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The adiabatic hyperspherical approach is a natural extension of the well-known three-dimensional polar
coordinate method to solving a Schrödinger equation of a few-body system. To evaluate the matrix element of
an adiabatic Hamiltonian at a fixed hyper-radius is crucially important in that approach, but due to the difficulty
of its calculation real applications have been limited mostly up to four-body systems. To resolve this limitation
I introduce a localized hyper-radial function and show that the matrix element needed for N-body system can
be obtained using correlated Gaussians with arbitrary angular momentum. I demonstrate its feasibility in the
systems of N = 3–6 α particles. It is pointed out that an extension into correlated Gaussians with double global
vectors is desirable for further realistic descriptions of the hyperangular motion.
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I. INTRODUCTION

The hyperspherical (HS) method attempts to solve an N-
particle Schrödinger equation by expressing the total wave
function as a sum of the product of hyper-radial and hyper-
angular parts. It provides a unified framework to describe
quantum dynamics involving a variety of recombinations of
the constituent particles. Two realizations of the HS approach
are widely used. In one approach the total wave function is ex-
panded in terms of the HS harmonics that are eigenfunctions
of the hyperangular kinetic-energy operator [1,2]. In another
approach, often called the adiabatic HS approach [3], the adi-
abatic Hamiltonian involving the hyperangular kinetic-energy
and the interaction potential is first diagonalized to obtain the
adiabatic potentials (or the adiabatic channel energies) and
channel wave functions.

The advantage of the first approach is that the HS harmon-
ics are known, thereby making it applicable beyond three-
body systems [4–10]. However, its applicability is hindered
in some cases by the fact that the convergence of the HS
harmonics expansion is slow especially when a long-range
potential, e.g., the Coulomb coupling potential, acts at large
hyper-radial distances. This slowness is due to the fact that
the hyperangular kinetic-energy and the interaction potential
do not commute [11]. The triple-α reaction rate obtained by
both types of HS calculations [12,13] clearly indicates this
delicate problem of large distance dynamics. The reaction rate
obtained in the second approach [13] is found to be consistent
with a Faddeev calculation [14].

The second approach has a great merit in that it also gives
an intuitive picture for the underlying physics. Applying it
to N (>3)-particle system is, however, confronted with two
things. One, common to all ab initio type calculations, is a
question of what type of basis functions are used. The other,
more serious, is that the matrix element of an operator O of
type

〈�′|O|�〉ρ=R, (1)

essential in the second approach, is very hard to calculate.
Here, 〈. . .〉ρ=R indicates that the matrix element is to be
calculated by integrating over all the coordinates but the
hyper-radius ρ, which is fixed to R.

The adiabatic potential plays a decisive role in determining
not only bound-state structure but also continuum dynamics
relevant to decay and fusion. It is a very useful quantity to give
an insight into important processes involved. Its significant
role in few-body systems is exemplified in, e.g., a recent
review [15]. The competitive contribution of three-α contin-
uum and 8Be +α quasi-two-body continuum to forming the
adiabatic potential is carefully examined [13,16]. To assess the
effect of couplings of different configurations, it is desirable
that one has a universal scale to measure the size of the system
and that the adiabatic potential is given as a function of that
scale. For example, in nuclear fusion initially the relative
distance between the nuclei might be the most important
coordinate, but later other coordinates will be more suitable
and necessary. Thus the relative distance is not always a
satisfactory scale for the adiabatic potential of the fusion, but
the hyper-radius used in the HS method is an unambiguous
scale. Also the total orbital angular momentum L is naturally
taken into account in the HS method. The potential barriers for
different shapes of multi-α particles were calculated using a
generalized liquid-drop model [17,18]. The α-particle cluster-
ing of self-conjugate nuclei was studied by the Hartree-Fock-
Bogoliubov approach with their radii constrained [19]. Since
taking care of the angular momentum and removing spurious
center of mass (c.m.) motion may not be easily done in those
studies, it is interesting to apply the HS framework free from
those problems to calculate the adiabatic potentials of multi-α
particles.

The purpose of this paper is twofold. First is to show
that the matrix element (1) can be evaluated for arbitrary
N and arbitrary L using correlated Gaussians (CG) as the
basis functions. Second is to test its feasibility by applying
to the adiabatic potentials of multi-α-particle systems. The
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CG proposed many years ago [20,21] is extended to describe
motion with nonzero L, especially with the help of global-
vector representation [22,23]. Together with the stochastic
variational method [22–24] to select efficiently CG parame-
ters, many problems have accurately been solved with the CG.
See, e.g., Refs. [25–27] for its recent applications. In fact the
CG basis functions have been applied to the HS calculation
for few-body systems with L = 0 and 1 [28–31]. Fourier
integration is attempted to evaluate Eq. (1) [31], but there
are still several problems to overcome for its real applications
[32]. In view of this situation, we have very recently proposed
an approach to constrain the CG basis functions according to
the expectation value of ρ2 and its variance [33]. A new recipe
developed in this paper further extends its idea, making it
possible to compute Eq. (1) for arbitrary L values by localizing
the hyper-radial part of the CG completely at ρ = R.

I recapitulate basic elements of the HS method in Sec. II. I
introduce the localized CG and discuss a general prescription
to calculate the matrix element (1) in Sec. III. Basic formulas
to calculate the matrix element of the adiabatic Hamiltonian
are presented in Sec. IV. I apply its method to the adiabatic
potentials of multi-α-particle systems in Sec. V. Conclusion is
drawn in Sec. VI. Details of the calculation method are given
in Appendices A, B, and C.

