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Fate of the charm baryon �c in cold and hot nuclear matter
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I discuss the properties of the �c baryon in nuclear matter at zero or finite temperature. Starting from the
Lagrangian based on the heavy-quark effective theory, I derive the effective Lagrangian for the �c baryon
existing as an impurity particle. Adopting the one-loop calculation for nucleons, I derive the effective potential
as the quantity for measuring the stability of the �c baryon in nuclear matter. The parameters in the Lagrangian
are fitted to reproduce the scattering length of the nucleon and the �c baryon estimated in the lattice QCD
simulations and the chiral extrapolations. I present that the �c baryon is bound in nuclei with the binding energy
of about 20 MeV at normal nuclear-matter density. I discuss the case that the �c baryon moves with a constant
velocity. I also discuss an increase of the nucleon number density near the �c baryon in nuclear matter, and show
that the �c baryon is a useful probe to research the nuclear systems at high density.
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I. INTRODUCTION

Recently there has been general recognition that the ex-
tension of flavors is important for uncovering valuable in-
formation on the strong interaction. In fact, many exotic
hadrons, whose structures are significantly different from
normal hadrons (baryons and mesons), have been found in
charm and bottom flavors at experimental facilities [1–7]. As
one of the next problems, the extension of flavors to heavier
flavors in nuclear systems is an interesting subject. Charm
(bottom) nuclei contain heavy flavors (charm and bottom) as
impurity particles (see, e.g., Refs. [8,9] for a review). They
are qualitatively different from hypernuclei in strangeness,
because the masses of charm (bottom) hadrons are heavier
than the low-energy scales in QCD. When a heavy quark
exists in the system, one can introduce a new symmetry:
the heavy-quark spin symmetry [10–12] (see Ref. [13] for
textbook). This is the symmetry that the heavy-quark spin is
decoupled from the light component (light quarks and gluons)
in the system in the heavy-quark mass limit. The heavy-quark
spin symmetry provides new pattern in spectroscopy (masses
and decays) and reaction, and now it is widely used also in
the research of the exotic hadrons with charm and bottom,
such as XY Z and Pc (see, e.g., Refs. [2–4]). Because the
heavy-quark symmetry should hold in any hadron systems,
one can expect to apply the heavy-quark symmetry to a heavy
hadron in nuclear matter, which may serve as a novel probe
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for nuclear systems in a manner different from a strangeness
hadron (see, e.g., Refs. [8,9] for a review and the references
therein).

I consider a charm baryon to be an impurity particle in
nuclear matter. I focus on a �c baryon as the simple state
in charm nuclei. The quark content in the �c baryon is up,
down, charm (udc), in which the u and d quarks exist as the
diquark (ud) with an attractive interaction [14–16]. The ud
diquark is also relevant to the color superconductivity in quark
matter at high density (see Refs. [17–19] for a review). Thus,
to study the ud diquark in nuclear matter can be regarded
as a first step toward the research of the high-density state.
The same discussion can be applied to a bottom baryon, �b,
with better accuracy due to the heavier mass of the bottom
quark.

One of the most basic properties about the �c baryon in
nuclear matter is provided by the interaction between a �c

baryon and a nucleon (N). The study of the �cN interaction
dates back to the late 1970s, around the time when the meson-
exchange potential was adopted for the �cN interaction [20],
and the possibility of the �c bound in atomic nuclei was
explored [21–23]. Along the development in the theory of
hypernuclei, SU(4) flavor symmetry was considered to be a
simple extension of flavor from up, down, strangeness to in-
cluding charm [24–26]. In those models, the meson-exchange
potential of the �cN interaction was provided as an analogy to
the phenomenological nucleon-nucleon and hyperon-nucleon
potentials. Later, the interaction between a �c baryon and
a nucleon was analyzed in terms of the heavy-quark spin
symmetry without using SU(4) flavor symmetry [27,28]. The
possibility of the existence of �cN and �cNN bound and/or
resonant states was studied in detail [29–31], while they
were not found in other theoretical studies [32,33] (see also
Refs. [28,34–39]). Recently, the �cN potential has been cal-
culated by the lattice QCD simulations. The results obtained
by Miyamoto et al. indicated that the �cN interaction is
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attractive in both 1S0 and 3S1 channels and that the difference
in the potentials in the two channels is small [40]. The latter
property is in good agreement with the expectations from the
heavy-quark spin symmetry. Nevertheless, the attraction is not
sufficiently strong to form �cN bound states.

Given an attraction between a �c baryon and a nucleon,
there can exist a charm nucleus in which the �c baryon is
bound as the ground state in the strong interaction, as long
as the baryon number is sufficiently large. For simplicity,
one may consider the nuclear matter to be an ideal case in
which the surface effect can be ignored. This situation can
be realized approximately in the inside of atomic nuclei with
large baryon numbers. In the quark-meson coupling model,
it was considered that the change of quark masses at finite
density is caused by the partial restoration of the broken chiral
symmetry, and it was obtained that the binding energy is
around the order of hundred MeV [41–46]. The calculation
from the QCD sum rules, which is the method directly based
on QCD, gave an attraction for the �c baryon with the binding
energy about 20 MeV in nuclear matter [47]. However, it
should be kept in mind that there are several studies in the
QCD sum rules which rule out the possibility of the �c baryon
bound in nuclear matter, while the �c baryon is bound [48,49]
and the �∗

c baryon also [50].
The purpose of the present study is to research the stability

of a �c baryon in nuclear matter in terms of the heavy-quark
spin symmetry. I consider the zero-range interaction between
a �c baryon and a nucleon and evaluate the stability of the
system in the presence of the �c baryon. The values of the
coupling constant are estimated with a reference to the �cN
potential in the lattice QCD simulations [40]. However, in
Ref. [40], a heavier pion (whose mass was larger than 410
MeV) was used to perform the calculation, and hence their
potential can be different from the realistic one. In order to
carry out a proper evaluation regarding the effective potential,
I use the result which was obtained by the chiral extrapola-
tion based on the lattice QCD simulations. In the work by
Haidenbauer and Krein [51], they estimated the values of
the scattering length and the effective range at the real pion
mass. I will use those values in order to constrain the possible
range of the parameters. Under this setup, I will estimate the
effective potential in the presence of the �c baryon in nuclear
matter with various temperatures and nucleon densities and
will discuss the stability of the �c baryon in nuclear matter.
I will also discuss the change of the nucleon number density
near the �c baryon and will demonstrate that the �c baryon is
a useful probe to research the higher-density state in nuclear
matter.

