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We investigate the reaction mechanism of the φ-meson photoproduction off the proton target, i.e., γ p → φp,
up to

√
s = 2.8 GeV. For this purpose, we employ an effective Lagrangian approach in the tree-level Born

approximation, and we employ various experimental and theoretical inputs. As a theoretical setup, the vectorlike
Pomeron (C = +1) is taken into account as a parametrized two-gluon exchange contribution. We also consider
f1(1285) axial-vector-meson, (π, η) pseudoscalar-meson, and (a0, f0) scalar-meson exchanges in the t channel,
in addition to the experimentally confirmed nucleon resonances, such as N∗(2000, 5/2+) and N∗(2300, 1/2+),
for the direct φ-meson radiations in the s and u channels. We provide numerical results for the total and
differential cross sections as well as the spin-density matrices in the Gottfried-Jackson, Adair, and helicity
frames. We observe that, together with the universally accepted pomeron contribution, the considered meson
and nucleon-resonance contributions play significant roles in reproducing the experimental data for the forward
and backward φ-meson scattering-angle regions, respectively, indicating the nontrivial interferences between
mesonic and baryonic contributions.
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I. INTRODUCTION

φ-meson photoproduction off the proton target, i.e., γ p →
φp, has attracted a lot of interest, especially since the bump
structure was observed at very forward-angle regions near
the threshold in the experiment of the LEPS Collaboration
[1]. Because the φ meson is characterized by the hidden
strangeness, hyperon exchanges in the u channel are for-
bidden and nucleon-pole contributions in the s channel are
also suppressed, due to the Okubo-Zwieg-Iizuka (OZI) rule
[2–4]. Thus, the reaction mechanism of the φ-meson photo-
production is distinguished from those of the ρ- and ω-meson
photoproductions, resulting in its cross section being much
smaller than others. It is also well known that diffractive
Pomeron (P ) exchange governs the monotonically increasing
high-energy behavior of the cross section, but cannot explain
the bump structure near the threshold region

√
s = (2.0–

2.2) GeV. References [5,6] interpret the bump structure as
the coupled-channel effects between the φp and K+�(1520)
channels. Moreover, Refs. [7,8] suggest a postulated spin-
3/2 resonance with MN∗ ≈ 2.1 GeV and 	N∗ ≈ 500 MeV to
reproduce the bump.
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Meanwhile, in 2014, the CLAS Collaboration at Jefferson
Laboratory [9,10] reported the first abundant data containing
both the charged and neutral modes of the φ → KK̄ decay for
the φ-meson photoproduction. These high-statistics differen-
tial cross sections and spin-density matrix elements (SDMEs)
data cover the energy range

√
s = (2.0–2.8) GeV and the full

angular range beyond the very forward angle. They imply
many interesting features.

(i) The local structure studied previously persists only
in the forward-angle regions and vanishes around the
φ-meson scattering angle cos θ ≈ 0.8 in the center-of-
mass (c.m.) frame. Then, two bumplike structures are
shown again at backward angles cos θ = −(0.4–1.0)
near

√
s ≈ 2.1 and 2.3 GeV, although the magnitudes

of the cross sections are far more suppressed than
those at forward angles.

(ii) The comparison of the differential cross sections be-
tween the charged (φ → K+K−) and neutral (φ →
K0

S K0
L ) modes [10] offers the best chance to extract the

rescattering effect between the φp and K+�(1520)
channels, because the neutral mode excludes the
�(1520) → pK− final-state configuration. The sim-
ilarity between these two modes implies that the
rescattering effect and the interference are marginal.
The bump structure at

√
s ≈ 2.2 GeV is also clearly

seen in both modes. Moreover, the LEPS Collab-
oration [11] subsequently confirmed that the

√
s ≈

2.2 GeV structure is regardless of the φ-�(1520)
interference effects in the γ p → K+K− p reaction.
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Keeping these in mind, other reaction processes
should come into play essentially [12].

(iii) The SDME ρ0
00 provides us with the information of

helicity conservation between the initial photon and
the final φ meson, because it is proportional to the
squares of the two helicity-flip amplitudes. Nonzero
values of ρ0

00 are observed in the three different
reference frames, i.e., the Gottfried-Jackson, Adair,
and helicity ones, resulting in violation of both t-
channel helicity conservation and s-channel helicity
conservation. In this regard, it is of great importance
to carry out a systematical analysis of the φ-meson
photoproduction.

In the present work, we investigate the reaction mechanism
of the φ-meson photoproduction with an effective Lagrangian
approach in the tree-level Born approximation. To take into
account the spatial distributions of hadrons involved, well-
established phenomenological form factors are considered
as well. We take into account the exchanges of the vector-
like Pomeron (P ), the f1(1285) axial-vector (AV) meson,
the (π, η) pseudoscalar (PS) mesons, and the (a0, f0) scalar
(S) mesons in the t-channel Feynman diagram. The general
argument about the φ-meson photoproduction is that the
conventional Pomeron exchange governs even at low energies
and meson exchanges are suppressed, because the OZI rule
[2] puts constraints on direct exchanges of quarks for the
γ Pφ vertex. By the analysis of the world CLAS data on the
φ-meson photoproduction, we can readily test to what extent
of energies the Pomeron exchange has its effect on the cross
sections and SDMEs. The relative contributions of the AV,
PS, and S mesons also can be verified. In addition, the direct
φ-meson radiations are considered in the s and u channels,
through the ground-state nucleon and its resonances.

Among the nucleon resonances given in the Particle
Data Group (PDG) [13], we include N∗(2000, 5/2+) and
N∗(2300, 1/2+), which are located near the φN threshold. We
find that they are the most essential for describing the CLAS
data, instead of other scenarios such as a single hypothetical
resonance [5,7,8], meson-baryon box-shape loop contribu-
tions [6], and the interference of the φ meson with �(1520)
via γ p → K+K− p [11]. We face some difficulty owing to
the lack of information about the N∗ → φN decays of the
PDG resonances, while their photoexcitations γ N → N∗ are
relatively well known. We extract the branching ratios for
N∗ → φN by fitting to the CLAS data and compare them with
those for the open-strangeness N∗ → K∗� decays recently
reported by the PDG [13].

