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Microscopic description for polarization in particle scattering
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We propose a microscopic description for the polarization from the first principle through the spin-orbit
coupling in particle collisions. It is based on scatterings of particles as wave packets, an effective method to
deal with particle scatterings at specified impact parameters. The polarization is then the consequence of particle
collisions in a nonequilibrium state of spins. The spin-vorticity coupling naturally emerges from the spin orbit
one encoded in polarized scattering amplitudes of collisional integrals when one assumes local equilibrium in
momentum but not in spin.
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I. INTRODUCTION

A very large orbital angular momentum (OAM) can be
created in peripheral heavy ion collisions [1–7]. Such a huge
OAM can be transferred to the hot and dense matter produced
in collisions and make particles with spins polarized along the
direction of the OAM [1,6–8]. Recently the STAR collabo-
ration has measured the global polarization of � and �̄ for
the first time in Au+Au collisions at

√
sNN = 7.7–200 GeV

[9–11]. The global polarization is the net polarization of local
ones in an event which is aligned in the direction of the event
plane. The results show that the magnitude of the global �

and �̄ polarization is of the order a few percent and decreases
with collisional energies. The difference between the global
polarization of � and �̄ may possibly indicate the effect from
the strong magnetic field formed in high energy heavy ion
collisions.

Several theoretical models have been developed to study
the global polarization. If the spin degree of freedom is
thermalized, one can construct the statistic-hydro model by
including the spin-vorticity coupling Sμνω

μν into the thermal
distribution function [12–14]. Here Sμν is the spin tensor,
ωμν = −(1/2)(∂μβν − ∂νβμ) is the thermal vorticity, the
macroscopic analog of the local OAM, and βμ ≡ βuμ is
the thermal velocity with β = 1/T being the inverse of the
temperature and uμ being the fluid velocity. It turns out that
the average spin or polarization is proportional to the thermal
vorticity if the spin-vorticity coupling is weak. One can also
derive an ideal spin hydrodynamics from the spin dependent
phase space distribution functions which are 2 × 2 matri-
ces [15–17]. The spin polarization tensor ωμν is no longer
the thermal vorticity but is treated as a set of independent
hydrodynamic variables [15–17]. For a review of the spin-
hydrodynamic approach, see Ref. [18].

Similar to the statistic-hydro model, another approach to
the global polarization assuming local equilibrium is the

Wigner function (WF) formalism. The WF formalism for
spin-1/2 fermions [19–25] has recently been revived to study
the chiral magnetic effect (CME) [26–29] (for reviews, see,
e.g., Refs. [29–31]) and chiral vortical effect (CVE) [32–37]
for massless fermions [36,38–44]. The Wigner functions for
spin-1/2 fermions are 4 × 4 matrices. The axial vector com-
ponent gives the spin phase space distribution of fermions near
thermal equilibrium [45–48]. It can be shown that when the
thermal vorticity is small, the spin polarization of fermions
from the WF is proportional to the thermal vorticity vector.
So the WF can also be applied to the study of the global
polarization of hyperons.

In order to describe the STAR data on the global �/�̄

polarization, the hydrodynamic or transport models have been
used to calculate the vorticity fields in heavy ion collisions
[49–55]. Then the polarization of �/�̄ can be obtained from
vorticity fields at the freezeout when the �/�̄ hyperons are
decoupled from the rest of the hot and dense matter [56–59].

Most of these models are based on the assumption that the
spin degree of freedom has reached local equilibrium. But this
assumption is not justified. The recent disagreement between
some theoretical models and data on the longitudinal polariza-
tion indicates that the spins might not be in local equilibrium
[11,60,61], or the form of the spin-vorticity coupling in local
equilibrium might be different from that in global equilibrium
[62,63], or any other mechanisms. Although one model of
the chiral kinetic theory can explain the sign of the data
[64], it is based on massless fermions and cannot reproduce
the magnitude of the data. To clarify the above situations,
one needs to answer the question: how is the polarization
generated in microscopic collision processes? This is related
to the role of the spin-orbit coupling which is regarded as
the microscopic mechanism for the global polarization. The
need for particle collision processes is also supported by an
observation in the Lagrangian formulation of relativistic hy-
drodynamics for spin fluids: the ideal limit of hydrodynamics
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with spin is generally acausal [65], hence nonequilibrium spin
degrees of freedom are necessary. In one particle scattering
such as a 2-to-2 scattering at fixed impact parameter the
effect of spin-orbit coupling in the polarized cross section
is obvious [1,6], but how does the spin-vorticity coupling
naturally emerge from the spin-orbit one? It is far from easy
and obvious as it involves the treatment of particle scatterings
at different space-time points in a system of particles in ran-
domly distributed momentum. To the best of our knowledge,
this problem has not been seriously investigated due to such
a difficulty. In this paper we will construct a microscopic
model for the global polarization based on the spin-orbit cou-
pling. We will show that the spin-vorticity coupling naturally
emerges from scatterings of particles at different space-time
points incorporating polarized scattering amplitudes with the
spin-orbit coupling. This provides a microscopic mechanism
for the global polarization from the first principle through
particle collisions in nonequilibrium.

The paper is organized as follows. In Sec. II we will
introduce scatterings of two wave packets for spin-0 particles.
The wave packet method is necessary to describe particle
scatterings at different space-time points. In Sec. III we will
study collisions of spin-0 particles as wave packets which
take place at different space-time in a multiparticle system.
In Sec. IV we will derive the polarization rate for spin-1/2
particles from particle collisions. As an example, we will
apply in Sec. V the formalism to derive the quark polar-
ization rate in a quark-gluon plasma in local equilibrium in
momentum. In Sec. VI we will discuss the numerical method
to calculate the quark polarization rate, a challenging task
to deal with collision integrals in very high dimensions. We
will present the numerical results in Sec. VII. Finally we
will give a summary of the work and an outlook for future
studies.

Throughout the paper we use natural units h̄ = c =
kB = 1. The convention for the metric tensor is gμν =
diag(+1,−1,−1,−1). We also use the notation aμbμ ≡ a · b
for the scalar product of two four-vectors aμ, bμ and a · b for
the corresponding scalar product of two spatial vectors a, b.
The direction of a three-vector a is denoted as â. Sometimes
we denote the components of a three-vector by indices (1,2,3)
or (x, y, z).

II. SCATTERINGS OF WAVE PACKETS
FOR SPIN-0 PARTICLES

In this section we will consider the scattering process A +
B → 1 + 2 · · · + n, where the incident particles A and B in the

remote past are localized in some region and can be described
by wave packets. The details of this section can be found in the
textbook by Peskin and Schroeder [66]. The purpose of this
section is to give an idea of how the wave packets displaced
by an impact parameter are treated in the scattering process,
and to provide the basis for the discussion in the next section.
We work in the frame in which the central momenta of two
wave packets are collinear or in the same direction which we
denote as the longitudinal direction. We assume that the wave
packet B is displaced by an impact parameter vector b in the
transverse direction, so the in state can be written as

|φAφB〉in =
∫

d3kA

(2π )3

d3kB

(2π )3

φA(kA)φB(kB)e−ikB·b
√

4EAEB
|kAkB〉in.

(1)
Here we see that the incident particles are treated as two wave
packets |φA〉 and |φB〉 defined in Appendix A. The definition
of the single particle states |kA〉 and |kB〉 can also be found in
Appendix A. As we have mentioned, the amplitudes φi(ki )
center at pi = (0, 0, piz ) for i = A, B. We assume that the
out state is a pure momentum state |p1p2 . . . pn〉out in the far
future. This is physically reasonable as long as the detectors
of final-state particles mainly measure momentum or they do
not resolve positions at the level of de Broglie wavelengths.
Taking into account the normalization factors for the in state
and out state, the scattering probability is given by

P (AB → 12 . . . n)

=
∑

p1

∑
p2

. . .
∑

pn

|out〈p1p2 . . . pn|φAφB〉in|2∏n
f =1〈p f |p f 〉〈φA|φA〉〈φB|φB〉

=
⎛
⎝ n∏

f =1

∫
	d3 p f

(2π )3

⎞
⎠ |out〈p1p2 . . . pn|φAφB〉in|2∏n

f =1(2E f 	)

=
⎛
⎝ n∏

f =1

∫
d3 p f

(2π )32E f

⎞
⎠|out〈p1p2 . . . pn|φAφB〉in|2, (2)

where the normalization of single particle states and wave
packets is given in Appendix A. Since P (AB → 12 . . . n)
depends on the impact parameter b, we can rewrite it as
P (b). This probability gives the differential cross section at
the impact parameter b,

dσ

d2b
= P (b). (3)

The total cross section is then an integral over the impact
parameter,

σ =
∫

d2bP (b) =
⎛
⎝ n∏

f =1

∫
d3 p f

(2π )32E f

⎞
⎠ ∏

i=A,B

∫
d3ki

(2π )3

φi(ki )√
2Ei

∫
d3k′

i

(2π )3

φ∗
i (k′

i )√
2E ′

i

×
∫

d2bei(k′
B−kB )·b(out〈{p f }|{ki}〉in)(out〈{p f }|{k′

i}〉in)∗
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=
⎛
⎝ n∏

f =1

∫
d3 p f

(2π )32E f

⎞
⎠
(∏

i=A,B

∫
d3ki

(2π )3

φi(ki )√
2Eki

∫
d3k′

i

(2π )3

φ∗
i (k′

i )√
2E ′

ki

)
(2π )2δ(2)(k′

B,⊥ − kB,⊥)

× (2π )4δ(4)

⎛
⎝k′

A + k′
B −

n∑
f =1

p f

⎞
⎠(2π )4δ(4)

⎛
⎝kA + kB −

n∑
f =1

p f

⎞
⎠

×M({kA, kB} → {p1, p2, . . . , pn})M∗({k′
A, k′

B} → {p1, p2, . . . , pn}), (4)

where Eki =
√

|ki|2 + m2
i , E ′

ki =
√

|k′
i|2 + m2

i with i = A, B, kB,⊥ denotes the transverse part of the momentum and M
denotes the invariant amplitude of the scattering process. We can integrate out six delta functions involving k′

A and k′
B,

i.e., δ(2)(k′
B,⊥ − kB,⊥) and δ(4)(k′

A + k′
B −∑n

f =1 p f ). By integrating over k′
B,⊥ to remove δ(2)(k′

B,⊥ − kB,⊥), we can replace
k′

B,⊥ by kB,⊥ in the integrand. By integrating over k′
A,⊥ to remove δ(2)(k′

A,⊥ + k′
B,⊥ −∑n

f =1 p f ,⊥), we can replace k′
A,⊥ by

−kB,⊥ +∑n
f =1 k f ,⊥ in the integrand. Then we can integrate over k′

B,z to remove δ(k′
A,z + k′

B,z − p1,z − p2,z ), in which k′
B,z is

replaced by
∑n

f =1 p f ,z − k′
A,z. The last variable that can be integrated over is k′

A,z in the delta function for the energy conservation
δ(E ′

A + E ′
B − Ep1 − Ep2). We can solve k′

A,z as the root of the equation E ′
A + E ′

B = Ep1 + Ep2. Note that E ′
A and E ′

B are given by

E ′
A =

√√√√√
⎛
⎝−kB,⊥ +

n∑
f =1

k f ,⊥

⎞
⎠

2

+ k′2
A,z + m2

A,

E ′
B =

√√√√√k2
B,⊥ +

⎛
⎝ n∑

f =1

p f ,z − k′
A,z

⎞
⎠

2

+ m2
B. (5)

The delta function can be rewritten as

δ

⎛
⎝E ′

A + E ′
B −

n∑
f =1

E f

⎞
⎠ =

∑
j

∣∣∣∣k
′
A,z, j

E ′
A

− k′
B,z, j

E ′
B

∣∣∣∣
−1

δ(k′
A,z − k′

A,z, j ), (6)

where k′
A,z, j are the roots of the equation E ′

A + E ′
B = Ep1 + Ep2.