The article is organized as it follows. In Sec. II, I introduce
the interaction Lagrangian for a nucleon and a �c baryon
and obtain the effective Lagrangian by assuming that the �c

baryon is at rest in nuclear matter. In Sec. III, I derive the
effective potential in the presence of the �c baryon in nuclear
matter and also derive the equation expressing the change of
nucleon number density near the �c baryon. Under this setup,
I show the numerical results in Sec. IV and conduct in-depth
analyses of the numerical results in Sec. V. The final section
is devoted to the conclusion.

II. LAGRANGIAN BASED ON HEAVY-QUARK
SPIN SYMMETRY

A. Effective Lagrangian

I consider the interaction Lagrangian for a nucleon and a
�c baryon. I follow the description based on the heavy-quark
spin symmetry by supposing that the mass of the �c baryon,
M = 2.286 GeV, is sufficiently massive in comparison to the
typical energy scales in the low-energy QCD (a few hundreds
of MeV) [13,52,53]. I separate the four-momentum of the �c

baryon pμ as pμ = Mvμ + kμ with vμ the four-velocity vμ =
(v0, v) (v0 > 0 and vμvμ = 1) and the residual momentum
kμ. The term Mvμ indicates the on-mass-shell part, and the
term kμ indicates the off-mass-shell part. It is supposed that
the latter is a small quantity relevant to the low-energy QCD,
and it is smaller than the mass of the �c baryon: kμ � M.
In the present system, the typical scales of kμ are the Fermi
energy for k0 and the Fermi momentum for k1, k2, and k3, and
hence kμ/M should be regarded as a small number so that the
expansion in terms of 1/M should be valid. In the framework
of the heavy baryon effective theory, instead of the original
field of the �c baryon �(x), I introduce the effective field for
the �c baryon defined by

�v (x) = 1 + v/

2
eiMv·x�(x), (1)

with the four-dimensional time and space coordinate xμ =
(t, x). In this definition, the �c baryon is at rest in the
coordinate frame moving with the four-velocity vμ (v frame).
In Eq. (1), (1 + v/)/2 is the projection operator to pickup the
positive energy state in the v-frame, and e−iMv·x represents
the on-mass-shell component in �(x). Thus, �v (x) deals with
the off-mass-shell (virtual) component with positive energy
component, in which the on-mass-shell component (e−iMv·x)
is subtracted from �(x). In the following most cases, I assume
the static four-velocity vμ = (1, 0), i.e., that the �c baryon is
at rest in nuclear matter.

In the relativistic formalism for the nucleon field ψ , con-
sidering all the possible combinations of the interaction terms
in the S wave, one obtains the general form of the interaction
Lagrangian up to O(1/M ) given by

Lrel
int = c1ψ̄ψ�̄v�v + c′

1

M
ψ̄ψ�̄v�v + c2ψ̄γ μψ�̄v

×
(

vμ − i
←−
D ⊥μ

2M
+ iD⊥μ

2M

)
�v + c′

2

M
ψ̄γ μψvμ�̄v�v

+ 1

M
(c3ψ̄σμνψεμνρσvρ + c4ψ̄γσ γ5ψ )�̄vSσ

v �v

+O(1/M2), (2)

with unknown coefficients c1, c2, c′
2, c3, and c4 and where m

is the nucleon mass. The term iDμ

⊥ ≡ iDμ − vμv · iD is nec-
essary to achieve the velocity-rearrangement (reparametriza-
tion) to take into account the terms at O(1/M ) [54–57].
Sμ

v ≡ − 1
2γ5(γ μv/ − vμ) is the spin operator for the �c baryon.

The terms containing Sμ
v should be the order of O(1/M ) as

shown in the above equation. This order counting stems from
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the fact that the spin flip of the heavy quark is suppressed
by 1/MQ (MQ the heavy-quark mass) in the heavy-quark
effective theory. One regards MQ � M because MQ is the
dominantly large energy scales in the system. One remarks
the spin symmetry for �v (x), i.e., �v (x) → eiθ·σ/2�v (x), with
the Pauli matrices σ = (σ 1, σ 2, σ 3). This stems from the
spin symmetry for the heavy quark in the �c baryon in the
heavy-quark mass limit, because the �c baryon is composed
of the spin-zero ud diquark and a spin-1/2 heavy (charm)
quark. In the nonrelativistic limit, the interaction Lagrangian
(2) becomes a simpler form. When one keeps only the leading
term in the 1/M expansion, one confirms that the remaining
interaction terms in the Lagrangian (2) turn to be c1ϕ

†ϕ�̄v�v

only. ϕ is the nonrelativistic nucleon field: ψ t = (ϕ, 0)t . As a
result, one obtains the nonrelativistic Lagrangian

L[ϕ,�v] = ϕ†i
∂

∂t
ϕ + ϕ† ∇2

2m
ϕ

+ �̄vi
∂

∂t
�v + c1ϕ

†ϕ�̄v�v, (3)

with the coupling constant c1. In this formalism, the mass of
the �c baryon M is absorbed into eiMv·x in Eq. (1), and the
energy of the system is measured from M. Notice that there
is no spatial propagation for the �c baryon, because only the
leading terms in O(1/M ) are considered.

