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Thermodynamic properties of systems with repulsive interactions are considered in the grand-canonical
ensemble. The analytic structure of the excluded-volume model in the complex plane of the system chemical
potential (fugacity) is elaborated, based on the fact that the pressure function can be given in terms of the
Lambert W function. Even though the excluded-volume model has no phase transitions at real values of the
chemical potential, it does exhibit a branch cut singularity in the complex plane, thus limiting the convergence
range of the Taylor expansion in the chemical potential. Close similarities to analytic properties of the other
models with repulsive interactions, such as a cluster expansion model, the mean-field model, and the ideal Fermi
gas model, are pointed out. As an example, repulsive baryonic interactions in a hadron gas, with a focus on the
fugacity/virial and Taylor expansion methods used in lattice QCD, are presented. The asymptotic behavior of
the Fourier expansion coefficients in these various models suggests that the singular part of net baryonic density
can to leading order be universally expressed in terms of polylogarithms.
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I. INTRODUCTION

Properties of strongly interacting matter and determination
of its different phases are the key questions that drive the
heavy-ion collision experiments as well as finite-temperature
lattice QCD simulations. The first-principles lattice methods
are restricted to simulations at zero or imaginary chemical
potentials due to the sign problem. The indirect lattice meth-
ods to probe finite baryon densities are based on extrapo-
lations such as analytic continuation from imaginary chem-
ical potential [1–3] or the Taylor expansion method [4–8].
Both methods are sensitive to the analytic properties of the
pressure function in the complex chemical potential plane,
in particular its singularities. These restrict the scope of the
analytic continuation as well as the convergence radius of
Taylor expansion. Knowledge of the possible singularities
is thus useful to control the validity and accuracy of both
these methods. Often the singularities of the pressure function
are associated with phase transitions and critical phenomena.
Important examples include the chiral phase transition in the
chiral limit of QCD [9,10] and a suspected critical point at
finite baryon density [10]. As we show below, however, the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

pressure function singularities are not necessarily connected
to physical phase transitions.

Useful guidance is provided by phenomenological models,
which incorporate various symmetries and physical mech-
anisms expected in a given region of the phase diagram.
Here we employ hadron resonance gas (HRG) models, which
are used to provide a reasonable description of the hadronic
part of the QCD-matter phase diagram. A wide range of
HRG applications includes the description of hadron yields in
heavy-ion collisions [see, e.g., Refs. [11,12] for a review] and
lattice QCD data at moderate temperatures [13,14]. Common
extensions of the ideal HRG model include the incorporation
of the repulsive interactions [15–18]. The relevance of repul-
sive baryonic interactions in the HRG equation of state has
recently been established through an analysis of the lattice
gauge theory data on baryon number susceptibilities at zero
chemical potentials [19,20] and on Fourier coefficients of net
baryon density at imaginary baryonic chemical potential [21]
as well as baryon number fluctuations in heavy-ion collisions
[22,23].

In this paper we study the analytic properties of these
models in the complex chemical potential plane. Certain
related features, such as the distribution of the Lee-Yang
zeros, have been studied within the excluded-volume (EV)
and mean-field (MF) models a long time ago [24]. Here we
present a more complete picture, using the fact that the grand-
canonical thermodynamic functions in these two models can
be expressed in terms of the Lambert W function. We consider
also the cluster expansion model from Ref. [25] and the ideal
Fermi gas, in addition to the EV and MF models. All these
distinct models are found to exhibit a quite similar analytic
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structure of their grand-canonical thermodynamic potentials.
The results are discussed in light of possible applications to a
reasonable analysis of lattice QCD data.

The paper is organized as follows. Section II goes in detail
through the analytic solution of a single-component Maxwell-
Boltzmann gas with EV interactions. Section III explores
the analytic properties of the HRG with EV interactions.
Section IV compares a number of distinct HRG models with
repulsive interactions. A summary in Sec. V closes the paper.

II. SINGLE-COMPONENT EXCLUDED-VOLUME MODEL

The pressure of a single-component Maxwell-Boltzmann
gas with a van der Waals-type EV correction is given by [26]

p = nT

1 − bn
, (1)

where T and n are the system’s temperature and particle
number density, respectively, and b is the excluded volume
parameter. The EV model can be viewed as an approximation
of a system of classical hard spheres [26], accurate at suffi-
ciently low densities. The pressure (1) in the grand-canonical
ensemble (GCE) is presented in terms of the following tran-
scendental equation [16]:

p(T, λ) = T φ(T ) λ exp

(
−b p

T

)
. (2)

Here λ = exp(μ/T ) is the fugacity, μ is the chemical poten-
tial, and

φ(T ) = d m2 T

2π2
K2(m/T ). (3)

Here d and m are particle’s degeneracy factor and mass,
respectively, and K2 is the modified Bessel function. The
pressure plays the role of the thermodynamical potential in the
GCE, T and μ are the corresponding independent intensive
variables. All thermodynamical functions can be calculated in
terms of p(T, μ) and its partial derivatives.