If we assume that the incident wave packets are narrow in momentum and centered at momenta pA and pB, i.e., φi(ki ) are
close to delta functions δ(ki − pi ), we can approximate (E ′

kA, k′
A) ≈ (EkA, kA) ≈ (EA, pA) and (E ′

B, k′
B) ≈ (EkB, kB) ≈ (EB, pB).

We can also approximate vi = pi,z/Ei ≈ k′
i,z/E ′

i with i = A, B. Then we obtain

σ ≈
⎛
⎝ n∏

f =1

∫
d3 p f

(2π )32E f

⎞
⎠∫ d3kA

(2π )3

|φA(kA)|2
2EA

∫
d3kB

(2π )3

|φB(kB)|2
2EB

|vA − vB|−1(2π )4δ

⎛
⎝pA + pB −

n∑
f =1

p f

⎞
⎠|M({pi} → {p f })|2

= 1

4EAEB|vA − vB|

⎛
⎝ n∏

f =1

∫
d3 p f

(2π )32E f

⎞
⎠(2π )4δ

⎛
⎝pA + pB −

n∑
f =1

p f

⎞
⎠|M({pi} → {p f })|2. (7)

Here we have used the normalization condition for the wave
amplitude (A9). We note that the above formula is derived
in the frame in which incident particles are collinear in
momentum. We can boost the frame to the center-of-mass
frame of the incident particles and the cross section is
invariant.

If the number densities of A and B in coordinate space are
nA and nB respectively, the collision rate, i.e., the number of
scatterings per unit time and unit volume is given by

R = nAnB|vA − vB|σ = nAnB

4EAEB
4EAEB|vA − vB|σ, (8)

where we have rewritten the rate in a Lorentz invariant way by
making use of the fact that 4EAEB|vA − vB|, nA/EA and nB/EB

are Lorentz invariant along the collision axis.

III. COLLISION RATE FOR SPIN-0 PARTICLES
IN A MULTIPARTICLE SYSTEM

In this section we will derive the collision rate in a system
of spin-0 particles of multispecies. We will generalize the
result of the previous section by treating the incident particles
as wave packets. The emphasis is put on the collision of two
particles at two different space-time points.
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FIG. 1. A collision or scattering in the laboratory frame (left) and
center-of-mass frame (right).

We will frequently use two frames in this and the next
section: the laboratory frame and the center-of-mass system
(CMS) of one specific collision. In the laboratory frame, the
movement of one species of particles follows their phase space
distribution f (x, p). There are many collisions taking place
in the system. Figure 1 shows one collision of two incident
particles at xA = (tA, xA) and xB = (tB, xB) in the laboratory
frame and CMS. We see that pA and pB are not aligned in
the same direction in the laboratory frame. When boosted to
the CMS of this collision with the boost velocity determined
by vbst = (pA + pB)/(EA + EB), we have pc,A + pc,B = 0 as
shown in the right panel of Fig. 1; see Appendix C for
more details of such a Lorentz transformation. Hereafter we
denote the quantities in the CMS by the index c. There is an
inherent problem in the collision of incident particles located
at different space-time points: the collision time is not well
defined. If we assume that the collision takes place at the same
time in the laboratory frame, i.e., tA = tB, after being boosted
to the CMS, the time will be mismatched, i.e., tc,A �= tc,B,
since xA and xB are different. The reverse statement is also
true: if tc,A = tc,B then tA �= tB due to xc,A �= xc,B. Such an
ambiguity in the collision time cannot be avoided but can
be constrained by the requirement that the difference �tc =
tc,A − tc,B should not be large, otherwise the incident particles
are irrelevant or the collision is uncausal in the CMS. In
the calculation of this paper, we will put a simple constraint
�tc = 0. In the right panel of Fig. 1, we also see that the

impact parameter b is given by the distance of xc,A and xc,B in
the transverse direction which is perpendicular to pc,A or pc,B.
In the longitudinal direction or the direction of pc,A or pc,B,
two space points are also different in general, i.e., p̂c,A · xc,A �=
p̂c,A · xc,B. In the calculation we also require that the dis-
tance between two space points in the longitudinal direction,
�xc,L = p̂c,A · (xc,A − xc,B), should not be large, otherwise the
incident particles as wave packets lose coherence and cannot
interact in the CMS. In the calculation, we will also put a
simple constraint �xc,L = 0. The CMS constraint �tc = 0
and �xc,L = 0 is equivalent to the condition �t = vbst · �x
and (vA − vB) · �x = 0 in the laboratory frame; see Appendix
C for the derivation.

Since we will work in the CMS of incident particles in each
collision, for notational simplicity, we will suppress the index
c (standing for the CMS) of all quantities in the rest part of
this section. So all quantities are implied in the CMS if not
explicitly stated here.

We know that the momentum integral of the distribution
function gives the number density in the coordinate space.
Similar to Eq. (8), the collision rate in corresponding momen-
tum and space-time intervals can be written as

RAB→12 = d3 pA

(2π )3

d3 pB

(2π )3
fA(xA, pA) fB(xB, pB)|vA − vB|�σ,

(9)

where vA = |pA|/EA and vB = −|pB|/EB are the longitudinal
velocities with pA = −pB in the CMS, fA and fB are the
phase space distributions for the incident particle A and B
respectively, and �σ denotes the infinitesimal element of the
cross section given by

�σ = 1

CAB
d4xAd4xBδ(�t )δ(�xL )

× d3 p1

(2π )32E1

d3 p2

(2π )32E2

1

(2EA)(2EB)
K. (10)

Here we have assumed that the scattering takes place at the
same time and the same longitudinal position in the CMS, so
we put two delta functions to implement these constraints. The
constant CAB is to make �σ have the right dimension of the
cross section and will be defined later. In Eq. (10) K is given
by

K = (2EA)(2EB)|out〈p1 p2|φA(xA, pA)φB(xB, pB)〉in|2

= 4EAEB

(2π )12
G1G2

∫
d3kAd3kBd3k′

Ad3k′
B

φA(kA − pA)φB(kB − pB)φ∗
A(k′

A − pA)φ∗
B(k′

B − pB)√
16EA,kEB,kEA,k′EB,k′

× exp(−ikA · xA − ikB · xB + ik′
A · xA + ik′

B · xB)(2π )4δ(4)(k′
A + k′

B − p1 − p2)(2π )4δ(4)(kA + kB − p1 − p2)

×M({kA, kB} → {p1, p2})M∗({k′
A, k′

B} → {p1, p2}), (11)

where φi(ki − pi ) and φi(k′
i − pi ) for i = A, B denote the

incident wave packet amplitudes centered at pi, Ei,k =√
|ki|2 + m2

i , Ei,k′ =
√

|k′
i|2 + m2

i and Ei =
√

|pi|2 + m2
i are

energies for i = A, B. In Eq. (11) Gi (i = 1, 2) denote distri-
bution factors depending on particle types in the final state, we
have Gi = 1 for the Boltzmann particles and Gi = 1 ± fi(pi )
for bosons (upper sign) and fermions (lower sign). Note that
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fi(pi ) can be in any other form in nonequilibrium cases. In
(11) we have taken the following form for |φi(xi, pi )〉in with
i = A, B:

|φi(xi, pi )〉in =
∫

d3ki

(2π )3

1√
2Ei,k

φi(ki − pi )e
−iki ·xi |ki〉in.

(12)

Here we take the Gaussian form for the wave packet amplitude
φi(ki − pi ) as in (A10),

φi(ki − pi ) = (8π )3/4

α
3/2
i

exp

[
− (ki − pi )2

α2
i

]
, (13)

where αi denote the width parameters of the wave packet A
or B. For simplicity we will set equal width for two incident
particles (even for different species), αA = αB = α.

We can also make the approximation of narrow wave
packets, so we have |ki| ≈ |k′

i| ≈ |pi| for i = A, B and then√
EA,kE ′

A,k ≈ EA and
√

EB,kE ′
B,k ≈ EB, and the energy factors

in (11) drop out. By taking the integral over xA and xB and
then the integral over on-shell momenta pA, pB, p1, and p2,
we obtain the scattering or collision rate per unit volume,

RAB→12 =
∫

d3 pA

(2π )32EA

d3 pB

(2π )32EB

d3 p1

(2π )32E1

d3 p2

(2π )32E2

× 1

CAB

∫
d4xAd4xBδ(�t )δ(�xL )

× fA(xA, pA) fB(xB, pB)G1G2|vA − vB|K. (14)

Now we use new variables to replace xA and xB,

X = 1
2 (xA + xB),

y = xA − xB. (15)

We can rewrite the integral over xA and xB in Eq. (14) as

I =
∫

d4xAd4xBδ(�t )δ(�xL ) fA(xA, pA) fB(xB, pB)

× exp(−ikA · xA − ikB · xB + ik′
A · xA + ik′

B · xB)

≈
∫

d4Xd2b fA

(
X + yT

2
, pA

)
fB

(
X − yT

2
, pB

)

× exp[i(k′
A − kA) · b], (16)

where we have used kA + kB − k′
A − k′

B = 0 and −kA +
kB + k′

A − k′
B = 2(k′

A − kA) implied by two delta functions
in Eq. (11). In Eq. (16) we have integrated over y0 = �t =
tA − tB and yL = �xL = p̂A · (xA − xB) to remove two delta
functions, then we are left with the integral over the transverse
part yμ

T = (0, b) with b being in the transverse direction.
Because we work in the CMS in which all kinematic variables
depend on the incident momenta in the laboratory frame, the
impact parameter b in the CMS depends on (xA, xB) as well as
(pA, pB) in the laboratory frame through a boost velocity.

Now we define the constant CAB in Eqs. (10) and (14) as
CAB ≡ ∫

d4X = tX 	int so that the final results have the right
dimension. Here tX and 	int are the local time and space vol-
ume for the interaction respectively. Note that C−1

AB

∫
d4X (. . . )

plays the role of the average over X or 〈(. . . )〉X . If we take
the limit tX 	int → 0, we obtain the local rate per unit volume
from Eq. (14),

d4NAB→12

dX 4
= 1

(2π )4

∫
d3 pA

(2π )32EA

d3 pB

(2π )32EB

d3 p1

(2π )32E1

d3 p2

(2π )32E2
|vA − vB|G1G2

∫
d3kAd3kBd3k′

Ad3k′
B

×φA(kA − pA)φB(kB − pB)φ∗
A(k′

A − pA)φ∗
B(k′

B − pB)δ(4)(k′
A + k′

B − p1 − p2)δ(4)(kA + kB − p1 − p2)

×M({kA, kB} → {p1, p2})M∗({k′
A, k′

B} → {p1, p2})
∫

d2b fA

(
X + yT

2
, pA

)
fB

(
X − yT

2
, pB

)
exp[i(k′

A − kA) · b],

(17)

where NAB→12 is the number of scatterings. We empha-
size again that all quantities in Eq. (17) are defined in
the CMS of two incident particles (we have suppressed the
index c).