Now let us consider the solutions of the Lagrangian (3).
Before proceeding the discussion, note that the �c baryon
exists as an impurity particle in nuclear matter. Thus, it is
required to impose the condition for the spatial distribution of
the number density of the single �c baryon. This condition is
not included in the Lagrangian (3). I take the case that the �c

baryon is at the spatial position x = 0 (the zero-point in space)
and consider that the �c baryon is at rest without moving in
spatial directions. This will be a reasonable situation because
the mass of the �c baryon is supposed to be sufficiently heavy.
Then the constraint condition for the number density of the �c

baryon can be imposed1:

�̄v (x)�v (x) = δ(3)(x), (4)

where δ(3)(x) is the three-dimensional δ function. The density
distribution of the �c baryon is naturally considered to be
pointlike, because the long wavelength scale is adopted for the
low-density nuclear matter. This can be verified reasonably,
because it is thought that the Fermi wavelength of the nucle-
ons are larger than the spatial size of the �c baryon. In this
limit, the detailed spatial structure of the density distribution
should be smeared out, and hence it can be expressed by
the δ function as shown in Eq. (4). It is possible to extend
the present formalism to include the extended distribution for
the �c baryon if necessary.

In order to find a solution for the Lagrangian (3) with the
condition (4), one further transforms the Lagrangian (3) to
a more tractable form. For this purpose, one considers the

1Notice �̄v (x) = �†(x) in the rest frame.

generating functional for the Lagrangian (3),

Z = N
∫

DψDψ̄D�vD�̄v

∏
t,x

δ[�̄v (x)�v (x) − δ(3)(x)]

× exp

(
i
∫

d4x L[ϕ,�v]

)
, (5)

where N is an overall factor irrelevant to the dynamics. One
notices that the constraint condition for the �c baryon in
Eq. (4) is accounted for by the δ function in Z , where it is
supposed to hold in all times and positions as denoted by

∏
t,x.

At first sight, it might still seem difficult to perform exactly
the path integral for �v and �̄v . However, this can be easily
resolved by introducing the auxiliary field λ(x) (real scalar
field) as∏

t,x

δ[�̄v (x)�v (x) − δ(3)(x)]

= N ′
∫

Dλ exp

{
− i

∫
d4x λ(x)[�̄v (x)�v (x)− δ(3)(x)]

}
,

(6)

with an overall factor N ′. The method of introducing the
auxiliary field for treating the constraint condition have been
used in the impurity particle systems in the condensed-matter
physics [58] (see also Ref. [59]). Then one rewrites the
generating functional Z as

Zλ=N ′′
∫
DψDψ̄D�vD�̄vDλ exp

(
i
∫

d4x L[ψ,�v, λ]

)
,

(7)

with an overall factor N ′′ = NN ′, where the new Lagrangian
is defined by

L[ϕ,�v, λ] = L[ϕ,�v] − λ(x)[�̄v (x)�v (x) − δ(3)(x)]

= ϕ†i
∂

∂t
ϕ + ϕ† ∇2

2m
ϕ + �̄vi

∂

∂t
�v

+ c1ϕ
†ϕ�̄v�v − λ[�̄v�v − δ(3)(x)]. (8)

Furthermore, one replaces the auxiliary field as

λ → λ + c1ϕ
†ϕ, (9)

which does not change the dynamics essentially. As a result,
one obtains the new form of the Lagrangian,

L[ϕ,�v, λ] = L[ϕ] + L[�v, λ], (10)

where L[ϕ] and L[�v, λ] are defined by

L[ϕ] = ϕ†i
∂

∂t
ϕ + ϕ† ∇2

2m
ϕ + c1ϕ

†ϕ δ(3)(x) (11)

and

L[�v, λ] = �̄vi
∂

∂t
�v − λ�̄v�v + λ δ(3)(x), (12)

respectively. It is important to note that, in the separation of
the terms in Eq. (10), the nucleon (ϕ) is decoupled from the �c

baryon (�v) and from the auxiliary field (λ). The dynamics of
the nucleon is irrelevant to �v , �̄v , and λ, and the Lagrangian
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relevant to the nucleon dynamics is provided only by L[ϕ]
in Eq. (11). One notes that the path integral about L[�v, λ]
does not provide any information about the nuclear medium,
and thus it is irrelevant in the present purpose. Therefore,
L[ϕ] is regarded as the basic effective Lagrangian in the
following discussions. One can check that Eq. (11) is also
obtained by substituting Eq. (4) into Eq. (3) in a straight-
forward manner. The advantage of introducing the auxiliary
field λ is the general applicability for higher-order terms. It is
commented that the Lagrangian (11) is essentially the same as
the Clogston model which has been used for impurity systems
in the condensed-matter physics [60]. It is also commented
that a pion is not included in the Lagrangian. This is because
there is no interaction between a pion and a �c baryon due to
the zero isospin of the �c baryon. Finally it is mentioned that
�c and �∗

c baryons are not taken into account in the present
study, because the mass splitting between the �c (�∗

c ) baryon
and the �c baryon is too large in the relevant energy scales in
the present temperature and Fermi energy.

