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From the subsubleading chiral three-nucleon forces [intermediate-range contributions, published in Phys.

Rev. C 87, 054007 (2013)] a density-dependent NN-interaction V;,.q is derived in isospin-symmetric nuclear
matter. Following the division of the pertinent 3N diagrams into two-pion-one-pion exchange topology and ring
topology, one evaluates for these all self-closings and concatenations of nucleon lines to an in-medium loop. In
the case of the 27 177 -exchange topology, the momentum- and k s-dependent potentials associated with the isospin
operators (1 and 7;-7,) and five independent spin structures require at most one numerical integration. For the
more challenging (concatenations of the) ring diagrams proportional to ¢; 34, one ends up with regularized
double-integrals foﬂA drr fO"/ *d ¥ from which the A? divergence has been subtracted and the logarithmic piece
~1In(m, /}) is isolated. The derived semianalytical results are most helpful to implement the subsubleading

chiral 3N forces into nuclear many-body calculations.
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I. INTRODUCTION AND SUMMARY

It is well known that three-nucleon forces are an in-
dispensable ingredient in accurate few-nucleon and nuclear
structure calculations. Nowadays, chiral effective field theory
is the appropriate tool to construct systematically the nuclear
interactions in harmony with the symmetries of QCD. Three-
nucleon forces appear first at N’LO, where they consist of
a zero-range contact term (~cg), a midrange lmw-exchange
component (~cp), and a long-range 2 -exchange component
(~c1.3.4). The complete calculation of the chiral 3N forces
to subleading order N3LO [1,2] and even to subsubleading
order N*LO [3,4] has been achieved during the past decade
by the Bochum-Bonn group. At present the focus lies on
constructing 3N forces in chiral effective field theory with
explicit A(1232) isobars, for which the longe-range 2m-
exchange component has been derived recently in Ref. [5] at
order N3LO.

However, for the variety of existing many-body meth-
ods, that are commonly employed in calculations of nuclear
matter or medium mass and heavy nuclei, it is technically
very challenging to include the chiral three-nucleon forces
directly. An alternative and approximate approach is to use
instead a density-dependent two-nucleon interaction Vj,eq that
originates from the underlying 3N force. When restricting
to on-shell scattering of two nucleons in isospin-symmetric
spin-saturated nuclear matter, the resulting in-medium NN-
potential Vjeq has the same isospin- and spin-structure as the
free NN potential. The analytical expressions for Vy,eq from
the leading chiral 3N force at N>LO (involving the parameters
c1.3.4, cp, and cg) have been presented in Ref. [6] and these
have found many applications (e.g., to the thermodynamics of
nuclear matter) in recent years [7—16]. But in order to perform
nuclear many-body calculations that are consistent with their
input at the two-body level, one needs also Vg derived from
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the subleading chiral 3N forces at order N°LO. In two recent
works this task has been completed for the short-range terms
and relativistic 1/M corrections in Ref. [17], and for the
long-range terms in Ref. [18]. In the latter case one is dealing
with 3N diagrams which were divided in Ref. [1] into classes
of 2w -exchange topology, 27 1w -exchange topology, and ring
topology. For these topologies the self-closings of a nucleon
line and the concatenations of any two nucleon lines to an
in-medium loop had to be worked out to together with the
summation/integration over the filled Fermi sea of density
p= 2k;- /37*. The momentum- and k-dependent potentials
associated with the isospin operators (1 and 7;-7;) and five
independent spin structures [1, G;-0>, G|-§ 062G, i(01+32)-
(Gxp), 61-p&2-p+1-p'3,2-p’] could all be expressed in
terms of functions, which were either given in closed ana-
Iytical form or required at most one numerical integration.
In order to obtain for the (nonfactorizable) 3N-ring diagrams
such an expedient form it was crucial to invert the order the
original loop integration and the added Fermi-sphere integral.
Moreover, the method of dimensional regularization, as it was
implicitly used in Ref. [1], could be recovered by subtracting
asymptotic constants from the integrands in foood l---.

The purpose of the present paper is to extend the calcula-
tion of the in-medium NN-potential V;,¢q to the subsubleading
chiral 3N forces at order N*LO. The long-range 27 -exchange
component, symbolized by the left diagram in Fig. 1, has
already been treated in Sec. IV of Ref. [18] through appro-
priate contributions to the two structure functions g (g,) and
h_(g>). As indicated by the notation, these structure functions
are equal to f2 times the isoscalar non-spin-flip and isovector
spin-flip w N-scattering amplitudes at zero pion-energy w = 0
and squared momentum-transfer t = —g3.

The present paper is organized as follows. Section II starts
with the computation of Vjeq from the intermediate-range

©2020 American Physical Society
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FIG. 1. 2m-exchange topology, 2w 1m-exchange topology, and
ring topology which comprise the long- and intermediate-range
chiral 3N forces at subsubleading order N*LO.

2m 1m-exchange component, symbolized by the middle dia-
gram in Fig. 1. In comparison to Sec. III of Ref. [18] one
encounters at N*LO a richer spin- and momentum-
dependence for this part of the chiral 3N force, and 12 instead
of eight functions f;(q) are needed to represent all diagrams
belonging to this topology. The contributions to Vi,eq as they
arise from self-closing, vertex-correction by 1w exchange,
vertex-correction by 2 exchange, and double exchange are
given by semianalytical expressions that comply with this
extended structure. Note that Ref. [4] has concluded from a
study of the 3N potential in coordinate space at the equi-
lateral triangle configuration, that the N*LO corrections to
the intermediate-range topologies are numerically large and
dominate in most cases over the nominally leading N*LO
terms. This feature could be traced back to the large coef-
ficients ¢, 34, which reflect the importance of the A(1232)
isobar coupled to the 7N system. At N*LO the 3N diagrams
belonging to the ring topology, symbolized by the right di-
agram in Fig. 1, fall into three classes according to their
scaling with g3. Section III is devoted to the simplest ring