The solution of Eq. (2) can be written explicitly as [27]:

p(T, λ) = T

b
W [bφ(T ) λ], (4)

in terms of the Lambert W function [28,29] defined by the
equation

z = W (z) exp[W (z)] (5)

for any complex number z. Therefore, the representation (4)
provides the analytic continuation of the EV model pressure
function into the complex fugacity plane. W (z) is, in general, a
multivalued function. On the principal branch, W (z) is real for
real values of the argument z, and W (z) ≈ z for small values
of z. The principal branch therefore determines the physical
behavior of the EV pressure at real, positive values of the
fugacity λ. In the following we consider the principal branch
of W (z) only. This principal branch has the following Taylor
series representation:

W (z) =
∞∑

k=1

(−k)k−1

k!
zk, (6)

which follows from the Lagrange inversion theorem, applied
to Eq. (5). The fugacity expansion around λ = 0 of the pres-
sure in the EV model therefore reads

p(T, λ) =
∞∑

k=1

(−k)k−1

k!
T bk−1 [φ(T )]k λk. (7)

The pressure of the ideal Boltzmann gas (b = 0),

pid (T, λ) = T φ(T ) λ = nT, (8)

corresponds to the first term of the fugacity expansion (7).
It is instructive to consider the ratio R of the EV pressure

to the ideal gas pressure:

R ≡ p(T, λ)

pid (T, λ)
= W [bφ(T ) λ]

bφ(T ) λ
. (9)

This ratio quantifies the deviations from the ideal gas case.
It depends on the dimensionless variable z = bφ(T ) λ only,
i.e., R ≡ R(z) = W (z)/z. The R(z) dependence is shown for
real values of z > 0 in Fig. 1 (left panel). The EV effects
are moderate (within 10%) for z � 10−1. At z � 1 the EV
effects are quite strong, and the ideal gas picture simply breaks
down. These observations are useful as a rule of thumb, to
estimate the importance of the EV corrections in various
settings, e.g., as in the application of the EV model to the HRG
phenomenology.

The contour plot of |R(z)| in the complex z plane is shown
in Fig. 1 (right panel): R(z) exhibits a branch point at z =
zbr ≡ −e−1, with a branch cut along the interval (−∞,−e−1),
which follows from the analytic properties of the Lambert W
function. This branch cut is depicted by the black line. Note
that the Lee-Yang zeros of the EV model are distributed along
this branch cut [24]. |R(z)| is a continuous function of the
complex-valued z, but the imaginary part of R(z) flips its sign
when crossing the branch cut. |R(z)| → e as z → zbr.

The EV model has no phase transitions at real values of the
chemical potential, as follows from the analysis presented. In
this sense, the model differs qualitatively from the classical
hard-sphere system, where Monte Carlo simulations do sug-
gest a possibility of a phase transition to a crystallized phase
[30]. The reason for this difference is that the EV model can
be identified with the hard-spheres system only at sufficiently
low densities, b n � 0.1, where no phase transitions take
place.

III. HADRON RESONANCE GAS WITH REPULSIVE
BARYONIC INTERACTIONS

A. Excluded-volume HRG model

The EV approach is often applied to include repulsive
interactions between hadrons in the HRG model. The HRG
model with EV interactions between (anti)baryons (the EV-
HRG model) was developed in Refs. [19,21,31]. This model
treats the interactions between pairs of baryons and between
pairs of antibaryons, but not between any other pairs of
hadrons, by excluded-volume (EV) correction in the mode of
van der Waals. These interactions are quantified by vdW-type
eigenvolume parameter b. The pressure in the EV-HRG model
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FIG. 1. Left: The dependence of the excluded-volume to ideal gas pressure ratio R(z) ≡ p/pid [Eq. (9)] on the dimensionless fugacity z
shown on the logarithmic scale for real positive values of z. Right: The contour plot of |R(z)| in the complex z plane. The branch cut from
z = −∞ to z = −e−1 is shown by the solid line while the dashed line corresponds to Re z = −e−1. The coloring denotes the phase angle of
R(z).