This paper is organized as follows. In Sec. II, we present
detailed explanations for the theoretical framework. Sec-
tion III is devoted to the numerical results of cross sections and
SDMEs and the relevant discussions. The summary is given in
Sec. IV. The details of the invariant amplitudes, SDMEs, and
three reference frames are given in the Appendixes.

II. THEORETICAL FRAMEWORK

In this section, we provide the theoretical framework
to study the φ-meson photoproduction off the proton tar-

FIG. 1. Relevant Feynman diagrams for γ p → φp, which in-
clude Pomeron (a), pseudoscalar (π, η)-meson, scalar (a0, f0)-
meson, and axial-vector [ f1(1285)]-meson exchanges in the t chan-
nel (b), and direct φ-meson radiations via the proton and its res-
onances in the s and u channels (c) and (d). We define the four
momenta for the involved particles as well.

get γ (k1) + p(p1) → φ(k2) + p(p2). We employ an effective
Lagrangian approach and the tree-level Feynman diagrams
under consideration are depicted in Fig. 1. The Reggeized
two-gluon exchange, i.e., the Pomeron (P ), is taken into
account in the t channel to describe the slowly rising total
cross section with respect to the beam energy [Fig. 1(a)].
Exchanges of the f1(1285) AV, (π, η) PS, and (a0, f0) S
mesons are considered in the t channel [Fig. 1(b)]. The direct
φ-meson radiations in the s and u channels via the proton and
its resonances are also available [Figs. 1(c) and 1(d)]. In what
follows, the explicit forms of the effective Lagrangians are
explained for describing various hadron interactions for each
Feynman diagram.

A. Vectorlike Pomeron exchange

The effective Lagrangians for Pomeron exchange for the
photon–Pomeron–φ-meson vertex can be written as [14,15]

Lγ Pφ = igγ PφFφ (t )[(φν∂
μP ν − Pν∂

μφν )Aμ

− (Aν∂
μP ν − Pν∂

μAν )φμ

− (φν∂
μAν − Aν∂

μφν )Pμ], (1)

where Pμ, Aμ, and φμ indicate the C = +1 vectorlike
Pomeron, photon, and φ-meson fields, respectively. Consider-
ing its vectorlike nature, the interaction of the Pomeron with
the nucleon is casted into

LPNN = gPNN FN (t )N̄γμNPμ. (2)

Here, N stands for the nucleon field. We define the strength CP

for convenience by CP = gγ Pφ gPNN . The form of the invari-
ant amplitude derived from Eqs. (1) and (2) is similar to that
used in the Donnachie-Landshoff (DL) model [14–16] given
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FIG. 2. Quark diagram for Pomeron exchange in the DL model.

in Appendix A. In this work, we employ the DL model for
the Pomeron exchange process. The complicated two-gluon
exchange calculation is simplified by the DL model which
suggests that the Pomeron couples to the nucleon like a C =
+1 isoscalar photon and its coupling is described in terms of
a nucleon isoscalar electromagnetic (EM) form factor, FN (t ).
Figure 2 draws the quark diagram for this Reggeized Pomeron
exchange. In Refs. [17,18], the quark-loop integration in Fig. 2
is performed in connection with the DL model and can be
approximated to the factorized form given by Donnachie
and Landshoff [16] for the low-energy region

√
s < 5 GeV,

justifying the application of the DL model to the present work.
The form factor for the γ Pφ vertex [Fφ (t )] [19,20] and the

FN (t ) [21,22] read

Fφ (t ) = 2μ2
0(

1 − t/�2
φ

)(
2μ2

0 + �2
φ − t

) ,

(3)

FN (t ) = 4M2
N − a2

Nt(
4M2

N − t
)
(1 − t/t0)2

,

respectively, where the scale parameters are given by μ2
0 =

1.1 GeV2, a2
N = 2.8, and t0 = 0.71 GeV2. The mass scale

�φ is proportional to the quark mass of the loop diagram
in Fig. 2 and is chosen to be �2

φ = 4M2
φ , which is rather

larger than that given in Refs. [14,15,20] where �2
φ = M2

φ is
used. This modification makes the differential cross sections
milder under the variations of the scattering angle cos θ . The
Pomeron trajectory reads

αP (t ) = 1 + εP + α′
P t, (4)

where the slope and intercept of the trajectory are determined
to be α′

P = 0.25 GeV−2 and εP = 0.08, which is favored
among 0.08–0.12 [22].

B. f1(1285) axial-vector exchange

The f1(1285) meson exchange is suggested in proton-
proton scattering and vector meson photoproduction due to
its special relation to the axial anomaly through the matrix
elements of the flavor singlet axial-vector current. Its Regge
trajectory is expected to contribute to the large-energy and
large-momentum transfer regions with an intercept of α(0) ≈
1 and a slope of α′ ≈ 0 as the odd-signature partner of the
even-signature Pomeron [23].

The effective Lagrangian for the AVV vertex is obtained by
using the hidden gauge approach [24]:

Lγφ f1 = gγφ f1ε
μναβ∂μAν∂

λ∂λφα f1β, (5)

where f1 indicates the f1(1285) field with its quantum num-
ber IG(JPC ) = 0+(1++). The coupling constant gγφ f1 can be
calculated from the relation

	 f1→φγ = k3
γ

12π

M2
φ

M2
f1

(
M2

f1
+ M2

φ

)
g2

γφ f1
, (6)

derived from Eq. (5), where kγ = (M2
f1

− M2
φ )/(2M f1 ), and

the experimental data on the f1-meson branching ratio (Br)
Br f1→φγ = 7.5 × 10−4 with 	 f1 = 22.7 MeV [13]:

gγφ f1 = 0.17 GeV−2. (7)

The axial-vector meson and nucleon interaction La-
grangian reads

L f1NN = −g f1NN N̄

[
γμ − i

κ f1NN

2MN
γνγμ∂ν

]
f μ
1 γ5N, (8)

where the coupling constant g f1NN is not well known, and we
use the maximum value

g f1NN = 3.0, (9)

with g f1NN = 2.5 ± 0.5, discussed in Ref. [25]. Although the
tensor term can contribute to the φ-meson photoproduction,
we set the value of κ f1NN to be zero in this calculation for
brevity.