J

interaction proportional to g%¢; 234 and the contributions to
Vinea from self-closings and concatenations are given in three
subsections. After angular integration the remaining double-
integral [dlydl is treated in polar coordinates and regularized
by a (euclidean) cutoff A. In this form the A? divergence
can be easily subtracted and the subsequent logarithmic piece
~In(m, /X) is isolated. A good check is provided by the fact
that the total kzk; divergence is of isoscalar central type
and thus can be absorbed on the 3N short-distance param-
eter cg. In Sec. IV the analogous calculations are carried
out for the more involved ring interaction proportional to
g4¢1.2.3.4. Finally, one considers in Sec. V the ring interaction
proportional to gic1,2,3,4, which consists of a large number
of terms with different isospin, spin, and momentum depen-
dence. At that point one elaborates also a bit on euclidean
loop integrals over four or three pion propagators. The self-
closing contributions to Vpeq are given in closed analytical
form in Sec. V A and one observes that these central, spin-
spin, and tensor potentials linear in density p depend either
on ¢; +c¢3 or on ¢; and c3. Concerning the contributions
to Viea from concatenations, the pertinent expressions are
presented in Sec. V B only for three selected pieces from the
ring interaction ~g4ci,.3.4. These give rise to isoscalar and
isovector potentials accompanied by all five spin-structures.
A complete list of the lengthy formulas for the remaining
contributions to Vpeq from the concatenations of the 3N-ring
interaction ~gﬁc1,2,3,4 can be obtained from the author upon
request.

In summary, after eventual partial-wave projection the
presented results for V4 are suitable for an approximate
implementation of the subsubleading chiral 3N forces of
intermediate range into nuclear many-body calculations.

II. TWO-PION-ONE-PION EXCHANGE TOPOLOGY

The 2m 1r-exchange 3N interaction arises from a large set of loop diagrams, and according to Eq. (3.1) in Ref. [4] it can be

written in the general form

g 5@
2567 f2 m2 + ¢3

Van =

5 {?1 '?3[52'671 4143 f1(q1) + 62-G1 f2(q1) + 6243 f3(611)]

+ ?2'?3[51'671 G1-q3 falq1) +61-@s f5(q1) + 6241 G- G5 f6(q1) + G2-G1 f7(q1) + 02-G3 §1-G3 f3(q1) + 523 f9(6]1)]

(0 x%) 8 [ 61 %3261 (163 fio@) + finaD) + 6@ x @) 321 fiatan) ] | (M

where g; denotes the momentum transfer at nucleon j € {1, 2, 3}, and g, + §» + g3 = 0 holds due to momentum conservation.
Since a common prefactor g4 /(2567 f°) has been pulled out in Eq. (1), the contributions to the reduced functions f, (s) at N°LO

read, according to Eq. (3.2) in Ref. [4],

My g2 My 4m72,
fi(s) = S—z(l —2¢3) — m + [1 +a+ s—z(zgi - 1)}A(s), )
() = fr(s) = (4m2 + 257)A(s),  f(s) = [4(1 — 2g3)m2 + (1 — 3g3)s7]A(s), (3)

f5(5) = —sfu(s) = 28545%AG),  fu(s) = —(2mi T3

with the heavy-baryon loop-function

1
A(s) = — arctan
(s) 7

\)

52

)A(S), f6.8,9,10,12(5) =0 (€]

&)

2my
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Likewise, one extracts from Eq. (3.3) in Ref. [4] the following contributions to the reduced functions f;(s) at NLO:

16¢ B mjzr B m,zr 1-— g_2 3m721

i) ==~ {(4 —&) 5+ [(gf —4) T e +sz}us)}, (6)
16 12m* 16

fls) = S—f[(gf —)m2 + (g2 —4)5 — 4m%%]us), £5(5) = = fils) = %szL(sx 7)
8 2 2 3(2¢1 + c3)m

fols) = 5{(@1 ooy — 3C3)"SL;r n [(3c3 — 6c, — cz)% + Cz—z + %}Lm}, 8)
8 5 2

Fi(s) = n—gi{[z@ + % _ 2c.>m3, n (%2 + C3)s2]L(s) 4 ((&rf,,)zé14 - % - q)%}, 9)
8 2 40 4

fols) = ;[(SCI — ¢ — desym? — (Bes + 13C3)sZ - %}Lm, (10)

4C4
Sio(s) = fi2(s) = 7L(S), fs11(s) =0 (11)

with the frequently occurring logarithmic loop function

Y —) AmZ & 52
Mo ¥y ST VI A (12)
N

2my

L(s) =

Note that one has supplied in Eq. (9) through the last term proportional to s> /2 that particular polynomial piece, which cannot be
absorbed on the short-distance parameters cp and cg. The value of the low-energy constant €4 as extracted from 7N scattering
isel =1.52GeV 3 [3] or &4 = 1.18 GeV 3 [19]. One notices from Egs. (4), (11) that there is yet no contribution to fg(s), but
the corresponding structure &5 - g3 §; - 3 will arise once explicit A(1232) isobars are considered in the derivation of the chiral
27 1-exchange 3N interaction.

A. Contributions to in-medium NN potential

Now one can turn to the contributions of the 2w 1-exchange 3N interaction Vsy written in Eq. (1) to the in-medium NN-
potential Vyeq. Only the self-closing of nucleon line 1 gives a nonvanishing spin-isospin trace, and after relabeling 3 — 1 one
obtains the contribution

gamzk; %%,
2474 £8 m2 + ¢?

-

473 > o
gAk f9(0) [RX%) N N
vy =21 51-45G =

med T 347 £2)3 m2 + ¢

01:4 624 (6c1 — 2 — 5¢3), 13)

which is of the form: 17 -exchange NN interaction times a factor linear in density p = Zk; /372, The last expression in Eq. (13)
comes from evaluating fo(s) in Eq. (10) at s = 0. In all forthcoming formulas for V;¢q one denotes by § = p’ — p the momentum-
transfer for the on-shell scattering process Ni(p) + No(—p) — Ni(p’) + N,(—p’) in the nuclear matter rest frame. On the
other hand the vertex corrections by 17 exchange, apparent in Eq. (1) through the second factor 73 g3/ (m,zr + qg), produce the
contribution

g4
(87 £2)°
+ 17 T fa(q) + 3f(@) + (263 — 3m2T1) fs(q) — 3(B1-p G2+ G1-p' G2 p T3 f5(q)

1) 2 4k?" > = qu 2rm o
Voed = <2mnro - T)[Tl ‘T f3(q) + 3 fo(q@)] — <2F2 + ?Fs)q [T1-T2f1(q) + 3 f6(q)]

~ 2~
+261:62| =3I fs(g) + T1- T2 612(2F2[f10(q) + fi2(@)] = Tifi(g) + %F3f10(€1)>