B. T matrix in vacuum

For the effective Lagrangian (11), one constrains the value
of the coupling constant c1. To estimate it, one utilizes the
result by the lattice QCD simulation. Recently, Miyamoto
et al. gave the potential between a nucleon and a �c baryon
by using the HAL-QCD method [40]. The obtained potentials
are attractive at long distances and repulsive at short distances.
Because the pion masses used in their simulations are not so
close to the real value, further analysis is needed. Based on
the result by Ref. [40], Haidenbauer and Krein adopted the
chiral perturbation theory for the �cN interaction, and they
obtained the scattering length and the effective range at the
real pion mass [51]. I use the value of the scattering length
in Ref. [51] in order to constrain the range of values of c1 in
Eq. (11).

I consider the scattering process of the nucleon scattered
on a �c baryon in vacuum. I suppose that the nucleon has
the energy and momentum, (ωp, p) with ωp = p2/(2m) in
the initial state and (ωp′ , p′) with ωp′ = p′2/(2m) in the final
state. Then, starting from the Lagrangian (11) and taking the
multiple scatterings by the �c baryon into account, one finds
the T matrix given by

iT (ωp) 2πδ(ωp − ωp′ )1

= ic1

1 + c1
∫

d3k
(2π )3

1

ωp− k2
2m +iε

2πδ(ωp − ωp′ )1, (13)

which is a sum of an infinite series of c1 and 1 is a unit matrix
in the spin and isospin space. I introduce a small and positive
quantity ε. The momentum integral by the three-dimensional
momentum k in the denominator includes the off-mass-shell
motion of the nucleons in the multiple scatterings. For the
regularization of the momentum integral, I introduce the sharp
cutoff parameter � and restrict the integral region for k =
|k| as k ∈ [0,�]. This regularization procedure is adopted
because the theory with the four-fermion interaction is not
a renormalizable one. Physically, the inverse of � can be
regarded as the size of the nucleon or the �c baryon. One will

see later that the binding energy of the �c baryon in nuclear
matter has no strong dependence on the choice of �. The T
matrix in Eq. (13) can be expressed in terms of the phase shift
δ(ωp) as

m

2π
T (ωp) = e2iδ(ωp) − 1

2i|p| . (14)

Then the scattering length is obtained as

a = lim
p→0

1

p
tan δ(ωp) = πc1m

2π2 − 2c1�m
, (15)

with p = |p|. I will use the last equation in order to constrain
the value ranges of � and c1 for the given scattering length a.

III. EFFECTIVE POTENTIAL OF �c BARYON
IN NUCLEAR MATTER

A. Effective potential at rest frame

I consider the energy gain of the system in the presence of
a �c baryon in nuclear matter. Adopting the Lagrangian (11),
one obtains the effective potential of the system

−iV (0) = 4
∫

d p0

2π
log

[
1 + c1

∫
d3 p

(2π )3

1

p0 − ωp

]
(16)

in the one-loop calculation for nucleons with ωp = p2/(2m).
The momentum integral is performed for the range of |p| ∈
[0,�]. The relevant diagrams are shown in Fig. 1. The co-
efficient is the number of degeneracy by spin and isospin of
a nucleons (2 × 2 = 4). One notices that −iV (0) in Eq. (16)
gives an exact solution for Eq. (11). The effective potential
in Eq. (16) supplies only the energy difference between the
case situation that the �c baryon is present in nuclear matter
and the situation that it is absent. Thus, the effective potential
V (0) is a useful quantity measuring the binding energy of the
�c baryon in nuclear matter. Considering the nuclear matter
at finite temperature and density, I use the formula for the
Matsubara sum: The p0 integral is replaced as∫

d p0

2π
f (p0) → i

β

∑
n∈Z

f (iωn + μ)

= −1

2π

∫ ∞

−∞
d p0[ f (p0 + iε) − f (p0 − iε)]

1

eβ(p0−μ) + 1
,

(17)

for an analytic function f (p0), where the last equation is pre-
sented for f (p0) which has a branch cut on the real axis such
as a logarithmic function in Eq. (16). I define the chemical
potential for nucleons μ and the Matsubara frequencies ωn =
(2n + 1)π/β (n ∈ Z) with the inverse temperature β = 1/T .
Then, calculating Eq. (16) with the procedure of Eq. (17), one
finds

V (0)(T, μ)

= − 4

π

∫ ∞

−∞
d p0 arctan

[
π c1ρ(p0)

1 + c1F (p0)

]
1

eβ(p0−μ) + 1
, (18)
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n=1 n=2 n=3 n=4

+ ...+++

FIG. 1. The sum of the ring diagrams for calculating the effective potential. The solid lines are the nucleon propagator, and the blobs are
the δ function in Eq. (11). The dotted lines indicate the zero-range interaction.

with the definition

F (p0) =
√

2m3/2

2π2
P

∫ �2

2m

0
dω

√
ω

p0 − ω
, (19)

ρ(p0) =
√

2m3/2

2π2

√
p0, (20)

in which P stands for the principal-value integral. ρ(p0)
indicates the density-of-state at the energy p0 for a nucleon
without a factor of degeneracy by spin and isospin.

B. Effective potential in moving frame and effective mass

Next I consider that the �c baryon is moving with a
constant three-dimensional velocity u in nuclear matter. One
notices that u is related to the spatial component of the four-
velocity: v = u/

√
1 − |u|2. For the small velocity, having

v � u, I replace δ(3)(x) with δ(3)(x − ut ) in Eq. (4). Noting
that the zero point of the time t can be chosen arbitrarily, I
assume that the �c baryon exists at x = 0 at t = 0. Repeating
the previous discussions, one finds that the introduction of u
leads to the change in Eq. (19):∫

d3 p
(2π )3

1

p0 − ωp
→

∫
d3 p

(2π )3

1

p0 + 1
2 mu2 − ωp

, (21)

with u = |u|. This procedure is understood by the replacement
of the nucleon momentum from p to p − mu in the right-hand
side. One notices that the situation where a �c baryon moves
with velocity u in nuclear matter is equivalent to the situation
where the �c baryon is at rest in the nuclear matter and the
nuclear matter moves with velocity −u. As a result, one finds
that the effective potential in Eq. (18) is changed to

V (0)(T, μ; u)

= − 4

π

∫ ∞

−∞
d p0 arctan

[
π c1ρ(p0)

1 + c1F (p0)

]
1

eβ(p0−μ̃u ) + 1
, (22)

with the definition

μ̃u = μ − 1
2 mu2, (23)

where μ̃ is called the effective chemical potential. One no-
tices that the effective chemical potential can become neg-
ative for the velocity larger than the critical velocity uc =√

2μ/m. Thus, the velocity should be limited in the range of
0 � u � uc.