We reggeize the Feynman amplitude derived from Eqs. (5)
and (8) (see Appendix A) by replacing the Feynman propa-
gator by the Regge propagator, which effectively interpolates
between small- and large-momentum transfer regions, such
that the mesons of higher spin J = 3, 5, . . . in the same
trajectory can contribute to the high-energy region [26]:

PFeyn
f1

(t ) = 1

t − M2
f1

→ PRegge
f1

(t )

=
(

s

s f1

)α f1 (t )−1 πα′
f1

sin[πα f1 (t )]

1

	[α f1 (t )]
D f1 (t ), (10)

where the energy-scale factor is fixed to be s f1 = 1 GeV2 and
the odd signature factor is given by

D f1 (t ) = exp[−iπα f1 (t )] − 1

2
. (11)

The slope of the f1(1285) trajectory is chosen to be
α′

f1
≈ 0.028 GeV−2, which is distinguished from that of the

Pomeron because of its different characteristic scale relative
to the Pomeron [23]. The intercept of the f1(1285) trajectory
is determined to be α f1 (0) = 0.99 ± 0.04 [23], which is rather
larger than those of other vector and axial-vector meson
trajectories [27].
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C. Pseudoscalar- and scalar-meson exchanges

The EM interaction Lagrangians for the PS- and S-meson
exchanges, respectively, read

Lγ�φ = egγ�φ

Mφ

εμναβ∂μAν∂αφβ�,

(12)

Lγ Sφ =egγ Sφ

Mφ

FμνφμνS,

where � = π0(135, 0−) and η(548, 0−), and S =
a0(980, 0+) and f0(980, 0+). e stands for the unit electric
charge. The EM and φ-meson field strengths are denoted by
Fμν = ∂μAν − ∂νAμ and φμν = ∂μφν − ∂νφμ, respectively.
The relevant coupling constants are calculated from the
widths of the φ → �γ and φ → Sγ radiative decays as
follows:

	φ→�γ = α

3

q3
γ

M2
φ

g2
γ�φ, 	φ→Sγ = 4α

3

q3
γ

M2
φ

g2
γ Sφ, (13)

where α = e2/(4π ) and qγ = (M2
φ − M2

�,S )/(2Mφ ). The
φ-meson branching ratios are experimentally known
to be Brφ→πγ = 1.30 × 10−3, Brφ→ηγ = 1.303 × 10−2,
Brφ→a0γ = 7.6 × 10−5, and Brφ→ f0γ = 3.22 × 10−4 [13],
from which we obtain

gγπφ = −0.14, gγ ηφ = −0.71,
(14)

gγ a0φ = −0.77, gγ f0φ = −2.44,

with 	φ = 4.249 MeV.
The strong interaction Lagrangians for the PS- and S-

meson exchanges are written as

L�NN = − ig�NN N̄�γ5N,
(15)

LSNN = − gSNN N̄SN,

respectively. We use the pseudoscalar meson-baryon coupling
scheme rather than the pseudovector one for the former one
in Eq. (15). They are equivalent to each other because the
relevant two nucleons are on mass-shell. The following strong
coupling constants are obtained by using the Nijmegen poten-
tials [28,29]:

gπNN = 13.0, gηNN = 6.34,
(16)

ga0NN = 4.95, g f0NN = −0.51,

which are also close to the values from the SU(3) flavor
symmetry or the unitary symmetry except for ga0NN [14].

We use the following parametrization of the form factors
for the PS- and S-meson exchanges:

F�,S (t ) = �2
�,S − M2

�,S

�2
�,S − t

, (17)

where ��,S denotes the cutoff masses, which will be deter-
mined to reproduce experimental data.

D. Direct φ-meson radiation term

The effective Lagrangians for the direct φ-meson radiation
contributions are defined by

Lγ NN = − eN̄

[
γμ − κN

2MN
σμν∂

ν

]
NAμ,

(18)

LφNN = − gφNN N̄

[
γμ − κφNN

2MN
σμν∂

ν

]
Nφμ,

where the anomalous magnetic moment of the proton is given
by κp = 1.79. The vector and tensor coupling constants for
the φ meson to the nucleon are chosen to be gφNN = −0.24
and κφNN = 0.2 [30]. Note that the corresponding individ-
ual invariant amplitudes, given by Mφ rad,s and Mφ rad,u in
Eq. (A8) in the Appendix A, violate the Ward-Takahashi
identity (WTI). When we sum the electric terms of the two
invariant amplitudes, the WTI is restored as a pair. Thus one
needs a specific prescription for the usage of the phenomeno-
logical form factors. Detailed explanations for this can be
found in Refs. [31–35]. We define the form factor as follows:

FN (x) = �4
N

�4
N + (

x − M2
N

)2 , x = (s, u), (19)

and we take the common form factor which conserves the on-
shell condition for the form factors [34] as

Fc(s, u) = 1 − [1 − FN (s)][1 − FN (u)], (20)

for the electric terms. Because the magnetic terms satisfy the
WTI by themselves, we just use the form of Eq. (19).

E. Nucleon resonances

There are 11 nucleon resonances beyond the φN threshold√
sφN = 1.96 GeV in the PDG data [13]: N∗(2000, 5/2+),

N∗(2060, 5/2−), N∗(2100, 1/2+), N∗(2120, 3/2−),
N∗(2190, 7/2−), N∗(2220, 9/2+), N∗(2250, 9/2−),
N∗(2300, 1/2+), N∗(2570, 5/2−), N∗(2600, 11/2−), and
N∗(2700, 13/2+), with their two-, three-, or four-star
confirmations. Whereas the helicity amplitudes of N∗ → Nγ

transitions are well known for the nucleon resonances less
than 2.3 GeV, the information of N∗ → φN strong decay is
very limited for all PDG nucleon resonances. None of the
N∗ → φN decay is observed firmly experimentally [13].
And the CLAS data for the differential cross sections exhibit
two bumplike structures at the pole positions