+25,-352-G [a -?2<F1fn(q) — 2Da[fio(q) + fia(g)] — %Bflo(q)) - 3<r2 + %F3>f4(q)}
~ 3g% ~ ~
+47,-%61-(GxP)o2-(Gx P )3 fi2(q) + i(81+82)-(67><ﬁ)[%r3f6(q) - 3T f2(q)

~ 2~
+7D (Fl [2f11(q) — f2(@)] + %F3[fl (@) — 2f10(q) + 2f12(f1)]>]} (14)
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with the (p, kr)-dependent functions I'g, Fl =TIy+TIy, I'; and F3 =I9 4+ 2I'} 4+ I'; defined in the Appendix of Ref. [17].
Moreover, the vertex corrections by 2w exchange, represented by the expression in curly brackets of Eq. (1), can be summarized
as the 1m-exchange NN interaction times a (p, g, kr)-dependent factor

4 .
VO =S U556, [Si1(p kp) + PSa(p.kp))- (15)
med (87Tf7$)3 m%r + q2 [ ]

The two auxiliary functions Sy »>(p, kr) are computed as integrals over f;(s) in the following way:

p+kf Ky 1
Si1(p, ky) = / ds ;[k]% —(p—s)] {2s2f12(s) — f3(5) = f5(s) — fo(s) + @[(p + )7 =k |L2(5) + fr(s) — 4fn(9)]
P—Ky
337 (k7 — (p = $)*](s* + 4sp + p* — k7)[4i0(s) — 2f12(5) = fi(5) — fa(s) — fo(s)] } (16)
ptky s
Sa(p, k) = f ds ﬁ[k} —(p—’][(p+s) — k7] {fs(s)
p—kg p
1
+ @(f + PP = kp)[4fi0(s) — 2f12(5) = fi(5) — fa(s) — fo(5)] } (17)

Finally, there is the contribution Vn(fe:i from the double exchange, which is separated into an isoscalar part

3g4 = = T = e - Hl,l + il,4
,fli()j = 4 3 [01 :020(2hy — 25, —Hip —112) +01-GG2-q <— —h4—1Dh;s
(87 f2) 2
Y mn on omrn o His+13
+(01'P02'P+01'17/02'17/)(12,3—13,3—T , (13)
and an isovector part
4= = 2
71Ty - ~ ~
Véigj = gA—; {27713[15,0 —2Hs 0 + q—(H4,1 +1I14) — pP*(Ha3+1a3) — 3Hyp — 3112
(87 12) 2

L. oL - 1 -
+l(01+02)'(l7><6])[1‘110,1 + ho,1 — §(H4’1 +141) — 2111.1}

+81-62[2h2 — Hep — Iop + Hsp + I — 2005 + 4Hyo2 + 41102 — 81112 + 2H12

— 2l — 4m2 Lo + 2p*(Hyo + Tios — 21113) — ¢*(Hio1 + Tos — 2111,4)]

. _[Hei+Tss+1ss -
. |:— —l4+Hgo—Hg1 —Iys+ Hio1 + T4

+01:G02-q )

— 2l 4+ Hipy + g +2m2QLog + Lins — 2112,0)1| +(61-p62-p+61-p' 62-p')

+ 13 —Ilos — Hios — los + 2013+ Hips —los — 2m721112,3:|}. 19)

y |:H8,3 —He3+1s3—1s 3
2

The double-indexed functions H; ,,(p) are defined by

1 [Ptk 5 5
o) = 5 / dssfi0k - =7, (20)
P—Ky
Py 2 2 2 2
Hj(p) = 8 - dssfi)[k; — (p—s)][(p+5)° — k7], (1)
1 s 2 212( .2 2 2
Hi>(p) = ey /,,kf dssfi()[k; — (p— )] (s> +4sp+ p* — k), (22)
1 a 2 2 2 2 2 2 2
His(p) = 155 /p B dssfi)[k; — (p—7[(p+ 97 = kF](P* + 5 — k7). (23)
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The other double-indexed functions /; ,(p, g) are defined by

Pty X +2JW
Lo(p @) = — / ds sfi(s)n —— 2 - 4
Qp+[m2 + (s — q)?]
1 ptky p(s2 +m2) - IW P+ k?. _ g2
Lii(p.q) = —/ dssf-(s)[ . + : } (25)
J 42 —q* J oy, J q* 2p
1 [rth 3¢ p 7\
et = g [ assposto #5045 o s (426 -0 )
2
xJw o (k- 1 X +2JW
- (f ) — —[m: + s+ @?*][m: + (s —¢)*]In 4 5 i 5 } (26)
4p* —q P 2q Qp+ q)[m2 + (s — 9)?]
1 Py XVW 2 2 212 317‘1 P 2 2
Qﬂpﬂ):m/; dssfj(s){ 8_p3(kf_s) e 5(21{ —3m + p? —s)
1
+ D (P m2)2p + 5 - 208 — ) + 4—[s2(2m§ +q° —457) + k7 (105> — 2m> — 3¢°) — 6k;&]}, 27)
q* - p
1 Py 2 3
Lia(p.q) = — / ds sf,(s){—22 [J_ (q* —4p*) — 8p~X}
4q p—kys ( )
3 3 X +2JW
+[q—+q(s2—mf,) - —(s2+m]2r)2] In g +2 VW 5
2 2q 2p+ g@)[m2 + (s — q)?]
p
+ m[mkﬁ + 8k; (2m% + ¢* — 25°) + 3my, + 35" + 247 (m, — 5%) — 10s°m; ]
2
+5(3% — ¢* +3m2) +2p° — p(4k; + 4m% + ¢*) + ;(k} +q =) (s — k) } (28)
1 ks —s2—m?> gX +2JW kac —(p—9)?
lis(p,q) = —1;a(p,q) + —/ dssf; (S)[ ~ In } (29)
! ! 2¢* J - ! q Qp+@ml + (s = q)?] p
with the auxiliary polynomials
X=m:+2(kj—p)+q* -5,
= Kq* +p(m) + ) + @[k = p)" +m2 (K} + p°) = 2 (k] + p* + m2)]. (30)

Furthermore, the functions [;,(p, ¢) with j = 1, 4 6,8, 10, 12 appearing in Egs. (18), (19) are computed analogously by
replacing in the integrand f;(s) by f](s) (s> —m2 — > f; (s). The decomposmon into H;, and [, is obtained by canceling
momentum factors against a pion propagator, while I ;v takes care of the s%-dependent remalnder terms.