Assuming a small velocity with u � uc, one expands the
effective potential in Eq. (22) as

V (0)(T, μ; u) = V (0)(T, μ) + 1
2 M (0)(T, μ)u2 + O(u4), (24)

with the definition

M (0)(T, μ) = 2
∂V (0)(T, μ; u)

∂u2

∣∣∣∣
u=0

. (25)

Substituting Eq. (22) into Eq. (25), one obtains

M (0)(T, μ)

= 2β m

π

∫ ∞

−∞
d p0 arctan

[
π c1ρ(p0)

1 + c1F (p0)

]
eβ(p0−μ)

[eβ(p0−μ) + 1]2
.

(26)

One notices that the integrand in the p0 integral has a sharp
peak around the Fermi surface (p0 � μ) at low temperature.
M (0)(T, μ) is called the effective mass, because it is the quan-
tity relevant to the mass of inertia of the �c baryon in nuclear
matter. I investigate the details of the physical meaning of
M (0)(T, μ). When the �c baryon mass M is recovered in the
total energy, the mass of the �c at rest in nuclear matter can
be expressed by

E∗
�c

(T, μ) = M + V (0)(T, μ). (27)

For the moving �c baryon with with three-dimensional veloc-
ity u in nuclear matter, by using Eq. (24), one expresses the
energy dispersion relation of the �c baryon as

E∗
�c

(T, μ; u)

= M + M

2
u2 + V (0)(T, μ; u) + O(u4)

= M + V (0)(T, μ) + M + M (0)(T, μ)

2
u2 + O(u4), (28)

where, in the second line, the functions of V (0)(T, μ; u) and
M (0)(T, μ) are defined in the above expansion for small u.
In this form, one understands clearly that M + V (0)(T, μ)
and M + M (0)(T, μ) are the quantities with different physical
meanings: The former is the energy of the �c baryon at rest
and the latter is the mass of inertia of the �c baryon moving in
nuclear matter. Also one notices that the nonrelativistic kinetic
energy Mu2/2 is added as the kinetic term in the first line,
because the zero-point of energy should be shifted from M to
M + Mu2/2 at finite velocity.
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C. Change of number density of nucleons

The presence of a �c baryon in nuclear matter leads to
the disturbance of the nucleon number density according to
attraction or repulsion of nucleons to the �c baryon. For
the �c baryon existing at the position x = 0 statically, one
expresses the nucleon number density modified by the �c

baryon as

n∗
N (T, μ; x) = nN (T, μ) + δnN (T, μ; x), (29)

where nN (T, μ) is the number density of a free nucleon gas
in the bulk space without the presence of a �c baryon and
δnN (T, μ; x) is its deviation by the effect of a �c baryon. Here
let us remind that the nucleon number density can be obtained
by the loop integral of the nucleons (see, e.g., Ref. [61]). For
example, the number density of the free nucleon gas in the
bulk space is given as

nN (T, μ) = −4 lim
y→x

∫
d p0

2π

d3 p
(2π )3

i

p0 − p2

2m

eip·(x−y), (30)

with −4 the coefficient for the fermion loop and the number
of degeneracy by spin and isospin. This turns to be

nN (T, μ) = 4
∫

d3 p
(2π )3

1

eβ(ωp−μ) + 1
, (31)

which in fact coincides with the correct result. One notices
that the p0 integral in Eq. (30) is calculated by following the
procedure in Eq. (17). It is obvious that there is no position
dependence in nN (T, μ) in the bulk space. However, this
is not the case when there is a �c baryon as an impurity
particle, because the existence of the �c baryon violates the
translational symmetry and the position dependence should
appear. In the presence of a �c baryon, the deviation of
nucleon number density from the one in bulk space is given
as

δnN (T, μ; x) = −4 lim
y→x

∫
d p0

2π

∫
d3 p

(2π )3

i

p0 − p2

2m

eip·x

×
∫

d3q
(2π )3

i

p0 − q2

2m

e−iq·y iT (p0), (32)

at the position x. One notices again that −4 the coefficient
for the fermion loop and the number of degeneracy by spin
and isospin and that the p0 integral is calculated by the the
procedure in Eq. (17). T (p0) is the T matrix in Eq. (13).
For simplicity of the calculation, one considers T (p0) � c1

as the lowest-order approximation for the small coupling
constant. Thus, adopting the spherical wave expansion for x,
one obtains

δnN (T, μ; x) � −8c1

(√
2m3/2

2π2

)2 ∫ ∞

0
dω

√
ω j0(

√
2m ω r)

eβ(p0−μ) + 1

×
∫ �2

2m

0
dω′ P

√
ω′ j0(

√
2m ω′ r)

ω − ω′ , (33)

with r = |x| the distance from the position of the �c baryon.
Just on site of the �c baryon (x = 0), one obtains the simple

TABLE I. The parameter sets (a), (b), and (c) for the sharp
cutoff parameter � and the coupling constant c1 are shown. For
each parameter set, the effective potential V (0) = V (0)(T, μ), the
effective mass M (0) = M (0)(T, μ), and the nucleon number density
n∗

N (0)/nN = n∗
N (T, μ; 0)/nN (T, μ) are shown at T = 0 MeV and

μ = 38 MeV (nN = 0.17 fm−3). Notice that the value of n∗
N (0)/nN is

obtained in the approximation leaving only the leading order in the
expansion for c1. For a comparison, the mass shift estimated in the
T ρ approximation is shown in the last row in the column of V (0).

