr states r.m.s. [MeV]

161Lu 13/2 TSD1, TSD2 87.555 2.773 22.744 2.933 20 29 0.168
163Lu 13/2 TSD1, TSD2, TSD3 63.2 20 10 3.1 17 52 0.264

9/2 TSD4 67 34.5 50 0.7 17 10 0.057
165Lu 13/2 TSD1, TSD2, TSD3 77.295 16.184 4.399 1.673 20 42 0.125
167Lu 13/2 TSD1, TSD2 87.032 10.895 3.758 8.167 19.48 30 0.165
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FIG. 1. Results for the MoI’s are plotted as function of A. In the
case of 163Lu, one shows also the results for the band TSD4 using the
same but open symbols.

low lying spectrum where the alignment is small, but that
part of bands cannot be explored because the adopted fitting
procedure does not use any I dependence for MoI’s.

B. Energies

Once the parameters involved in the model Hamiltonian
are fixed, Eqs. (12) provide the excitation energies in the
considered TSD bands. Inspecting Figs. 2–5, where the cal-
culated energies are compared with the corresponding exper-
imental data, we may conclude that the energy description
is fairly good. At this stage we may ask ourselves how the
energies provided by our approach compare with the exact
eigenvalues of the model Hamiltonian. Such a comparison
has been already performed in a previous paper [23], where
the exact energies were obtained by diagonalizing the model
Hamiltonian within a particle-core basis. The result was that
the two sets of energies agree with each other quite well. This
confirms that the proposed formalism is appropriate not only
for simulating the data, but also provides a good approxima-
tion for the exact results. We notice that the least square fit
predicts that the maximal moment of inertia corresponds to
the one-axis, and therefore the system rotates around the short
axis. Moreover, the odd proton angular momentum is oriented
also along the short axis, and thereby the system motion is
of longitudinal wobbling character. The numerical values of
MoI’s are consistent with the angular momenta orientation
corresponding to the minimum point of H. In Ref. [25] one
states that a signature for a transversal wobbling motion is

FIG. 2. Calculated energies for the bands TSD1, TSD2 are com-
pared with the corresponding experimental data [16] for 161Lu.

FIG. 3. Calculated energies for the bands TSD1, TSD2, TSD3,
and TSD4 are compared with the corresponding experimental data
[12,13] for 163Lu.

the decreasing behavior of the wobbling energy with the spin,
and moreover that the Lu isotopes would belong to such
a category of wobblers. In this context using the standard
definition, the wobbling energy for the one phonon band, i.e.,
the TSD3, was plotted in Fig. 6 as function of the angular
momentum. As seen from there, the wobbling frequency is
slightly increasing with spin, as predicted by our approach.
Indeed, the experimental wobbling energy increases from 144
to 170 keV when the spin goes from 33/2 to 77/2, and finally
decreases for the last two states, with spins 81/2 and 85/2, to
143 keV. However, the calculated wobbling energy increases
faster with angular momentum, from 331 keV, at spin 33/2,
up to 570 keV, for spin 85/2. The effect is more pronounced
in 165Lu, where the increment in the experimental curve is
about 100 keV. The agreement between the wobbling energy
behavior given by our calculations, and the corresponding
experimental data is to be considered as a specific feature of
the present approach. Actually, this result is consistent with
the microscopic study of Ref. [10].

FIG. 4. Calculated energies for the bands TSD1, TSD2, and
TSD3 are compared with the corresponding experimental data [6]
for 165Lu.
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FIG. 5. Calculated energies for the bands TSD1, TSD2, and
TSD3 are compared with the corresponding experimental data [7]
for 167Lu.

C. Alignment

The alignment in the TSD bands is defined by subtracting
from the angular momentum a reference value Iref = J0ω +
J1ω

3, with the coefficients J0 and J1 obtained by a least
square procedure fit. Calculation results are compared with
the corresponding experimental data in Figs. 7–10 for the
four isotopes of Lu. The linear term in ω involved in the
expression of Iref corresponds to a spherical symmetry, while
the second term is determined by the axial symmetry. Thus,
the alignment gives a measure of triaxiality effect on the
angular momentum.

From Figs. 7–10 one remarks a quite good agreement be-
tween the theoretical results and experimental data. Only for
163Lu we notice discrepancies in the region of large rotational
frequencies. For a large interval of h̄ω the alignment shows
a linear increasing behavior, while for very high frequencies
an alignment saturation tendency may be observed, which
results in a forward and then a slight bending down for the
experimental data and results, respectively. In the case of
163Lu the slope of the linear part is small and the bending of
the theoretical curve induces deviations from the experimental
one. Accordingly, the angular momentum behavior as func-
tion of rotational frequency is similar to that of the reference
function but adding some corrections specific to the three
mentioned regions: (a) a linear term in h̄ω in the first part;
(b) a constant term, in the second region; and (c) a linear term
of negative slope in the sector, where one observes a down
bending. The fact that the curves associated to different TSD
bands are close to each other reflects their wobbling character.
In a previous publication the alignment [23] for the bands of
165Lu and 167Lu where plotted in Figs. 7 and 14, respectively.

FIG. 6. Wobbling energies, EWob = E1(I ) − 0.5[E0(I + 1) +
E0(I − 1)], with E1 and E0 defined as excitation energies from TSD3
and TSD2 band, respectively. Experimental data are taken from
Ref. [12] for 163Lu and from Ref. [6] for 165Lu.

FIG. 7. Results for the aligned angular momenta, ix , relative to
a reference Iref = J0ω + J1ω

3 with J0 = 30 h̄2 MeV−1 and J1 =
40 h̄4 MeV−3 are compared with the corresponding experimental data
[16].

Results were obtained using for TSD2 and TSD3 one and
two wobbling phonon states built on top of the states from
TSD1. Comparing the results of Ref. [23] with those from the
present paper given in Figs. 9 and 10, respectively, one notes
an improvement of the agreement with the data in favor of the
present approach.

D. Reference energy

A similar analysis is performed also for the excitation
energy relative to a spherical rigid rotor with an effective
moment of inertia, as function of the angular momentum. This
is shown in Figs. 11–14 for all TSD bands in the four even-
odd isotopes of Lu. The reference energy has the expression
aI (I + 1), where a is fixed by fitting the experimental energies
through a least square procedure. Obviously, the value of a
may differ from one isotope to another, and is specified for

FIG. 8. Results for the aligned angular momenta, ix , relative to
a reference Iref = J0ω + J1ω

3 with J0 = 30 h̄2 MeV−1 and J1 =
40 h̄4 MeV−3, in 163Lu, are compared with the corresponding experi-
mental data [12,13].
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FIG. 9. Results for the aligned angular momenta, ix , relative to
a reference Iref = J0ω + J1ω

3, with J0 = 30 h̄2 MeV−1 and J1 =
40 h̄4 MeV−3, are compared with the corresponding experimental
data [6].

each of the cases. The mentioned figure indicate that the
deviation of the excitation energies from the reference values
is a decreasing function of the angular momentum. This fea-
ture suggests that the effect of triaxiality is diminishing with
angular momentum. In Fig. 11, although the energy follows
the general trend, it is smaller than the reference value. The
general pattern is obtained by amending the relative energy
by an amount of about 2.5 MeV. Except for the band TSD3
in 163Lu, the experimental and theoretical relative energies
agree with each other. It is worth mentioning the fact that the
experimental and theoretical curves associated to the TSD4
band in 163Lu and the TSD3 band in 165Lu band respectively,
are almost identical. As in the alignment case, the triaxial
features are diminished at large angular momentum and the
system tends to rotate around the principal axis with largest
MoI. From Figs. 13 and 14 of this paper and Figs. 10 and 14
from Ref. [23] one remarks on a better description provided
by the present formalism for 165,167Lu.