reads

p(T, λB) = pM (T ) + pB(T, λB) + pB̄(T, λB), (10)

where λB = exp(μB/T ) and μB is the baryonic chemical
potential. Here

pM (T ) = T φM (T ), (11)

pB (T, λB) = T φB(T ) λB exp

(−b pB

T

)
, (12)

p
B̄
(T, λB) = T φB(T ) λ−1

B exp

(−b p
B̄

T

)
, (13)

φM(B)(T ) =
∑

i∈M(B)

∫
dm ρi(m)

dim2T

2π2
K2

(m

T

)
, (14)

where ρi(m) in Eq. (14) takes into account the finite widths
of the resonances while the sum runs over all mesonic (M)
or baryonic (B) species. The baryon-antibaryon annihilation
is treated here in a standard HRG model approach, namely by
including the mesonic degrees of freedom as free particles.

The previous section has shown that the explicit form of
the pressure in the EV-HRG model is given in terms of the
Lambert W function:

p(T, λB) = T φM (T ) + T

b

{
W [bφB(T ) λB]

+ W
[
bφB(T ) λ−1

B

]}
. (15)

B. Taylor expansion properties

The branch points of the pressure function (15),

λbr1,2
B (T ) = [−bφB(T ) e]∓1, (16)

are located exclusively at the negative real axis. Here λbr1
B

corresponds to the branch point associated with the subsys-
tem of baryons [the second term in Eq. (15)], while λbr2

B
corresponds to the subsystem of antibaryons [the third term
in Eq. (15)]. The two singularities with positions related as
λbr1

B = 1
λbr2

B
emerge due to the presence of both, baryons, and

antibaryons, which leads to two different branch cuts, both
located at the negative real fugacity axis. These branch cuts
are depicted in Fig. 2 for three different cases:

(i) |λbr1
B | > 1: the branch cuts do not overlap;

(ii) |λbr1
B | = 1: the two branch points coincide, λbr1

B =
λbr2

B = −1;
(iii) |λbr1

B | < 1: the branch cuts have a nonzero overlap.

The locations of the distinct branch points are given (for
k ∈ Z) in terms of the baryochemical potential:

μbr
B (T )

T
= ±{ln[bφB(T )] + 1} ± i π (2k + 1). (17)

The pressure function (15) can now be written as a Taylor
series expansion around μB/T = 0:

p(T, μB) = p(T, μB = 0) +
∞∑

k=1

χ2k (T )

(2k)!

(μB

T

)2k
. (18)

Here the coefficients of the expansion are the baryon number
susceptibilities χ2k (T ) = ∂2k (p/T 4)/∂ (μB/T )2k|μB=0, evalu-
ated at μB = 0.

The presentation (18) is quite general and is applied here
for the QCD equation of state. The leading susceptibilities
have been computed in lattice QCD simulations. Current data
are available for susceptibilities up to χB

8 [8,32]. Due to the
CP symmetry of QCD, all odd-order susceptibilities vanish at
μB = 0. The radius of convergence of the Taylor expansion
(18) is determined by the singularity of the pressure function
in the complex μB/T plane, which is located in the closest to
the expansion point, μB/T = 0.

Thermodynamic singularities are often associated with
phase transitions. For example, the critical endpoint of a
first-order phase transition manifests itself as a singularity at
real finite μcrit

B , which limits the convergence of the Taylor
expansion around μB = 0 [33]. This fact has been used in
various attempts to constrain the location of the critical point
of QCD by numerical evaluation of a few leading coefficients
with lattice QCD [4,34] or in effective models [10,35,36].
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FIG. 2. The analytic structure of the EV-HRG model pressure
function is depicted in the complex fugacity plane for (a) |λbr1

B | > 1,
(b) |λbr1

B | = 1, and (c) |λbr1
B | < 1. The blue and red lines with the

points depict the branch cuts, the blue one corresponds to the branch
cut in the second term of Eq. (15), and the red one to the branch
cut in the third term of Eq. (15). The dashed curves correspond to
purely imaginary values of the baryochemical potential in the range
0 < Im [μB/T ] < π , the integration contour in Eq. (25).