III. RING INTERACTION PROPORTIONAL TO g%

Next, one considers the 3N-ring interaction at N*LO, which consists of three pieces with a different dependence on the
axial-vector coupling constant: g, n = 0, 1, 2. The g4 part can be obtained directly from the well-known Feynman rules for the
NN Tomozawa-Weinberg vertex and the second-order 7w NN -contact vertex proportional to ¢ 23 4. Altogether, the 3N-ring
interaction proportional to g ¢; 23 4 is given by a euclidean loop-integral of the form

Vin = f / 312 12 {‘L’ 'L'[2 2~|—( + )lz—i— I} l]+—c41: (T, xT3) (Zxl1 )}
. cim C c c . . -
3N = f6 (27.[)4 =2 12)( 2 12)( 2 lz) 2°43 1My 2 3k 31462713 { 1 2 3 1 3 2

€Y

with m = \/mi + lg and one has to set TI = l} — g3 and f3 = fg + ¢. Alternatively, one can take the (Fourier-transformed)
coordinate-space potential in Eq. (4.8) of Ref. [4] and translate spatial gradients back to momentum factors 141,2,3. Note that
the four-dimensional loop integral in Eq. (31) is quadratically divergent and therefore the 3N-ring interaction Vsy requires a
regularization (e.g., by an ultraviolet cutoff) and a renormalization (by absorbing cutoff-dependent pieces on the 3N short-
distance parameters cg and E 10 [20]).
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TABLE I. Assignment of pion momenta, where I is unconstrained and |7 < ks from a Fermi sphere.

concat. N; on N, N, on N3 N5 on N; N; on N3 N; on N, N> on N;
I = L+1 - I—p p—T I-p P =1
L= I—p p-1 L+ ~I -1 [-p p-T
L= [—p p-T [ BT Li+1 -1

A. In-medium NN potential from self-closing of nucleon lines

Only the self-closing of nucleon line 1 gives a nonvanishing spin-isospin trace, and after relabeling 3 — 1 one recognizes an
isovector central potential Nk;.?] -T,. Evaluating the pertinent loop integral in spherical coordinates Iy = rcos ¥, [, = rsinyr,

I -G = cos @ and introducing a cutoff A for the radial integral fO'\d r, one gets the following contribution to the in-medium NN

potential:
k37T 3c c c m 3¢ 13¢5\ m2
vy _ f 2eg — 222 3 m2 — 2 82 m = 22 _H 228\
med = ggape ||\ 7T 2 T F )|\ Tt )

136‘2 116‘3 q 76‘3 2 (&) C3
— 21 — ¢y — — —(= 2L 2
+( 3 + 3 )12 + |:< c|1—C) 3 )mn 1 + = 3 (9) (32)

with the function L(g) defined in Eq. (12). Note that the power divergence proportional to )»zk} has been dropped in Eq. (32),
but it will be considered in the total balance at the end of this section. Note also that the coefficient ¢, /4 + c3/3 appears twice,
such that the chiral limit m, — 0 of Vn(izj exists.

B. In-medium NN potential from concatenations N3 on N, and N, on N3

Next, one has to work out for V3 in Eq. (31) the six possible concatenations of two nucleon lines and their mirror graphs. The
proper assignments of I, b, I, with [ the unconstrained loop-momentum and I from the interior of a Fermi-sphere ] < kyf,
are given for each concatenation in Table I. The integral over the Fermi sphere and the angular part of the loop integral can
always be solved analytically in terms of the following functions:

_ B kf-i-Z kf—l ’h2+k‘,2"_12 Yh2+(k_f'+l)2

Fo(l) = ks —m[arctan - + arctan - }—i— 2 nn_12+ ks — ek (33)
ks 1 m? + (kp + 1)?

Fl_ R+ 72+ (kp + DA+ (kp — D] In ———L 777 34

1) ( + k4 17) — Te!m + ks + DA + (ky ”“m2+(kf—z)2 (34)
K} ) KPR - -k

L) == — —F0(1)+ (kf +m* —1 T, T = ﬁ + Tﬂ(l) (35)
1 w4+ + p)> 1 [+ B+ @12

A(l) = —1nM, Q) = n1itvita (36)

m*+ (I — p) gv/B + ¢*1? VB

with the abbreviation B = [m? + (I + p)*1[m*> + (I — p)?]. For the remaining integration over dlydl one chooses polar co-
ordinates [y = rcos{, I = rsin and sets a radial cutoff L. By performing these calculational steps one obtains from the
concatenations N3 on N, and N, on N3 an isoscalar central potential of the form

7/2 B k3
viD = 7 st / drr/ dw{lgl Fo(l)[C3A(l) + <2c1m§ + e} - 62—3(2m,2, + q2)>§2(l):| — gf(q + ¢5 cos? w)sin221/f}.
T

(37

The purpose of the subtraction term at the end of the integrand is to remove a power divergence proportional to )»Zk;. After that
the double integral in Eq. (37) has only a logarithmic dependence on the cutoff:

ke K PP 22 22

7 p q 2 N A P

Hef3m2 + =L+ 2 4 dcim? +es(om + =L+ E 1 g?) [ 2 38
48|: <m 10 4) 1 C3< TS T ")}“,\ %)

and this detailed knowledge may be useful for numerical checks.
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The last ¢4 term in Eq. (31) produces in the same way a contribution to the isovector spin-orbit potential
n /2 2 2
CaT l l r (l) _ q
Viieh = '5f6 i(51+62)- (qxp)/ drrf s aw+ (- - = Lo (39)
with a large-A behavior of the double integral: —(nk} /144)In(m, /1).