II. BASIS OF HYPERSPHERICAL METHOD

A. Hyperspherical coordinates

Let us consider a system of N particles, and assume all the
particles to have a common mass m. The case of unequal mass
can be treated by defining mass-scaled coordinates. Let ri (i =
1, . . . , N ) denote the position coordinate of the ith particle,
and let xi stand for the relative (or Jacobi) coordinate,

xi =
√

i

i + 1

⎛⎝ri+1 − 1

i

i∑
j=1

r j

⎞⎠ (i = 1, . . . ,N ), (2)

where N = N − 1. The set {xi} together with the c.m. coordi-
nate, xN ≡ Rc.m. =∑N

i=1 ri/N , define a transformation matrix
U from the single-particle coordinates to the relative and c.m.
coordinates:

xi =
N∑

j=1

Ui jr j (i = 1, . . . , N ). (3)

Conversely, ri is expressed as a combination of x j’s:

ri =
N∑

j=1

U −1
i jx j . (4)

The definition (3) implies det U = (−1)N−1/
√

N . The matrix
U −1 reads as U −1

i j = Uji (i = 1, 2, . . . , N ; j = 1, 2, . . . ,N )
and U −1

iN = 1 (i = 1, 2, . . . , N ).
The hyper-radius ρ is defined by

ρ2 ≡
N∑

i=1

(ri − Rc.m.)
2 = 1

N

N∑
i< j

(ri − r j )
2 =

N∑
i=1

x2
i . (5)

Physically ρ2 is N times the mean square radius of the system.
Let � denote a set of hyperangles constructed from the
dimensionless coordinates, ξi = xi/ρ (i = 1, . . . ,N ). They
are constrained to be

∑N
i=1 ξ2

i = 1. A way of expressing � in
terms of ξi’s is not unique. Only ρ has the dimension of length,
and the volume element for integration excluding Rc.m. is

dx ≡
N∏

i=1

dxi = ρd−1dρd�, (6)

where d is the degrees of freedom of the intrinsic motion,

d = 3(N − 1) = 3N . (7)

B. Schrödinger equation in hyperspherical method

A Schrödinger equation for the N-particle system is ex-
pressed in terms of the HS coordinates. The Hamiltonian H
of the system consists of the total kinetic energy Tin with the
c.m. kinetic energy being subtracted and the potential energy
V that is assumed to contain no derivative of ρ. Tin is separated
into the hyper-radial (Tρ) and hyperangular (T�) parts:

Tin ≡ − h̄2

2m

N∑
i=1

∂2

∂x2
i

= Tρ + T� (8)

with

Tρ = − h̄2

2m

(
∂2

∂ρ2
+ d − 1

ρ

∂

∂ρ

)
, T� = h̄2�2

2mρ2
, (9)

where �2 is called the generalized angular momentum [34].
By writing the total wave function � of the system as � =
ρ− d−1

2 ψ (ρ,�), the Schrödinger equation H� = E� reduces
to that for ψ (ρ,�):[

− h̄2

2m

∂2

∂ρ2
+ Had(ρ,�)

]
ψ (ρ,�) = Eψ (ρ,�), (10)

where Had(ρ,�) is the adiabatic Hamiltonian,

Had(ρ,�) = h̄2

2mρ2

(
�2 + (d − 1)(d − 3)

4

)
+ V. (11)

Had(ρ,�) contains ρ just as a parameter.
Equation (10) takes exactly the same form as the one

familiar in the spherical polar coordinate. Note, however,
that Had(ρ,�) is a Hermitian operator depending on d − 1
hyperangle coordinates. In the adiabatic HS approach one
attempts to solve the equation of motion (10) by first solving
the eigenvalue problem of Had(ρ,�),

Had(ρ,�)�ν (ρ,�) = Uν (ρ)�ν (ρ,�), (12)

where ν labels the adiabatic channel energy or adiabatic
potential Uν (ρ) and the eigenfunction or the channel wave
function �ν (ρ,�). Next one expands ψ (ρ,�) in terms of
those solutions as

ψ (ρ,�) =
∑

ν

fν (ρ)�ν (ρ,�), (13)

where fν (ρ)’s are determined from coupled equations derived
from Eq. (10). Apparently Uν (ρ) plays a crucial role in
determining the solution.
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Since the HS harmonics are eigenfunctions of �2 [34], they
are often conveniently used to solve the eigenvalue problem
(12). However, �2 does not commute with V in general [11],
and thus other basis functions may become advantageous to
solve Eq. (12), especially when the HS harmonics expansion
leads to slow convergence. See, e.g., Ref. [13] concerning this
issue. If other basis functions are used, the matrix element of
type (1) has to be evaluated to solve Eq. (12).

III. LOCALIZED CORRELATED-GAUSSIANS

Fixing ρ at R defines the surface of a d-dimensional ball
of radius R [see Eq. (5)]. The matrix element (1) demands
an integration over the surface. Although such integration
can be formulated by parametrizing the hyperangles as in,
e.g., Refs. [29,30], its practice is hard beyond N = 4 because
multiple numerical integrations have to be done. To bypass
the difficulty I introduce a function localized at ρ = R, which
allows performing the integration over the whole space of d
dimension.

A. Localized hyper-radial function

Let us define a hyper-radial function,

SRκ (ρ) =
√

2E (κ )

Rd

(ρ

R

)κ

e− κ
2 ( ρ

R )2
, (14)

where R is an arbitrarily fixed positive parameter and κ is a
positive integer. E (κ ) is defined by

E (κ ) = κκ+ d
2

�
(
κ + d

2

) (15)

with the Gamma function �, and approaches
√

κ/2πeκ when
κ → ∞.

SRκ (ρ) is normalized as
∫∞

0 dρ ρd−1[SRκ (ρ)]2 = 1 con-
sistently with the volume element (6), has a peak at ρ = R
independent of κ , and for κ → ∞ approaches

SRκ (ρ) →
(

2

πR2d

) 1
4

κ
1
4 e− κ

2 τ ( ρ

R )

≈
(

2

πR2d

) 1
4

κ
1
4 e−κ ( ρ−R

R )2
, (16)

where τ (x) = x2 − ln x2 − 1. The second line of Eq. (16) is
valid because τ (x) ≈ 2(x − 1)2 at x ≈ 1, where τ (x) reaches
a minimum. The squared peak height, [SRκ (R)]2, increases in
proportion to

√
κ . With increasing κ , SRκ (ρ) becomes more

and more sharply localized at ρ = R.
The matrix element 〈SR′κ | f |SRκ〉 of a function f (ρ) is

evaluated for large κ with the saddle-point method:

〈SR′κ | f |SRκ〉 =
∫ ∞

0
dρ ρd−1SR′κ (ρ) f (ρ)SRκ (ρ)

≈ χκ+ d
2 f (
√

χRR′), (17)

where χ = 2RR′/(R2 + R′2). Since χ is equal to 1 if and
only if R = R′ and less than 1 otherwise, one obtains
limκ→∞〈SR′κ | f |SRκ〉 = f (R)δR,R′ , where δR,R′ is 1 for R = R′

or 0 for R 
= R′. The set {SRκ} is orthonormal when κ → ∞,
i.e., 〈SR′κ |SRκ〉 → δR,R′ .