The EV-HRG model (17) exhibits no physical phase tran-
sition. Thus, it does not have singularities at real values of
the baryochemical potential. Nevertheless, the model does

FIG. 3. The dependence of the subtracted scaled pressure
[p(T, μB ) − p(T, 0)]/T 4 on μB/T , as calculated within the EV-HRG
model at T = 155 MeV using the analytic solution [Eq. (10)] (solid
black line) and the Taylor expansion truncated at χB

2 (dashed red
line), χB

4 (dot-dashed green line), χB
6 (double-dot-dashed blue line),

and χB
20 (dotted gray line). The vertical dashed line corresponds to

the value of the convergence radius rμ/T � 4.1.

contain branch point singularities in the complex plane; their
locations are given by Eq. (17). The closest branch points to
μB/T = 0 result by setting k = 0 in Eq. (17):

μbr
B (T )

T
= ±{1 + ln[bφB(T )]} ± i π. (19)

These two branch points are symmetric with respect to
μB/T = 0, which reflects the symmetry between baryons and
antibaryons. The radius of convergence, rμ/T , of the Taylor
expansion in the EV-HRG model is given by the distance of
these symmetric branch points to μB/T = 0:

rμ/T =
√

{1 + ln[bφB(T )]}2 + π2. (20)

The Taylor expansion (18) does converge only in the region
|μB|/T < rμ/T . For illustration, the behavior of the Taylor
expansion (18) is studied in the EV-HRG model, where as
an example T = 155 MeV and the model parameters from
Ref. [21] are used:

b = 1 fm3, bφB(T = 155 MeV) � 0.026. (21)

This yields the branch points (19):

μbr
B

T
� ±2.634 ± i π, (22)

while the radius of convergence (20) becomes equal

rμ/T � 4.1, (23)

i.e., rμ � 635 MeV.
Figure 3 depicts the μB/T dependence of the subtracted

scaled pressure [p(T, μB) − p(T, 0)]/T 4, evaluated within the
EV-HRG model at T = 155 MeV. The full analytic solution
[Eq. (10)] (solid black line) is shown, as well as the Taylor
expansion (18), truncated at χB

2 (dashed red line), χB
4 (dot-

dashed green line), χB
6 (double-dot-dashed blue line), and χB

20
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(dotted gray line). The full analytic result is described fairly
well by the Taylor expansion, if it is truncated at the O(μ4

B) or-
der or higher, for μB/T � rμ/T � 4.1. However, the behavior
of the pressure function cannot be reliably described beyond
the convergence radius by a truncated Taylor expansion, no
matter how high is its order. Moreover, the agreement of the
partial sums in Eq. (18) with the exact result becomes, with
an increasing number of their terms, better at μB/T < rμ/T ,
but worse at μB/T > rμ/T outside the convergence radius, as
can be seen in Fig. 3. Note that the divergence of the Taylor
expansion at large real μB/T > rμ/T does not at all indicate an
emergence of physical effects. That observation does simply
reflect the existence of complex chemical potential singulari-
ties, which limit the convergence range of a Taylor series.

The present results illustrate that the application of the
Taylor expansion method in lattice QCD will respect these
findings and must be done carefully. The convergence ranges
of the Taylor expansion method are often restricted just by
pressure function singularities, which are not at all related to
physical phase transitions.

C. Fourier coefficients

The QCD net baryon density nB can be written as a series
in hyperbolic sines,

nB(T, μB)

T 3
=

∞∑
k=1

bk (T ) sinh

(
kμB

T

)
. (24)

This general representation is a consequence of the CP and
Roberge-Weiss [37] symmetries of QCD. For purely imagi-
nary chemical potentials μB, this expansion becomes trigono-
metric Fourier series. Here the coefficients bk (T ) are the
Fourier coefficients, which can be evaluated in the standard
way:

bk (T ) = 2

π

∫ π

0
Im

[
nB(T, iθB T )

T 3

]
sin(k θB) dθB. (25)

These Fourier coefficients have attracted considerable atten-
tion recently [25,38,39], in particular in the context of lattice
QCD simulations at imaginary μB [21,40,41].

The four leading coefficients were analyzed in Ref. [21]
within the EV-HRG model, in the context of lattice data.
The analytic expression (15) determines the exact expressions
for bk to arbitrary order in the EV-HRG model. The Taylor
expansion of W (z) [Eq. (6)] yields

p(T, λB) = pM (T ) +
∞∑

k=1

(−k)k−1 T bk−1 [φB(T )]k

k!
λn

B

+
∞∑

k=1

(−k)k−1 T bk−1 [φB(T )]k

k!
λ−k

B

= pM (T ) +
∞∑

k=1

(−k)k−1 2 T bk−1 [φB(T )]k

k!