C. In-medium NN potential from remaining four concatenations

The other four concatenations, N3 on Nj, N; on N3, N; on N,, and N, on Ny, applied to the ¢ » 3 term in Eq. (31) give rise to
an isovector central potential of the form

/2
yes = I / drr / dw{lo { [4cim2 +2(c2 + )2 ]Fo(DRD)

473 f8
k3
+aT DA + (P —m* — pz)Q(l)]} — ?f(@ + ¢ cos” ) sin’ w} (40)
with a suitable subtraction term to have only a logarithmic A dependence of the double integral:
k3 3k 2 2 4k2 402+ 2
S 2 f . P q p-+q My
— 3 — =+ = 4 6 — 4+ —— ] |In—. 41
24 La< T 4) “""+C’('" 5 )] " “1)
Under the same calculational treatment, the c4 term in Eq. (31) produces a further contribution to the isovector spin-orbit potential
71/2 2
cc C4 7,'1 Il Fl(l)
VA = St 16+ @) [arr [Maw BEG 02 42 0 - a)] “2)

with a large-A behavior of the double integral: —(7l’k /72) In(my, /k) Before closing this section, one takes a closer look at the
balance of 4> divergences in the total sum V%) 4- Vn(lle‘)i + V) Tt reads
342
k A

19274 f6 12874 f6

such that the remaining isoscalar piece can be absorbed on the 3N short-distance parameter cg. This perfect matching gives an a
posteriori justification to drop or subtract the A2 divergences at any place. In the case of the pieces proportional to In(m, /1) one
can verify that these can be absorbed on the parameters E| ;o of the subleading 3N-contact interaction [20] (see also Eq. (49)
in Ref. [17]).

k3A2

C
[—a Z(cs +23) + 3(32 + cg) + 2T+ 2c3>] (c2 4 2¢3), 43)

.....

IV. RING INTERACTION PROPORTIONAL TO g

The 3N-ring interaction proportional to g5c 23,4 can be inferred from the coordinate-space potential written in Eq. (4.7) of
Ref. [4]. By exploiting the permutational symmetry (and parity invariance) one can obtain the following somewhat simpler form:

d*h 1 I,
/ /(271)4 m2+l2)(m2+12)(m2+12) {‘52~T3ll~(lz+l3)

x[2e1m2 + (2 + e3)if + e3h-B] + 24[751 (@ xT) b6y (L xB) + (T + )

x (2@ x5+ x B) + ool 62-1y G-y + 1B 118283 = 20 6l 63-71)]}, (“4)

which involves only three different isospin-operators: T,- 73, 7;-(T X 73) and 7, - (7, + T3). Again, m stands for m = \/mfr + lg
and one hastosetly =5, — gz and I3 = I, + §.

A. In-medium NN potential from self-closing of nucleon lines

Following the same procedure as in Sec. III A, one obtains from the self-closing of nucleon line 1 (providing a nonvanishing
spin-isospin trace) a further contribution to the isovector central potential:

Gk T 542 11
O _ L{[amgmcl — e =60 - ey +4c3>] " ( at+ 2 g ﬁ)mz,

med 4874 f6 12 6
41c 2 4m? 5¢% 2m2 ¢*
+ <T2+43 )fg + |: 37[ —c2—7C3)m7zT — %(C2+4C3) + 42—71:12(26‘1—6‘3)}11(q)} (45)
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where the A? divergence has been dropped. Again, the appearance of the same coefficient ¢, + 4c; in the first and second line of
Eq. (45) guarantees the chiral limit m, — 0 of Vr;(id

B. In-medium NN potential from concatenations N3 on N, and N, on N3

The concatenations N3 on N, and N, on N; give for the first term with isospin-factor 7,-73 in Eq. (44) an isoscalar central
potential of the form

3 /2 _
Vi = 471‘?5'36 / drr/ dt/f{lFl(l){ [2c1m§ + ol + <r2 — 2i* — p? (12 —p ))}A(Z)
el o o 2 2 ) 7 2 2_ 2 4k; 2 ;4
Ty )+ [chmﬂ + ol —q(mﬂ + 7)](1 — i —p )sz(z)} — 5 (e3+eacos” Y)sin w}, (46)

where the subtraction term at the end of the second line removes the )sz?. divergence. The remaining logarithmic dependence of
the double integral on the cutoff A is '

nk 597 ¢* 5p? m
2 2 2 2 2 T
12|: <6 +kf+T+6)—6clmﬂ+C3<9mn+kf+T+q>i|ln7. “7

The second term ~c47; - (T, X T3) in Eq. (44) produces an isovector spin-orbit potential of the form

) _ GETD [(G1432)-GX ) d n/z L be,ol - 240
med = T3 70 oA 245 45, Ggxp rr pz—qz )

+ Q17 +2m* —2p + qz)Q(l)] + D3 * + p* — P[AQ) — (m* + 17 + pz)Q(l)]} (48)

with a large-A behavior of the double integral: —(7rk3 /18)In(m, /A). The third term proportional to c47; (7> +73) in Eq. (44)
gives, on the one hand, rise to an isovector central potentlal of the form

7r/2
v — 64535}6’2 / / {21 w2 To(l) + 205D [2A0) — @2 + ¢H)D)]
8k3
+zrg(l)[ + 312 —m* — pHAd) + <§ —P(4m® + q2)>sz(1)] — —f sin w} (49)

where the double integral has the large-2 behavior: nk} [m2 + k% /10 + p*/6 + 7¢* /36] In(m, /1). On the other hand one gets a
contribution to the isovector spin-orbit potential of the form

Voo = C4g%‘rl ( d n/z #F0(1) + 202D [2A(
med = g5 76 2OAL 2 i(51462)-(Gxp) | drr ——— [’ To(D) + 22D ][2A0)
+Qp* — 21> —2m* - q2)9<l)] + Fs()m* + p* — 12)[<m2 + 1+ pHea) — A(l)]} (50)

with a large-A behavior of the double integral: (nk; /24) In(my /A).

C. In-medium NN potential from remaining four concatenations

The other four concatenations, N3 on Ny, Nj on N3, Nj on N,, and N, on Ny, applied the first term ~7, - 73 in Eq. (44) produce
an isovector central potential of the form

/2

ye fif;;z/d r/ dw{ 2evm? + (cz + ¢3)l2 {FO(Z) 2A(1) — 2 + )QUD)]

+ID[AWD) + (1 = p* — m2)£2(l)]} + 03l{f‘2(l)[2A(l) —@m* + ¢H)D)]

~|—F3(l)|: + (2 = p* —mPHA) + (12—p -2)29(1)}“1(1)[—(417 — %)

2

2
+<12—p2—2n_12—qz+f—p2(12 2)>A(l)+(m+ )(m 4 zz)sz(z)“

Sk; 2 4
—T(C3+62COS Y ) sin 1//}, (5D
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where the double integral depends (after subtraction in the last line) logarithmically on the cutoff

k3 oS k7 11p% 4 542
Tf[< +—+’i+i>—4clmﬁ+q(6mﬁ+ L4 p+q>]1nﬁ. (52)

10 6 36 15 9 A

In the same way one obtains from the second term ~c47; - (7> X 73) in Eq. (44) a contribution to the isovector spin-orbit potential
of the form