Parameter set (a) (b) (c)

� (GeV) 0.3 0.4 0.5
c1 (GeV−2) 16.2 14.0 12.4
V (0) (MeV) −24.3 −26.7 −28.1 −39.4 (T ρ)
M (0) (MeV) 308 382 415
n∗

N (0)/nN (approx.) 1.31 1.73 1.95

analytic solution as

δnN (T, μ; 0)

� −8c1

(√
2m3/2

2π2

)2(
�2

2m
− μ

)

×
[√

�2μ

2m
−

(
�2

2m
+ μ

)
arccoth

(√
�2

2mμ

)]
. (34)

IV. NUMERICAL RESULTS

A. Parameter sets

In order to constrain the parameter values of � and c1, I use
the scattering length a = 0.89 fm for the interaction between
a nucleon and a �c baryon in vacuum as the input [51]. From
Eq. (17) one obtains the several solutions of the parameter
sets for (�, c1) as summarized in Table I: (a) (0.3 GeV,
16.2 GeV−2), (b) (0.4 GeV, 14.0 GeV−2), and (c) (0.5 GeV,
12.4 GeV−2). I choose the range of the cutoff parameter � to
be the order of a few hundred MeV, because its inverse 1/�

should be comparable with the spatial size of hadrons.

B. Effective potential at rest frame

In Table I, I show the results for the effective potential,
Eq. (18), for the �c baryon at rest in nuclear matter. They are
the results at zero temperature and at normal nuclear-matter
density, T = 0 MeV and μ = 38 MeV (nN = 0.17 fm−3). The
values of the obtained effective potentials are in the range
from −24.3 MeV to −28.1 MeV for the different parameter
sets (a), (b), and (c). It is interesting to compare those values
with the �c mass shift in the T ρ approximation:

�M (0)
T ρ = −2π nN a lim

M→∞
m + M

mM
= −39.4 MeV. (35)

I consider the heavy mass limit for the �c baryon (M →
∞) in order to be consistent with the leading-order ap-
proximation in the 1/M expansion, as presented in the La-
grangian (11). When one keeps the finite value of the �c

mass (M = 2.286 GeV), one obtains �M�c = −2π nN a(m +
M )/(mM ) = −55.6 MeV, which is larger by about 30% than
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FIG. 2. The effective potentials V (0) = V (0)(T, μ) are shown on the μ-T plane for the parameter sets (a), (b), and (c).

the value in Eq. (35). In any case, the values in the T ρ ap-
proximation overestimates the value of the effective potential
(18). Therefore, one finds it important to include the multiple
scatterings in the loop expansion in the loop calculation. It
is interesting that the values of V (0) are consistent with the
ones obtained in the QCD sum rule calculations. Ohtani et al.
gave the mass shift of the �c baryon by −20 MeV at normal
nuclear-matter density [47].

The values of the effective potential V (0)(T, μ) at various
temperature T and chemical potential μ are shown on the
μ-T plane in Fig. 2. It is a reasonable result that the values
of V (0)(T, μ) become smaller, and hence that the binding en-
ergies become larger, as the chemical potential increases. This
is simply induced by the larger Fermi surface at larger chem-
ical potential. It is also found that the values of V (0)(T, μ)
become smaller as the temperature increases. This result can
be understood intuitively also, because the number density of
nucleon gas increases as the temperature increases, and the
probability for a nucleon to collide into the �c baryon should
be enhanced. I show explicitly the mass of �c baryon at rest
in nuclear matter, M + V (0)(T, μ) in Eq. (27), as functions of
the temperature in Fig. 3.

C. Effective potential in moving frame and effective mass

I plot the effective potentials at finite velocity V (0)(T, μ; u),
Eq. (22), for the parameter sets (a), (b), and (c) in Fig. 4. As

=0 [MeV], (a)
=0 [MeV], (b)
=0 [MeV], (c)
=38 [MeV], (a)
=38 [MeV], (b)
=38 [MeV], (c)

0 20 40 60 80 100
T [MeV]

2200

2250

2300
M+V (0)(T, ) [MeV]

FIG. 3. The mass of a �c baryon at rest in nuclear matter,
M + V (0)(T, μ) in Eq. (27), as functions of the temperature for
the chemical potentials μ = 0 and 38 MeV, respectively, for the
parameter sets (a), (b), and (c). The horizontal dashed line indicates
the mass of a �c baryon in vacuum. See also Fig. 2.

the velocity u = |u| increases, the effective potentials become
shallower and they eventually become zero at the critical
velocity uc = 0.28. It is seen that the approximate curves by
Eq. (24) are appropriate for small u = |u|. The tendency that
the effective potentials become shallower as the finite velocity
increases can be understood in a naive manner, because the
�c baryon moving in nuclear matter has a smaller probability
to interact with nucleons. The values of the effective mass
M (0)(T, μ) in Eq. (26) are calculated at zero temperature
and normal nuclear-matter density. The results are shown in
Table I. They are in the range from 308 to 415 MeV in the
present parameter sets. I plot the results of the effective mass
M (0)(T, μ) at various temperature and chemical potential on
the μ-T plane in Fig. 5. One finds the tendency that the
effective masses increase at lager chemical potential for a
fixed temperature, while they decrease at larger temperature
for a fixed chemical potential.