× cosh

(
kμB

T

)
. (26)

The scaled net baryon density nB/T 3 = ∂ (p/T 4)/∂ (μB/T )
reads

nB

T 3
=

∞∑
k=1

(−k)k−1

k!
2 k

bk−1

T 3
[φB(T )]k sinh

(
kμB

T

)
, (27)

with the Fourier coefficients

bev
k (T ) = (−1)k−1 2 kk

k!

φB(T )

T 3
[bφB(T )]k−1 . (28)

The four leading Fourier coefficients read

bev
1 (T ) = 2

φB(T )

T 3
, (29)

bev
2 (T ) = −4 b T 3

[
φB(T )

T 3

]2

, (30)

bev
3 (T ) = 9 (b T 3)2

[
φB(T )

T 3

]3

, (31)

bev
4 (T ) = −64

3
(b T 3)3

[
φB(T )

T 3

]4

. (32)

They agree with those obtained in Ref. [21]. The closed-form
expression (28) suggests that the alternating sign structure
of the Fourier coefficients in the EV-HRG model persists
to asymptotically large k. The Stirling approximation k! ≈√

2πk (k/e)k yields the following large k asymptotics:

bev
k

k→∞
� −

√
2/π

b T 3

[−bφB(T ) e]k

k1/2
≈ [λbr1

B (T )]−k

k1/2
. (33)

The Fourier coefficients are exponentially damped, at large
k, as long as the following condition is fulfilled:

bφB(T ) < e−1 ⇐⇒ ∣∣λbr1
B

∣∣ > 1. (34)

The corresponding analytic structure of the thermodynamic
potential in this case is depicted in Fig. 2(a).

In contrast, Eq. (33) implies an exponential growth of the
coefficients at large k for |λbr1

B | < 1. Such a behavior contra-
dicts the Riemann-Lebesgue lemma [42], which stipulates that
Fourier coefficients of any function, which is integrable on the

imaginary μB/T interval [0, π ] vanish for large k, bk
k→∞→ 0.

This contradiction appears to be related to the divergence
of the series in Eq. (26) for purely imaginary values of the
baryochemical potential, |λB| = 1, used to evaluate bk . In fact
the integration endpoint θB = π in Eq. (25) for |λbr1

B | < 1 lies
on the branch cuts of both W functions which enter Eq. (26)
[see Fig. 2(c)]. Therefore, Eq. (28) is expected to coincide
with the Fourier coefficients evaluated through (25) only when
the condition (34) is fulfilled simultaneously.

The Fourier coefficients can be evaluated numerically
through Eq. (25) to crosscheck these results with Eq. (28).
Both results agree for |λbr1

B | � 1 only, but they disagree for
|λbr1

B | < 1. For the latter case, the numerically calculated bk ,
Eq. (25), show an asymptotic behavior bk ≈ (−1)k−1/k.

IV. COMPARISON TO OTHER APPROACHES

The EV model is only one particular framework to treat
repulsive interactions between particles. A comparison with
the other approaches is instructive as it permits us to establish
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the analytic properties of the generic features of all distinct
repulsive interaction models presented here.

A. Mean-field approach

In the simplest version of a MF approach the interactions
between particles are modeled through a common shift of the
single-particle energies, which is proportional to the number
density by U = K n [15]. The relations K > 0 and K < 0 cor-
respond to repulsive and attractive interactions, respectively.
Such an approach has recently been used to model repulsive
baryonic interactions in the HRG in the context of the lattice
data on baryon number susceptibilities [20]. Similar results
were achieved by the EV-HRG model [21]. In case of the
Maxwell-Boltzmann statistics, the particle number density n
of a single-component system in the GCE is given by the
following transcendental equation:

n(T, λ) = φ(T ) λ exp

(
−K n

T

)
. (35)

The similarity of Eq. (35) to the transcendental equation for
the pressure (2) in the EV model is evident. The solution of
(35) is given in terms of the Lambert W function:

n(T, λ) = T

K
W

[
Kφ(T )λ

T

]
. (36)

The analytic properties of the MF model are determined
by the analytic properties of the Lambert W function, in close
analogy to the EV model. The branch point of the MF-model
thermodynamic potential is located at

λbr = − T

K φ(T ) e
. (37)

This singularity is located on the negative real axis for K >

0 (repulsive mean field) and on the positive real axis for
K < 0 (attractive mean field). This result suggests that strong
attractive interactions can lead to experimentally observable
physical singularities.