B. Basic procedure to evaluate matrix elements

I define a function �uA
Rκ,LM (x) by multiplying SRκ (ρ) by the

simplest CG [22,23], f uA
LM (y),

�uA
Rκ,LM (x) = SRκ (ρ) f uA

LM (y), (18)

f uA
LM (y) = YLM (̃uy)e− 1

2 ỹAy, (19)

where y = x/R is a dimensionless coordinate. YLM (r) =
rLYLM (r̂) is a solid spherical harmonics, where r̂ stands for
the polar and azimuthal angles of r. u and A are param-
eters to characterize the CG: u = (ui ) is a column vector
of dimension N , and A = (Ai j ) is an N × N symmetric,
positive-definite matrix. A tilde symbol ˜ stands for a trans-
pose of a vector or a matrix. The exponential e− 1

2 ỹAy, where
ỹAy =∑N

i, j=1 Ai jyi · y j , is invariant under a rotation, while
YLM (̃uy) describes rotational motion through a global vec-
tor, ũy =∑N

i=1 uiyi [22,23,35,36]. A scalar product of three-
dimensional vectors, e.g., yi · y j , is abbreviated as yiy j in what
follows, and thus ỹy = (ρ/R)2. �uA

Rκ,LM (x) has the total orbital
angular momentum L and its z component M. The parity π

of �uA
Rκ,LM (x) is (−1)L, so that unnatural parity states such as

Lπ = 1+, 2−, . . ., cannot be represented by the simplest CG. I
use it, however, to illustrate a method of calculating the matrix
element.

Thanks to SRκ (ρ), �uA
Rκ,LM (x) is localized at ρ = R when

κ → ∞. The matrix element of O with �uA
Rκ,LM satisfies the

orthogonality relation [see Eq. (17)]

lim
κ→∞

〈
�u′A′

R′κ,LM

∣∣O∣∣�uA
Rκ,LM

〉
= δR,R′ lim

κ→∞
〈
�u′A′

Rκ,LM

∣∣O∣∣�uA
Rκ,LM

〉
. (20)

This confirms that the matrix element evaluated in the whole
space of d dimension approaches the one (1) in the κ → ∞
limit.

It is convenient to change the integration variable, x →
y, in Eq. (20). Assume that O satisfies O�uA

Rκ,LM (x) =
O(x)�uA

Rκ,LM (x), where O(x) is a function of x that contains
no derivative operator of x. It follows that〈

�u′A′
Rκ,LM

∣∣O∣∣�uA
Rκ,LM

〉 = 2D(κ )(t → κ )MO(t ), (21)

where

MO(t ) = 〈 f u′A′
t

LM

∣∣O(Ry)
∣∣ f uAt

LM

〉
, (22)

and D(κ )(t → κ ) stands for the operation

D(κ )(t → κ ) = E (κ )

(
− d

dt

)κ ∣∣∣∣
t=κ

. (23)

Note that I use (̃yy)κe−κ ỹy = ( − d
dt )κ |

t=κ
e−t̃yy in Eq. (21) and

define a matrix At to denote A plus t times N × N unit
matrix IN ,

At = A + t IN . (24)
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When κ → ∞, ρ → R and
√

ỹy = y → 1. The matrix ele-
ment (1) is thus obtained through MO(t ) evaluated by the
integration over all y coordinates as follows:〈

f u′A′
LM

∣∣O(Ry)
∣∣ f uA

LM

〉
y=1 = 2 lim

κ→∞ D(κ )(t → κ )MO(t ). (25)

To sum up, I obtain the desired matrix element in three
steps. First is to calculate MO(t ), which is aided by generating
YLM (̃uy) in Eq. (19) through (see Refs. [22,23,33])

YLM (̃uy) = (2L + 1)!!

4πL!

∫
deYLM (e)

[
∂L

∂αL
ẽsy
]

α=0

, (26)

where s = αeu with e being a three-dimensional unit vector.
Next is to operate D(κ )(t → κ ) on MO(t ), which is performed
by expanding MO(t ) in a power series of t−1. Finally the κ →
∞ limit is taken. See Appendix A for details of the second
and third steps.

An example shown here is the overlap matrix element,

M1(t ) = f L
0 PBt

(
ũ′B−1

t u
)L

, (27)

where the matrix Bt is defined by B + t IN with

B = 1
2 (A + A′), (28)

and

f L
l = L!(2L + 1)!!

2L−l+2(L − l )!

√
π

d−2
, (29)

PBt = (detBt )
− 3

2 . (30)

Since M1(t ) does not depend on R, 〈 f u′A′
LM | f uA

LM〉y=1 turns out to
be R-independent.

MO(t ) of interest usually takes the form

MO(t ) = PBt QO(t ),

QO(t ) =
L∑

l=0

f L
l T uA,u′A′

O, l (t )
(
ũ′B−1

t u
)L−l

. (31)

To determine T uA,u′A′
O, l (t ) is of prime importance. See Ref. [33]

for details. Although T uA,u′A′
O, l (t ) may in general depend on R

and QO(t ) depends on L, they are suppressed for the sake of
simplicity. MO(t ) depends on t through detBt and B−1

t .

C. Permutation symmetry

To impose the exchange symmetry of identical particles,
one acts a permutation P on �uA

Rκ,LM (x). Since SRκ (ρ) is to-
tally symmetric, the action actually applies on f uA

LM (y), which
results in simply renaming the CG parameters as follows
[22,23,27]:

P f uA
LM (y) = f uPAP

LM (y),

uP = T̃Pu, AP = T̃PATP, (32)

where TP is an N × N matrix defined by UPU −1. Here, P is
the N × N permutation matrix whose (i j) element is given by
Pi j = δ j,pi corresponding to the well-known two-row symbol

P = ( 1 2 . . . N
p1 p2 . . . pN

).