IV. POLARIZATION RATE FOR SPIN-1/2 PARTICLES
FROM COLLISIONS

In this section we will generalize the previous section for
spin-0 particles to spin-1/2 ones. Our purpose is to derive the
polarization rate from collisions in a system of particles of
multispecies. We assume that particle distributions in phase
space are independent of spin states, so the spin dependence
comes only from scatterings of particles carrying the spin
degree of freedom.

As a simple example to illustrate the idea of the polar-
ization arising from collisions, we consider a fluid with the
three-vector fluid velocity in the z direction vz that depends
on x, which we denote as vz(x). We assume dvz(x)/dx >

0. In the comoving frame of any fluid cell in the range
[x − �x/2, x + �x/2] where �x is a small distance, the fluid
velocity at x ± �x/2 is ±(dvz(x)/dx)�x, forming a rotation
or local orbital angular momentum (OAM) pointing to the
−y direction. Due to the spin-orbit coupling, the scattering
of two unpolarized particles with velocity ±(dvz(x)/dx)�x
and impact parameter �x will polarize the particles in the
final state along the direction of the local OAM. It has been
proved that the polarization cross section is proportional to
s · nc, where s is the spin quantization (polarization) direc-
tion and nc = b̂c × p̂c is the direction of the reaction plane
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(the local OAM) in the CMS of the scattering, where b̂c

and p̂c are the direction of the impact parameter and the
incident momentum respectively. This is what happens in
one scattering. In a thermal system with collective motion,
there are many scatterings whose reaction planes point to
almost random directions, but on average the direction of
the reaction plane points to that of the local rotation or
vorticity. To calculate the polarization in a thermal system
with collective motion, we have to take a convolution of dis-
tribution functions and polarized scattering amplitudes similar
to (17).

In this section we will distinguish quantities in the CMS
and laboratory frame, i.e., we will resume the subscript c for
all CMS quantities, while quantities in the laboratory frame
do not have the subscript c.

Now we consider a scattering process A + B → 1 + 2
where the incident and outgoing particles are in the spin
state labeled by sA, sB, s1, and s2 (si = ±1/2, i = A, B, 1, 2)
respectively. The quantization direction of the spin state is
chosen to be along the direction of the reaction plane in the
CMS of the scattering. The polarization rate per unit volume
for particle 2 in the final state is given by

d4PAB→12(X )

dX 4
= 1

(2π )4

∫
d3 pc,A

(2π )32Ec,A

d3 pc,B

(2π )32Ec,B

d3 pc,1

(2π )32Ec,1

d3 pc,2

(2π )32Ec,2
|vc,A − vc,B|G1G2

∫
d3kc,Ad3kc,Bd3k′

c,Ad3k′
c,B

×φA(kc,A − pc,A)φB(kc,B − pc,B)φ∗
A(k′

c,A − pc,A)φ∗
B(k′

c,B − pc,B)

× δ(4)(k′
c,A + k′

c,B − pc,1 − pc,2)δ(4)(kc,A + kc,B − pc,1 − pc,2)

×
∫

d2bc fA

(
Xc + yc,T

2
, pc,A

)
fB

(
Xc − yc,T

2
, pc,B

)
exp[i(k′

c,A − kc,A) · bc]

×
∑

sA,sB,s1,s2

2s2ncM({sA, kc,A; sB, kc,B} → {s1, pc,1; s2, pc,2})M∗({sA, k′
c,A; sB, k′

c,B} → {s1, pc,1; s2, pc,2}),

(18)

where PAB→12 denotes the polarization vector and nc = b̂c ×
p̂c,A is the direction of the reaction plane in the CMS of
the scattering which is also the quantization direction of the
spin. In the second to the last line of Eq. (18), the summa-
tion of 2s2M(. . . , s2)M∗(. . . , s2) over s2 = ±1/2 gives the
polarized amplitude squared for particle 2 in the final state,
and the factor 2 arises from the normalization convention for
the polarization that makes it in the range [−1, 1] instead of
[−1/2, 1/2]. Equation (18) is one of our main results.

V. QUARK/ANTIQUARK POLARIZATION RATE IN A
QUARK-GLUON PLASMA OF LOCAL EQUILIBRIUM

IN MOMENTUM

In this section we will calculate the quark/antiquark po-
larization rate from all 2-to-2 parton (quark or gluon) col-
lisions in a quark-gluon plasma (QGP) of local equilibrium
in momentum but not in spin. We assume that the QGP is
a multicomponent fluid with the same fluid velocity u(x)
as a function of space-time for all partons. The partons in
a fluid cell follow a thermal distribution in momentum in
its comoving frame with the local temperature T (x). We
assume that the phase space distribution f (x, p) depends
on xμ = (t, x) through the fluid velocity uμ(x) in the form
f (x, p) = f [β(x)p · u(x)] where pμ = (Ep, p) is an on-shell
four-momentum of the parton and β(x) ≡ 1/T (x).

We consider the scattering, A + B → 1 + 2, where A and
B denote two incident partons in the wave packet form local-
ized at xA and xB respectively, and “1” and “2” denote two
outgoing partons in momentum states. In order to calculate

the polarization rate from the collision of two wave packets
displaced by an impact parameter by Eq. (18), we must work
in the CMS of the incident partons for each collision. Note that
many collisions take place in the system at different space-
time; the CMS of each collision depends on the momenta of
incident partons which vary from collision to collision. In one
collision, the phase space distributions for incident partons
(denoted as i = A, B) can be written in the form

fi(xc, pc) = fi[β(xc)pc · uc(xc)]

= fi[β(x)p · u(x)]

= fi(x, p), (19)

where x, p are the space-time and momentum in the laboratory
frame respectively, while xc, pc are their corresponding values
in the CMS of A and B in this collision which depend on pA

and pB in the heat bath (laboratory frame) through the boost
velocity, and uμ

c (xc) denotes the fluid velocity in the CMS as
a function of the space-time in the CMS.

A. Polarization rate

We now apply Eq. (18) to 2-to-2 parton scatterings.
For simplicity we assume that the phase space distributions
of incident partons follow the Boltzmann distribution, i.e.,
f (x, p) = exp[−β(x)p · u(x)], so we have G1G2 = 1 in (18).
Also we assume that yc,T is small compared with Xc so
that we can make an expansion in yc,T for the distributions,
the details are given in Appendix B. The relevant contri-
bution in the linear or first order in yc,T involves the term
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yμ
c,T [∂ (βuc,ρ )/∂X μ

c ]pρ
c,A which can be rewritten as

yμ
c,T pρ

c,A

∂ (βuρ )

∂X μ
c

= −1

2
Lμρ

(c) ω
(c)
μρ + 1

4
y{μ

c,T pρ}
c,A

[
∂ (βuc,ρ )

∂X μ
c

+ ∂ (βuc,μ)

∂X ρ
c

]
, (20)

where Lμρ
(c) ≡ y[μ

c,T pρ]
c,A is the OAM tensor, ω(c)

μρ ≡
−(1/2)[∂Xc

μ (βuc,ρ ) − ∂Xc
ρ (βuc,μ)] is the thermal vorticity

tensor, and y{μ
c,T pρ}

c,A ≡ yμ
c,T pρ

c,A + yρ
c,T pμ

c,A, all in the CMS.
The derivation of Eq. (20) is given in Eq. (B2). Note that
the OAM-vorticity coupling Lμρ

(c) ω
(c)
μρ shows up in the yc,T

expansion, which can be converted to the spin-vorticity
coupling through polarized parton scattering amplitudes
encoding the spin-orbit coupling effect, as we will show
shortly. The second term in Eq. (20) involves the symmetric
part of the thermal velocity derivatives in space-time, which
is assumed to vanish in thermal equilibrium for the spin,
known as the Killing condition [12–14,17]. In this paper,
however, we do not assume the thermal equilibrium for the
spin degree of freedom, so we keep this symmetric term in
the calculation.

Keeping the first order term in the yc,T expansion and
neglecting the zeroth order term, which is irrelevant, Eq. (18)
can be simplified as

d4PAB→12(X )

dX 4
= − 1

(2π )4

∫
d3 pA

(2π )32EA

d3 pB

(2π )32EB

d3 pc,1

(2π )32Ec,1

d3 pc,2

(2π )32Ec,2
|vc,A − vc,B|

∫
d3kc,Ad3kc,Bd3k′

c,Ad3k′
c,B

×φA(kc,A − pc,A)φB(kc,B − pc,B)φ∗
A(k′

c,A − pc,A)φ∗
B(k′

c,B − pc,B)

× δ(4)(k′
c,A + k′

c,B − pc,1 − pc,2)δ(4)(kc,A + kc,B − pc,1 − pc,2)

× 1

2

∫
d2bc exp[i(k′

c,A − kc,A) · bc]bc, j[�
−1]νj

∂ (βuρ )

∂X ν

(
pρ

A − pρ
B

)
fA(X, pA) fB(X, pB)�IAB→12

M nc, (21)

where we have used d3 pc,i/Ec,i = d3 pi/Ei for i = A, B, the Lorentz transformation matrix is defined by ∂X ν/∂X μ
c = [�−1]νμ =

� ν
μ , the minus sign in the right-hand side comes from dfi(X, pi )/d (βu · pi ) for i = A, B, and �IAB→12

M is defined by

�IAB→12
M =

∑
sA,sB,s1,s2

∑
color

2s2M({sA, kc,A; sB, kc,B} → {s1, pc,1; s2, pc,2})

×M∗({sA, k′
c,A; sB, k′

c,B} → {s1, pc,1; s2, pc,2}), (22)

where the factor 2 arises from the normalization convention for the polarization. Note that in the above formula there is a sum
over color degrees of freedom of all incident and outgoing partons. We may write �IAB→12

M nc as

�IAB→12
M nc = �IAB→12

M (b̂c × p̂c,A) = i(b̂c · Ic)ec,iεikhb̂c,kp̂h
c,A = iec,iεikhp̂h

c,AIc,l b̂c,l b̂c,k, (23)

where ec,i (i = x, y, z) are the basis vectors in the CMS, and �IAB→12
M can be put into the form ib̂c · Ic; in this way we can single

out the direction b̂c out of �IAB→12
M [see Eq. (40) for an example of what Ic looks like].