√
s ≈ 2.1 and

2.3 GeV in the backward-scattering regions [10]. Considering
these observations, we avoid performing a χ2 fit in this
calculation and try to reproduce the available experimental
data with only a few resonances. As is explained in the next
section in detail, we find that selecting only N∗(2000, 5/2+)
and N∗(2300, 1/2+) is good enough for this exploratory
work. The nucleon resonances beyond 2.3 GeV and with
higher spins, i.e., J � 9/2, are automatically excluded.
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The effective Lagrangians for the EM transitions of the
nucleon resonances read [36,37]

L1/2±
γ NN∗ = eh1

2MN
N̄	(∓)σμν∂

νAμN∗ + H.c.,

L5/2±
γ NN∗ = e

[
h1

(2MN )2
N̄	(∓)

ν − ih2

(2MN )3
∂νN̄	(∓)

]

× ∂αFμνN∗
μα + H.c., (21)

for their spin and parity JP, and we define the following
notation for brevity:

	(±) =
(

γ5

I4×4

)
, 	(±)

μ =
(

γμγ5

γμ

)
. (22)

N∗ and N∗
μα stand for the Rarita-Schwinger spin-1/2 and

-5/2 nucleon resonance fields, respectively [38]. The former
one in Eq. (21) is constructed from the γ NN interaction
in Eq. (18), but the electric term is removed to conserve
the WTI. The Breit-Wigner helicities Ai for N∗(2000, 5/2+)
are given in the PDG data [13] by AN∗(2000)→pγ

1/2 = 0.031

and AN∗(2000)→pγ
3/2 = −0.043 [GeV− 1

2 ] and we extract the EM
transition coupling constants hi in Eq. (21) [36,39,40] from
these values: hN∗(2000)

1 = −4.24 and hN∗(2000)
2 = 4.00.

The effective Lagrangians for the strong interactions can
be expressed as

L1/2±
φNN∗ = ± 1

2MN
N̄

[
g1M2

φ

MN∗ ∓ MN
	(∓)

μ ± g2	
(∓)
μ σμν∂

ν

]

× φμN∗ + H.c.,

L5/2±
φNN∗ =

[
g1

(2MN )2
N̄	(∓)

ν − ig2

(2MN )3
∂νN̄	(∓)

+ ig3

(2MN )3
N̄	(∓)∂ν

]
∂αφμνN∗

μα + H.c. (23)

Here, only the first term g1 is considered to avoid additional
ambiguities and the values of g2 and g3 are set to be zero.
We determine the value of g ≡ g1 very carefully to reproduce
the CLAS data, resulting in gN∗(2000) = 4.0, and extract the
corresponding branching ratio: BrN∗(2000)→φN = 1.5 × 10−3.

It is worth comparing the computed branching ratio
BrN∗→φN with those for the open strangeness N∗ → K∗� de-
cays. The recent Bonn-Gatchina partial-wave analysis of the
γ p → K∗+� reaction derived them, where N∗(1895, 1/2−),
N∗(2000, 5/2+), and N∗(2100, 1/2+) turn out to be dominant
and other several ones also give N∗ → K∗� branching ratios
with small but finite values [41]. We obtain

Br[N∗(2000) → φN]

Br[N∗(2000) → K∗�]
	 0.07. (24)

For the case of N∗(2300, 1/2+), because its photocoupling is
unknown, a product of the EM and strong decay channels is
taken into account to reproduce the data as follows:√

BrN∗(2300)→φN × AN∗(2300)→pγ
1/2 = 3.8 × 10−3 GeV− 1

2 .

(25)

The full decay widths of the two nucleon resonances are
chosen to be 	N∗(2000) = 200 MeV and 	N∗(2300) = 300 MeV.

Meanwhile, Refs. [42,43] used an SU(3) quark model to
probe the nucleon resonances that strongly couple to the φN
channel. Reference [44] suggested the effect of the hidden-
strangeness pentaquark state P+

s = ss̄uud as its charmed part-
ner, i.e., two exotic charmoniumlike states P+

c (4312) and
P+

c (4450), observed at the LHCb Collaboration [45,46], are
studied in the same s-channel diagram for the γ p → J/ψ p
photoproduction [47–50].

The Gaussian form factor is used because it is advanta-
geous to suppress unreasonably increasing cross sections with
respect to

√
s for the N∗ contributions [51–55]:

FN∗ (x) = exp

[
−

(
x − M2

N∗
)2

�4
N∗

]
, x = (s, u). (26)

We observe that the contribution of the u-channel diagram
of Fig. 1(d) is almost negligible and all the N∗ contributions
come from the s-channel diagram of Fig. 1(c).

III. NUMERICAL RESULTS AND DISCUSSIONS

We are now in a position to present the numerical results
and relevant discussions. We first fix the strength factor for
the Pomeron exchange to be CP = 6.5 such that the formal
s → ∞ asymptotic behavior of the total cross section is

(a) (b)

FIG. 3. (a) Total cross section is plotted as a function of the photon laboratory energy E lab
γ . The data are taken from Refs. [56–59]. (b) Each

contribution of the two nucleon resonances as a function of the c.m. energy
√

s.
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FIG. 4. Differential cross sections dσ/d cos θ are plotted as functions of the c.m. energy
√

s at full scattering angles. The red solid curves
and the blue dashed curves stand for the total contribution and the contribution without N∗, respectively. The green dotted curves stand for the
Pomeron contribution. The CLAS data shown by triangles and circles indicate the charged- and neutral-KK̄ decay modes of φ, respectively
[10].

properly described. Then the low-energy CLAS data [9,10]
are used to constrain other model parameters: The cutoff
masses for PS- and S-meson exchanges are fixed to be �π,η =
0.87 and �a0, f0 = 1.35 GeV, respectively, and those for the
φ-meson radiations and N∗ exchanges are fixed to be �N,N∗ =
1.0 GeV. The unpolarized differential cross section can be
expressed in terms of the invariant amplitudes as follows:

dσ

d�
= 1

64π2s

|q|
|k|

1

4

∑
spins

∣∣∣∣∣∣
∑

h=B,N∗
Mh(Fh)n

∣∣∣∣∣∣
2

, (27)

where q and k indicate the three-momenta of the incoming
photon and the outgoing φ meson, respectively, defined in the
c.m. frame. The exchanged particles are composed of the Born
(B = P , f1(1285), π , η, a0, f0, N) and nucleon-resonance
[N∗ = N∗(2000, 5/2+), N∗(2300, 1/2+)] terms. As for the
relevant phase factors between exchanged particles, the factor
eiπ/2 is additionally multiplied to the scalar exchange ampli-

tude for a better description of the experimental data. We give
the details of all the invariant amplitudes in Appendix A.