IV. MATRIX ELEMENTS OF ADIABATIC HAMILTONIAN

A. Potential energy

The relative distance vector, ri − r j , is expressed in terms
of x as [see Eq. (4)]

ri − r j =
N∑

k=1

(
U −1

ik − U −1
jk
)
xk ≡ ω̃(i j)x, (33)

where ω(i j) is a column vector of dimension N . The relative
distance squared is

(ri − r j )
2 = x̃T (i j)x, (34)

where T (i j) = T ( ji) = ω(i j)ω̃(i j) (i 
= j) is an N × N sym-
metric matrix that satisfies Tr T (i j) = ω̃(i j)ω(i j) = 2 and∑N

i< j T (i j) = NIN . A Gaussian potential, Vi j , is expressed as

Vi j = e−ν(ri−r j )2 = e−νR2̃yT (i j)y.
The matrix element of Vi j reduces to that of the overlap,

that is, MVi j (t ) is given by Eq. (27) with B replaced by G(i j) =
B + νR2T (i j). One of the eigenvalues of T (i j) is 2 and others
are all zero. As R increases, the matrix G(i j) therefore contains
a large eigenvalue, which makes the κ → ∞ limit calculation
hard because the power-series expansion does not converge
fast. See Appendix A.

A simple recipe to alleviate that difficulty is to shift T (i j) to
�(i j) by using the ansatz

〈
f u′A′
LM

∣∣ N∑
i< j

Vi j

∣∣ f uA
LM

〉
y=1

= e−νR2τ
〈
f u′A′
LM

∣∣ N∑
i< j

e−νR2̃y�(i j)y
∣∣ f uA

LM

〉
y=1, (35)

where �(i j) = T (i j) − τ IN . A choice for τ is

τ IN =
∑N

i< j T (i j)∑N
i< j 1

= 2

N − 1
IN . (36)

A more elaborate recipe is discussed also in Appendix A.
A three- or more-body potential of Gaussian form factor

can be evaluated similarly. It is possible to calculate the matrix
element of a potential if it is approximated as a sum of
Gaussians.

It is useful to note that the matrix element of a cen-
tral potential V (|ri − r j |) with an arbitrary form factor is
obtained by using Eq. (A.133) [23] as follows (ω(i j) is
abbreviated as ω):

MV (|ri−r j |)(t ) = PBt

L∑
l=0

gL
l Jl (t )T (t )l

(
ũ′B−1

t u − T (t )
)L−l

,

(37)

where

gL
l = 4√

π

f L
l

l! (2l + 1)!!
, T (t ) =

(
ũ′B−1

t ω
)(

ω̃B−1
t u
)

ω̃B−1
t ω

,

Jl (t ) =
∫ ∞

0
dxV

(
R
(
ω̃B−1

t ω
) 1

2 x
)
x2l+2e−x2

. (38)
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B. Hyperangular kinetic-energy

To obtain the matrix element of �2 in Eq. (9), I follow
the indirect way [28–30] that does not require an explicit
construction of �2 but makes use of the relation (8). I show
how to determine �2(Ry) and M�2 (t ) in Appendix B. M�2 (t )
is found to be

M�2 (t ) = PBt

min(L,2)∑
l=0

f L
l T uA,u′A′

�2, l (t )
(
ũ′B−1

t u
)L−l

, (39)

where, with C = 1
2 (A − A′), T uA,u′A′

�2, l (t )’s are given by

T uA,u′A′
�2, 0 (t ) = − 1

4 d (d − 2) + 3
2 TrBt − 3

2 (t2 + 2t ) TrB−1
t

+ 9
4 t2
(
TrB−1

t

)2+ 3
2 t2 TrB−2

t − 3
2 TrB−1

t C2

+ 9
4

(
TrB−1

t C
)2 + 3

2 Tr
(
B−1

t C
)2

, (40)

T uA,u′A′
�2, 1 (t ) = 1

2 ũ′u − 1
2 ũ′B−1

t u − 1
2 (t2 + 2t )ũ′B−2

t u

+ t2ũ′B−3
t u + 3

2 t2
(
TrB−1

t

)
ũ′B−2

t u

+ 1
2 ũ′(B−1

t C − CB−1
t

)
u − 1

2 ũ′B−1
t C2B−1

t u

+ ũ′(B−1
t C

)2
B−1

t u + 3
2

(
TrB−1

t C
)
ũ′B−1

t CB−1
t u,

(41)

T uA,u′A′
�2, 2 (t ) = 1

4 t2
(
ũ′B−2

t u
)2 + 1

4

(
ũ′B−1

t CB−1
t u
)2

. (42)

V. APPLICATION TO MULTI α-PARTICLE SYSTEMS

I apply the present method to the system of α particles
to demonstrate its feasibility. The emphasis is not placed on
obtaining accurate adiabatic potentials. I will not take care of
the asymptotics of the potentials nor perform configuration
interaction calculations, but simply vary the parameters of a
single CG basis.

The Hamiltonian used here is the same as that of
Refs. [13,16]. In units of fm and MeV for the length and
energy, the two-body αα potential consisting of the nuclear
(V2B) and Coulomb (VC) potentials reads

V (r) = 125e− r2

1.532 − 30.18e− r2

2.852 + 4e2

r
erf (0.60141r). (43)

The last term is approximated by a sum of Gaussians.
The three-body potential (V3B), v3 exp(−νF3(ri, r j, rk )), is
also included, where F3(ri, r j, rk ) = 3

∑
l=i, j,k (rl − Ri jk )2

with Ri jk = (ri + r j + rk )/3. The range parameter ν is
(2.582

√
3)−1 and the potential strength v3 is −151.737 for

L = 0 and −179.463 for L = 2, respectively. The contribu-
tion of V3B is evaluated by taking a sum over ( N

3) different
combinations of three particles.

I specify the matrix A of Eq. (19) via a set of {di j}, a
measure of the relative distance of particles i and j:

x̃Ax =
N∑

i< j

1

d2
i j

(ri − r j )
2 = R2ỹ

N∑
i< j

T (i j)

d2
i j

y. (44)

0 5 10
−40

−20

0

20

40
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FIG. 1. The minimum energy of 〈H�〉 as a function of Rrms ob-
tained by a single 3α configuration with L = 0. The contribution of
each piece of the adiabatic Hamiltonian is also displayed. Note that
〈H�〉 includes the term, h̄2/(2mρ2)[(d − 1)(d − 3)/4]. See Eq. (11).

Replacing R2 with
∑N

i< j d2
i j/N [see Eq. (5)], A is written,

independent of R, as follows:

A = cA
1

N

⎛⎝ N∑
i< j

d 2
i j

⎞⎠ N∑
i< j

T (i j)

d 2
i j

, (45)

where cA is a variational parameter. When all di j’s are equal,
A becomes cA(N (N − 1)/2)IN . In the following cases the
expectation value of H� turns out to be insensitive to cA, and
I set it to (N (N − 1)/2)−1 mostly.