Substituting Eq. (23) into Eq. (21), completing the integration over bc, and removing delta functions by integration, we obtain

d4PAB→12(X )

dX 4
= π

(2π )4

∂ (βuρ )

∂X ν

∫
d3 pA

(2π )32EA

d3 pB

(2π )32EB
|vc,A − vc,B|[�−1]νjec,iεikhp̂h

c,A fA(X, pA) fB(X, pB)
(
pρ

A − pρ
B

)

×
∫

d3 pc,1

(2π )32Ec,1

d3 pc,2

(2π )32Ec,2
d2kT

c,Ad2k′T
c,A

∑
j1, j2=1,2

1∣∣Ja
[
kL

c,A( j1)
]∣∣ · 1∣∣Ja

[
k′L

c,A( j2)
]∣∣

×φA(kc,A − pc,A)φB(kc,B − pc,B)φ∗
A(k′

c,A − pc,A)φ∗
B(k′

c,B − pc,B)

× Ic,l
1

a3

{
QL

jkl

[−2 + 2J0(w0) + w0J1(w0) + w2
0J2(w0)

]+ QT
jkl [2 − 2J0(w0) − w0J1(w0)]

}
. (24)

Here we have used

QL
jkl = al a jak

a3
,

QT
jkl = 1

a3
(a2akδl j + a2alδ jk + a2a jδlk − 3ala jak ), (25)

with a ≡ k′
c,A − kc,A and a = |a|, w0 = ab0 with b0 be-

ing the upper limit or cutoff of bc, Ji for i = 0, 1, 2
are Bessel functions, kc,B = pc,1 + pc,2 − kc,A, k′

c,B = pc,1 +

pc,2 − k′
c,A, Ja(kL

c,A) and Ja(k′L
c,A) are Jacobians for the longitu-

dinal momenta kL
c,A and k′L

c,A and are given by

Ja
(
kL

c,A

) = kL
c,A

(
1

Ec,A
+ 1

Ec,B

)
− 1

Ec,B

(
pL

c,1 + pL
c,2

)
,

Ja
(
k′L

c,A

) = k′L
c,A

(
1

E ′
c,A

+ 1

E ′
c,B

)
− 1

E ′
c,B

(
pL

c,1 + pL
c,2

)
, (26)
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FIG. 2. The Feynman diagrams of all 2-to-2 parton scatter-
ings at the tree level with at least one quark in the final state.
We calculate the polarization of the quark (the second parton) in
the final state. Here a and b denote the quark flavor, si = ±1/2
(i = A, B, 1, 2) denote the spin states, ki (i = A, B, 1, 2) denote the
momenta, q, q1, q2, q3 denote the momenta in propagators. The
processes for antiquark polarization can be obtained by making a
particle-antiparticle transformation.

and kL
c,A( j1) and k′L

c,A( j2) with j1, j2 = 1, 2 are two roots of
the energy conservation equation Ec,A + Ec,B − Ec,1 − Ec,2 =
0 and E ′

c,A + E ′
c,B − Ec,1 − Ec,2 = 0 respectively. In (24) and

(25) latin indices label spatial components in the CMS. The
derivation of (24) is given in Appendix D.

In a system of gluons and quarks with multiflavors, there
are many 2-to-2 parton scatterings with at least one quark in
the final state. The quark polarization rate for a specific flavor
reads

d4Pq(X )

dX 4
=

∑
A,B,1={qa,q̄a,g}

d4PAB→1q(X )

dX 4
, (27)

where d4PAB→1q(X )/dX 4 is given by Eq. (24), and 2-to-2 par-
ton scatterings are listed in Fig. 2. The antiquark polarization
rate can be similarly obtained.

B. Polarized amplitudes for quarks/antiquarks
in 2-to-2 parton scatterings

In this subsection we will derive the polarized amplitudes
for quarks in 2-to-2 parton scatterings. The Feynman diagrams
of all 2-to-2 parton scatterings at the tree level with at least
one quark in the final state are shown in Fig. 2. For antiquark
polarization, we can make particle-antiparticle transformation
in all processes listed in Fig. 2, for example, qaqb → qaqb

becomes q̄aq̄b → q̄aq̄b, q̄aqb → q̄aqb becomes qaq̄b → qaq̄b,
gg → q̄aqa becomes gg → qaq̄a, etc. In this subsection, we
discuss polarized amplitudes for quarks; those for antiquarks
can be easily obtained.

In order to obtain the quark polarization, we sum over the
spin states of all partons in the scattering except one quark in
the final state. For simplicity of the calculation, we assume
that the quark masses are equal for all flavors and the external
gluon is massless. We introduce a small mass in the gluon
propagator in the t channel to regulate the possible divergence.

In this subsection, all variables are defined in the CMS.
For notational simplicity we will suppress the subscript c; for
example, pA actually means pcA.

We take the quark-quark scattering qaqb → qaqb with a �=
b (different flavor) as an example to demonstrate how to derive
the polarized scattering amplitude which depends on the spin
state of the quark in the final state. The Feynman diagram
of this process is shown in Fig. 2. The spin-momentum
configurations are shown in the diagram. We can then write
down the corresponding amplitudes following the Feynman
rule,

I1 = −iM({sA, kA; sB, kB} → {s1, p1; s2, p2})

= ig2
st

c
jit

c
lk

1

q2
[ū(s1, p1)γ μu(sA, kA)][ū(s2, p2)γμu(sB, kB)],

I2 = −iM({sA, k′
A; sB, k′

B} → {s1, p1; s2, p2})

= ig2
st

d
jit

d
lk

1

q′2 [ū(s1, p1)γ νu(sA, k′
A)][ū(s2, p2)γνu(sB, k′

B)],

(28)

where gs is the strong coupling constant, i, j, k, l = 1, 2, 3
denote the fundamental colors of quarks, c, d = 1, . . . , 8 de-
note the adjoint colors of gluons, t c and t d are generators
of SU(Nc) in fundamental representation satisfying [t a, t b] =
i f abct c, q = kA − p1, and q′ = k′

A − p1. We obtain the product
I1I∗

2 as

Iqaqb→qaqb
M (s2)

=
∑

sA,sB,s1

∑
i, j,k,l

M({sA, kA; sB, kB} → {s1, p1; s2, p2})

×M∗({sA, k′
A; sB, k′

B} → {s1, p1; s2, p2})

= Cqaqb→qaqbg
4
sm

2 1

q2q′2

× Tr
[
(p1 · γ + m)γ μ�1/2(−kA)(γ0 + 1)�−1

1/2(−k′
A)γ ν

]
× Tr

[
�(s2, n)(p2 · γ + m)γμ�1/2(−kB)(γ0 + 1)

×�−1
1/2(−k′

B)γν

]
. (29)
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TABLE I. Color factors for all 2-to-2 processes with at least one
final quark. The constants which appear in color factors are dF = Nc,
dA = N2

c − 1, CF = (N2
c − 1)/(2Nc ), and CA = 3 with Nc = 3.

Color factors Color factors in scattering processes

d2
FC2

F /dA Cqaqb→qaqb , Cq̄aqb→q̄aqb ,

C (1)
q̄aqa→q̄aqa

, C (1)
qaqa→qaqa

, Cq̄aqa→q̄bqb

dFC2
F C (1)

gg→q̄aqa
, C (3)

gqa→gqa

(CF − CA/2)dFCF C (2)
q̄aqa→q̄aqa

, C (2)
qaqa→qaqa

, C (2)
gg→q̄aqa

, C (4)
gqa→gqa

1
4 dACA C (2)

gqa→gqa
, C (3)

gg→q̄aqa

dFCFCA C (1)
gqa→gqa

, C (4)
gg→q̄aqa

In Eq. (29) we have used the notation p · γ ≡ pργ
ρ , a sum

over all spins except s2 and over all colors of quarks and
gluons have been taken, and Cqaqb→qaqb is the color factor for
this process given in Table I. In the last two lines of Eq. (29),
�1/2 and �−1

1/2 are the Lorentz transformation matrices for
spinors defined in Eq. (E10), �(s2, n) = (1 + s2γ5nσ γσ )/2 is
the spin projector where nσ = (0, n) is the spin quantization
four-vector in the CMS with n = b̂ × p̂A, and we have applied
Eqs. (E13) and (E18). From Eq. (29), we obtain the difference
of Iqaqb→qaqb

M between the spin state s2 = 1/2 and s2 = −1/2
for qb,

�Iqaqb→qaqb
M

= Iqaqb→qaqb
M (s2 = 1/2) − Iqaqb→qaqb

M (s2 = −1/2)

= Cqaqb→qaqbg
4
sm

2 1

q2q′2

× Tr
[
(p1 · γ + m)γ μ�1/2(−kA)(γ0 + 1)�−1

1/2(−k′
A)γ ν

]
× Tr

[
γ5(n · γ )(p2 · γ + m)γμ�1/2(−kB)(γ0 + 1)

×�−1
1/2(−k′

B)γν

]
. (30)

The expansion of �Iqaqb→qaqb
M gives about 200 terms. In ac-

cordance with Eq. (E10), �1/2(p) depends on the rapidity ηp

and the momentum direction p̂, where ηp is related to the
energy momentum by Ep = m cosh(ηp) and |p| = m sinh(ηp).
So the contracted trace part of �Iqaqb→qaqb

M can be expressed as
a function of (k̂A, k̂′

A, k̂B, k̂′
B) and (ηkA, η′

kA, ηkB, η′
kB).

The polarized amplitudes for quarks in all 2-to-2 parton
scatterings listed in Fig. 2 are given in Appendix F, which
results in more than 5000 terms. Here we give an estimate of
how many terms there are in each process: �Igg→q̄aqa

M gives
136 terms, �Igqa→gqa

M gives 2442 terms, �I q̄aqa→q̄aqa
M gives

874 terms, �I q̄aqa→q̄bqb
M gives 40 terms, �I q̄aqb→q̄aqb

M gives 210
terms, �Iqaqb→qaqb

M gives 210 terms, �Iqaqa→qaqa
M gives 1156

terms. It is hard to see the physics behind such huge number
of terms unless we make an appropriate approximation.

C. Evaluation of polarized amplitudes for quarks/antiquarks

The evaluation of contracted traces of quark polarized
amplitudes are very complicated. This has been done with the
help of FeynCalc [67,68]. There are about 104 terms in the
expansion of contracted traces for 2-to-2 parton scatterings.

In this subsection, all variables are defined in the CMS; for
notational simplicity we will suppress the subscript c if not
explicitly specified—for example, pA actually means pcA.

In order to show the physics in the midst of the huge num-
ber of terms, we have to make an appropriate approximation.
As we know that the incident particles are treated as wave
packets in order to describe scatterings displaced by impact
parameters, a realistic approximation is that the wave packets
are assumed to be narrow, i.e., the width is much smaller
than the center momenta of the wave packet in Eq. (13).
In the extreme case that the width of the wave packet is
zero, we recover the normal scattering of plane waves. Since
the positions of incident particles can be anywhere in plane
waves, on average the relative OAM of two incident particles
is zero, leading to the vanishing polarization of final state
particles. This fact can be verified by setting

k̂A = k̂′
A = p̂A, k̂B = k̂′

B = −p̂A,

p1 = −p2, ηA = ηB = η′
A = η′

B (31)

in the trace part in Eq. (30); then we have �Iqaqb→qaqb
M = 0.