E. The dynamic moment of inertia

The dynamic MoI is a magnitude sensitive to the rotation
frequency variation. Its behavior is shown in Figs. 15–18
for both theoretical and experimental TSD bands, in all four

FIG. 10. Results for the aligned angular momenta, ix , relative to
a reference Iref = J0ω + J1ω

3, with J0 = 30 h̄2 MeV−1 and J1 =
40 h̄4 MeV−3, are compared with the corresponding experimental
data [7].

FIG. 11. Theoretical and experimental excitation energies for
TSD1 in 161Lu normalized to the energy of a rigid rotor with an
effective moment of inertia, i.e., EREF = 0.0075I (I + 1)(MeV), are
plotted as function of the angular momentum.

considered isotopes. While in the extreme limits of the ω

interval, the experimental dynamic moment of inertia depends
on the energy spacings, inducing a staggering or a sharp
increase, in the complementary interval this is almost constant
for all three bands. In 161Lu, the sharp increase of the dynamic
moment of inertia is caused by the alignment of the odd-
proton angular momentum while for the heavier isotopes the
staggering, seen in low spin part of the spectrum, reflects
an interaction with the states from the neighboring normal
deformed bands. Also the strong variation seen for large
frequency might be also attributed to the alignment of the i13/2

proton. However, the theoretical dynamic moment of inertia is
a constant function of ω, which reflects a linear dependence of
ω on the angular momentum I, and, moreover, a similar slope
for this dependence in the three bands. Concluding, apart from
the staggering of a few states placed at the beginning and at
the end of the ω interval, the results of our calculations agree
with the experimental data. The agreement quality is better
than that presented in Ref. [23] for 165,167Lu (see Figs. 17 and
18 from here and Figs. 8 and 14 from Ref. [23]) by a different
approach.

F. Electromagnetic transitions

To calculate the quadrupole electric transition probabilities
we need the expression of the wave-functions describing the

FIG. 12. The same as described in the caption of Fig. 11 but for
the bands TSD1, TSD2, TSD3, and TSD4 of 163Lu.
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FIG. 13. The same as described in the caption of Fig. 11 but for
165Lu.

states involved in the given transition and the quadrupole
transition operator. The available experimental data concern
the states of TSD1 and TSD2. As we saw before, the level
energies from these bands account for the wobbling motion
through the zero-point energy. Therefore, the wave function
is considered to be the one corresponding to the classical
minimum energy, corrected by the first order expansion term,
with the coordinates deviations from the minimum quantized.
Thus, one arrived at the following wave function:

�
(1)
I jM = NI j

∑
K,


CIKCj
|IMK〉| j
〉

×
{

1 + i√
2

[(
K

I
k + I − K

k

)
a†

+
(




j
k′ + j − 


k′

)
b†

]}
|0〉I , (13)

with NI j standing for the normalization factor, and |0〉I for
the vacuum state of the bosons a† and b† determined by the
classical coordinates ϕ, ψ and the corresponding conjugate
momenta r and t through the canonical parameters k and k′,
which are analytically expressed in Appendix A. Expansion
coefficients of the trial function corresponding to the mini-
mum point, in terms of the normalized Wigner function, CIK ,
were analytically expressed in Ref. [23]:

CIK = 1

2I

(
2I

I − K

)1/2

, Cj
 = 1

2 j

(
2 j

j − 


)1/2

. (14)

The electric quadrupole transition operator is defined by

M(E2, μ) = [
Q0D2

μ0−Q2
(
D2

μ2+D2
μ−2

)]+e
2∑

ν=−2

D2
μνY2νr2,

(15)
with Q0 and Q2 taken as free parameters which are to be fixed
by fitting two intraband transitions for TSD1 and TSD2. The
results are shown in Fig. 19, where one remarks on the change

FIG. 14. The same as described in the caption of Fig. 11 but for
the bands TSD1 and TSD2 of 167Lu.

FIG. 15. Results for the dynamic MoI’s in the bands TSD1,
TSD2 of 161Lu are compared with the corresponding experimental
data taken from Ref. [16].

of the Q0 and −Q2 ordering at A = 163. Again this might be a
signal for a phase transition. Note that MoI’s are free parame-
ters, that is, no option for their nature, rigid or hydrodynamic,
is adopted. To be consistent with this picture, the strengths
Q0 and Q2 were also considered as free parameters. However,
this is not consistent with the structure of the single particle
potential, which considers the collective quadrupole operator
as emerging from the hydrodynamic model. These are fixed
by fitting the B(E2) values for one intraband (TSD1) and one
inter-band (TSD2 → TSD1) transition. The remaining B(E2)
transitions and the quadrupole transition moments, listed in
Tables II–V, are free of any adjustable parameter. Results for
the B(E2) values are compared with the corresponding data in
Tables III–VI.

As mentioned before, the resulting strength Q0 and Q2 are
not consistent with the structure of the single particle poten-
tial. Indeed, from their ratio one can extract the triaxial shape
parameter γ assuming, that −Q2/Q0 = tan(γ )/

√
2, valid in

the hydrodynamic model, also holds within the present ap-
proach. In this way one determines γ to be close to 600

which is quite different from the values presented in Table I.
This does not surprise us since a similar situation is met in
the Bohr-Mottelson model when the nuclear deformation β

is alternatively calculated by fitting the energy of the first
2+ state and by fixing the B(E2) value corresponding to the

FIG. 16. Results for the dynamic MoI’s in the bands TSD1,
TSD2, TSD3, and TSD4 of 163Lu are compared with the correspond-
ing experimental data taken from Refs. [3,12].

014302-7



A. A. RADUTA, R. POENARU, AND C. M. RADUTA PHYSICAL REVIEW C 101, 014302 (2020)

FIG. 17. The calculated dynamic MoI’s in the bands TSD1,
TSD2, and TSD3 of 165Lu are compared with the corresponding
experimental data taken from Ref. [6].

transition 2+ → 0+ [29]. We tried to conciliate between the
two options and first fixed γ from the ratio −Q2/Q0. and
then performed a least square fit for MoI’s and V. The best
fit was touched from the parameters listed in Table II. The
quality of the energy fits obtained with the two scenarios
are similar so that there is no need to remake the plots of
subsections C, D, and E. Although now there is a consistency
of the electric transitions and the single particle potential one
gets a disagreement with the microscopic descriptions, which,
however, predict for γ the values given in Table I.