D. Change of number density of nucleons

The change of nucleon number density
n∗

N (T, μ; x)/nN (T, μ) is calculated by Eqs. (29) and (33).
The values just at the �c baryon (x = 0) are shown in Table I
[cf. Eq. (34)]. They are in the range from 1.31 to 1.95 in
the parameter sets (a), (b), and (c). The enhancement is
considered to be reasonable because nucleons should feel

(a) =0.3 GeV, c1=16.2 GeV−2

(b) =0.4 GeV, c1=14.0 GeV−2

(c) =0.5 GeV, c1=12.4 GeV−2

0.1 0.2 0.3 0.4
u

−30

−25

−20

−15

−10

−5

V(0)(u) [MeV]

FIG. 4. The plots of the effective potential V (0)(u) =
V (0)(T, μ; u) as a function of three-dimensional velocity of the �c

baryon u = |u| at T = 0 MeV and μ = 38 MeV (nN = 0.17 fm−3)
for the parameter sets (a), (b), and (c). The dashed lines are the
approximate curves for small u in Eq. (24).
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FIG. 5. The effective masses M (0) = M (0)(T, μ) are shown on the μ-T plane for the parameter sets (a), (b), and (c).

an attraction to the �c baryon due to the negative value of
the effective potential, and they can gather around the �c

baryon. Therefore, the high-density state of nuclear matter
can be realized around the �c baryon. Thus, a �c baryon is
a useful probe to study the higher-density state. One notices
that this high-density state exists just near the �c baryon,
and it is reduced to the normal nucleon number density at far
distances. The spatial dependence is plotted in Fig. 6. The
high-density state appears locally within the finite distance
r � 2 fm around the position of the �c baryon. One finds that
the change of the nucleon number density damps with small
oscillations at the distances r � 2 fm. This is regarded as the
Friedel oscillation which is known in the condensed-matter
physics.

V. DISCUSSIONS

A. Comparison to QCD sum rules

Let us compare our results with the ones obtained by the
analysis in the QCD sum rules. The dispersion relation in
Eq. (28) would be comparable with another form of dispersion
relation of a �c baryon in nuclear matter,

E∗(NM)
�c

(T, μ; q) = �v (T, μ) +
√

M∗(T, μ)2 + q2, (36)

with the vector-type self-energy �v (T, μ), the effective mass
M∗(T, μ), and q the three-dimensional momentum of the �c

baryon [47] (see also Ref. [62]). The values of �v (T, μ)

and M∗(T, μ) were estimated in the QCD sum rules [47].
Expanding Eq. (36) for small q and substituting q = Mu as
the nonrelativistic form for small u, one obtains

E∗(NM)
�c

(T, μ; q)

= �v (T, μ) + M∗(T, μ) + q2

2M∗(T, μ)
+ O(q4)

= �v (T, μ) + M∗(T, μ) + M2

2M∗(T, μ)
u2 + O(u4). (37)

Comparing Eq. (28) and Eq. (37), one finds

V (0)(T, μ) = �v (T, μ) + M∗(T, μ) − M, (38)

M (0)(T, μ) = −
[

1 − M

M∗(T, μ)

]
M. (39)

In the QCD sum rules, the values of �v (T, μ) = −0.011
GeV and M∗(T, μ) = 2.277 GeV were obtained at T =
0 MeV and μ = 38 MeV (nN = 0.17 fm−3) [47]. Then,
one has �v (T, μ) + M∗(T, μ) − M = −20 MeV and −[1 −
M/M∗(T, μ)]M = 9 MeV in the right-hand sides in Eqs. (38)
and (39), respectively. The former is consistent with the value
of the effective potential V (0)(T, μ) obtained in Sec. IV B. On
the other hand, the latter is much smaller than the value of
the effective mass M (0)(T, μ) obtained in Sec. IV C, though
its sign is the same. The difference may be due to the ambi-
guity at next-to-leading order O(1/M ), because the terms at

(a) =0.3 GeV, c1=16.2 GeV−2

(b) =0.4 GeV, c1=14.0 GeV−2

(c) =0.5 GeV, c1=12.4 GeV−2

0 2 4 6 8
r [fm]

1.0

1.2

1.4

1.6

1.8

2.0
nN∗(r)/nN nN∗(r)/nN

1.0

1.2

1.4

1.6

FIG. 6. Left: The changes of nucleon number density n∗
N (r)/nN = n∗

N (T, μ; x)/nN (T, μ) as a function of the distance r = |x| from the
site of the �c baryon at T = 0 MeV and μ = 38 MeV (nN = 0.17 fm−3) are shown for the parameter sets (a), (b), and (c). Right: The same
function for parameter set (b) is plotted on the x-y plane with r = √

x2 + y2 as an intersection in space.
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O(1/M ) in the Lagrangian (2) are not fully taken into account
in the present study. Furthermore, the higher-order terms in
the (chiral) derivative expansion with higher momenta would
be also important, because the terms with nonzero momenta
would affect directly the effective mass at nonzero velocities.
Those issues need to be addressed in the future.

B. Diquarks in nuclear medium

As discussed in the Introduction, the ud diquark is an
important subcomponent inside the �c baryon. I suppose that
the effective potential in the presence of the �c baryon in
nuclear matter is the same as the mass shift of the �c baryon
[cf. Eq. (27)] and consider that the mass shift is induced by
the change of the constituent quarks inside the �c baryon.
Adopting the quark model, I suppose also that the baryon
mass is given by a sum of the constituent quark masses and the
energy from the spin-dependent interaction. The Hamiltonian
of the spin-dependent interaction between two quarks i, j is
expressed by Hspin = [CB/(mimj )]si ·s j , where CB is the inter-
action constant, mk is the mass of the constituent quark k =
i, j, and sk is the spin operator acting on the constituent quark
k. I use mq = 300 MeV for u and d quarks, mc = 1500 MeV
for the charm quark, and mb = 4700 MeV for the bottom
quark and CB/m2

q = 193 MeV to reproduce the mass splittings
of normal hadrons in vacuum (see, e.g., Refs. [63,64]). Here I
consider not only the charm flavor but also the bottom flavor
for generality of the discussion.