71/2
Ve = S8 2 i o @xp) [[are [T v @ A0 - [ = R 2 0] 5

with a large-A behavior of the double integral: —(nk?. /18) In(m, /). Under the same calculational treatment the third term
~c47) - (T, +73) in Eq. (44) gives rise to three spin-dependent potentials with the common isospin-factor 3 + 7; - 7,. The pertinent
spin-spin potential has the form

cc) _ 484010 .. /2
Vn(led) = 152 51f62(3+‘r1 ‘Cz)/drl’/ dlﬁ{l[‘l(l)[—@p — =g

3 m? + 12 4in? + 417 4 ¢
+<12_m2_%+(m2+12+q2) g’ Q)>A(l)

2p? 8p*r — 242
3

2072 4 12 + p? k

2 2 =2 2
py Q2p° =2l =2m" —q )Q(l)i|
with a large-A behavior of the (subtracted) double integral: (nk? / 9)[6m72, + k]% +2p% + 3q2 /4]In(m; /X). Note that the
subtraction term acts only in the 'S, state with total isospin 1, therefore one can replace (of course only for this )sz; term)
the operator 61 -6»(3 + T;-72) by —3(3 + 71 -7»). Next, there is a tensor-type potential of the form

c ”/2 IT (D)
Vied = 4;‘"}6 B+ 7-0)G1-po2P+51-5'625) / drr / pr—
l 2 5¢ 3¢ ) P 2 -2 547
{2 2[3’" +307 - +T—4—2(m +0) |+ 74—1 —m ==
6(m* + 122 + g*m* + 31> 3 2(4m? + 417 + ¢?
_6( ) +a( )+i_+lz) q( q)A(l)
4p? 8p* 4p? — ¢
2
+—4p2q_ 7 [40m® + 17)? + 4p*(m* — IP) + ¢*(m* + 31* + pz)]Q(l)} (55)

with a large-A behavior of the double-integral: —(nk} /36) In(m, /1). Finally, one gets an ordinary tensor potential which has the
form

C4g2 S oo oo ﬂ/z lF](l) q2(4n‘12+412+q2) 2 + 2
Vied = 8n5;6(3+r1-t2)01-q02~q/ drr/ e + 27 > —4p%) | A
T

8172 ) 2 2\2

(56)

[
+5502r —a)+ [3(:1‘12 + 127+ pPEm® AP 4 ) + 0+ 218+ p?) —
P

with a large-A behavior of the double integral: —(nk} /24)In(m /2). One likes to consider the balance of A divergences in the
total sum V', + v 4 v € With the equivalent form of the piece from Eq. (54), the balance reads

med med med *

gikpp [ o N ..
W{—n-q(q—i—&ﬁ—i— 3(3 +SC3> 4+ 3csTi T | + | Ti-Ta(cr + 6¢3) — 3¢4(3 4+ T1-T2) }

G2

62 176 (c2 + 6c3 — 604), (57)

and one observes that the remaining isoscalar piece can again be absorbed on the 3N short-distance parameter cg.
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V. RING INTERACTION PROPORTIONAL TO g4

The 3N-ring interaction proportional to g4c 2 3 4 can be inferred from the coordinate-space potential written in Eq. (4.6) of
Ref. [4]. In momentum space this part of V3y at N*LO is given by a euclidean loop integral over three pion propagators (one of
them squared) times a long series of terms with different spin, isospin, and momentum dependence, which reads

o
Q)" (m2 + 12) (m?* + 12) (m?+13)

x [172] @1 xB)- @y < T2 (ex + )T — 6eim2 + T (ca(Bi+33)-% = 3cs)

+2(3, sz)'(C?zXZl)[zlg(Cz +¢3)%) % — 6cym + 71~72(C4(?1+f2)'?3 - 303)]]

+%T1'72[271'7?331'(73X72) ~bLh 52'(73><71)]f1'(f2><f3)+71'7271'7372'73

x [2¢3%1- (2% +73) + 26253 (caTi - (24 T3) — 3¢3) + 6153 (ca(T1 +73)- T2 — 3¢3) ]

+20-L1) '7%[(C2 + )R (252-53 T T3 — 3) — 6¢1m262-55 + 61 -3 52'72(363 — (T +%) ) ]

+11 12 lz 13[401m T T3 — 310(02 + ¢3) + 26 - 63(10(02 + c3)T1- T3 — 3c1m ) + 2067 - 11 07 13

x (3¢3 — ca(Ti+%)-B) | + 20 - B b-B[4cim? %1% + 6111 G3- b (33 — ca(Fi+73) %)

+ (- 5)61-5 63 b (cs(Fr+T3) T — 3¢3) + 201 -b)*61 13 62 I (ca(T +T2) T3 — 3c3)

+4(72'Z% G1-0h 6L+ 15656 hL—1-Lé -k 52'73)(3017713, — I[§(c2 4 €3)% %)

+2(2i2'73 G-I — I3 51'72)53'72(361"1% —3(er + C3)?1'?3)} (58)
with m = \/m and one has to setjl = fg — g3 and 73 = l} + ¢,. Without the prefactor gi / fj?, the first line in Eq. (58)
defines a euclidean three-point function J(g1, ¢2, ¢3) that is symmetric under ¢; <> ¢3. By applying the Cutkosky cutting rule to

the first and third pion-propagator, one can easily compute its imaginary part ImJ(q;, i, g3) as a 2w -phase space integral over a
squared pion propagator, and obtains the following spectral representation:

- 1 . /u? —4am? ) y -l
J(q1, q2, = d z G 59
(41,92, 43) 16712/2,,,” AT [(ka193)* + mG] (59)

with the abbreviation G = [u? + (¢1 + ¢3)*1[14* + (g1 — ¢3)*]. By a partial-fraction decomposition of the two denominators in
Eq. (59) one is able to find an analytical solution of the spectral integral in terms of the even loop function L(s) = L(—s), defined
in Eq. (12). The final result for J(q1, ¢2, g3) reads

1 {bi [Liaz) = LBDT B2IL(b-) — L(g)] }
62| (g3 —b%)C (5 —p2)C

with the auxiliary variables b1 =(q; v 4m? +q§ +q;3 v 4m2 —i—q% )/(2m;) and the combination C =gq,g3 v (4m?2 +q%)(4m721 —|—q§).
Likewise, the (bare) euclidean loop integral over three pion propagators in the first line of Eq. (44) defines a totally symmetric
three-point function J(q1, g2, g3). It possesses a more involved spectral representation

J(q1, q2. q3) = (60)

~ i u(w® + 4t +a3) +/ (u* — 4m2)G
1(611,612,613)2—/ M n
167 Jom, ™ (W BIVGC (12 4 ¢ + ¢3) — [ (42 — 4m2)G

, (61)

which does not allow for a solution in terms of elementary functions.