The magnetic transition operator used in our calculations
is

M(M1, μ) =
√

3

4π
μN

∑
ν=0,±1

[gRRν + qg j jν]D1
μν, (16)

with Rν denoting the components of the core’s angular mo-
mentum with the corresponding gyromagnetic factor, gR =
Z/A, while gj is the free gyromagnetic factor for the single
proton angular momentum j(=13/2), which was quenched
by a factor q = 0.43 to account for the polarization effects not
included in g j . This factor takes care of the interaction of the
odd-proton orbit with the currents distributed inside the core
as well as of the internal structure of the proton, which may
also influence its magnetic moment [30].

FIG. 18. The calculated dynamic MoI’s in the bands TSD1 and
TSD2 of 167Lu are compared with the corresponding experimental
data taken from Ref. [7].

FIG. 19. The parameters Q0 and Q2 involved in the quadrupole
transition operator are given in units of eb, as function of the mass
number A.

To evaluate the transition matrix elements of the core’s
angular momentum, the involved states are written in the form

�IM = 1√
2 j + 1

∑
MR
K

CR jI
MR
MCRK |RMRK〉| j
〉. (17)

Again, the expansion coefficients of the core’s wave function
in the basis of the normalized Wigner function are denoted by
CRK , and have the expression given by Eq. (14). Results for
the relevant B(M1) values of the interband transitions as well
as for the mixing rations are collected in Table III. Here the
coordinate fluctuations around their minima are ignored since
their contribution is negligible.

One specific feature for the wobbling motion consists of
a strong E2 transition from the TSD2 to the TSD1 bands.
This is reflected by the relative large values of the branching
ratios characterizing the states from TSD2. This is confirmed
by Table IV, where the calculated branching ratios are com-
pared with the corresponding experimental data. Also, the
computed ratio B(M1)/B(E2)in are in good agreement with
the experimental data in 163Lu. Another specific wobbling
feature is the large transition quadrupole moment, as shown
in Table II. From there one can see a very good agreement
of our calculation results for 163Lu and the corresponding
data. Concluding the application part of the present paper,
one may say that the proposed semiphenomenological ap-
proach seems to be an efficient tool to account for the main
features of electromagnetic properties of the even-odd Lu
isotopes.

IV. PHASE DIAGRAM

Here we shall consider the phase diagram associated with
the classical energy function H, for a given total angular
momentum. From the equations of motion written in the
Hamilton canonical form, it results that the angles play the
role of the classical generalized coordinate, while the vari-
ables r and t are the corresponding conjugate momenta. In
virtue of this we may denote, more suggestively, the canonical
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TABLE II. The MoI’s, the strength of the single particle potential (V ), and the triaxial parameter (γ ) as provided by the adopted fitting
procedure. The angles γ are fixed from the strength of the quadrupole transition operator, Q0 and Q2.

Isotope j Bands I1 [h̄2/MeV] I2 [h̄2/MeV] I3 [h̄2/MeV] V [MeV] γ [degrees] nr states r.m.s. [MeV]

161Lu 13/2 TSD1, TSD2 77 3 39 0.3 64 29 0.185
163Lu 13/2 TSD1, TSD2, TSD3 73.7 65.9 2.9 3.6 57 52 0.122

9/2 TSD4 74 16 2.1 1.7 57 10 0.004
165Lu 13/2 TSD1, TSD2, TSD3 78 18 4 1.2 49 42 0.125
167Lu 13/2 TSD1, TSD2 85 2 61 0.5 55 30 0.165

TABLE III. The E2 intraband transitions I → (I − 2) for TSD1 and TSD2 bands. Also, the transition quadrupole moments, defined as in
Ref. [31], are given. Theoretical results (Th.) are compared with the corresponding experimental data (Exp.) taken from Ref. [8]. B(E2) values
are given in units of e2b2, while the quadrupole transition moment in b.

B(E2; I+ → (I − 2)+) QI B(E2; I+ → (I − 2)+) QI

[e2b2] [b] [e2b2] [b]

TSD1 Iπ Th. Exp. Th. Exp. TSD2 Iπ Th. Exp. Th. Exp.

41
2

+
2.80 8.89 47

2

+
2.84 8.92

45
2

+
2.83 8.91 51

2

+
2.86 8.93

49
2

+
2.85 8.92 55

2

+
2.88 8.95

161Lu 53
2

+
2.87 8.94 59

2

+
2.89 8.96

57
2

+
2.88 8.95 63

2

+
2.54 8.97

61
2

+
2.90 8.96 67

2

+
2.51 8.98

65
2

+
2.91 8.97 71

2

+
2.49 8.98

69
2

+
2.92 8.98

41
2

+
2.80 3.45+0.80

−0.69 8.89 9.93+1.14
−0.99

47
2

+
2.71 2.56+0.57

−0.44 8.71 8.51+0.95
−0.73

45
2

+
2.74 3.07+0.48

−0.43 8.77 9.34+0.72
−0.65

51
2

+
2.66 2.67+0.41

−0.33 8.62 8.67+0.66
−0.53

49
2

+
2.69 2.45+0.28

−0.25 8.66 8.32+0.47
−0.42

55
2

+
2.62 2.81+0.53

−0.41 8.53 8.88+0.83
−0.64

163Lu 53
2

+
2.64 2.84+0.24

−0.22 8.57 8.93+0.38
−0.35

59
2

+
2.58 2.19+0.94

−0.65 8.46 7.82+1.66
−1.15

57
2

+
2.60 2.50+0.32

−0.29 8.50 8.37+0.54
−0.49

63
2

+
2.54 2.25+0.75

−0.48 8.39 7.91+1.32
−0.84

61
2

+
2.56 1.99+0.26

−0.23 8.43 7.45+0.49
−0.43

67
2

+
2.51 1.60+0.52

−0.37 8.34 6.66+1.09
−0.76

65
2

+
2.53 1.95+0.44

−0.30 8.36 7.37+0.82
−0.57

71
2

+
2.49 1.61+0.82

−0.49 8.28 6.68+1.70
−1.02

69
2

+
2.50 2.10+0.80

−0.48 8.31 7.63+1.46
−0.88

41
2

+
3.63 10.12 47

2

+
3.68 10.15

45
2

+
3.66 10.14 51

2

+
3.71 10.17

49
2

+
3.69 10.16 55

2

+
3.73 10.19

165Lu 53
2

+
3.72 10.18 59

2

+
3.75 10.20

57
2

+
3.77 10.19 63

2

+
3.77 10.21

61
2

+
3.76 10.21 67

2

+
3.78 10.22

65
2

+
3.77 10.22 71

2

+
3.79 10.23

69
2

+
3.79 10.23

41
2

+
2.80 8.90 47

2

+
2.84 8.92

45
2

+
2.83 8.91 51

2

+
2.86 8.94

49
2

+
2.85 8.92 55

2

+
2.88 8.95

167Lu 53
2

+
2.87 8.94 59

2

+
2.89 8.96

57
2

+
2.88 8.95 63

2

+
2.90 8.97

61
2

+
2.90 8.96 67

2

+
2.92 8.98

65
2

+
2.91 8.97 71

2

+
2.93 8.98

69
2

+
2.92 8.98
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TABLE IV. The B(E2) and B(M1) values for the transitions from TSD2 to TSD1. Mixing ratios are also mentioned. Theoretical results
(Th.) are compared with the corresponding experimental (Exp.) data taken from Refs. [8,32]. Data labeled by superscript a are from Ref. [33].