Figure 3(a) shows the total cross section for γ p → φp
as a function of the photon laboratory (lab) energy E lab

γ .
Although the present theoretical setup is not applicable to the
higher-energy region far beyond the threshold, we plot the
numerical results up to E lab

γ = 100 GeV to see the tendency
of the curves. The conventional Pomeron exchange (green
dotted curves) matches with the intermediate-energy data at
E lab

γ = (3–10) GeV [56,57] but rather overestimates the data
in the high-energy range E lab

γ � 30 GeV [58,59]. The strength
of the Pomeron exchange is almost the same as that of the
Born contribution. AV-, PS-, and S-meson exchanges have
small effects on the total cross section but come into play
significantly for the differential cross sections and SDMEs as
will be seen later. The π - and a0-meson exchanges turn out
to be more important than the η- and f0-meson ones, respec-
tively. The structure shown at E lab

γ = (1.6–3.0) GeV comes
from the contribution of the two nucleon resonances. Each and
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FIG. 5. Differential cross sections dσ/d cos θ are plotted as functions of cos θ for different c.m. energies
√

s = (1.985–2.815) GeV. The
curve notations are the same as those in Fig. 4. The CLAS data indicate the neutral-KK̄ decay mode of φ [10].

total N∗ contributions are shown in Fig. 3(b) as a function of
the c.m. energy

√
s. N∗(2100, 5/2+) and N∗(2300, 1/2+) are

responsible for the peaks around
√

s ≈ 2.1 and 2.3 GeV,
respectively.

We depict the differential cross sections as functions of√
s in Fig. 4 for wide-scattering-angle regions in comparison

to the charged (φ → K+K−) and neutral (φ → K0
S K0

L ) decay
modes [10], which are shown by the triangle and circle sym-
bols, respectively. The angle θ is that of the outgoing φ meson
in the c.m. frame. Note that they are very similar to each other
and should be treated as a single data set and not be treated
independently because they are related to each other and the
systematic uncertainties are greatly reduced [10]. Except for
the most forward angle cos θ = 0.925, the total results turn
out to be reasonably successful over the wide-scattering-angle
regions. The ratio of the Pomeron contribution to the CLAS
data gradually decreases as cos θ decreases. Note that PS-
and S-meson exchanges, respectively, make constructive and

destructive interference effects with the dominant Pomeron
exchange. In the case of the SDMEs, the opposite interference
pattern is observed. As seen in Fig. 3, the contribution of
the a0-meson exchange is about two times larger than that
of the π -meson exchange. Thus we expect the differential
cross sections to be rather decreased with the Pomeron plus
a0- and π -meson exchange model relative to the Pomeron
exchange one. Thus we need to include one more ingredient in
the t channel and we select the f1(1285)-meson trajectory. Its
inclusion makes the differential cross sections enhanced to a
certain extent. That is why the Born contribution is almost the
same as the Pomeron contribution at the intermediate angles
and even prevails over it at the backward ones. Nevertheless,
the ratio of the Born contribution to the CLAS data at the
backward angles cos θ � −0.5 is even less than 50%. Two N∗
contributions improve theoretical results remarkably; i.e., the
two peaks around

√
s ≈ 2.1 and 2.3 GeV can be accounted

for by the effects of N∗(2000, 5/2+) and N (2300, 1/2+),
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FIG. 6. Differential cross sections dσ/dt are plotted as functions of t ′ ≡ |t − tmin| for different laboratory energies Eγ = (1.65–3.55) GeV.
The curve notations are the same as those in Fig. 4. The CLAS data indicate the neutral-KK̄ decay mode of φ [9].

respectively. The clear bump structure at cos θ = 0.925
around

√
s ≈ 2.2 GeV, admittedly, may arise from another

mechanism, the study of which is beyond the scope of the
present work.

The differential cross sections dσ/d cos θ are displayed
in Fig. 5 as functions of cos θ for different c.m. energy bins
in the logarithmic scale. The Pomeron contribution (green
dotted curves) governs the forward-angle regions, but starts
to deviate from the CLAS data [10] as cos θ decreases. The
inclusion of AV-, PS-, and S-meson exchanges (blue dashed
curves) makes the curves increased in the region of cos θ �
0.5. The remaining discrepancies in the range of

√
s = (2.04–

2.50) GeV are reduced by the effects of the N∗ contributions.
Consequently, the total results (red solid curves) are in very
good agreement with the CLAS data.

In Fig. 6, we present the numerical results of the forward-
scattering cross sections dσ/dt as functions of the momentum
transfer squared t ′ ≡ |t − tmin| for different laboratory energy
bins, where tmin indicates the minimum value of t at a certain
fixed energy. The tendency is similar to Fig. 5 in general

for the corresponding beam energies. The level of agreement
between the total results and the CLAS data [9] is quite good
at E lab

γ � 2.45 GeV. However, we find the bump structures at
large values of t ′ near the threshold E lab

γ = (1.85–2.35) GeV,
indicating that the N∗ contributions should be treated with
caution.