Any intrinsic shape of the three-body system is specified
by two angles, α and β, [37]:

d2
12 = cos2 α cos2 β + sin2 α sin2 β,

d2
13 = cos2 α cos2

(
β + π

3

)
+ sin2 α sin2

(
β + π

3

)
,

d2
23 = cos2 α

(
cos β − cos

(
β + π

3

))2

+ sin2 α

(
sin β − sin

(
β + π

3

))2

. (46)

The parameter u in Eq. (19) is redundant for L = 0. For L = 2
it is set to u1 = sin θ and u2 = cos θ . α, β, and θ are varied to
find a minimum of 〈H�〉 for each R. In what follows, I use the
point-α root-mean-square (rms) radius Rrms instead of R:

Rrms = 1√
N

R. (47)

Figure 1 plots the minimum of 〈H�〉 for 3α system with
L = 0 as a function of Rrms. The minimum occurs at a regular
triangle configuration for all Rrms’s. A global minimum is
−7.17 MeV at Rrms = 1.45 fm. This minimum value ap-
pears quite reasonable in comparison to the K dependence
of Fig. 1 [33]. However, it is considerably high compared
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(a)

0 5 10
0

2

4

Rrms (fm)

R
at

io

(b)

FIG. 2. (a) The same as Fig. 1 but for L = 2. (b) Rrms dependence
of 〈T�〉 and 〈VC〉 contributions. They are, respectively, given in
ratio to the centrifugal potential barrier, h̄2L(L + 1)/(2mR2) (L =
2) (dotted line), and to the Coulomb potential of point α-particles
forming a regular triangle, 12e2/R (solid line).

to the minimum (−17.8 MeV) [13], which clearly indicates
that configuration interaction calculations are needed to gain
the energy. As seen from the contribution of each operator to
〈H�〉, the Coulomb potential makes a dominant contribution
beyond 2 fm. The contribution of T� is negligible at all Rrms

values, which is probably because the basis function (19) is
too simple to represent the hyperangular dependence of L = 0
states.

The minimum energy of 3α system with L = 2 is ex-
hibited in Fig. 2(a). The intrinsic shape reaching the min-
imum changes depending on Rrms: For 1.5 � Rrms � 7.4
fm, d12 ≈ 0.24, d13 ≈ 0.76, d23 ≈ 0.93, and u1 = 1.0, u2 =
0.0. For 7.8 � Rrms � 8.3 fm, d12 ≈ 0.37, d13 ≈ 0.65, d23 ≈
0.97, and u1 = 0.5, u2 = 0.866. For Rrms � 9.5 fm an isosce-
les configuration with its apex angle less than 60◦ is formed
and u1 = 0.0, u2 = 1.0. A global minimum is considerably
lower than that of Fig. 2 of Ref. [33], but a comparison with
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FIG. 3. The same as Fig. 1 but for 4α system with L = 0.
The adiabatic potential is calculated by a single configuration cov-
ering various shapes of tetrahedron, square, rhombus, rectangle,
linear-chain, and hypersphere. The lowest one among them is plot-
ted together with the contribution of each piece of the adiabatic
Hamiltonian.

the adiabatic HS potential curve [13] clearly indicates the
importance of configuration interaction calculations.

The contribution of the operator O to 〈H�〉 is drawn in
Fig. 2(a). The Coulomb potential contribution becomes largest
beyond Rrms = 2.8 fm. A careful look shows that discontin-
uous contributions occur at Rrms = 7.4 to 7.5 fm. Although
the sum of the potentials, V2B + VC, gives a decreasing con-
tribution with increasing Rrms, each of them does not follow a
monotonous change. This can be shown conveniently in ratio
to some standard values: For T� and VC contributions I take the
standards to be the centrifugal potential, 6h̄2/(2mR2), and the
Coulomb potential, 12e2/R, respectively. Figure 2(b) displays
the contributions of T� and VC in ratio to these standards.
As expected, both of them approximately follow constant
curves but still vary. The discontinuous behavior as well as
the deviation from the constant may be attributed to that T�

and the potentials do not commute.
Next I present results of four-α system. The 2B and 3B

potentials defined above predict the rms radius of 12C slightly
smaller than the empirical value [13]. To fit the radius of
12C I add a repulsive 3B potential with v3 = 2000 and ν =
(1.412

√
3)−1. With this addition the 3α minimum of 〈H�〉

for L = 0 changes to −4.9 MeV at Rrms = 1.7 fm. I compare
〈H�〉 values calculated from various shapes of 4 α-particles:
tetrahedron, square and rhombus, rectangle, linear-chain, hy-
persphere. It is meant by the hypersphere that the matrix A
is proportional to IN . In the cases of tetrahedron, rectangle,
and linear-chain some configurations slightly deviated from
the respective highest symmetric shape are also tested. In all
the cases the αα relative distances are taken to increase with
increasing Rrms. The 〈H�〉 value is therefore the one relative
to the 4α threshold. The ground state of 16O is 14.43 MeV
below the 4α threshold. The 〈H�〉 values predicted by the
various shapes are found to be close to each other. In Fig. 3
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N=3 N=4

N=5 N=6

FIG. 4. Schematic diagram of Nα configuration: regular triangle
(N = 3), regular tetrahedron (N = 4), regular triangular bipyramid
(N = 5, left) or regular quadrangular pyramid (N = 5, right), and
regular square bipyramid (N = 6).

I plot the lowest one among them as a function of Rrms.
The minimum reaches about −9.7 MeV at Rrms = 3.4 fm,
which corresponds to the rms radius of 16O , rrms = 3.7 fm.
The minimum energy is considerably higher than experiment
and the rms radius is too large compared to the empirical
radius (2.7 fm) of 16O . Again the importance of configuration
interaction calculation is suggested.