B(E2)[e2b2] B(M1)[μ2
N ] δI→(I−1)

I+ → (I − 1)+ I+ → (I − 1)+ [MeV.fm]

Iπ Th. Exp. Th. Exp. Th. Exp.

47
2

+
0.54 0.018 −1.55

51
2

+
0.47 0.018 −1.56

161Lu 55
2

+
0.42 0.019 −1.57

59
2

+
0.37 0.019 −1.58

63
2

+
0.33 0.020 −1.59

47
2

+
0.54 0.54+0.13

−0.11 0.017 0.017+0.006
−0.005 −1.55 −3.1+0.36

−0.44
51
2

+
0.49 0.54+0.09

−0.08 0.018 0.017+0.005
−0.005 −1.58 −3.1 ± 0.4a

163Lu 55
2

+
0.44 0.70+0.18

−0.15 0.019 0.024+0.008
−0.007 −1.61 −3.1 ± 0.4a

59
2

+
0.34 0.65+0.34

−0.26 0.019 0.023+0.013
−0.011 −1.64 −3.1 ± 0.4a

63
2

+
0.36 0.66+0.29

−0.24 0.020 0.024+0.012
−0.010 −1.66

47
2

+
0.37 0.018 −1.32

51
2

+
0.34 0.018 −1.34

165Lu 55
2

+
0.32 0.019 −1.36

59
2

+
0.29 0.019 −1.38

63
2

+
0.27 0.020 −1.40

39
2

+
0.66 0.016 −1.67 −3.1+1.1

−3.4
47
2

+
0.54 0.018 −1.65 −5.1−1.6

−2.5
51
2

+
0.49 0.018 −1.65 −3.9+2.7

−8.4
167Lu 55

2

+
0.45 0.019 −1.65

59
2

+
0.41 0.019 −1.65

63
2

+
0.38 0.020 −1.65

conjugate coordinates as

q1 = ϕ, q2 = ψ, p1 = r, p2 = t . (18)

The critical manifolds associated to the classical energy func-
tion are determined from the following equation:

det

(
∂2H

∂ (qi )k∂ (p j )l

)
= 0

i, j, = 1, 2; k, l = 0, 1, 2; k + l = 2.

(19)

After some algebraic manipulations, the above equation leads
to

C = 0, (20)

where C has the expression from Eq. (11). From Eq. (9) it is
obvious that for this value of C the lower solution is vanishing.
Thus, Eq. (20) defines a Goldstone mode which suggests a
transition to a new nuclear phase [34]. Equation (20) splits to
the following two equations:

z = f1(x), z = f2(x, y), (21)

with

f1(x) = {[1 − 4(I − j)2]x2

+ (4I2 + 4 j2 − 8I j + 2 j + 2I − 2)x

− (2I+2 j−1)}{G1[(2I−2 j−1)x − (2I−1)]}−1,

f2(x, y) = {[1 − 4(I − j)2]x2 + [1 − 2(I + j)]y2

+2[2(I − j)2 + (I + j) + 1]xy}
× {G2[(2I − 2 j − 1)x − (2I − 1)y]}−1. (22)

Here the following notations were used:

x = A1

A3
, y = A2

A3
, z = V

A3
. (23)

For a fixed γ (=17◦), Eqs. (21) represent two singular sur-
faces, having the following asymptotic planes:

x = 2I − 1

2I − 2 j − 1
, y = 2I − 2 j − 1

2I − 1
x. (24)

However, we recall [23] that the wobbling frequencies
are obtainable by a quadratic expansion of the energy func-
tion around the minimum point, which results in getting
a Hamiltonian for two coupled oscillators. Quantizing the
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TABLE V. Branching ratios of some states from the band TSD2.
Experimental data are from Refs. [6,7,13,35,36].

B(E2)out/B(E2)in

Iπ Th. Exp.

31
2 0.29 0.21±0.11
35
2 0.26 0.22±0.02
39
2 0.24 0.21±0.02
43
2 0.22 0.22±0.02

163Lu 47
2 0.20 0.21±0.03
51
2 0.18 0.21±0.02
55
2 0.17 0.26±0.05
59
2 0.15 0.30±0.09
63
2 0.14 0.30±0.11

39
2

+
0.12 0.17±0.05

165Lu 43
2

+
0.11 0.16±0.03

47
2

+
0.10 0.22±0.08

39
2

+
0.24 0.23+0.02

−0.05
167Lu 43

2

+
0.21 0.26+0.03

−0.04
47
2

+
0.19 0.27+0.02

−0.10

independent oscillators, the coupling term is diagonalized
through a canonical transformation. Thus, the same frequen-
cies as given by Eq. (9) are obtained. The frequencies for
the uncoupled oscillators are real, provided the following
restrictions hold (see Appendix A):

SI jA1 < A2 < A3 or SI jA1 < A3 < A2,

A3 > TI jA1 − G1V

2 j − 1
, A2 > TI jA1 − G2V

2 j − 1
, (25)

with

SI j = 2I − 1 − 2 j

2I − 1
, TI j = 2 j − 1 − 2I

2 j − 1
, (26)

and G1, G2 defined, as in Appendix A, through Eq. (A4). If
V > 0, then the inequalities from the second row of Eq. (25)
are always satisfied. The intervals given in the first line of
Eq. (25) together with the surfaces Eq. (21) define, in the pa-
rameter space, sectors bordered by separatrices which, in fact,

TABLE VI. Results for the ratio B(M1)/B(E2)in are compared
with the corresponding experimental data [35] for a few TSD2 levels
from 163Lu.

B(M1)/B(E2)in

[
102 μ2

N
e2b2

]
Iπ Th. Exp.

35
2 0.502 0.439+0.082

−0.076
39
2 0.560 0.447+0.077

−0.078
163Lu 43

2 0.608 0.509+0.088
−0.086

47
2 0.650 0.498+0.091

−0.084
51
2 0.685 0.709+0.182

−0.196

FIG. 20. The phase diagram for a j-particle-triaxial rotor cou-
pling Hamiltonian with j = 13/2 and I = 45/2.The coordinates x,y
and z are a-dimensional.