The MF model can be used to model repulsive interactions
between pairs of baryons and between pairs of antibaryons in
the same fashion as was done in Sec. III for the EV model (see
Ref. [20] for details). The resulting net baryon density reads
(K > 0):

nmf
B (T, λB) = T

K

{
W

[
KφB(T )λB

T

]
− (

λB → λ−1
B

)}
. (38)

Similar to Eq. (16) for EV interactions, the MF model (38)
used here possesses two branch points

λbr1,2
B =

[
− K

T
φB(T )e

]∓1

(39)

located at the negative real axis. Here λbr1
B corresponds to

baryons and λbr2
B to antibaryons, as in the EV-HRG model

before. The Fourier coefficients of the net baryon density
can be evaluated in the MF model using the Taylor series
representation (6) of W :

bmf
k (T ) = (−1)k−1 2 kk−1

k! K T 2

[
K φB(T )

T

]k

. (40)

The asymptotic behavior is the following:

bmf
k

k→∞
� −

√
2/π

K T 2

[−K φB(T ) e/T ]k

k3/2
≈

[
λbr1

B

]−k

k3/2
. (41)

This asymptotic behavior is similar to the EV model. How-
ever, the MF model has a different power-law factor, namely
k−3/2, instead of k−1/2, which appears in the EV model. As in
the EV model, Eqs. (40) and (41) are valid here for |λbr1

B | > 1.

B. Cluster expansion model

The cluster expansion model (CEM) for the equation of
state of QCD matter at finite baryon density has been intro-
duced recently in Refs. [25,43]. Repulsive baryonic interac-
tions are taken into account as well as the Stefan-Boltzmann
limit of massless quarks at high temperatures. This provides
a state-of-the-art description of the available lattice data on
Fourier coefficients and baryon number susceptibilities. The
CEM net baryon density reads

nB(T, λB)

T 3
= − 2

27π2

b̂2
1

b̂2
{4π2 [Li1(x+) − Li1(x−)]

+ 3 [Li3(x+) − Li3(x−)]}. (42)

Here b̂1,2 = b1,2(T )
bSB

1,2
, x± = − b̂2

b̂1
λ±1

B , Lis(z) = ∑∞
k=1

zk

ks is the

polylogarithm, and the

bSB
k = (−1)k−1

k

4 [3 + 4 (πk)2]

27 (πk)2
, (43)

are the Fourier coefficients as evaluated in the Stefan-
Boltzmann limit of massless quarks.

The analytic properties of the CEM are determined by the
analytic properties of the polylogarithm. The branch points of
the thermodynamic potential are located at

λbr1,2
B =

[
− b̂1

b̂2

]±1

. (44)

The singularities are located on the negative real axis, if
b̂1/b̂2 > 0. Lattice data suggests b̂1 > 0 and b̂2 > 0 for T >

135 MeV [21] (lattice data are presently not yet available for
T < 135 MeV).

The Fourier coefficients in the CEM read (see Ref. [25])

bcem
k = bSB

k

(b̂2)k−1

(b̂1)k−2
, (45)

with the following asymptotic behavior:

bcem
k

k→∞
�

16 b̂1

27

[−b̂2/b̂1]k−1

k
≈

[
λbr1

B

]−k

k
. (46)

This asymptotic behavior is similar to the EV and MF models
discussed above, but has a power-law factor of k−1, instead of
the k−1/2 factor shown for the EV model or the k−3/2 factor in
the MF model.
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C. Ideal Fermi gas

The Fermi-Dirac and Bose-Einstein quantum statistical
effects can be associated with effective repulsive (fermions) or
attractive (bosons) interactions [33]. We analyze the analytic
properties of the thermodynamic potential of both the ideal
Fermi gases of the baryons and of the antibaryons. The GCE
expression for the net baryonic number density of a relativistic
ideal Fermi gas of degeneracy d and mass m is presented as
[33]

nB = d

2π2

∫ ∞

0
k2 dk

⎧⎨
⎩

[
λ−1

B exp

(√
k2 + m2

T

)
+ 1

]−1

−(
λB → λ−1

B

)}

=
∞∑

k=1

(−1)k−1 d m2 T

2π2 k
K2(k m/T )

(
λk

B − λ−k
B

)
. (47)

The series representation in the last line of Eq. (47) is valid
for m > 0.

The net baryonic density of the ideal Fermi gas has two
singularities at

λbr1,2
B = [− exp(m/T )]±1. (48)

located on the real negative fugacity axis, where the magni-
tude is determined by the mass of the particles, as follows
from the integral representation in Eq. (47).