Finally I test the method by increasing the number of
α particles up to N = 6. Only the 2B force is included in
this calculation. The matrix A for N-body system is fixed
according to the shape shown in Fig. 4. In the same way
as Fig. 3, all of the αα distances are taken to get larger as
Rrms increases. In the case of L = 2, a minimum of 〈H�〉
is searched for by changing the u parameter according to
ui = δi, j (i = 1, . . . ,N ), where j runs from 1 to N . Two
configurations of N = 5 give almost the same energy, so that
I show the case of regular triangular bipyramid. Results of
calculation are drawn in Figs. 5(a) and 5(b). No difficulty
in the calculation arises with increasing N . Note that E = 0
horizontal axis corresponds to the Nα threshold. Experimen-
tally the ground states of 20Ne and 24Mg are respectively
−19.2 and −28.5 MeV below the 5α and 6α thresholds. To
predict realistic adiabatic potential curves one has to mix
other configurations. In particular, it would be interesting to
study the effects of clustering of 6α system into 3α + 3α,
2α + 4α, and α + 5α, where each subsystem may form some
compact configurations. See, e.g., Ref. [18]. As stressed in
Introduction, the potential curve is obtained as a function
of the universal scale, the hyper-radius or the rms radius of
the system. Because of this reason the present formulation
has no ambiguity in evaluating various coupling effects. In
addition no spurious c.m. motion is involved, assuring that
the threshold is correctly treated. An extensive study of these
issues based on configuration interaction calculations will be
interesting.

I comment on a choice of the matrix A in relation to the
asymptotic behavior of the adiabatic potential. As R increases,
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(b)  L=2
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(a)  L=0

FIG. 5. (a) The minimum energy of N α system with L = 0 ob-
tained by a single configuration drawn in Fig. 4. Two configurations
of N = 5 case give almost the same energy, so that the energy
calculated by the regular triangular bypyamid is shown. (b) The same
as (a) but for L = 2.

the system expands and tends to break into some fragments.
It is useful to note that ρ2 of Eq. (5) is always separated into
a sum of two parts, internal and relative, as discussed in, e.g.,
[32]. The internal part is a sum of the squared hyper-radius
of each fragment, while the relative part is the squared hyper-
radius defined by the c.m. coordinates of the fragments. It is
then natural to choose a set of {di j} in such a way that the
relative distances of the particles inside each fragment remain
finite, whereas the relative distances connecting the fragments
increase with R. For example, in the case of two-fragment
decomposition consisting of N − 1 particles and one particle,
a reasonable and simplest choice for A is diagonal, Ai j =
(1/d2

i )δi, j , with the constraint
∑N−1

i=1 d2
i = D2 and d2

N =
R2 − D2, where D2 is N − 1 times the squared mean radius of
the fragment. Off-diagonal elements of A take account of the
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coupling of the different coordinates. A combination of the
CGs whose parameters are selected with some optimization
procedure is expected to give a refined description of the
asymptotic behavior of the adiabatic potential. A study along
this line with specific cases is important to corroborate the
present formalism.

VI. CONCLUSION

The matrix element of the adiabatic Hamiltonian requires
the integration over the surface of the d-dimensional ball of
a fixed hyper-radius R. The integration becomes extremely
hard beyond four-particle systems. I have proposed a simple
prescription to resolve this difficulty by introducing the lo-
calized hyper-radial function. The function is combined with
correlated Gaussians responsible for describing the hyperan-
gular motion of the system. The prescription consists of the
evaluation of usual matrix elements with all the coordinates
and the limiting procedure to pin down the hyper-radius to R.
All the details of the procedure are given considering that it is
quite new to the best of the author’s knowledge.

The system of α particles interacting via both two-body
and three-body potentials is used to convince a reader of the
feasibility of the proposed prescription. The number of α

particles is increased up to N = 6. No difficulty is observed
with increasing N . The convergence of the power-series
expansion for κ → ∞ is fairly fast with mild dependence
on N . A noticeable problem arises in evaluating the matrix
element of the interaction potentials at large R. The reason for
that is elucidated and some recipes to alleviate the problem
are adopted. It is still challenging, however, to calculate the
potential matrix element at an extremely large hyper-radius.

Since the emphasis of the present work is to propose a new
approach and to demonstrate its usefulness, no configuration
interaction calculation is performed. No difficulty is expected
to arise in combining a number of basis functions. It is a future
work to examine what type of basis parameters are important
to obtain accurate solutions of the eigenvalue problem of the
adiabatic Hamiltonian including its asymptotics.

The correlated Gaussian used in the paper is the simplest
one. The contribution of the hyperangular kinetic-energy to
the adiabatic potential almost vanishes in the case of L = 0
orbital angular momentum, which appears to indicate the lim-
itation of the simplest Gaussian. It is thus of particular interest
to extend the correlated Gaussian f uA

LM (y) to the one including
double global vectors, [YL1 (ũ1y) × YL2 (ũ2y)]LMe− 1

2 ỹAy. This
is because the basis function can accommodate a description
of more complex hyperangular motion as well as unnatural
parity states and because basic matrix elements needed with
this basis function are already available in Refs. [35,36].
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APPENDIX A: EVALUATION OF κ → ∞ LIMIT

Here two things are discussed. One is to calculate
(−d

dt )κPBt QO(t ) at t = κ [see Eqs. (21), (23), and (31)] and
the other is to take its κ → ∞ limit. A basic idea is to expand
PBt QO(t ) in a power series of t−1.

The t dependence appears as det Bt in PBt and as B−1
t in

QO(t ), respectively. Let (b1, b2, . . . , bN ) be the eigenvalues
of B, and T denote the orthogonal matrix that diagonalizes B:
B = T DT̃ with D = (biδi, j ). Thus Bt = B + t IN and B−1

t are
expressed as

Bt = tT DxT̃ , B−1
t = t−1T (Dx )−1T̃ , (A1)

where Dx is a diagonal matrix

Dx = IN + xD, x = t−1. (A2)

By using detBt = tN
∏N

i=1(1 + bix), PBt = (detBt )−
3
2 is

expanded as

PBt = t− d
2

∞∑
m=0

pB
mxm. (A3)

It is easy to determine pB
m’s from bi’s. QO(t ) in gen-

eral comprises a number of scalar terms, each of which
contains several, say N0, B−1

t ’s. For instance, Q1(t ) for
the overlap is (ũ′B−1

t u)L. By using the expansion B−1
t =

t−1∑∞
l=0(−1)lT Dl T̃ xl , the scalar term containing B−1

t is
expanded in a power series of x, e.g.,

TrB−1
t = t−1

∞∑
l=0

(−1)l (Tr Dl ) xl ,

ũ′B−1
t u = t−1

∞∑
l=0

(−1)l (ṽ′Dlv) xl , (A4)

where v = T̃ u, v′ = T̃ u′. By replacing each B−1
t in this way,

QO(t ) becomes a combination of expansions with appropriate
coefficient quA,u′A′

O,n as follows:

QO(t ) =
∑{

t−N0

∞∑
n=0

quA,u′A′
O,n xn

}
. (A5)

The symbol
∑ { } is suppressed below.