determine the nuclear phases. Pictorially, the phase diagram
is presented in Fig. 20, where the separatrices are shown for a
given angular momentum, I = 45/2. Therein, the planes x =
y, x = 0, y = 0 are also shown; they are associated with the
axial symmetric cases, and therefore are forbidden. The planes
asymptotic to the surfaces Eq. (21) are shown too. Some
separatrices depend on γ through the functions G1 and G2.
Figure 20 is associated to 163Lu, while for the other isotopes
the pictures look similarly, but the mentioned separatrices
are slightly modified. For the fixed MoI’s and V shown in
Table I, the coordinates (x, y, z) corresponding to the four
isotopes, respectively, are represented by small circles of
different colors: purple (161Lu), white (163Lu), yellow (165Lu),
and black (167Lu). In the case of 161Lu, the coordinate y is
too large and therefore drops out the range shown in Fig. 20.
To keep it inside the figure we modified y to y − 7. Even
so, the purple circle falls in an adjacent phase, which is
consistent with Fig. 1, suggesting that this isotope belongs to
a different nuclear phase. Inside a given phase the classical
Hamiltonian has specific stationary points. If one of these is
a minimum, then the classical trajectories surround it with
a certain time period. If the point in the parameter space
approaches the separatrices, then the period tends to infinity
[37]. When V > 0, j is always oriented along the short axis,
that is the one-axis, and the region where I2 > I1 > I3 is the
phase where the transversal wobbling may take place. More
specifically, this region is bounded by four planes, one being
the diagonal plane, one is given by the second Eq. (24), one
is the plane x = 1, and the fourth one is the plane y = 1.
There are other two planes bordering the phase of interest
defined in Appendix B in Eq. (B12). For this region we have to
depict the minimum of H, if that exists. If H exhibits, indeed,
a minimum in the considered sector for γ , i.e., [00, 600],
then further, the frequencies describing the small oscillations
around the found minimum are to be determined. Actually,
the mentioned project is partially already accomplished in
Appendix B. The results from there confirm the existence
of a transversal mode but for ideal restrictions [25], while
within the Holstein-Primakoff description, the minimum for

014302-11



A. A. RADUTA, R. POENARU, AND C. M. RADUTA PHYSICAL REVIEW C 101, 014302 (2020)

energy surface reflecting a transversal wobbling regime does
not exist [24], if one keeps all energy terms. Therefore, there
is no contradiction between the two formalisms [38,39], since
they deal with different Hamiltonians. Moreover, if in each
of the two formalisms as well as in the present one, one
keeps all terms from the starting Hamiltonian, it seems that
no solution for the transversal wobbling exists. Although in
our case the transversal mode is determined by a part of
the starting Hamiltonian, for the time being we cannot say
whether this ideal picture is preserved when the remaining
interaction is accounted for or is totally spoiled by the Coriolis
interaction. An indirect answer to this question is, actually,
provided by the wobbling energy behavior as function of
spin, this being considered as a signature for the wobbling
character. Contrary to what is stated in Ref. [25], in the present
approach the monotony of the experimental and theoretical
curves are the same, namely both are increasing functions
of the angular momentum. This, in fact, confirms that the
considered isotopes are longitudinal wobblers.

It is worth noting that for z < 0, the three-axis, the long
one, is energetically favored in aligning j. Therefore, another
region where the transversal wobbling motion may show up is
bordered by the planes x = 0, y = 1, by the asymptotic plane
for the surface z = f1(x), and below the surface z = f2(x, y).
In the region between the two surfaces z = f1(x) and z =
f2(x, y), the motion of the odd system is not allowed. Indeed,
there C < 0 and consequently the phonon lower frequency
becomes imaginary.

V. CONCLUSION

The main results of our investigation are: (i) The classical
equations of motion are obtained through a time dependent
variational principle with a trial function which is a product
of two coherent states, one associated to the core and one to
the odd nucleon. The coherent states depend on two complex
parameters depending on time which play the role of classical
canonical conjugate coordinates. The classical equations are
brought to the Hamilton form by a suitable transformation.
Linearizing the equations around the coordinates which make
the energy function minimum, one determines a dispersion
equation for two normal wobbling modes. The corresponding
frequencies are used to define the rotational bands; they
depend on five parameters, which are fixed so that the exper-
imental excitation energies in the bands TSD1, TSD2, TSD3,
and TSD4 are at best reproduced. In such a way the model
parameters, the MoI’s, and the strength of the particle-core
interaction are determined. We underline the fact that here
the bands TSD1, TSD2, and TSD4 are collections of energy
levels describing the ground states corresponding to distinct
sets of angular momenta. By contrast, the band TSD3 has a
one phonon wobbling character and is obtained by exciting
each of the TSD2 states by a specific one phonon operator. (ii)
The electromagnetic transition probabilities are calculated and
compared with the available experimental data. The numerical
analysis shows a very good agreement between our results and
the corresponding experimental data. (iii) Other observables
calculated, with the result compared to the corresponding
data are: the alignment, the relative energy with respect to a

reference energy, the dynamic moment of inertia. The result’s
analysis concludes on the wobbling character of the studied
magnitudes. (iv) In the parameter space one defines manifolds
bordered by separatrices defined by equating the associated
Hessian to zero. One identifies the regions where a longitu-
dinal or a transversal wobbling mode may show up. Also, the
regions where the system motion is forbidden, are pointed out.
(v) In Appendix B it is shown that the transversal wobbling
motion is possible under some important restrictions and is
incompatible with realistic Hamiltonians, where the Coriolis
interaction prevails over the particle-deformation coupling. In
that respect, the present paper confirms the result of [24],
claiming that, for a realistic Hamiltonian, the minimum of the
energy function, specific for a transversal wobbling, does not
exist and therefore no solution for such a motion is possible.
In the present paper, this conclusion is strengthen by the wob-
bling energy calculations showing that both the theoretical
and experimental curves have an increasing behavior with
respect to the angular momentum, which might indicate that
the 161,163,165,167Lu isotopes are longitudinal wobblers.

Note that in the present paper the moments of inertia are
fixed by a fitting procedure, which accounts for the global
structure of the considered bands. In that respect, the obtained
MoI’s have an effective character including the effect coming
from the particle-core coupling, which leads to a longitudinal
wobbling regime where the whole system rotates around the
short axis. But this is the final picture and therefore we
cannot state that this emerges from a transversal wobbling
motion where the odd particle coupling to the core deforma-
tion prevails over the Coriolis-like interaction. To make the
transition from the transversal to the longitudinal wobbling
regime explicit, one needs to infer a spin dependence for the
MoI’s, that might be determined by the renormalization effect
due to the particle-core interaction. However, such a feature
cannot be touched within the present approach, since, indeed,
the linear terms in the core’s angular momentum are not used
to renormalize the MoI’s, in an approximative way, but treated
semiclassically on equal footing with the quadratic ones.

Finally, a short comment on the two band definitions is
in order. In the previous approaches, where the bands TSD2
and TSD3 bands have a one and two phonon character [40],
there is an inconsistency in the treatment of the three bands.
While TSD1 states are determined variationally, the others are
obtained by adding one and two phonon excitations on the top
of the former levels. We asked ourselves whether it is possible
that at least one of the two bands be variationally obtained.
We want to speculate on the fact that by diagonalizing the
rigid rotor Hamiltonian one finds out an even-odd degeneracy.
Even for the liquid drop with large deformation an even-
odd staggering like (2+, 3+), (4+, 5+), (6+, 7+), … for the
γ band is currently seen, with the pair members emerging
from vibrational states with number of phonons differing by
one unit. However, by acting with a phonon operator on a
TSD1 state the angular momentum for the mother state is
increased by one unit. Thus one could try to approximate
the state I from the TSD2 band in the old picture by the
one obtained variationally with I = R+j, but having the core
angular momentum given by R = 1, 3, 5, . . .. The mechanism
of creating the states of TSD2 and TSD3 bands in the old and
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FIG. 21. Left panel: Suggestive comparison of the I-state energies, taken in arbitrary units, obtained with the actual and previous
approaches. Right panel: The energy difference for the states of the same angular momenta in the bands TSD2 (�1

I+1) and TSD3 (�2
I+2)

within the two descriptions, respectively.

current picture is schematically suggested in the left panel of
Fig. 21. The difference in energy for the levels I + 1 and I + 2
obtained in the old and current approach respectively, are de-
noted by �1

I+1 and �1
I+2. The magnitude of these differences

is relatively small, as shown in the right panel of Fig. 21.
Note that both energies are calculated with the moments of
inertia of Table I. The agreement between the two sets of
energies would be much increased if in the old formalism a
separate least square fit is performed. Obviously the output
parameters would be different from those from Table I, but
this is the consequence of using different approximations in
the two approaches. Anyway, the result for �’s confirms that
the adopted approximation has a realistic character.