Note that the relativistic ideal Bose gas, as for example an
ideal gas of positively and negatively charged pions, exhibits
singularities in the fugacity λQ connected to the conserved
electric charge. These are located at the positive axis

λbr1,2
Q = [ exp(mπ/T )]±1. (49)

Therefore, the ideal Bose gas does exhibit real physical singu-
larities, which are connected to the Bose-Einstein condensa-
tion.

The behavior of ideal Fermi (Bose) gases is quite similar
to the corresponding MF model with a repulsive (attractive)
mean field [see Eq. (37)]. As stated, the singularities on the
real axis evidently do correspond to the point of the onset
of the Bose-Einstein condensation. For fermions, this issue
is more subtle, as the singularities found do correspond to
complex values of the chemical potential.

The expansion (47) allows us to evaluate the Fourier coef-
ficients of the net baryon density in an ideal gas of baryons
and antibaryons:

bqs
k = (− 1)k−1 d m2 T

π2 k
K2(k m/T ). (50)

The asymptotic behavior of these Fourier coefficients is given
by the following expression:

bqs
k

k→∞
�

(− 1)k−1 2 d

k3/2

(
mT

2π

)3/2

exp

(
−k m

T

)
≈

[
λbr1

B

]−k

k3/2
.

(51)

FIG. 4. Temperature dependence of the radius of convergence
of Taylor expansion around μB/T = 0 evaluated for the ideal HRG
model with quantum statistics (solid red line), the EV-HRG model
(solid black line) [21], the mean-field HRG model (dashed black line)
[20], and the cluster expansion model (blue symbols with error bars)
[25].

This asymptotic behavior is exactly the same as the one found
in the mean-field model (41).

D. Some remarks on the radius of convergence

All models with repulsive interactions considered show
very similar analytic structure of the thermodynamic poten-
tial. In all cases, the branch points are located at the negative
real fugacity axis. The radius of convergence of the Taylor
expansion around μB/T = 0 equals

rμ/T =
√(

ln
∣∣λ1,2

br

∣∣)2 + π2 (52)

in all these models. Note that here (ln |λ1
br|)2 = (ln |λ2

br|)2, i.e.,
both branch points lie at the same distance from μB/T = 0. It
is instructive to consider the behavior of rμ/T in these various
models.

The radius of convergence in the ideal HRG model with
quantum statistics is shown in Fig. 4 by the red line as a func-
tion of temperature. rμ/T is defined there by the singularity
in the Fermi-Dirac distribution function for nucleons and its
value is determined by the vacuum mass of nucleons.

The rμ/T values for EV-HRG and the MF-HRG models
are shown in Fig. 4 by the black solid and dashed lines,
respectively. Here we use b = 1 fm3 for the EV-HRG model
[21] and K = 450 MeV fm3 for the MF-HRG model [20],
reasonable parameter values suggested by comparisons to
the lattice QCD data. Both models predict similar values of
rμ/T ≈ 3–5 at T > 140 MeV, reaching the minimum value of
rmin
μ/T = π at T � 190–200 MeV. We do note that applicability

of these hadron-based models might be questionable at high
temperatures and our results there serve mainly for illustration
purposes. Similar values of rmin

μ/T are predicted also by the
CEM (blue symbols in Fig. 4) [25], where the lattice data for
the two leading Fourier coefficients [21] were used as model
input at each temperature value. The radius of convergence
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in the CEM tends to π at high temperatures, which may
be associated with a Roberge-Weiss-like transition [37]. The
results presented suggest that Taylor expansion is likely to
be divergent at μB/T > 3–5 and T > 140 MeV, regardless of
existence of the hypothetical chiral critical point of QCD.

E. Modeling the singular part of net baryon density
with polylogarithms

The asymptotic behavior of the Fourier coefficients in all
examples considered has the form of an exponential decay
times a power-law damping:

bk
k→∞≈

[
λbr1

B

]−k

kγ

[
1 + O

(
1

k

)]
, (53)

as long as |λbr1
B | > 1. This asymptotic behavior is determined

by a singularity of the net baryon density. The corresponding
singular part of nB(T, λB) can then be approximated to the
leading order:

nsing
B (T, λB)

T 3
≈

∑
k

(
λB/λbr1

B

)k + (
λB/λbr1

B

)−k

kγ
, (54)

as follows from the definition of the Fourier expansion for nB

[see Eq. (24)]. Recalling the definition of the polylogarithm

Liγ (z) =
∞∑

k=1

zk

kγ
, (55)

we arrive at

nsing
B [T, λB]

T 3
≈ {

Liγ
[
λB/λbr1

B

] + Liγ
[(

λB/λbr1
B

)−1]}
(56)

as the leading-order approximation of the singular part of
the net baryon density in terms of the polylogarithm. This
approximation can be improved further on by considering the
higher-order terms in the asymptotic expansion (53) for bk ,
resulting in additional terms with polylogarithms of higher
orders.