The above result is of the zeroth order; now we turn
to the first order in the deviation from momenta in
(31). We expand (k̂A, k̂′

A, k̂B, k̂′
B) about their central val-

ues (p̂A, p̂A,−p̂A,−p̂A) and (ηkA, η′
kA, ηkB, η′

kB) about their
central values (ηpA, ηpA, ηpA, ηpA) to the first order in the
differences,

k̂A → p̂A + �A, k̂B → −p̂A + �B,

k̂′
A → p̂A + �′

A, k̂′
B → −p̂A + �′

B,

ηkA = ηpA + �ηkA,

η′
kA = ηpA + �η′

kA,

ηkB = ηpA + �ηkB,

η′
kB = ηpA + �η′

kB, (32)

where the first order quantities are denoted with � (for
example, �A, �ηkA). We also expand (E1, p1, E2, p2) at
(E0, p0, E0,−p0),

E1 → E0 + �1, E2 → E0 + �2,

p1 → p0 + �1, p2 → −p0 + �1. (33)

The delta functions in Eq. (21) lead to

kA + kB = k′
A + k′

B = p1 + p2. (34)

So �1 in (33) can be determined by

�1 = 1
2 (kA + kB), (35)

and p0 determined by

p0 = 1
2 (p1 − p2). (36)

Note that once p0 and �1 are given, E0,�1,�2 satisfy

(E0 + �1)2 = (p0 + �1)2 + m2
1,

(E0 + �2)2 = (−p0 + �1)2 + m2
2. (37)

So we have a freedom to choose the value of E0. Then we
use (32) and (33) in the contracted trace part in Eq. (30) and
expand it to the first order in � quantities. Still, the final
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result has many terms but all terms of �1, �2, and �1 cancel
out.

In order to further simplify the contracted trace part in
Eq. (30), we use the property that the first order contributions
do not have terms of �1,�2,�1 by setting

p1 = p0,

p2 = −p0, (38)

which leads to kA + kB = k′
A + k′

B = 0 and then

k̂A = −k̂B, k̂′
A = −k̂′

B,

ηkA = ηkB, η′
kA = η′

kB. (39)

Using (38) and (39) in the contracted trace part in
Eq. (30) for qaqb → qaqb, we obtain a shorter series of 31
terms,

Tr2
qaqb→qaqb

= 16i(n × p1) · k̂A
[
5cAsAc′

As′
Ap1 · k̂′

A + 7E1s2
Ac′

As′
Ak̂A · k̂′

A + 2mcAsAc′2
A − 2mcAsAs′2

A + 4E1cAsAc′2
A

+ E1cAsAs′2
A − s2

As′2
A p1 · k̂A

]+ 16i(n × p1) · k̂′
A

[
4mcAsAs′2

A k̂A · k̂′
A − 5E1cAsAs′2

A k̂A · k̂′
A − 2mc2

Ac′
As′

A

− 4E1c2
Ac′

As′
A − 5cAsAc′

As′
Ap1 · k̂A − 2ms2

Ac′
As′

A − 3E1s2
Ac′

As′
A − s2

As′2
A p1 · k̂′

A + 2s2
As′2

A (p1 · k̂A)(k̂A · k̂′
A)
]

+ 16i(n × k̂A) · k̂′
A

[
4ms2

Ac′
As′

Ap1 · k̂A + 8m2cAsAc′
As′

A + 4E1ms2
As′2

A k̂A · k̂′
A − s2

As′2
A (p1 · p1)(k̂A · k̂′

A)

− 3E1cAsAs′2
A p1 · k̂′

A − E1s2
Ac′

As′
Ap1 · k̂A −3cAsAc′

As′
Ap1 · p1 − 8E2

1 cAsAc′
As′

A

]
+ 16i(p1 × k̂A) · k̂′

A

[
s2

As′2
A (p1 · k̂A)(n · k̂′

A) − s2
As′2

A (n · k̂A)(p1 · k̂′
A)

+ s2
As′2

A (n · p1)(k̂A · k̂′
A) + 4mcAsAs′2

A n · k̂′
A + E1s2

Ac′
As′

An · k̂A +3E1cAsAs′2
A n · k̂′

A + 3cAsAc′
As′

An · p1
]
, (40)

where we denote the contracted trace part for qaqb → qaqb

as Tr2
qaqb→qaqb

, cA ≡ cosh(ηkA/2), c′
A ≡ cosh(η′

kA/2), sA ≡
sinh(η′

kA/2), and s′
A ≡ sinh(η′

kA/2). We see in (40) that there
are four typical terms proportional to (n × p1) · k̂A, (n ×
p1) · k̂′

A, (n × k̂A) · k̂′
A, and (p1 × k̂A) · k̂′

A, in which the first
three terms are from the spin-orbit coupling and the last one
corresponds to the noncoplanar part of p1, k̂A, and k̂′

A. We will
show in the next section that (40) is a good approximation for
the contracted trace part to the exact result.

It can be proved that �IAB→12
M for all 2-to-2 parton scatter-

ings in Fig. 2 have the same structure as in (40) for qaqb →
qaqb under the approximation in (38) and (39).

Note that �IAB→12
M depends linearly on the direction of

the scattering plane n = b̂ × p̂A, we can write the contracted
trace part in the form of b̂ · I, as is done in Eq. (23). We take
the term (n × p1) · k̂A in (40) as an example, which can be
rewritten as

[(b̂ × p̂A) × p1] · k̂A = b̂ · [(p̂A · k̂A)p1 − (p̂A · p1)k̂A]. (41)

Therefore I contains the term inside the square brackets on
the right-hand side of Eq. (41). Another example is the term
proportional to (p1 × k̂A) · k̂′

A: we see that all terms have
factors of the form n · V (V = k̂A, k̂′

A, p1) inside the square
brackets; these terms can be rewritten as n · V = b̂ · (p̂A × V),
so I contains the term p̂A × V.

VI. NUMERICAL METHOD TO CALCULATE
QUARK/ANTIQUARK POLARIZATION RATE

In this section we will calculate the polarization rate for
quarks in a QGP from Eq. (24). Here we assume a local
equilibrium in particle momentum but not in spin. We will
consider two cases: the approximation as in (38) and (39) and

the exact result without any approximation. The main param-
eters are set to following values: the quark mass mq = 0.2
GeV for quarks of all flavors (u, d, s, ū, d̄, s̄), the gluon mass
mg = 0 for the external gluon, the internal gluon mass (Debye
screening mass) mg = mD = 0.2 GeV in gluon propagators in
the t and u channel to regulate the possible divergence, the
width α = 0.28 GeV of the Gaussian wave packet, and the
temperature T = 0.3 GeV.

Although the 2-to-2 processes for antiqaurk polariza-
tion are different from those for quarks, it can be shown
that the polarization rate for antiquarks is the same as
that for quarks, because all 2-to-2 scatterings for anti-
quark polarization can be obtained from those in Fig. 2
by making a particle-antiparticle transformation. In the
following we discuss only the quark polarization. The
same discussion can also be applied to the antiquark
polarization.

The local polarization rate in Eq. (24) for quarks in-
volves a 16-dimensional integration, which is a major chal-
lenge in the numerical calculation. In the Monte Carlo in-
tegration, the number of sample points grows exponentially
with the dimension, so even a very rough calculation in
high dimensions would need a huge number of sample
points.

To overcome this difficulty, we split the integration
into two parts: a ten-dimension (10D) integration over
(pc,1, pc,2, kT

c,A, k′T
c,A) and a six-dimension (6D) integration

over (pA, pB). We carry out the 10D integration and store the
result as a function of pc,A (and pc,B = −pc,A). Then we carry
out the 6D integration using the precalculated 10D integral.

The 10D integral, the last five lines of Eq. (24), depends
on pc,A and pc,B = −pc,A which appear in the wave packet
function φA and φB respectively. So we denote the 10D
integral as � jk (pc,A), from Eq. (27) the polarization rate per
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unit volume for one quark flavor can be rewritten as

d4Pq(X )

dX 4
= π

(2π )4

∂ (βuρ )

∂X ν

∑
A,B,1

∫
d3 pA

(2π )32EA

d3 pB

(2π )32EB

×|vc,A − vc,B|[�−1]νjec,iεikhp̂h
c,A

× fA(X, pA) fB(X, pB)
(
pρ

A − pρ
B

)
� jk (pc,A)

≡ ∂ (βuρ )

∂X ν
Wρν, (42)

where the second equality defines Wρν and the sum of A, B, 1
is over all 2-to-2 processes in Fig. 2.

A. 10D integration

The 10D integral � jk (p(z)
c,A) is calculated in the CMS

by assuming p(z)
c,A = (0, 0, |pc,A|) and p(z)

c,B = (0, 0,−|pc,A|),
where |pc,A| is determined by the momenta of two incident
particles in the laboratory frame as in Eq. (C1). We can obtain
� jk (pc,A) by carrying out the rotation operation on the tensor
� jk (p(z)

c,A) in accordance with the rotation matrix from p(z)
c,A to

pc,A.
For the Monte Carlo integration we have to sample kT

c,A,
k′T

c,A, pc,1, and pc,2. First we sample kT
c,A and k′T

c,A, where
the main contribution comes from the Gaussian distribution
(13). Here we draw samples of kT

c,A = (kc,A,x, kc,A,y, 0) and

k′T
c,A = (k′

c,A,x, k′
c,A,y, 0) inside the 3σ (σ = α/

√
2) region of

the Gaussian distribution around the center point p(z)
c,A. The

longitudinal momentum kc,A,z and k′
c,A,z can be determined by

the energy conservation once pc,1 and pc,2 are given.
Then we sample pc,1 and pc,2. In order to increase the

efficiency of the sampling, we should determine the range of
pc,1 and pc,2. We can first determine the ranges of lengths
|pc,1| and |pc,2| by a numerical search. Then we determine
the ranges of directions p̂c,1 and p̂c,2. For a given p̂c,1, which
can be randomly chosen, we find that the largest value of
θ ≡ arccos(−p̂c,1 · p̂c,2) between p̂c,2 and −p̂c,1 occurs when

|kc,A| = |kc,B| = |pc,1| = |pc,2| =
√

p2
c,A + (3σ )2. (43)

Hence we obtain the range of θ as

θ ≡ arccos(−p̂c,1 · p̂c,2)

∈
⎡
⎣0, π − 2arccos

⎛
⎝ 3σ√

p2
c,A + (3σ )2

⎞
⎠
⎤
⎦. (44)

The azimuthal angle ϕ of p̂c,2 around −p̂c,1 is in the range
[0, 2π ].

With the given values of pc,1 and pc,2, the values of kc,A,z

and k′
c,A,z can be obtained by solving Eq. (D9). Then kc,B

and k′
c,B can be determined by kc,B = pc,1 + pc,2 − kc,A and

k′
c,B = pc,1 + pc,2 − k′

c,A respectively.
The 10D integral is done by ZMCintegral-3.0, a Monte

Carlo integration package, that we have newly developed and
runs on multi-GPUs [69]. The ZMCintegral package is able
to evaluate 1510 sample points within a couple of hours de-
pending on the complexity of the integrand. For our integrand
with all 2-to-2 processes for quarks of all flavors and gluons, it

takes about 5 h on one Tesla v100 card. We scan the values of
|pc,A| from 0.1 to 2.2 GeV and those of b0 from 0.1 to 3.5 fm,
then we store the integration results of � jk (p(z)

c,A) for later use.
It takes a couple of days to finish the calculation. We find that
when |pc,A| > 2.5 GeV, the 10D integral is almost zero. This
is due to the fact that if α  |pc,A|, the incident wave packets
can be almost regarded as plane waves which give vanishing
polarization.