Within the ultimate cranking model [4] the authors stud-
ied the possibility that the TSD2 band be associated to the
unfavored signature of the π i13/2 orbital. Since the signature
splitting in the deepest minimum is large (�1 MeV), it is
most likely that this signature belongs to a local minimum
showing up at a smaller deformation but a larger triaxiality.

FIG. 22. The hydrodynamic MoI(left panel) as well as the terms
ai with i = 1, 2, 3, involved in the single particle-core coupling
potential Eq. (B14) (right panel) are plotted as function of γ , in the
convention of negative γ .

Due to this fact the highly excited signature partner band has
properties different from those of TSD1, and also contrasts
the measured features of TSD2. However, in Ref. [14] the
invariance properties of the triaxial rotor Hamiltonian and
its eigen-functions with respect to the D2 group of transfor-
mations are studied, to efficiently use the Holstein-Primakoff
boson expansion method.

Let us also discuss, now, the present results in terms
of signature. We recall that signature is a quantum number
related to the invariance of the wave function of an axially
symmetric deformed nucleus with respect to a rotation by π

around an axis perpendicular to the symmetry axis. Due to
the D2 group invariance of the triaxial rotor Hamiltonian, this
property can be extended also to the nonaxially symmetric
nuclei. As we shall see in the next paragraph, the signature
concept is valid also within the classical picture associated to
a triaxial nucleus.

Indeed, in the case of triaxial nuclei there is no symmetry
axis; however, it is well established that the system rotates
around the short axis, that is the one-axis, labeled as the x
axis. By convention, we shall call the z axis as the symmetry
axis which is perpendicular on the rotation axis. In this case
it is convenient to choose the x axis as the quantization axis.
Then, the lowering angular momentum operator is defined as

Î− = Îy + iÎz; ĵ− = ĵy + i ĵz. (27)

Acting on the trial function �I j;M (ρ, ϕ; t, ψ ), defined by
Eq. (4), with the rotation operator R̂x(π ) = e−iπ Îx ⊗ e−iπ ĵx ,
one obtains

R̂x(π )�I j;M (ρ, ϕ; t, ψ )

= e−zÎ−e−s ĵ− |IMI〉| j, j〉e−iπ (I+ j)

= �I j;M (ρ, π + ϕ; t, π + ψ )(−1)I+ j . (28)
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Note that the energy function H Eq. (8) is invariant to the
change of variables:

(ρ, ϕ; t, ψ ) → (ρ, π + ϕ; t, π + ψ ). (29)

Moreover, the wave function is invariant against such a trans-
formation, otherwise the trial function would be degenerate.
Consequently, the eigenvalue of R̂x(π ) is rx(π ) = e−iπ (I+ j),
hence the signature is either 1 or 0. Hence, the angular
momentum I + j may take values from two sets: 1 (mod 2)
and 0 (mod 2). The mentioned signatures and eigenvalues
are associated to the even system. From here, one extracts
the signatures for the odd system to be + 1

2 and − 1
2 , while

the corresponding eigenvalues are i and −i, respectively.
The angular momenta, for the two signatures, form the sets
13
2 , 17

2 , 21
2 , . . . and 15

2 , 19
2 , 23

2 , . . ., respectively. Thus, in the
present formalism the band TSD1 is characterized by the
signature + 1

2 (favored), while the band TSD2 seems to be
of signature − 1

2 (unfavored). The argument given in Ref. [4]
saying that the signature split is so large that it is unlikely that
the higher band belongs to the deepest potential well, which
results in having for TSD2 properties which differ from those
of TSD1.

In the present case such an argument does not hold, since
the potential well is very deep (see Refs. [22,23]) so that
the potential barrier prevents the TSD2 states to share the
secondary minimum through a tunneling effect. Concluding,
the TSD1 and TSD2 bands are signature partners.

We may conclude that the present formalism provides an
alternative interpretation for the excited wobbling bands. The
corresponding numerical results are in good agreement with
the experimental data. The agreement quality is close and
better than that yielded by the previous semiclassical approach
where the bands TSD2, TSD3, and TSD4 have one, two, and
three phonon character, respectively.

ACKNOWLEDGMENT

This work was supported by the Romanian Min-
istry of Research and Innovation through Project No.
PN19060101/2019.

APPENDIX A

From the equations of motion of the classical coordinates,
one readily finds that the function H is a constant of motion,

i.e.,
•
H= 0. This equation defines a surface, called equienergy

surface, H = const. This result appears to be a consequence of
the fact that the equations of motion emerge from a variational
principle. Also, one notes that the stationary coordinates,
having vanishing time derivatives, are stationary points for the
equienergy surface. There are several stationary points, among
which some are minima, as suggested by the sign of the
associated Hessian. For example, one minimum is achieved
in the point (r, ϕ; t, ψ ) = (I, 0; j, 0).

Expanding the classical energy function around the mini-
mum point and denoting the deviations from the minimum by
prime letters, one obtains

H = Hmin + 1

I
[(2I − 1)(A3 − A1) + 2 jA1]

r′2

2
+ I[(2I − 1)(A2 − A1) + 2 jA1]

ϕ′2

2
+ 1

j

[
(2 j − 1)(A3 − A1) + 2IA1

+V
2 j − 1

j( j + 1)
2
√

3 sin(γ + π

3
)

]
t ′2

2
+ j

[
(2 j − 1)(A2 − A1) + 2IA1 + V

2 j − 1

j( j + 1)
2
√

3 sin γ

]
ψ ′2

2
− 2A3r′t ′ − 2I jA2ϕ

′ψ ′.