We considered an approximation of the Lambert W func-
tion (see the EV and MF models) in terms of the polyloga-
rithms as described above as an example. Namely, from an
analysis of large k terms in Eq. (6) it follows that

W (z) � −Li3/2(−z e)√
2π

+ Li5/2(−z e)

12
√

2π
+ O(Li7/2). (57)

It is observed that a single polylogarithm Li3/2 can ap-
proximate W (z) for |z| < 2 to relative accuracy of better
than 15%, while the second-order approximation using two
polylogarithms, Li3/2 and Li5/2, improves this accuracy to
within 2%. The presented resummation of complex chemical
potential plane singularities using polylogarithms is useful for
phenomenological studies of thermodynamic singularities in
QCD.

V. SUMMARY

The analytic properties are studied within distinct ap-
proaches to treat repulsive interactions for the grand-canonical

Maxwell-Boltzmann gas. Main results are based on an ob-
servation that the EV model pressure can be expressed
in terms of the Lambert W function. A single-component
Maxwell-Boltzmann gas with an EV correction yields devi-
ations from the ideal gas behavior, which depends univer-
sally on the dimensionless parameter z = bφ(T ) λ, where
b is the excluded-volume parameter, φ(T ) is the ideal gas
density at zero chemical potential, and λ ≡ exp(μ/T ) is the
fugacity.

The analytic properties of the EV model are fully deter-
mined by the properties of the Lambert W function. The
pressure function of the EV model has a regular behavior
at all physical values of the fugacity/chemical potential, but
exhibits a branch cut singularity in the complex domain,
namely at λbr = [−bφ(T ) e]−1. Therefore, the HRG model
with baryonic eigenvolumes has a finite radius of convergence
of its Taylor expansion around μB/T = 0. This convergence
radius is estimated to be rμ/T � 4.1 for a crossover transition
temperature (T ≈ 155 MeV), if a reasonable value is used for
the baryonic excluded volume parameter, b � 1 fm3.

The Lambert W function is used to determine the explicit
form of the Fourier coefficients of the net baryon density
[Eq. (28)], which shows an alternating sign behavior in all
orders. A number of other theories with repulsive interac-
tions, such as the repulsive mean-field approach, the cluster
expansion model, and the ideal gas of fermions, show strong
similarities of their analytic properties to the EV model. In
particular, the branch points of the pressure functions of all
these approaches are all located on the negative real fugacity
axis. The asymptotic behavior of the Fourier coefficients does
for all these models exhibit the form of an exponential decay
times a power-law damping:

bk
k→∞≈

[
λbr1

B

]−k

kγ
for |λbr1

B | > 1. (58)

The magnitude of the exponential suppression is in all cases
universally determined by the location of the branch point of
the pressure function, which can be directly associated with
the repulsive interactions, whereas the power-law exponent γ

is specific to each model. The alternating signs of the Fourier
coefficients look the same in all considered examples and
persist to asymptotically large n. The universal asymptotic
form (58) allows us to approximate the singular part of the
net baryon density function in terms of polylogarithms, which
is useful for phenomenological studies of thermodynamic
singularities in QCD.

The present results are important in particular for
the studies of the QCD phase structure, this concerns
both the lattice-based methods such as the Taylor expansion
of the pressure in μB/T , as well as the Fourier expansion of
the net baryon density at imaginary chemical potential. In fact,
a pressure function singularity that can not be related to a
phase transition or a critical point does strongly restrict the
convergence radius of the Taylor and/or Fourier expansion
methods.

The present work focuses on theories with repulsive in-
teractions only, hence there is no possibility of a physical
phase transition and/or a critical point. It will be interesting to
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extend these studies within more elaborate phenomenological
models of QCD to determine the analytical structure of the
pressure function for real values of the baryonic chemical po-
tential, e.g., for the hypothetical case where a phase transition
and a critical point occurs. The performance of existing meth-
ods to determine the critical point location, e.g., a DLOG-Padé
type analysis [44], can be elaborated in such a prospective
study.
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