B. 6D integration

Now we carry out the remaining 6D integration over
pA and pB in (42). As we have mentioned in Sec. V that
we assume partons with pμ

A = (EA, pA) and pμ
B = (EB, pB)

0 0.5 1.5 2.
0

50

100

150

pc,A
z (GeV)

jk
(G
eV

−1
)

off−diagonal elements

g+q g+q

0 0.5 1.5 2.
0

50

100

150

pc,A
z (GeV)

jk
(G
eV

−1
)

off−diagonal elements

q(q)+q q(q)+q

FIG. 3. Comparison of the results of the symmetric tensor
� jk (p(z)

c,A) for (a) q(q̄) + q → q(q̄) + q and (b) g + q → g + q in two
cases, with the approximation in (38) and (39) and exact calculation
of the integral without any approximation. The unit of � jk (p(z)

c,A) is
GeV−1. The results for g + g → q + q̄ are not shown because they
are negligibly small (almost zero). Here we choose b0 = 0.5 fm and
|p(z)

c,A| = 0, 0.5, 1.0, 1.5, 2.0 GeV. The solid symbols are the exact
results without any approximation, while the dashed symbols are
the results with approximation in (38) and (39). All off-diagonal
elements are around zero and bounded inside two dashed lines:
�12,�13 and �23 are represented by circles, squares, and triangles
in dark red, respectively. All diagonal elements are nonvanishing:
�11, �22, and �33 are represented by circles, squares, and triangles
in dark blue, respectively.
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0
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W
y3
1
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4 )

FIG. 4. The dependence of the results of W31
y on the integral

ranges |pA|max = |pB|max for q(q̄) + q → q(q̄) + q. We choose b0 =
2.2 fm, z = 0 fm, T = 0.3 GeV.

in the laboratory frame follow the Boltzmann distribution,
fi(X, pi ) = exp[−β(X )pi · u(X )] for i = A, B.

The energy-momentum pμ
c,A = (Ec,A, pc,A) and pμ

c,B =
(Ec,B, pc,B) in the CMS of two scattering particles are given by
Eq. (C1), where the boost velocity and the Lorentz contraction
factor are given by Eqs. (C2) and (C3) respectively. The
impact parameter bc in the CMS is given by Eq. (C7).

In the preceding subsection, we calculated the 10D inte-
gral � jk (p(z)

c,A) where p(z)
c,A is in the z direction. We have to

transform the tensor � jk (p(z)
c,A) to � jk (pc,A) so that p(z)

c,A is
rotated to the real direction of pc,A determined by Eq. (C1).
The rotation matrix Ri j is defined by pc,A,i = Ri jp

(z)
c,A, j , with

which we define the transformation for the tensor � jk (pc,A) =
Rj j′Rkk′� j′k′ (p(z)

c,A).
Our numerical results show that the tensor Wρν has the

form

Wρν = W ε0ρν je j, (45)

where we see that ρ and ν should be spatial indices or W0ν =
Wρ0 = 0. The form of (45) will be verified in the numerical
results in Sec. VII. Then from (42) we obtain the polarization
rate per unit volume for one quark flavor,

d4Pq(X )

dX 4
= ε0 jρν ∂ (βuρ )

∂X ν
W e j = 2ε jklωklW e j

= 2W ∇X × (βu), (46)

where ωρν = −(1/2)[∂X
ρ (βuν ) − ∂X

ν (βuρ )], and for spatial in-
dices we have the 3D form ωkl = (1/2)[∇X

k (βul ) − ∇X
l (βuk )]

with u being the spatial part of the four-velocity uρ .

VII. NUMERICAL RESULTS

In this section we will present our numerical results. The
approximation in (38) and (39) is inspired by the first order
contribution in the narrow wave packet approximation. In
order to see how effective the approximation is, we compare
in Fig. 3 the results of the 10D integral � jk (p(z)

c,A) for the
scattering processes q(q̄) + q → q(q̄) + q and g + q → g +
q in two cases: with and without the approximation. Here
the process q(q̄) + q → q(q̄) + q stands for a sum over five

g+q g+q q(q)+q q(q)+q
g+g q+q
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−1 ×10−8

−2 ×10−8

0

2 × 10−8

1 ×10−8

b0 (fm)

W
x3
1

(G
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z3
1
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FIG. 5. Results for (a) W31
x , (b) W31

y , and (c) W31
z as functions

of the cutoff b0 in fm. There are large fluctuations in W31
x and W31

z

above b0 = 1.5 fm due to the strong oscillation of Bessel functions.

different processes in Fig. 2. Note that we do not show the
results for g + g → q + q̄ for which all elements of � jk (p(z)

c,A)
are almost zero in contrast to processes with at least one
incident quark. We see in the figure that the results with the
approximation are in agreement with the exact ones in 20%
precision. In the figure we see that all elements of �(p(z)

c,A)

fluctuate around zero for |p(z)
c,A| = 0, which leads to vanishing

polarization. When |p(z)
c,A| is nonvanishing, the off-diagonal el-

ements of �(p(z)
c,A) are still zero within errors, but all diagonal

elements take positive values which are almost equal to each
other.

We then work out the rest 6D integral and obtain Wρν

in Eq. (45). In the 6D integration we have to determine the
maximum value of |pA| and |pB| or the integration range of
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|pA| and |pB|. In Fig. 4, as an example, we show the depen-
dence of W31

y on |pA|max = |pB|max for q(q̄) + q → q(q̄) + q,
where we choose b0 = 2.2 fm, z = 0 fm, and T = 0.3 GeV.
We see in the figure that the value of W31

y is very stable when
|pA|max = |pB|max > 8T .

The numerical results for Wρν show the structure of (45).
We can write Wρν in an explicit matrix form,

Wρν =

⎛
⎜⎝

0 0 0 0
0 0 W ez −W ey

0 −W ez 0 W ex

0 W ey −W ex 0

⎞
⎟⎠. (47)

As an example, we show in Fig. 5 the results for all com-
ponents of W31 as functions of the cutoff b0 for the quark
polarization. We see in the figure that W31

x and W31
z are two or

three orders of magnitude smaller than the positive values of
W31

y , which gives the polarization in the y direction. As we can
see in the figure, W31

y increases with the cutoff b0. The reason
for such a rising behavior is due to the Taylor expansion of
fA(xc,A, pc,A) fB(xc,B, pc,B) to the linear order in yc,T = (0, bc)
as in Appendix B. There should exist an upper limit for b0

above which the coherence of the incident wave packets is
broken and the results are not physical. Such an upper limit
can be set to be the order of the hydrodynamical length scale
∼ 1/∂

μ
X uν and should be larger than the interaction length

scale 1/mD.
It can be proved that W31 for the antiquark polarization is

the same as that for the quark one. The numerical results show
that the magnitude of all elements Wρν are equal so we denote
it as W .

VIII. DISCUSSIONS

We have constructed a microscopic model for the global
polarization from particle scatterings in a many body system.
The core of the idea is the scattering of particles as wave
packets so that the orbital angular momentum is present in
scatterings and can be converted to spin polarization. As an
illustrative example, we have calculated the quark/antiquark
polarization in a QGP. The quarks and gluons are assumed to
obey the Boltzmann distribution which simplifies the heavy
numerical calculation. There is no essential difficulty to treat
quarks and gluons as fermions and bosons respectively.

To simplify the calculation, we also assume that the quark
distributions are the same for all flavors and spin states. As a
consequence, the inverse processes that one polarized quark
is scattered by a parton to two final state partons as wave
packets are absent. So the relaxation of polarization cannot
be described without inverse processes and polarized distri-
butions. We will extend our model by including the inverse
processes in the future.

IX. SUMMARY AND CONCLUSIONS

The global polarization in heavy ion collisions arises from
scattering processes of partons or hadrons with spin-orbit
couplings. However, it is hard to implement this microscopic
picture consistently to describe particle scatterings at specified
impact parameters in a thermal medium with a shear flow. On

the other hand the statistic-hydro model or Wigner function
method are widely used to calculate the global polarization
in heavy ion collisions. These models are based on the as-
sumption that the spin degrees of freedom have reached a
local equilibrium. So there should be a spin-vorticity coupling
term in the distribution function to give the global polarization
proportional to the vorticity when it is small. However it is
unknown if particle spins are really in a local equilibrium.
In this paper we aim to construct a microscopic model for
the global polarization from particle collisions without the
assumption of local equilibrium for spins. The polarization
effect is incorporated into particle scatterings at specified im-
pact parameters with spin-orbit couplings encoded. The spin-
vorticity coupling naturally emerges from particle collisions
if we assume a local equilibrium in particle momenta instead
of particle spins. This provides a microscopic mechanism for
the global polarization from the first principle through particle
collisions in nonequilibrium.

As an illustrative example, we have calculated the quark
polarization rate per unit volume from all 2-to-2 parton (quark
or gluon) scatterings in a locally thermalized quark-gluon
plasma in momentum. Although the processes for antiquark
polarization are different from those for quarks, it can be
shown that the polarization rate for antiquarks is the same
as that for quarks because they are connected by the charge
conjugate transformation. This is consistent with the fact that
the rotation does not distinguish particles and antiparticles.
The spin-orbit coupling is hidden in the polarized scattering
amplitude at specified impact parameters. The polarization
rate involves an integral of 16 dimensions, which is far beyond
the capability of the current numerical algorithm. We have
developed a new Monte Carlo integration algorithm ZMCin-
tegral on multi-GPUs to make such a heavy task feasible. We
have shown that the polarization rate per unit volume is pro-
portional to the vorticity as the result of particle scatterings, a
nonequilibrium scenario for the global polarization. So we can
see in this example how the spin-vorticity coupling emerges
naturally from particle scatterings.
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APPENDIX A: SINGLE PARTICLE STATE AS A WAVE
PACKET IN RELATIVISTIC QUANTUM MECHANICS

In this Appendix, we will give definitions and conventions
for the single particle state in coordinate and momentum space
and those for the wave packet.
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1. Single particle state in coordinate and momentum space

For simplicity we first consider the single particle state of
spin-0 particles, then we generalize it to spin-1/2 particles.