(A1)

Neglecting for the moment the coupling terms, one obtains that the classical energy is the sum of two independent oscillators
whose frequencies are

ω1 = {[(2I − 1)(A3 − A1) + 2 jA1][(2I − 1)(A2 − A1) + 2 jA1]}1/2,

ω2 =
[

(2 j − 1)(A3 − A1) + 2IA1 + V
2 j − 1

j( j + 1)

√
3(

√
3 cos γ + sin γ )

]1/2

×
[

(2 j − 1)(A2 − A1) + 2IA1 + V
2 j − 1

j( j + 1)
2
√

3 sin γ

]1/2

. (A2)

To have real solutions for the two frequencies, the MoI parameters and the single particle potential strength V must fulfill some
restrictions:

SI jA1 < A2 < A3, or SI jA1 < A3 < A2, A3 > TI jA1 − G1V

2 j − 1
, A2 > TI jA1 − G2V

2 j − 1
, (A3)

where the following notations have been used:

SI j = 2I − 1 − 2 j

2I − 1
, TI j = 2 j − 1 − 2I

2 j − 1
, G1 = 2 j − 1

j( j + 1)
2
√

3 sin

(
γ + π

3

)
, G2 = 2 j − 1

j( j + 1)
2
√

3 sin γ . (A4)

Note that the inequalities of the second line from Eq. (A3) are always satisfied and consequently ω2 is real, irrespective of the
positive value of V . To treat the coupling term involved in the energy function it is useful to quantize the phase space coordinates:

ϕ → q̂; r → p̂; [q̂, p̂] = i, ψ → q̂1; t → p̂1; [q̂1, p̂1] = i. (A5)
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We associate to the two oscillations, defined above, the creation/annihilation operators:

q̂ = 1√
2k

(a† + a), p̂ = ik√
2

(a† − a), q̂1 = 1√
2k′ (b† + b), p̂1 = ik′

√
2

(b† − b). (A6)

The transformation relating the coordinates and the conjugate momenta with the operators a†, a and b†, b is canonical irrespective
of the constants k and k′. These were fixed such that the quantized form of the two oscillators Hamiltonian does not comprise
cross terms like a†2 + a2 and b†2 + b2. The result is

k =
[

(2I − 1)(A2 − A1) + 2 jA1

(2I − 1)(A3 − A1) + 2 jA1
I2

]1/4

,

k′ =
{[

(2 j − 1)(A2 − A1) + 2IA1 + V
2 j − 1

j( j + 1)
2
√

3 sin γ

]
j2

}1/4

×
[

(2 j − 1)(A3 − A1) + 2IA1 + V
2 j − 1

j( j + 1)
2
√

3 sin

(
γ + π

3

)]−1/4

. (A7)

In the new representation, the quantized Hamilton operator looks like

Ĥ = Hmin + ω1

(
a†a + 1

2

)
+ ω2

(
b†b + 1

2

)
+ A3kk′(a†b† + ba − a†b − b†a) − I jA2

1

kk′ (a†b† + ba + a†b + b†a). (A8)

The off-diagonal terms will be treated by the equation of motion method. Thus, we have

[Ĥ , a†] = ω1a† + A3kk′(b − b†) − I jA2
1

kk′ (b + b†), [Ĥ , b†] = ω2b† + A3kk′(a − a†) − I jA2
1

kk′ (a + a†),

[Ĥ , a] = −ω1a − A3kk′(b† − b) + I jA2
1

kk′ (b† + b), [Ĥ, b] = −ω2b − A3kk′(a† − a) + I jA2
1

kk′ (a† + a). (A9)

This is a linear system of equations, which can be analytically solved. Indeed, one defines the phonon operator

�† = X1a† + X2b† − Y1a − Y2b, (A10)

with the amplitudes X1, X2,Y1,Y2 fixed such that the following restrictions are satisfied:

[H, �†] = 
�†, [�,�†] = 1. (A11)

The first restriction provides a homogeneous linear system of equations for the unknown amplitudes. The compatibility condition
for this system leads to the equation defining the phonon energy 
,


4 + B′
2 + C′ = 0, (A12)

with the coefficients B′ and C′ having the expressions:

B′ = −(
ω2

1 + ω2
2 + 8A2A3I j

)
, C′ = ω2

1ω
2
2 − 4

(
A2

3k2k′2 + I2 j2 A2
2

k2k′2

)
ω1ω2 + 16A2

2A2
3I2 j2. (A13)

By elementary algebraic manipulation, one finds that B′ = B, C′ = C. There exists an interval for variable γ where Eq. (A12)
admits two positive solutions, which were used to define the level energies of the bands TSD.

APPENDIX B

Here we present the results concerning other two stationary points which might be also minima for the equienergy surface.

1. The case ϕ = π
2 , ψ = π

2 , r = I, t = j

One can check that this is a stationary point for the equations of motion. In this point the energy is:

Hmin = I + j

2
(A1 + A3) + A2(I − j)2. (B1)

Expanding H around the point mentioned above, one obtains a Hamiltonian describing two interacting oscillators with the
following frequencies:

ω1 = [(2I − 1)(A3 − A2) + 2 jA2]1/2[(2I − 1)(A1 − A2) + 2 jA2]1/2,

ω2 =
[

(2 j−1)(A3−A2)+2IA2 − 2 j−1

j( j+1)
V 2

√
3 sin

(
γ−π

3

)]1/2[
(2 j − 1)(A1 − A2) + 2IA2 − 2 j − 1

j( j + 1)
V 2

√
3 sin γ

]1/2

.

(B2)
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The quantized Hamiltonian is diagonalized through a canonical transformation which results in having two independent
oscillators whose frequencies 
 satisfy the following equation:


4 − B
2 + C = 0, (B3)

with the coefficients B and C given by

−B = [(2I − 2)(A3 − A2) + 2 jA2][(2I − 1)(A1 − A2) + 2 jA2] + 8A1A3I j

+
[

(2 j−1)(A3−A2)+2IA2− 2 j − 1

j( j+1)
V 2

√
3 sin

(
γ−π

3

)][
(2 j − 1)(A1 − A2) + 2IA2 − 2 j − 1

j( j + 1)
V 2

√
3 sin γ

]
,

(B4)

C =
{

[(2I − 1)(A1 − A2) + 2 jA2]

[
(2 j − 1)(A1 − A2) + 2IA2 − 2 j − 1

j( j + 1)
V 2

√
3 sin γ

]
− 4I jA2

1

}

×
{

[(2I − 2)(A3 − A2) + 2 jA2]

[
(2 j − 1)(A3 − A2) + 2IA2 − 2 j − 1

j( j + 1)
V 2

√
3 sin

(
γ − π

3

)]
− 4I jA2

3

}
. (B5)

It is worth noting that the expressions of B and C can be formally obtained from those from Appendix A by changing A1 → A2,
A2 → A1, and γ → −γ .

Inserting the mentioned coordinates in the expression of the classical angular momentum components, we obtain

Icl
1 ≡ 〈�IM j |Î1|�IM j〉| (ϕ,r)=(π/2,I )

(ψ,t )=(π/2, j)
= 0, Icl

2 ≡ 〈�IM j |Î2|�IM j〉| (ϕ,r)=(π/2,I )
(ψ,t )=(π/2, j)

= −I,

Icl
3 ≡ 〈�IM j |Î3|�IM j〉| (ϕ,r)=(π/2,I )

(ψ,t )=(π/2, j)
= 0, jcl

1 ≡ 〈�IM j | ĵ1|�IM j〉| (ϕ,r)=(π/2,I )
(ψ,t )=(π/2, j)

= 0,

jcl
2 ≡ 〈�IM j | ĵ2|�IM j〉| (ϕ,r)=(π/2,I )

(ψ,t )=(π/2, j)
= − j, jcl

3 ≡ 〈�IM j | ĵ3|�IM j〉| (ϕ,r)=(π/2,I )
(ψ,t )=(π/2, j)

= 0. (B6)

The two solutions Eq. (B3) are real provided the following restrictions are fulfilled:

A1 > SI jA2, A3 > A2, A1 > TI jA2 + 2
√

3V

j( j + 1)
sin γ , A3 > TI jA2 + 2

√
3V

j( j + 1)
sin

(
γ − π

3

)
. (B7)

If C > 0, then Eq. (B3) admits real solutions, two positive and two negative. If C = 0, then two solutions are vanishing, one is
positive, and one negative. In this case, Eq. (B7) defines several separatrices bordering the nuclear phases. These are obtained
by modifying the separatrices defined in Appendix A, by changing x → y, y → x, and γ → −γ . If C < 0, then two solutions
are imaginary, one solution is positive and one negative.