Inside the heavy baryons, it is considered that there are
the attractive ud diquarks with spin 0 and isospin 0 in the
�Q = �c, �b baryons and the repulsive ud diquarks with
spin 1 and isospin 1 in the �Q = �c, �b and �∗

Q = �∗
c , �∗

b
baryons. Those simple internal configurations are in good
approximation as long as the heavy quark is sufficiently
massive. The mass of the �Q baryon can be parametrized by

M�Q (mq) = mQ + 2mq − 3

4

CB

m2
q

+ c (40)

and the masses of the �Q and �∗
Q baryons by

M�Q (mq) = mQ + 2mq + 1

4

CB

m2
q

− CB

mqmQ
+ c, (41)

M�∗
Q
(mq) = mQ + 2mq + 1

4

CB

m2
q

+ 1

2

CB

mqmQ
+ c, (42)

respectively, with mQ = mc, mb. In the above equations, c
is the energy constant stemming from the vacuum proper-
ties, such as color confinement, which are not included in
the above model setups of the constituent quark and the
diquark interaction. In order to investigate the mass changes
of the heavy baryons in nuclear matter, I consider that the
light-quark mass mq is shifted to m∗

q = mq + δmq in nuclear
matter by partial restoration of the broken chiral symmetry.
Then, the heavy baryon masses in nuclear matter are given
by M�Q (m∗

q ) = M�Q (mq) + δM�Q for the �Q baryon and

M�Q (m∗
q ) = M�Q (mq) + δM�Q and M�∗

Q
(m∗

q ) = M�∗
Q
(mq) +

δM�∗
Q

for the �Q and �∗
Q baryons. The result in Sec. IV

indicates that the values M�Q (m∗
q ) − M�Q (mq) are in the

range from −24.3 MeV to −28.1 MeV at zero temperature
and normal nuclear-matter density (cf. Table I). They give
the mass shift δmq = −8 MeV in average. Accordingly, the
interaction energy between the ud diquark, −(3/4)(CB/m2

q ) =
−144 MeV in Eq. (40), is enhanced to −(3/4)(CB/m∗2

q ) =
−152 MeV in the absolute value. Thus the diquark becomes
more bound in nuclear matter. The above estimates may be
too crude, but they will give us an interesting interpretation
about the mass changes of the heavy baryons in nuclear
matter.

With the value δmq = −8 MeV, I obtain the mass shifts
for the �c and �∗

c baryons and for the �b, �b, and �∗
b

baryons at normal nuclear-matter density: δM�c = −15 MeV
and δM�∗

c
= −14 MeV for the charm baryons and δM�b =

−25 MeV, δM�b = −14 MeV, and δM�∗
b

= −13 MeV for
the bottom baryons. Notice δM�c = δM�b in the present
framework because the heavy quark is decoupled from the ud
diquark as shown in Eq. (40) and the heavy-flavor dependence
of the heavy baryon mass is not included.

VI. CONCLUSION

I have discussed the properties of the �c baryon in nu-
clear matter at zero or finite temperature. Starting from the
Lagrangian at the leading order in the 1/M expansion for
the �c baryon mass M and assuming that the �c baryon is
at rest, I have derived the effective Lagrangian for the �c

baryon and the nucleons. The parameters in the Lagrangian
are constrained by the scattering length estimated in the chiral
extrapolation from the lattice QCD simulations. Adopting the
one-loop calculation, I have obtained the effective potential
which is the quantity measuring the binding energy of the �c

baryon in nuclear matter. I have extended the effective po-
tential to the case when the �c baryon moves with a constant
velocity. I also have derived the change of the nucleon number
density around the �c baryon in nuclear matter.

The numerical values of the effective potential indicate that
the �c baryon can be bound with the binding energy of about
20 MeV at normal nuclear-matter density. This value is con-
sistent with the ones estimated in other theoretical approaches.
The binding energy becomes larger as the temperature and/or
the nucleon number density increases. The effective mass,
i.e., the mass of inertia for the �c baryon moving in nuclear
matter, is also obtained. The nucleon number density near
the �c baryon becomes higher than normal nuclear matter,
and thus the �c baryon can be a useful probe to research the
higher-density state.

As future prospects, it will be necessary to consider the
higher-order terms in the 1/M expansion for the �c baryon,
the finite range potential between the �c baryon and the
nucleon, the interactions between nucleons, and so on. Those
effects can be analyzed by the path integral and the auxiliary
field as shown in the present work. The extension to �c and
�∗

c baryons is also interesting. Because �c and �∗
c baryons

have a finite spin and a finite isospin, it may be possible
to study the phenomena related to the Kondo effect, which
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is an impurity effect caused by the non-Abelian (spin- and
isospin-exchange) interaction between the impurity particle
and the fermion gas [65] (see also Refs. [66–68]). Excited
states of charm baryons such as �∗

c (2595) and �∗
c (2625) are

also interesting objects, because they are related to the D
and D∗ dynamics in nuclear matter (see Refs. [8,9] and the
references therein). Reaction mechanisms to produce charm
baryon in atomic nuclei at experimental facilities should be
studied further [69,70] (see also Refs. [71,72]). Those subjects
are left for future work.
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