A position eigenstate is denoted as |x〉 and satisfies the
following orthogonality and completeness conditions:

〈x′|x〉 = δ(3)(x′ − x), 1 =
∫

d3x|x〉〈x|. (A1)

The normalization of the state |x〉 is then

〈x|x〉 = δ(3)(x − x) =
∫

d3 p

(2π )3
= 1

	

∑
p

, (A2)

where 	 is the space volume.
A momentum eigenstate is denoted as |p〉 and satisfies the

following orthogonality and completeness conditions:

〈p′|p〉 = 2Ep(2π )3δ(3)(p − p′),

1 =
∫

d3 p

(2π )3

1

2Ep
|p〉〈p|, (A3)

where Ep =
√

|p|2 + m2 is the energy of the particle. Note that
〈p′|p〉 is Lorentz invariant. The normalization of |p〉 is then

〈p|p〉 = 2Ep(2π )3δ(3)(p − p) = 2Ep	. (A4)

From Eqs. (A1) and (A3) we can define the inner product
〈x|p〉 as

〈x|p〉 = √
2Epeip·x. (A5)

With the above relation we can check that

δ(3)(x − x′) = 〈x′|x〉 =
∫

d3 p

(2π )3

1

2Ep
〈x′|p〉〈p|x〉

=
∫

d3 p

(2π )3
eip·(x′−x), (A6)

where we have inserted the completeness relation in (A3). We
can express |x〉 in terms of |p〉 and vice versa,

|x〉 =
∫

d3 p

(2π )3

1

2Ep
|p〉〈p|x〉 =

∫
d3 p

(2π )3

1√
2Ep

e−ip·x|p〉,

|p〉 =
∫

d3x|x〉〈x|p〉 = √
2Ep

∫
d3xeip·x|x〉. (A7)

2. Single particle state as a wave packet

In the real world a particle is always localized in some finite
region, so its state can be represented by a wave packet |φ〉
which is a superposition of plane wave states,

|φ〉 =
∫

d3k

(2π )3

1√
2Ek

φ(k)|k〉, (A8)

and φ(k) is the amplitude and can be normalized to unity,

〈φ|φ〉 =
∫

d3k

(2π )3
|φ(k)|2 = 1. (A9)

The energy dimension of |φ〉 is 0. A typical form for φ(p)
satisfying Eq. (A9) is the Gaussian wave packet,

φ(p − p0) = (8π )3/4

α3/2
exp

[
− (p − p0)2

α2

]
, (A10)

which is centered at p0. The wave-packet function in coordi-
nate space is

φ(x) = 〈x|φ〉 =
∫

d3k

(2π )3
φ(k)eik·x, (A11)

where we have used Eq. (A5).
If we displace the particle state by b in coordinate space,

the new wave-packet function is given by

φ′(x) = φ(x − b) =
∫

d3k

(2π )3
φ(k)eik·(x−b) = 〈x|φ′〉, (A12)

where the new wave-packet state is

|φ′〉 =
∫

d3k

(2π )3

1√
2Ek

φ(k)e−ik·b|k〉. (A13)

For spin-1/2 particles, the single particle state |k, λ〉 has a
spin index λ which is the spin along a quantization direction.
The orthogonality and completeness conditions in (A3) now
become

〈k′, λ′|k, λ〉 = 2Ek (2π )3δ(3)(k − k′)δλ,λ′ ,

1 =
∫

d3 p

(2π )3

1

2Ep

∑
λ

|p, λ〉〈p, λ|. (A14)

The wave packet has the form

|φ, λ〉 =
∫

d3k

(2π )3

1√
2Ek

φ(k)|k, λ〉, (A15)

and satisfies the normalization condition 〈φ, λ|φ, λ〉 = 1 sim-
ilar to Eq. (A9).

APPENDIX B: EXPANSION OF fA AND fB IN
IMPACT PARAMETER

We can make an expansion of fA(Xc + yc,T /2, pc,A)
fB(Xc − yc,T /2, pc,B) in yc,T = (0, bc) if |bc| is small com-
pared with the range in which fA and fB change slowly.
The variables with the subscript c are defined in the CMS
of the scattering, while those without c are defined in the
laboratory frame. We assume that the system has reached local
equilibrium in momentum and the phase space distributions
depend on the space-time through the fluid velocity uμ(x) and
temperature T (x) in the form f (x, p) = f [β(x)p · u(x)].
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To the linear order in yc,T , we have

fA

(
Xc + yc,T

2
, pc,A

)
fB

(
Xc − yc,T

2
, pc,B

)

≈ fA(Xc, pc,A) fB(Xc, pc,B) + 1

2
yμ

c,T

[
∂ fA(Xc, pc,A)

∂X μ
c

fB(Xc, pc,B) − fA(Xc, pc,A)
∂ fB(Xc, pc,B)

∂X μ
c

]

= fA(Xc, pc,A) fB(Xc, pc,B) + 1

2
yμ

c,T

∂ (βuc,ρ )

∂X ν
c

[
pρ

c,A fB(Xc, pc,B)
dfA(Xc, pc,A)

d (βuc · pc,A)
− pρ

c,B fA(Xc, pc,A)
dfB(Xc, pc,B)

d (βuc · pc,B)

]

= fA(X, pA) fB(X, pB) + 1

2
yμ

c,T

∂X ν

∂X μ
c

∂ (βuρ )

∂X ν

[
pρ

A fB(X, pB)
dfA(X, pA)

d (βu · pA)
− pρ

B fA(X, pA)
dfB(X, pB)

d (βu · pB)

]
, (B1)

where in the second equality we have boosted to the laboratory frame using fA(X, pA) = fA(Xc, pc,A) and fB(X, pB) =
fB(Xc, pc,B). We look closely at the term yμ

c,T [∂ (βuc,ρ )/∂X μ
c ]pρ

c,A,

yμ
c,T pρ

c,A

∂ (βuρ )

∂X μ
c

= 1

4
y[μ

c,T pρ]
c,A

[
∂ (βuc,ρ )

∂X μ
c

− ∂ (βuc,μ)

∂X ρ
c

]
+ 1

4
y{μ

c,T pρ}
c,A

[
∂ (βuc,ρ )

∂X μ
c

+ ∂ (βuc,μ)

∂X ρ
c

]

= −1

2
y[μ

c,T pρ]
c,A� (c)

μρ + 1

4
y{μ

c,T pρ}
c,A

[
∂ (βuc,ρ )

∂X μ
c

+ ∂ (βuc,μ)

∂X ρ
c

]

= −1

2
Lμρ

(c) �
(c)
μρ + 1

4
y{μ

c,T pρ}
c,A

[
∂ (βuc,ρ )

∂X μ
c

+ ∂ (βuc,μ)

∂X ρ
c

]
, (B2)

where [μρ] and {μρ} denote the antisymmetrization and symmetrization of two indices respectively, Lμρ
(c) ≡ y[μ

c,T pρ]
c,A is the

OAM tensor, and ω(c)
μρ ≡ −(1/2)[∂Xc

μ (βuc,ρ ) − ∂Xc
ρ (βuc,μ)] is the thermal vorticity. We see that the coupling term of the OAM

and vorticity appear in Eq. (B1). The second term in the last line of Eq. (B2) is related to the Killing condition required by the
thermal equilibrium of the spin.

Using X μ
c = �μ

νX ν and X μ = [�−1]μνX ν
c , we have ∂X ν/∂X μ

c = [�−1]νμ = � ν
μ and then Eq. (B1) becomes

fA

(
Xc + yc,T

2
, pc,A

)
fB

(
Xc − yc,T

2
, pc,B

)

= fA(X, pA) fB(X, pB) + 1

2
yμ

c,T [�−1]νμ
∂ (βuρ )

∂X ν

[
pρ

A fB(X, pB)
dfA(X, pA)

d (βu · pA)
− pρ

B fA(X, pA)
dfB(X, pB)

d (βu · pB)

]
. (B3)

In Appendix C we give the exact form of �μ
ν and [�−1]μν .

APPENDIX C: LORENTZ TRANSFORMATION

In the laboratory frame two colliding particles have
on-shell momenta pA = (EA, pA) and pB = (EB, pB). The
Lorentz transformation for the energy momentum from the
laboratory frame to the CMS of two colliding particles is

pc,i = pi + (γbst − 1)v̂bst (v̂bst · pi ) − γbstvbstEi,

Ec,i = γbst (Ei − vbst · pi ), (C1)

where i = A, B, vbst is the boost velocity or the velocity of
CMS in the laboratory frame and is given by

vbst = pA + pB

EA + EB
, (C2)

and

γbst = (1 − |vbst|2)−1/2 (C3)

is the Lorentz contraction factor corresponding to vbst. Equa-
tion (C1) defines the Lorentz transformation matrix �μ

ν . The
reverse transformation to (C1) from the CMS to the laboratory

frame can be obtained by flipping the sign of v̂bst,

pi = pc,i + (γbst − 1)v̂bst (v̂bst · pc,i ) + γbstvbstEc,i,

Ei = γbst (Ec,i + vbst · pc,i ). (C4)

The above defines the Lorentz transformation matrix [�−1]μν .
The Lorentz transformation for xA = (tA, xA) and xB =

(tB, xB) is

xc,i = xi + (γbst − 1)v̂bst (v̂bst · xi ) − γbstvbstti,

tc,i = γbst (ti − vbst · xi ). (C5)

The difference of two space-time points in the CMS are
expressed in laboratory frame variables,

�tc = tc,A − tc,B = γbst (�t − vbst · �x),

�xc = �x + (γbst − 1)v̂bst (v̂bst · �x) − γbstvbst�t, (C6)

where �t = tA − tB and �x = xA − xB. We then express the
impact parameter as

bc = �xc · (1 − p̂c,Ap̂c,A). (C7)
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Let us look at the CMS constraint δ(�tc)δ(�xc,L ) in Eq. (10)
(we have recovered the subscript c). The condition �tc = 0
leads to

�t = vbst · �x, (C8)

while the condition p̂c,A · �xc = 0 leads to

(vA − vB) · �x = 0, (C9)

where we have used

�xc = �x + (
γ −1

bst − 1
)
v̂bst (v̂bst · �x), (C10)

which is the result of Eqs. (C6) and (C8). The condition in
Eq. (C9) means that (xA − xB) ⊥ (vA − vB). Equations (C8)
and (C9) are the laboratory frame version of the constraint
δ(�tc)δ(�xc,L ).

APPENDIX D: INTEGRATION OVER IMPACT
PARAMETER AND DELTA FUNCTIONS IN EQ. (21)

We carry out the integration over the impact parameter
and show how to remove the delta functions by integration
in Eq. (21).

Substituting Eq. (23) into Eq. (21), we have the integration
of bc in the following form:

I (bc) = i
∫

d2bc exp (ia · bc)
1

b2
c

bc, jbc,kbc,l

= − ∂

∂al

∂

∂a j

∂

∂ak

∫
d2bc exp (ia · bc)

1

b2
c

= −2π
∂

∂al

∂

∂a j

∂

∂ak

∫ b0

0
dbc

1

bc
J0(abc), (D1)

where bc ≡ |bc|, b0 is the cutoff of bc, a = k′
c,A − kc,A, and

J0(abc) = 1

2π

∫ 2π

0
dφ exp (iabc cos φ). (D2)

Then we carry out the derivatives on a j , ak , and al ,

I (bc) = −2π
1

a3
QL

jkl

∫ w0

0
dww2J ′′′

0 (w)

− 2π
1

a3
QT

jkl

∫ w0

0
dw[wJ ′′

0 (w) + J1(w)], (D3)

where we have used w0 = ab0 with b0 being the upper limit
or cutoff of bc, Ji (i = 0, 1, 2) are Bessel functions, and

QL
jkl = al a jak

a3
,

QT
jkl = 1

a3
(a2akδl j + a2alδ jk + a2a jδlk − 3ala jak ). (D4)

Note that the overall minus sign of Eq. (D3) cancels the one
in Eq. (21).