From now on, we present the results of SDMEs [60] in
various reference frames to shed light on the relevant reac-
tion mechanism. Their definitions are given in Appendix B.
Figure 7 depicts them as a function of

√
s at cos θ = 0.7

in the Gottfried-Jackson (red dashed curves), Adair (green
dot-dashed curves), and helicity (blue solid curves) frames
[10]. We observe definitely nonzero values of ρ0

00 in the
Gottfried-Jackson and helicity frames, which show that t-
channel (TCHC) and s-channel (SCHC) helicity conserva-
tions are broken, respectively. The diffractive Pomeron ex-
change is expected to be dominant at the forward-scattering
angles, but underestimates the ρ0

00 data in all three frames as
depicted in Fig. 7(a). The finite values of ρ0

00 reflect the single
helicity-flip transition between the incoming photon and the
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(a) (b)

FIG. 7. Spin-density matrix elements ρ0
00 are plotted as functions of

√
s at cos θ = 0.7 in the three different reference frames. The red

dotted, green dot-dashed, and blue solid curves indicate the results in the Gottfried-Jackson, Adair, and helicity frames, respectively, which
correspond to the CLAS data (red circles, green triangles, and blue squares) from the charged-KK̄ decay mode of φ [10]. The results in panels
(a) and (b) stand for the Pomeron and total contributions, respectively.

outgoing φ meson from its definition as understood by

ρ0
00 ∝ ∣∣Mλγ=1,λφ=0

∣∣2 + ∣∣Mλγ=−1,λφ=0

∣∣2
. (28)

The Pomeron exchange is known as a gluon-rich Regge
trajectory with a vacuum quantum number (JPC = 0++) and
thus we expect TCHC in principle. Moreover, the argument
in support of SCHC for diffractive vector meson photopro-
ductions is given in the literature [16,61]. However, there is
no clear reason why TCHC and SCHC should hold for our
phenomenological DL model [16]. The total results finally
succeed in a satisfactory description of ρ0

00 in all three frames
as displayed in Fig. 7(b). Thus, the relative contributions of
AV-, PS-, and S-meson exchanges to the dominant Pomeron
contribution are confirmed more explicitly. We can imme-
diately test a simple DL Pomeron plus π - and η-meson
exchange model [14] via the present SDME data. It turns
out that the agreement between these model predictions and
the SDME data is not satisfactory in all three frames. The
comparison with the LEPS data also supports this argument
as shown in Fig. 6 of Ref. [62].

It is worth while to examine other components of SDMEs
to understand the effects of the various contributions. Figure 8
depicts ρ0

00 (red circles) and ρ0
1−1 (blue triangles) as functions

of
√

s at full scattering angles in the Adair frame [10]. It is
noticeable that the ρ0

00 data are quite large, unlike the ρ0
1−1

data which are small but finite. The ρ0
00 data are all positive

and reveal bumplike structures at the threshold of
√

s = (2.0–
2.2) GeV and backward-scattering angles of cos θ � 0.2, even
though systematical limitations at the angles make the struc-
tures unclear. First, we find that the Pomeron exchange alone
(red dashed curves) is not sufficient for describing the ρ0

00
data at the forward-scattering angles. The inclusion of the S
mesons to the Pomeron exchange makes ρ0

00 increased, but the
inclusion of the PS mesons makes the results worse by pulling
down ρ0

00. The cutoff masses in the form factor of Eq. (17) are
constrained so as to describe simultaneously the differential
cross sections and SDMEs. Second, it turns out that the bump-
like structures observed at the backward-scattering angles is
clear evidence of the N∗ contribution. At

√
s = (2.0–2.2)

GeV, both the ρ0
00 data and the total theoretical results (red

solid curves) are the strongest at very backward angles, and
get reduced steadily with respect to cos θ , and then vanish
around cos θ = 0.2. This tendency is almost the same as the
numerical results of the differential cross sections in Fig. 4.
The Born contribution merely underestimates the ρ0

00 data for
all the available energies. The N∗(2000, 5/2+) contribution is
mainly responsible for the local structures rather than other
spin-1/2 and-3/2 nucleon resonances. The total results are in
good agreement with the CLAS data in general except in the
intermediate-angle region where the interference between the
Born and resonant terms is maximal.

Let us continue to present our results in comparison to the
LEPS data [62]. The total contribution of various SDMEs are
displayed in Figs. 9(a) and 9(b) as functions of t ′ ≡ |t − tmin|
in the Adair and helicity frames, respectively. Here we exam-
ine three different threshold energies, i.e., E lab

γ = 1.95 GeV
(dotted curves), 2.15 GeV (dashed curves), and 2.35 GeV
(solid curves). We find distinctive large values for ρ1

1−1 and
Im[ρ2

1−1]. Their similar absolute magnitudes are understood
from the following relation [15],

−Im
[
ρ2

1−1

] ≈ ρ1
1−1 −

(
ρ0

1−1

)2

1 − ρ0
00

, (29)

because small values of ρ0
1−1 are experimentally observed.

The data other than ρ1
1−1 and Im[ρ2

1−1] are almost zero and
are in good agreement with our results. The considered region
t ′ = (0.0–0.2) GeV2 is dominated by the t-channel exchange
process for the differential cross sections but is sensitive to
the structure of the N∗ exchange amplitudes for the case of
SDMEs.

It is more informative to present our results in the
Gottfried-Jackson frame for which we separately show the
Pomeron and total contributions in Figs. 10(a) and 10(b),
respectively. The increase in the magnitude of ρ0

00 is consis-
tent with the results of Fig. 8. When a double helicity-flip
transition is forbidden, ρ0

1−1 is exactly zero by construction.
However, the small but finite value of ρ0

1−1 at large t ′ even
for Pomeron exchange implies the possible spin-orbital inter-
action from our modified DL model [14,62,63]. For the pure
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FIG. 8. Spin-density matrix elements ρ0
00 (red circles) and ρ0

1−1 (blue triangles) are plotted as functions of
√

s at full scattering angles in the
Adair frame. The red-dashed curve indicates the results of ρ0

00 for Pomeron exchange, and red solid curves and blue solid curves correspond to
the total results of ρ0

00 and ρ0
1−1, respectively. The CLAS data indicate the charged-KK̄ decay mode of φ [10].

Pomeron exchange process, the following relation [15],

ρ1
1−1 	 1

2

(
1 − ρ0

00

)
, (30)

also holds and is confirmed by our numerical results. Note
that ρ1

1−1 is very interesting, because it allows us to measure
the asymmetry of the relative strength between the natural (N)
and unnatural (U ) parity exchange processes, and is written as

ρ1
1−1 = 1

2

σ N − σU

σ N + σU
+ 1

2
ρ1

00. (31)

For example, PS- and S-meson exchanges correspond to
unnatural and natural parity exchanges, respectively, and no

single helicity-flip transition occurs, resulting in ρ1
00 = 0.