Combining Eqs. (A3) and (A5), I obtain(
− d

dt

)κ ∣∣∣∣
t=κ

PBt QO(t ) =
(

− d

dt

)κ ∣∣∣∣
t=κ

t−λ

∞∑
n=0

cnt−n

=
∞∑

n=0

cn�(κ + n + λ)

�(n + λ)κκ+n+λ
, (A6)

where

λ = N0 + d

2
, cn =

n∑
m=0

pB
mquA,u′A′

O,n−m. (A7)

By using the relation

lim
κ→∞

E (κ )�(κ + n + λ)

κκ+n+λ
= 1, (A8)

014002-8



ADIABATIC HYPERSPHERICAL POTENTIALS WITH … PHYSICAL REVIEW C 101, 014002 (2020)

the limit of Eq. (A6) is found to be

lim
κ→∞ D(κ )(t → κ )PBt QO(t )

=
∞∑

n=0

cn

�(n + λ)
= 1

�(λ)

⎧⎨⎩c0 + c1 + c2+ c3+···
λ+2

λ+1

λ

⎫⎬⎭. (A9)

The sum over n can be expressed in a continued fraction
as above. The needed task is to determine the expansion
coefficients cn, which is not difficult but involves several steps
for the hyperangular kinetic-energy.

How fast does the series converge? As a simple exam-
ple, consider the norm, 〈 f uA

LM | f uA
LM〉y=1, assuming that A =

(aδi, j ) (a > 0) and ũu = 1. Equation (27) gives M1(t ) =
f L
0 (a + t )−λ (λ = L + d

2 ). The power-series expansion of
M1(t ) is easily done by using a formula

(ax + a0)−α = a−α
0

∞∑
n=0

(α)n

n!

(
− a

a0
x

)n

, (A10)

where (α)n is the Pochhammer symbol, �(α + n)/�(α). The
nth term in the sum (A9) for this case is cn/�(n + λ) =
(−a)n/n!�(λ), and the κ → ∞ limit is found to be〈

f uA
LM

∣∣ f uA
LM

〉
y=1 = 2 f L

0
e−a

�(λ)
. (A11)

When a is small, |cn| is sufficiently small to ensure the
convergence. For large a, however, |cn| rapidly increases with
n, which makes computing cn itself hard and results in ill
behavior of the alternating series.

In passing I note that the left-hand side of Eq. (A11) with
L = 0 is nothing but e−a/4π times Sd , the surface area of
the d-dimensional ball of radius 1. One thus obtains Sd =
2π

d
2 /�( d

2 ), which is indeed correct.
The above convergence problem does not occur for the

overlap and the hyperangular kinetic-energy, but becomes

serious in the Gaussian potential matrix element MVi j (t ) as
R increases. As shown in Sec. IV A, MVi j (t ) is simply given
by M1(t ) with B replaced by G(i j) = B + νR2T (i j). The ill
behavior arises because G(i j) contains a large eigenvalue for
large R. I propose another power-series expansion to resolve
this difficulty. I keep B instead of G(i j) but assume that one of
the eigenvalues of B, say, b1 is much larger than the others.

With multinomial coefficients I obtain

PBt
(
ũ′B−1

t u
)L =

∑
l1+l2+...+lN =L

(
L

l1, l2, . . . , lN

)

×
( N∏

i=1

(v′
ivi )

li

)
Fl1l2...lN (t ) (A12)

with

Fl1l2...lN (t ) = t−λ

N∏
i=1

(bix + 1)−li− 3
2 , (A13)

where λ = L + d
2 and li’s are nonnegative integers. Using

Eq. (A10), I expand Fl1l2...lN (t ) in powers of t−1 as

Fl1l2...lN (t ) =
∞∑

m=0

(−1)mt−m−λ

×
∑

m1+...+mN =m

D(b1, . . . , bN ; m1, . . . , mN ),

(A14)

where mi’s are nonnegative integers, and the function D is
defined by

D(b1, . . . , bN ; m1, . . . , mN ) =
N∏

i=1

(
li + 3

2

)
mi

mi!
bmi

i . (A15)

Taking the limκ→∞ leads to the desired limit

lim
κ→∞ D(κ )(t → κ )Fl1l2...lN (t ) =

∞∑
m=0

(−1)m

�(m + λ)

∑
m1+...+mN =m

D(b1, . . . , bN ; m1, . . . , mN ). (A16)

Since the limit is already taken, a remaining task is to
find an efficient way of making mi sums to accelerate the
evaluation of the limit. D is a kind of distribution function
of the eigenvalues. Because b1 is by far larger than the others,
those with m1 = m, m − 1, m − 2 etc. are expected to make
dominant contributions. To focus on the contribution from
m1 = m − p, I rewrite the m1-dependent factor of D as (see
Appendix C)(

l1 + 3
2

)
m−p

(m − p)!
= 1

m!

p∑
k=0

(−1)k

(
p

k

)(
l1 + 3

2
− k

)
m

. (A17)

By defining

〈b(p)〉 = 1

b p
1

∑
m2+...+mN =p

D(b2, . . . , bN ; m2, . . . , mN ), (A18)

the contribution to the limit of Eq. (A16) is given by

〈b(p)〉
�(λ)

p∑
k=0

(−1)k

(
p

k

)[
M

(
l1 + 3

2
− k, λ,−b1

)

−
p−1∑
n=0

(−b1)n

n!(λ)n

(
l1 + 3

2
− k

)
n

]
, (A19)

where M(a, b, z) is the confluent hypergeometric function or
Kummer’s function [38]

M(a, b, z) =
∞∑

n=0

(a)n

(b)nn!
zn. (A20)

The Pochhammer symbol (l1 + 3
2 − k)n in Eq. (A19) is a

polynomial of k of degree n. Since n takes 0 to p − 1,∑p
k=0(−1)k ( p

k )kn vanishes. See Eq. (C4). As a result, I
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conclude that

lim
κ→∞ D(κ )(t → κ )Fl1l2...lN (t )

= 1

�(λ)

∞∑
p=0

〈b(p)〉
p∑

k=0

(−1)k

(
p

k

)
M

(
l1 + 3

2
− k, λ,−b1

)
.