A. In-medium NN potential from self-closing of nucleon lines

In this subsection the in-medium NN-potential Vn(l(ézl is computed as it arises from the self-closing of nucleon lines for the
(extremely lengthy) 3N-ring interaction written in Eq. (58). One gets a nonvanishing spin-isospin trace from closing Ny, N,,
and Ns, respectively. After performing the angular and radial integrals the summed contributions are sorted according to their
two-body spin and isospin operators. The complete list of contributions to V d consists of an isoscalar central potential

(©)
[ T

_ T
2 4 + 4m? + ¢?

NGRS 135m2 N 53¢ 1o M B3m2 3714 12m?
A 16 96

2
—35m? —%]L(q)}, (62)
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an isovector central potential

4132 =2
gzt 389 8m? (2¢; —
Vo _ Af—jﬁz{w[(m _ }1 M ( cs _2761),%31 A )
9674 f2 18 A 24 4mz +q
553c3q” 29 115c3¢>  8m (4 3 32m. (2¢c; —
_ 553c3q |:4mn< S 1e )+ cq m ( 201 +2C3) mS (2c, C3):|L( )} 63)
144 3 6 dmz +q (4m2 +q )
an isoscalar spin-spin potential
4132 = 2
gik;01-62 My 35¢ c3q
o _ f 2 2 3 2 3
ed = W{[ISMQ —5c3)m; — 1lesg ]ln o + <18c1 - T)m” + =
24m* (c3 — 2
+ [(48c1 —26¢3)m? — 11e3? + M}L(q)}, (64)
4mz + ¢*
an isovector spin-spin potential
ghicr+ C3)k m m2 g
©0) 2 2 d pus 2 2
med — 48—4‘}‘;?0’1 0'2 ‘L’l 2 (61’!’[7r + q )ln T + 7 - E + (Zmﬂ + q )L(q) B (65)
an isoscalar tensor potential
gak; my  6les  2m> 2m? 3m2 (c3 — 2¢1)
o _ 5 2 o n ™ 7
ed = 487‘[4]‘;?0.] -4 Gr-q {403 In T + 13 + " ; 4¢3 — ?(36'1 +c3)+ W L(g)t, (66)
and an isovector tensor potential
4 3
gilcr +3)k m 7 m2 m2
) _ fo 22 =22 = 7 = s
med_Tzlfj?O—].qa q 11Ty —IHT—48+?— 1+? L(q) . (67)

Note that ¢4 has dropped out and the dependence on the other three low-energy constants c; » 3 is well structured. The isoscalar
central and isovector spin-dependent potentials are solely proportional to the sum ¢, + c¢3, whereas the other potentials depend
separately on c¢; and c3. The total A% divergence behind the central and spin-spin potentials written in Eqs. (62)—(65) is for
S waves, where the replacements &, -3, 7;-T» — —3 and &,-6, — —2 — ;- %, apply, equivalent to gﬁk3 2\2[83¢3/2 — TTcy /2 +

75¢3 %1 - T/ (2567 f]f). In combination with the A2 divergences from concatenations Vlflzefi + Vrffefi) for all interaction terms in

Eq. (58) (several examples are given in the next subsection) it reduces to an isoscalar component only

SAkIA (83cs  T7cy s TS 13c2 27765y 2502 2

— 7T —_— = — 7T

(47T)4f§’ > ) G371 12 2 C4 G712
38k 40cs — S (@Ter + 37 68
_W[ C4—Z( c + C3)i|, (68)

that can be absorbed on the 3N short-distance parameter cg. This property serves as a good check on the present calculation.

B. In-medium NN potential from concatenations for three selected terms

The 3N-ring interaction Vay written in Eq. (58) consists of a very large number of terms. In this paper the contributions to
Vimea from concatenations of two nucleon lines are considered only for three selected terms. The analogous formulas for all the
other terms can be obtained from the author upon request.

1. Term proportional to c,7; - (T, X T3) in the fourth line of Eq. (58)

It gives for the concatenations N3 on N; and N; on N3 an isovector spin-orbit potential of the form

v _ agiti'n G1452)-(Gx F) d ”/2 l o) L(42_ 2)
med — 16 5f6 lal 02 q p rr q2 V2 p2 p q

+ (4p + = (m +1%) — 41> — 8m? — 3q2)A(1) + @ + ¢*)Qm? 4+ 21* — 2p* + qz)Q(l)]
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2
+y3<l>[ ~(4p” q2><m2+12—p2>+(%(m%ﬂ)%z(pz—12><m2+12+p2>
+qz(2n"12—212+p2))A(l)+(12 7 p)(B+ (i +312+p)>sz(1)“ (69)

with a large-A behavior of the double integral: (Snk} /72) In(m; /A). The new functions ¥, 3(/) appearing in Eq. (69) are y, 3(l) =
—T.3(1)/0m* with T 3(1) given in Eq. (35). The other four concatenations produce also an isovector spin-orbit potential of

the form
48T T ”/2 1 4
Vied = i‘?‘ 5]f62l(01+02) (qxp)/drr/ {lrz(n{[ prnn ]A(l)

Lpmw+12 2+ q : 4R+ P+ ) R AG

B — s (7 -1 2- I — i - p?y |
B[ 7 212( +pP =)+ 17— +B+q212( m? — p*) [Q)
l I(m* + p? —12) [ m? 412 — p? 4m +2q
N : — |A()
2 B+ g%l p p 4p
m +12+p q212(12_m2_p2)
[42—(4 *+8ph) —m? =31 —p* + BT Q) (70)

with a large-2 behavior of the double integral: (Snk; /36) In(m, /X).