Thus we exactly obtain ρ1
1−1 = −0.5 and 0.5 for them, respec-

tively. A large deviation of ρ1
1−1 from Pomeron exchange is

compensated by the inclusion of AV- and PS-meson unnatural
parity exchanges and the N∗ contribution, which involves both
natural and unnatural parity exchanges. The direct φ-meson
radiation hardly affects the SDMEs or the cross sections. The
total results are improved in comparison to the results of
Pomeron exchange.

Figure 11 shows the results of ρ0
00, ρ0

10, and ρ0
1−1 as

functions of cos θ in the Gottfried-Jackson frame for three
different threshold energies as done in Figs. 9 and 10. The
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(a) (b)

FIG. 9. The total contribution of various spin-density matrix elements are plotted as functions of t ′ ≡ |t − tmin| for three different laboratory
energies, E lab

γ = 1.95 GeV (dotted curves), 2.15 GeV (dashed curves), and 2.35 GeV (solid curves), in the Adair (a) and helicity (b) frames.
The data are from the LEPS Collaboration [62].

CLAS energy bins are 10 MeV wide [10], but the LEPS
ones much wider, i.e., 200 MeV wide [62]. As expected,
the forward-scattering angles are well described by Pomeron
exchange. Large discrepancies shown at backward-scattering
angles are highly decreased by the inclusion of nucleon reso-
nances, especially for ρ0

10 and ρ0
1−1.

IV. SUMMARY

We have investigated the φ-meson photoproduction mech-
anism for the wide-scattering-angle regions, based on the
effective Lagrangian approach in the tree-level Born approx-
imation. As for the Born contribution, we considered the
universal Pomeron exchange and the f1(1285) axial-vector-
meson, (π, η) pseudoscalar-meson, and (a0, f0) scalar-meson
exchanges, in addition to the direct φ-meson radiation con-
tributions. We newly took two nucleon resonances from the
PDG into account, i.e., N∗(2000, 5/2+) and N∗(2300, 1/2+).
We list important observations as follows.

(i) Pomeron exchange is responsible for the descrip-
tion of the available total cross-section data in the

intermediate-energy, E lab
γ = (3–10) GeV, and high-

energy, E lab
γ � 30 GeV, ranges.

(ii) The key point is how to incorporate the AV-, PS-, and
S-meson exchanges into the Pomeron contribution
to describe the abundant differential cross sections
and SDMEs in the low-energy region

√
s = (2.0–

2.8) GeV. The N∗ contributions are also essential to
account for the two bumplike structures near

√
s ≈

2.1 and 2.3 GeV shown at the backward-scattering
angles.

(iii) According to the interference patterns between the
Born and N∗ contributions, the CLAS and LEPS data
are reproduced qualitatively well, except for the dip
or the peak structure shown near the threshold in the
forward-scattering cross section. We leave the long-
standing puzzle on this structure to future work. The
role of the PS-meson exchanges is found to be defi-
nitely different from that of the S-meson exchanges,
and both are essential to describe the cross sections
and SDMEs simultaneously together with the AV-
meson exchange.

(a) (b)

FIG. 10. The same as Fig. 9 but for the Pomeron (a) and total (b) contributions, respectively, in the Gottfried-Jackson frame.
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FIG. 11. Spin-density matrix elements ρ0
00, ρ0

10, and ρ0
1−1 are

plotted as functions of cos θ for three different laboratory energies
in the Gottfried-Jackson frame. The green dotted curves and the
red solid curves stand for the Pomeron and total contributions,
respectively. The CLAS data indicate the charged-KK̄ decay mode
of φ [10].

(iv) The N∗ contributions should be dealt with carefully
because of the lack of the information on the N∗ →
φN decay channels. We select N∗(2000, 5/2+) and
N∗(2300, 1/2+) from the PDG data and extract their
branching ratios by the comparison with the CLAS
data. We find that the bumplike structures observed in
the backward-scattering angles are explained qualita-
tively well by the N∗ contributions.

(v) We want to mention that the effect of high-spin meson
exchanges such as the f ′

2(1525) tensor meson [63]
is revealed especially on ρ0

00 at forward-scattering
angles to some extent. However, we do not show these
results because we want to emphasize that the role of
AV-, PS-, and S-meson exchanges is sufficient for the
purpose of this work.

Consequently, as shown in the present work, our rigorous
theoretical analyses on the presently available high-statistics
and wide-angle-coverage experimental data for the various
physical observables will be valuable for a profound under-
standing for the light-flavor (ρ and ω) and hidden-flavor (J/ψ)
vector meson photoproductions [64–71]. Related works will
appear elsewhere.
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APPENDIX A: INVARIANT AMPLITUDES

The invariant amplitude for γ p → φp can be written as
follows:

M = ε∗
ν ūN ′MμνuNεμ, (A1)

where εμ and εν stand for the polarization vectors for the
photon and the φ meson, respectively. The Dirac spinors of
the incident and outgoing nucleons are denoted by uN and uN ′ ,
respectively.

The invariant amplitude for the Pomeron exchange is given
by

Mμν

P = −MP (s, t )	μν

P , (A2)

where the scalar function is

MP (s, t ) = CP Fφ (t )FN (t )
1

s

(
s

sP

)αP (t )

exp

[
− iπ

2
αP (t )

]
,

(A3)

and the transition operator is

	
μν

P =
(

gμν − kμ
2 kν

2

k2
2

)
/k1 −

(
kν

1 − kν
2 k1 · k2

k2
2

)
γ μ

−
(

γ ν − /k2kν
2

k2
2

)
kμ

2 . (A4)

The energy-scale factors for the Pomeron is given by sP =
(MN + Mφ )2. Practically, a phenomenological consideration
gives a change for the last term of Eq. (A4),

kμ
2 → kμ

2 − (p1 + p2)μk1 · k2

(p1 + p2) · k1
, (A5)

to satisfy the Ward-Takahashi identity in ūN ′ [· · · ]uN of
Eq. (A1) [15].