(A21)

I find that the sum over p converges fast.

APPENDIX B: MATRIX ELEMENT OF �2

I show how to determine �2(Ry) needed to obtain the
matrix element of �2, Eq. (39). A simple way is to make use
of the generating function g for �uA

Rκ,LM [22,23],

g =
(

ρ

R

)κ

e− κ
2

(
ρ

R

)2
− 1

2 ỹAy+̃sy
, (B1)

where s = αeu. See Eq. (26).
By using y = (ρ/R)ξ, the action of Tρ on g reads

−
(

∂2

∂ρ2
+ d − 1

ρ

∂

∂ρ

)
g = 1

ρ2
Oρ (x)g. (B2)

Oρ (x) consists of several terms depending on A and s as well
as κ . In taking the limit of κ → ∞, ρ2 in Oρ (x) approaches
R2. This replacement in Oρ (x) leads to

Oρ (Ry) = 2κ − (d − 1)̃sy − (̃sy)2 + d ỹAy

+ 2̃sỹyAy − (̃yAy)2. (B3)

Similarly, the action of Tin on g is obtained by noting y = x/R
and using, e.g., ∂ρ/∂xiz = xiz/ρ:

−
N∑

i=1

∂2

∂x2
i

g = 1

ρ2
Oin(x)g. (B4)

The same replacement of ρ2 by R2 as above leads to

Oin(Ry) = 2κ + 3TrA − s̃s + 2̃sAy − ỹA2y. (B5)

Thus �2g is given by [Oin(Ry) − Oρ (Ry)]g:

�2g = [3TrA − s̃s + (d − 1)̃sy + 2̃sAy + (̃sy)2

− d ỹAy − ỹA2y − 2̃sy ỹAy + (̃yAy)2]g. (B6)

Both Oρ (Ry) and Oin(Ry) contain the diverging term, 2κ , but
it disappears from �2g, as expected. Symmetrizing Eq. (B6)
[28–30] with respect to the interchange of (A, s) and (A′, s′), I
obtain �2g = �2(Ry)g, where

�2(Ry) = 3TrB − 1
2 (̃ss + s̃′s′) + 1

2 (d − 1)(̃s + s̃′)y

+ (̃sAy + s̃′A′y) + 1
2 ((̃sy)2 + (s̃′y)2) − d ỹBy

− 1
2 (̃yA2y + ỹA′2y) − ((̃sy)̃yAy + (s̃′y)̃yA′y)

+ 1
2 ((̃yAy)2 + (̃yA′y)2). (B7)

The matrix element M�2 (t ) is derived by using the for-
mulas in Appendix B of Ref. [33] and by performing the
operations with respect to s and s′ as indicated in Eq. (26).
The result is given in Sec. IV B.

Let us apply the above result to the diagonal matrix element
〈 f uA

LM |�2| f uA
LM〉y=1, where A = (aδi, j ) and ũu = 1. Note that for

this A the hyperangular dependence of f uA
LM comes only from

YLM (̃uy) which is the homogeneous polynomial of degree L.
M�2 (t ) turns out to comprise of (a + t )−λ−p with p = 0, 1, 2.
See Eqs. (39)–(42). Taking the κ → ∞ limit leads to〈

f uA
LM

∣∣�2
∣∣ f uA

LM

〉
y=1〈

f uA
LM

∣∣ f uA
LM

〉
y=1

= L(L + d − 2). (B8)

For d = 3, the expectation value of �2 reduces to L(L + 1)
as expected. For larger d , the value is consistent with the fact
that �2 has the eigenvalue K (K + d − 2) [34] when it acts on
the HS harmonics with the hypermomentum K . In a general
case where A has off-diagonal elements, Ai jyiy j terms of the
exponential of the CG contribute to the hyperangular motion
with larger K values.

APPENDIX C: STIRLING NUMBERS

Equation (A17) states that(
m

p

)
(x)m−p = 1

p!

p∑
k=0

(−1)k

(
p

k

)
(x − k)m, (C1)

where m � p are both non-negative integers, and x = l1 + 3
2

may be extended to any real number. Although this equation
has been numerically checked, I have no proof of it yet.
Here, I point out that the problem is formulated using Stirling
numbers [38].

I start from expanding a falling factorial xn with the Stirling
number of the first kind, s(m)

n , as

xn ≡ x(x − 1) · · · (x − n + 1) =
n∑

m=0

s(m)
n xm. (C2)

The Stirling number of the second kind, S(m)
n , conversely

relates xn to the falling factorials,

xn =
n∑

m=0

S(m)
n xm. (C3)

Both s(m)
n and S(m)

n vanish for m > n, and s(n)
n =S(n)

n = 1.
By differentiating both sides of the binomial relation,∑p
k=0(p

k)ap−kbk = (a + b)p, n times with respect to b and by
setting a = 1, b = −1, one obtains a useful formula

p∑
k=0

(−1)k

(
p

k

)
kn = (−1)p p!δn,p. (C4)
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Note that the case of n > p trivially holds true. It follows from
Eqs. (C3) and (C4) that S(p)

n is explicitly given by

S(p)
n = 1

p!

p∑
k=0

(−1)p−k

(
p

k

)
kn. (C5)

The use of (x)n = x(x + 1) · · · (x + n − 1) = (−1)n(−x)n

and Eq. (C2) leads to

(x − k)m = (−1)m
m∑

n=0

s(n)
m

n∑
l=0

(
n

l

)
kl (−x)n−l . (C6)

Substitution of this equation into Eq. (C1) and use of Eq. (C5)
reduces the right-hand side of Eq. (C1) to

(−1)m+p
m∑

n=0

s(n)
m

n∑
l=0

(
n

l

)
S(p)

l (−x)n−l . (C7)

Comparing the coefficient of (−x)i (0 � i � m − p) on both
sides of Eq. (C1), one finds that Eq. (C1) is equivalent to a set
of equations,(

m

p

)
s(i)

m−p =
m∑

n=p+i

(
n

n − i

)
s(n)

m S(p)
n−i. (C8)
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