2. The term proportional to L-LlL LT multiplied by the fifth line in Eq. (58)

It gives for the concatenations N3 on N; and N3 on N a combination of central and spin-spin potentials of the form

o ¢ 3Cg rr/2
Vmed = 5f6 4+ 3(c3 — ¢4)81-62 — (2¢3 + 3¢4)T1 T — €481-62 T Ty drr

x {ln(l)[;mﬁ -+ (%(ﬁﬂ + 1) — 8im* — 3q2>A<l> + @ + ¢*) sz(l)}
_ 2 2 _2 1412 _2 2 ) 2 _2 CIZ ‘12 _2 2
+ly3(l)|:l(3l —pr =2+ (i’ — 1 )+<p —P+3mP+ = - P+ ))
2p 2 2p?
e 8k3
x (m* 4+ p* — IH)A) — <m2 + 7)(;@2 + p* —1?)? 9(1)} — Tf sin® w} (71)

with a large- behavior of the double-integral: (wk}/24)[35m, + 18k7/5 + 6p* + 43¢ /12] In(my /2). The other four concate-
nations produce the same combination of central and spin-spin potentials, which takes the form

g4 3 71/2
Vn(lcefi) = 5Af6 |: + 3(c3 — ¢4)31-62 — (2¢3 + 3¢4)T1 T — €461-G2 T1 - t2i| / drr/

= a . 2 _2 L ) AP
x{le(l)|:5<l?(m FI) =8 =37 4 i )

2
+<8— = )A(l)+ (2—212( P+ 1P+ ph) - )(2m2+q2)9(l)}

_ l 12 —2 2 2
+lF3(Z)[E (3(1)2 — P+ m@m? - 1> +1p°) + (—ngf)(mz + 1%+ p2)<2ﬁz2 + %)
—2q2 q2 2
50+ 17) = =3’ + 12 +p2)> + <412 — 6m” + )A(l)

3

16k3
3 ! sin® w} (72)

I R SN ke /P NPT SNNE IV 10 WP S S _
R R R e e OB R b) (LR LT

with a large-A behavior of the double integral: (J'rk_; / 12)[35m721 + 79k_% /20 + 79p? /12 4 3¢*1In(m, /1).
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3. The spin- and isospin-dependent term in the last line of Eq. (58)
It gives for the concatenations N3 on N; and N3 on N; an isoscalar central potential

v — 3gA
med 47.[5f6

7r/2
/d rf { (e + )l — eym? ]|:ly2(l)<(2m + A1) —2A(l))

4k

+ 173(1)(1 — 200 + pPOAQ) + (1X(g% — 2) + B)sz(l))] — e+ e3)sin’ yr cos” w} (73)

with a large-A behavior of the double integral
1o sm2 125 g T\ ] 74
48 cmz + (c2 + )| 5mi + - 5 L4 =1y )|mo (74)

and an isoscalar spin-orbit potential
/2 l
n(izj 5f6l(01+<72) (CIXP)/ d”’f dy [(c2 + e3)l§ — Clmi]m{)_/z(l)[ —2A()

+@i + ¢* + 217 = 2pH)Q() = 28(D)] + P )<' +pt =AW - (m2+p2+12)9(1)]} (75)

with a large-A behavior of the double integral: —(nk} /576)(cy + ¢3) In(m, /X1). The other four concatenations produce a spin-
spin potential

401G " 1T 2
yla _ 8a91%2 / dr r/ { (2 + )T Ty — 3c1m§]1_(;2[(3m2 T2 2%+ %)A(l)

273 f8 4p? —
2 4l
— (23 + R+ p* + 12)<m2 + %) + 2q212)sz(1)} — 7-’(c2 + ¢3)T) - To sin® ¥ cos? 1//} (76)
with a large-A behavior of the double integral
wk} 5 Sm2 11,5, 5 ¢ My
7 |: clm + (¢c3 + ¢3)T - r2< ; +m(kf+p)+?>i|ln7, an

an ordinary tensor potential

4p2 — g2

22— =g’ (5 an o 5 5 4 g
—| —— l — = e
X{B|: BT <(m +p) + I \mt—p+ 2 + >
1 6m?> + 41> +24* 1
— Q1+ (S — 6p%) + 3t + St 4 dph) |+ | T AW
q 4p —q 2
f)) 2(m* + p* +1%)
2 4p? — g2

2 T
Vrgncezl) = 2n5f68 “q 57 /drr/ dyr (02+C3)ZOTI T — 3cym? ]A
l

202 _ i — g2
[u (3m 2+212+q)

=2 22 2 -2 2
BT ((m +p)+l<m -p +

1 1
+ ?(214 + 2 (5m* —6p?) + 3m* + 5m p* + 4p*) + 2m* + 5 112—7p2+3q2)i|9(l)} (78)

with a large-X behavior of the double integral: (7Tk3 /160)(ca + ¢3)7T -T2 In(m, /1), and a tensor-type potential

/2 IT (1)
Vn('lceii) = 5f6(0'1 po-p+a61-p ‘G- p )/drrf dyr (Cg—i—Cs)lO‘El 12—3clm ]42]——612

L[2m* + ¢ ) 232 12f =2 2 7 3 — ¢ 2 4 2-2 —4
4m* + p? +12)
4p? —

3m2 + 212
%] Gi? + 212 + ¢%)

4 =2 2 2

2m* + q° Y A & 2 2 2 3‘12
— | (m 17| m” — — — 50 —-3m~ — — |Q( 79
+B+q212<(m +p)+ (m p+2>)+p m 2} ()} (79)

with a large-A behavior of the double integral: (1 17rk13, /2880)(c2 + ¢3)T1- T In(my /).

A(l)+[

014001-13



N. KAISER

PHYSICAL REVIEW C 101, 014001 (2020)

VI. SUMMARY AND OUTLOOK

In this work the density-dependent in-medium NN-
interaction Vpeq has been derived from the subsubleading
chiral 3N forces. This is necessary since for the intermediate-
range topologies (2w 1w exchange and ring diagrams), the
N*LO corrections of Ref. [4] dominate in most cases over
the nominally leading N>LO terms. The loop integrals rep-
resenting the 3N-ring interaction proportional to c¢j ;34 have
been regularized by a (euclidean) cutoff A and each contri-
bution to Vjeq has been presented such that the absorption
of [A? and In(m, /A)] divergences on the 3N short-distance
parameters becomes obvious. In the next step, partial-wave
matrix elements of Vi,q Will be calculated numerically [21]
in order to study quantitatively the effects of the subleading

[17,18] as well as subsubleading chiral 3N forces. At the
same time the construction of 3N forces in chiral effective
field theory with explicit A(1232) isobars by the Bochum
group should be accompanied by a calculation of the corre-
sponding density-dependent NN-potential Veq. On the other
hand, neutron matter calculations with (sub)subleading chiral
3N forces require the p,-dependent NN interaction in pure
neutron matter.
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