The invariant amplitudes for f1(1285) axial-vector-, (π ,η)
pseudoscalar-, and (a0, f0) scalar-meson exchanges take the
following forms:

Mμν

f1
= i

M2
φgγ f1φg f1NN

t − M2
f1

εμναβ

[
−gαλ + qtαqtλ

M2
f1

]

×
[
γ λ + κ f1NN

2MN
γ σ γ λqtσ

]
γ5k1β, (A6)

Mμν
� = i

e

Mφ

gγ�φg�NN

t − M2
�

εμναβk1αk2βγ5,

Mμν
S = e

Mφ

2gγ SφgSNN

t − M2
S + i	SMS

(
k1k2gμν − kμ

1 kν
2

)
, (A7)

where we use Ma0 = 980 MeV, M f0 = 990 MeV, and 	a0, f0 =
75 MeV [13].

The φ-radiation invariant amplitudes are constructed as

Mμν
φ rad,s = egφNN

s − M2
N

(
γ ν − i

κφNN

2MN
σ ναk2α

)
(q/s + MN )

×
(

γ μ + i
κN

2MN
σμβk1β

)
,

Mμν
φ rad,u = egφNN

u − M2
N

(
γ μ + i

κN

2MN
σμαk1α

)
(q/u + MN )

×
(

γ ν − i
κφNN

2MN
σ νβk2β

)
, (A8)
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for the s and u channels, respectively. qt,s,u are the four momenta of the exchanged particles, i.e., qt = k2 − k1, qs = k1 + p1,
and qu = p2 − k1.

The invariant amplitudes for exchanges of spin-1/2 and -5/2 resonances are computed as

Mμν

N∗,1/2± = −ie

s − M2
N∗ + i	N∗MN∗

h1

(2MN )2

[
g1

M2
φ

MN∗ ∓ MN
	ν(∓) ∓ ig2	

(∓)σ νβk2β

]
(q/s + MN∗ )	(∓)σμαk1α,

Mμν

N∗,5/2± = e

[
g1

(2MN )2
	(∓)

ρ + g2

(2MN )3
p2ρ	

(∓) − g3

(2MN )3
k2ρ	

(∓)

]
kβ2

2

(
kβ1

2 gνρ − kρ
2 gνβ1

)
�β1β2;α1α2 (qs)

×
[

h1

(2MN )2
	

(∓)
δ ∓ h2

(2MN )3
	(∓) p1δ

]
kα2

2

(
kα1

1 gμδ − kδ
1gα1μ

)
, (A9)

for the s-channel diagram. The propagator of a spin-5/2 baryon field is represented as [72]

�β2β1;α2α1 (q) = q/ + MN∗

s − M2
N∗ + i	N∗MN∗

[
1

2

(
ḡβ1α1 ḡβ2α2 + ḡβ1α2 ḡβ2α1

) − 1

5
ḡβ1β2 ḡα1α2

− 1

10

(
γ̄β1 γ̄α1 ḡβ2α2 + γ̄β1 γ̄α2 ḡβ2α1 + γ̄β2 γ̄α1 ḡβ1α2 + γ̄β2 γ̄α2 ḡβ1α1

)]
, (A10)

with

ḡαβ = gαβ − qαqβ

M2
N∗

, γ̄α = γα − qα

M2
N∗

q/. (A11)

APPENDIX B: SPIN-DENSITY MATRIX ELEMENTS

The spin-density matrix elements (SDMEs) can be ex-
pressed in terms of the helicity amplitudes [60]:

ρ0
λλ′ = 1

N

∑
λγ ,λi,λ f

Mλ f λ;λiλγ
M∗

λ f λ′;λiλγ
,

ρ1
λλ′ = 1

N

∑
λγ ,λi,λ f

Mλ f λ;λi−λγ
M∗

λ f λ′;λiλγ
,

(B1)

ρ2
λλ′ = i

N

∑
λγ ,λi,λ f

λγMλ f λ;λi−λγ
M∗

λ f λ′;λiλγ
,

ρ3
λλ′ = 1

N

∑
λγ ,λi,λ f

λγMλ f λ;λiλγ
M∗

λ f λ′;λiλγ
,

where the normalization factor N is defined as

N =
∑

|Mλ f λ;λiλγ
|2. (B2)

The helicity states for the incoming photon and nucleon
and the outgoing nucleon are denoted by λγ , λi, and λ f ,
respectively, whereas λ and λ′ stand for those for the outgoing
φ meson. By the symmetry property, the helicity amplitudes
have

M−λ f −λ;−λi−λγ
= (−1)(λ−λ f )−(λγ −λi )Mλ f λ;λiλγ

. (B3)

We have the following relations:

ρα
λλ′ = (−1)λ−λ′

ρα
−λ−λ′ for α = 0, 1,

ρα
λλ′ = −(−1)λ−λ′

ρα
−λ−λ′ for α = 2, 3. (B4)

There is an ambiguity in choosing the quantization axis
when computing the SDMEs because they are not Lorentz-
invariant quantities. Thus the spin-quantization direction for

the φ meson must be determined. We choose the Adair (A)
frame, the helicity (H) frame, and the Gottfried-Jackson (GJ)
frame. Figures 12(a) and 12(b) are schematic diagrams in the
c.m. frame and in the φ-meson rest frame, respectively. In the
Adair frame, the z axis is parallel to the incoming photon mo-
mentum in the c.m. frame. The helicity and Gottfried-Jackson
frames are when z axis is antiparallel to the momentum of
the outgoing nucleon or is chosen to be parallel to that of the
incoming photon, respectively. The former and latter ones are
in favor of the s-channel and t-channel helicity conservations,
respectively. When the SDMEs are given in one frame, it is
straightforward to derive them in other frames by a Wigner
rotation. The rotation angles are expressed as [10,60]

αA→H = θc.m., αH→GJ = − cos−1

(
v − cos θc.m.

v cos θc.m. − 1

)
,

αA→GJ = αA→H + αH→GJ, (B5)

where v is the velocity of the K meson in the φ-meson rest
frame (for the φ → KK̄ decay).

FIG. 12. Schematic diagrams for γ p → φp in (a) the center-
of-mass (c.m.) frame and (b) the φ-meson rest frame. A (green),
H (blue), and GJ (red) stand for the Adair, helicity and Gottfried-
Jackson frames, respectively.
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