2. The case ϕ = π
2 , ψ = 0, r = I, t = j

For this case we followed the same algorithm as in the previous subsection and obtained the following results: The energy
corresponding to the point, mentioned above, is

H0 = A2I2 + A1 j2 + I

2
(A1 + A3) + j

2
(A2 + A3) − (2 j − 1)V

j + 1
cos

(
γ − π

3

)
.

(B8)

Expanding the classical energy function around the point mentioned above, it results in a Hamiltonian of two coupled oscillators
with the following frequencies:

ω1 = (2I − 1)[(A3 − A2)(A1 − A2)]1/2,

ω2 = (2 j − 1)

[
(A3 − A1) + 2

√
3V

j( j + 1)
sin

(
γ + π

3

)]1/2[
(A2 − A1) + 2

√
3V

j( j + 1)
sin γ

]1/2

. (B9)

The coupling Hamiltonian is further diagonalized through a canonical transformation which leads to the following dispersion
equation for the final independent oscillations:


4 − B
2 + C = 0, (B10)
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with the coefficients defined by

−B = (2I − 1)2(A3 − A2)(A1 − A2) + (2 j − 1)2

[
(A3 − A1) + 2

√
3V

j( j + 1)
sin

(
γ + π

3

)][
(A2 − A1) + 2

√
3V

j( j + 1)
sin γ

]
,

C =
{

(2I − 1)(2 j − 1)(A1 − A2)

[
(A2 − A1) + 2

√
3V

j( j + 1)
sin γ

]}

×
{

(2I − 1)(2 j − 1)(A3 − A2)

[
(A3 − A1) + 2

√
3V

j( j + 1)
sin

(
γ + π

3

)]
− 4I jA2

3

}
. (B11)

The solutions of Eq. (B10) are all real if the following condi-
tions are fulfilled:

x > y, y < 1, z >
G2

2 j − 1
(x − y),

z >
4I j

(2I − 1)G1(1 − y)
+ 2 j − 1

G1
(x − 1). (B12)

Replacing in the above relations the inequality sign by an
equality sign, one obtains the equations defining the separa-
trices. These can be also obtained by equating the Hessian
to zero, which results in having a vanishing value for the
coefficient C. The components of the core and of the odd
proton angular momenta are

Icl
1 = 0, Icl

2 = −I, Icl
3 = 0,

jcl
1 = j, jcl

2 = 0, jcl
3 = 0. (B13)

Such a situation is met with the hydrodynamic model for
the MoI parameters and the particle-core potential given by
Eq. (1). To prove that, let us write the particle-core potential
in the following form:

Vpc = 2V

j( j + 1)

[
a1 j2

1 + a2 j2
2 + a3 j2

3

]
, (B14)

with the following notations:

a1 = − cos

(
γ−π

3

)
, a2 = − cos

(
γ+π

3

)
, a3 = cos γ .

(B15)

In Fig. 22, the hydrodynamic MoI, and the particle-core
attractive potential Vpc, for a particlelike proton, are plotted
as function of γ , in the interval [0◦, 60◦]. We note that in
the mentioned interval the maximal MoI is J2, while the
term of Vpc with the lowest energy is that multiplied by a1.
Consequently, the core is rotating around the middle axis, the
two-axis, while the odd proton around the short axis, that
is the one-axis. Thus, the situation described in the present
subsection corresponds to a transversal wobbling of the even-
odd system. This means that the odd proton is strongly cou-
pled to the core deformation. However, for a critical angular
momentum the existence conditions Eq. (B12) are no longer
obeyed and the system passes from a transversal wobbling
regime to a longitudinal wobbling one. This is caused by the
Coriolis interaction which aligns the angular momentum of
the odd proton to the principal axis to which the maximal
MoI corresponds. Therefore, the transversal or a longitudinal

wobbling motion is determined by which of the interactions,
with the core deformation or the Coriolis one, prevails. Some
additional comments are necessary. The point considered is
not really a stationary point, since there the time derivatives
are

•
ϕ= 0,

•
ψ= 0,

•
r= −2I jA1,

•
t= 2I jA2. (B16)

Therefore, the considered point is not the ground state for
the whole Hamiltonian, but it is for a part of it consisting
of the sum of the two oscillators of energies ω1 and ω2. To
find the ground state of the whole Hamiltonian, the conjugate
coordinates corresponding to the ω1 and ω2 are to be mixed
up through a canonical transformation of an RPA (random
phase approximation) type. If such a transformation exists,
then one obtains two wobbling phonons corresponding to the
frequencies 
1 and 
2, respectively. The newly determined
representation defines the true ground state which, however,
might become unstable due to the Coriolis interaction. Such
an instability reclaims a redefining of a new stable ground
state which is associated to the longitudinal wobbling motion.
Note that for a rigid coupling, the coordinates t, ψ disappear,
and the stationary point (r = I, ϕ = α), with α defined by

cos α = 2 j

2I − 1

A1

A1 − A2
, (B17)

is a minimum point for the energy function which results that
the instability of the ground state is avoided. Note that α 
= π

2 ,
and only for I � j one may approximate α ≈ π

2 . We may
conclude that even for a rigid coupling of the odd proton along
the short axis, the transversal wobbling mode may show up
only in the limit of a very large I . Moreover, the rigid coupling
infers the fact that the Coriolis coupling terms determined by
the core components corresponding to the middle and long
axes is ignored. In a similar manner, in the present formalism
the transversal wobbling appears with the price of ignoring
important terms which leads to an energy function describing
two independent oscillators. In this picture, the collective
wobbling mode is determined exclusively by the core. Switch-
ing on the ignored interaction new wobbling frequencies
are obtained and the transversal picture is gradually blurred.
Concluding, the transversal wobbling situation appears to be
specific to ideal restrictions which abusively neglect some
of the Coriolis coupling terms. Actually, the rigid coupling
means that the initial Hamiltonian is truncated to a sum of two
terms one describing the triaxial rotor-core and one linear in I1
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which cranks the system to rotate around the one-axis. When
this happens, the longitudinal wobbling regime is achieved.

It is conspicuous that the scenario presented here points
out that the picture where the transversal wobbling shows
up corresponds to ideal restrictions [25], while within the

Holstein-Primakoff description, the minimum for energy sur-
face reflecting a transversal wobbling regime does not exist
[24] if one keeps all energy terms. Therefore, there is no
contradiction between the two formalisms [38,39], since they
deal with different Hamiltonians.
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