We carry out the integration to remove the delta functions.
First we integrate over kc,B and k′

c,B to remove six delta
functions in three momenta; the result is to make the following
replacement in the integrand,

kc,B = pc,1 + pc,2 − kc,A,

k′
c,B = pc,1 + pc,2 − k′

c,A. (D5)

We are left with two delta functions for energy conservation
which can be removed by the integration over kL

c,A and k′L
c,A,

where L means the longitudinal direction along pc,A. To this
purpose, we express the energies in terms of longitudinal and
transverse momenta

Ec,A =
√(

kL
c,A

)2 + (
kT

c,A

)2 + m2,

Ec,B =
√(

pT
c,1 + pT

c,2 − kT
c,A

)2 + (
pL

c,1 + pL
c,2 − kL

c,A

)2 + m2,

E ′
c,A =

√(
k′L

c,A

)2 + (
k′T

c,A

)2 + m2,

E ′
c,B =

√(
pT

c,1 + pT
c,2 − k′T

c,A

)2 + (
pL

c,1 + pL
c,2 − k′L

c,A

)2 + m2.

(D6)

So two delta functions for energy conservation become

I (δE ) = δ(Ec,A + Ec,B − Ec,1 − Ec,2)

= 1∣∣Ja
[
kL

c,A(1)
]∣∣δ[kL

c,A − kL
c,A(1)

]

+ 1∣∣Ja
[
kL

c,A(2)
]∣∣δ[kL

c,A − kL
c,A(2)

]
I (δE ′) = δ(E ′

c,A + E ′
c,B − Ec,1 − Ec,2)

= 1∣∣Ja
[
k′L

c,A(1)
]∣∣δ[k′L

c,A − k′L
c,A(1)

]

+ 1∣∣Ja
[
k′L

c,A(2)
]∣∣δ[k′L

c,A − k′L
c,A(2)

]
(D7)

where the Jacobians of two delta functions are given by

Ja
(
kL

c,A

) = ∂

∂kL
c,A

(Ec,A + Ec,B − Ec,1 − Ec,2)

= kL
c,A

(
1

Ec,A
+ 1

Ec,B

)
− 1

Ec,B

(
pL

c,1 + pL
c,2

)
,

Ja
(
k′L

c,A

) = ∂

∂k′L
c,A

(E ′
c,A + E ′

c,B − Ec,1 − Ec,2)

= k′L
c,A

(
1

E ′
c,A

+ 1

E ′
c,B

)
− 1

E ′
c,B

(
pL

c,1 + pL
c,2

)
,

(D8)

and kL
c,A(i = 1, 2) and k′L

c,A(i = 1, 2) are two roots of the
energy conservation equation Ec,A + Ec,B − Ec,1 − Ec,2 = 0
and E ′

c,A + E ′
c,B − Ec,1 − Ec,2 = 0, respectively. The explicit

forms of kL
c,A(i = 1, 2) and k′L

c,A(i = 1, 2) are

kL
c,A(1, 2) = C1 ± C2,

k′L
c,A(1, 2) = kL

c,A(1, 2)
[
kT

c,A → k′T
c,A

]
, (D9)
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where C1 and C2 are given by

C1 = 1

2
· pL

c,1 + pL
c,2

(Ec,1 + Ec,2)2 − (
pL

c,1 + pL
c,2

)2

× [(Ec,1 + Ec,2)2 − (
pL

c,1 + pL
c,2

)2

+ 2
(
pT

c,1 + pT
c,2

) · kT
c,A − (

pT
c,1 + pT

c,2

)2]
,

C2 = −1

2
· Ec,1 + Ec,2

(Ec,1 + Ec,2)2 − (
pL

c,1 + pL
c,2

)2

√
H , (D10)

with H being defined by

H = (Ec,1 + Ec,2)4 + 4m2
(
pL

c,1 + pL
c,2

)2 + (pc,1 + pc,2)4

+ 4
(
kT

c,A

)2
(pc,1 + pc,2)2 − 4(pc,1 + pc,2)2

× [kT
c,A · (pT

c,1 + pT
c,2

)]− 2(Ec,1 + Ec,2)2

× [2m2 + 2
(
kT

c,A

)2 − 2kT
c,A · (pT

c,1 + pT
c,2

)
+ (pc,1 + pc,2)2

]
. (D11)

APPENDIX E: SOME FORMULA FOR DIRAC SPINORS

The Hamiltonian for a Dirac fermion with the mass m is
given by

H = α · p + γ0m =
(

m σ · p
σ · p −m

)
, (E1)

where γ μ = (γ0, γ ) are Dirac gamma matrices, α ≡ γ0γ , and
σ = (σ1, σ2, σ3) are Pauli matrices. The energy eigenstate can
be found from the equation

H

(
χ

φ

)
= ±Ep

(
χ

φ

)
, (E2)

where Ep =
√

p2 + m2, the sign ± on the right-hand side
corresponds to the positive/negative energy state, χ and φ

are Pauli spinors which form a Dirac spinor (χ, φ). We can
express χ in terms of φ and vice versa,

χ = σ · p
ηEp − m

φ,

φ = σ · p
ηEp + m

χ, (E3)

where η = ±1 correspond to the positive and negative energy
state respectively. So the positive energy solution becomes

u(s, p) = √
Ep + m

(
χs

σ·p
Ep+m χs

)
, (E4)

where s = ±1 is the spin orientation of the Pauli spinor and
n = (sin θ cos φ, sin θ sin φ, cos θ ) is the spin quantization di-
rection. The spin eigenstates along n are given by

χ+ =
(

e−iφ cos θ
2

sin θ
2

)
,

χ− =
(−e−iφ sin θ

2
cos θ

2

)
, (E5)

which satisfy

σ · n =
(

cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
,

(σ · n)χs = sχs. (E6)

The negative energy solution can be put into the form

ṽ(s, p) = √
Ep + m

(− σ·p
Ep+m χs

χs

)
. (E7)

The Dirac spinor for antiparticles can be defined by

v(s, p) = ṽ(−s,−p) = √
Ep + m

( σ·p
Ep+m χ−s

χ−s

)
, (E8)

or defined in terms of the positive energy solution,

v(s, p) = iγ 2u∗(s, p) = −i
√

Ep + m

( σ·p
Ep+m σ2χ

∗
s

σ2χ
∗
s

)
. (E9)

The two Dirac spinors in (E8) and (E9) are actually the same
up to a sign.

Now we rewrite the Dirac spinor of a moving particle in the
way of a Lorentz transformation of the one in the particle’s
rest frame. The Lorentz transformation matrix for the Dirac
spinor is given by

�1/2(p) = exp
(− 1

2ηpα · p̂
)

= cosh
(

1
2ηp
)− (α · p̂) sinh

(
1
2ηp
)
,

�−1
1/2(p) = �1/2(−p) = exp

(
1
2ηpα · p̂

)
, (E10)

where p̂ ≡ p/|p| is the momentum direction, ηp is the rapidity
satisfying Ep = m cosh(ηp), |p| = m sinh(ηp), vp = tanh(ηp),
Ep + m = 2m cosh2 ( 1

2ηp), Ep − m = 2m sinh2 ( 1
2ηp). So

u(s, p) can be expressed by a Lorentz boost of u(s, 0) for the
particle at rest,

u(s, p) = √
Ep + m

(
χs

σ·p
Ep+m χs

)
= �1/2(−p)u(s, 0)

=
√

2m

(
cosh

(
1
2ηp
)
χs

(σ · p̂) sinh
(

1
2ηp
)
χs

)
. (E11)

In the same way we can rewrite v(s, p) as

v(s, p) = √
Ep + m

( σ·p
Ep+m χ−s

χ−s

)
= �1/2(−p)v(s, 0)

=
√

2m

(
(σ · p̂) sinh

(
1
2ηp
)
χ−s

cosh
(

1
2ηp
)
χ−s

)
. (E12)

With Eqs. (E11) and (E12) we have following formula:

∑
s

u(s, p)ū(s, q) = �1/2(−p)

[∑
s

u(s, 0)ū(s, 0)

]
�−1

1/2(−q)

= m�1/2(−p)(1 + γ0)�−1
1/2(−q),

∑
s

v(s, p)v̄(s, q) = �1/2(−p)

[∑
s

v(s, 0)v̄(s, 0)

]
�−1

1/2(−q)

= m�1/2(−p)(γ0 − 1)�−1
1/2(−q), (E13)
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where we have used ū(s, q) = ū(s, 0)�−1
1/2(−q), v̄(s, q) =

v̄(s, 0)�−1
1/2(−q),

∑
s u(s, 0)ū(s, 0) = m(1 + γ0), and∑

s v(s, 0)v̄(s, 0) = m(−1 + γ0).
The spin projector is defined by

�(s, n) = 1
2 (1 + sγ5nσ γσ ), (E14)

where nσ is the Lorentz boost of the polarization vector (0, n)
in the particle’s rest frame satisfying n · p = 0 and n2 = −1.
In the particle’s rest frame, we have

�rest (s, n) = 1

2
(1 + sn · �)

≡ 1

2

(
1 + sn · σ 0

0 1 − sn · σ

)
. (E15)

We have the following properties for the spin projector:

�(s, n)u(s, p) = u(s, p),

�(s, n)v(s, p) = v(s, p),

�(s, n)u(−s, p) = 0,

�(s, n)v(−s, p) = 0. (E16)

As an example, we can explicitly verify the first one as

�(s, n)u(s, p) = 1
2�1/2(−p)u(s, 0) + 1

2 snσ γ5�1/2(−p)

×�−1
1/2(−p)γσ�1/2(−p)u(s, 0)

= 1
2�1/2(−p)u(s, 0)

+ 1
2 s�1/2(−p)γ5nσΛ ν

σ (−p)γνu(s, 0)

= 1
2�1/2(−p)u(s, 0)

+ 1
2 s�1/2(−p)γ0(n · �)u(s, 0)

= �1/2(−p)�rest (s, n)u(s, 0)

= u(s, p), (E17)

where we have used �−1
1/2(−p)γσ�1/2(−p) = Λ ν

σ (−p)γν and
Λ ν

σ (−p) = Λν
σ (p). Using the spin projector, we have the

following relation:

�(s0, n)
∑

s

u(s, p)ū(s, p)

= �(s0, n) (p · γ + m)|pμ=(Ep,p)

= u(s0, p)ū(s0, p), (E18)

where p · γ ≡ pμγ μ.

APPENDIX F: POLARIZED AMPLITUDES FOR QUARKS
IN 2-TO-2 PARTON SCATTERINGS

In this Appendix, we give polarized amplitudes for quarks
in all 2-to-2 parton scatterings listed in Fig. 2. We assume the
same quark mass m for all flavors and that the external gluon
is massless. We introduce a mass into internal gluons or gluon
propagators in the t and u channels to regulate the possible
divergence.

All kinematic variables are defined in the CMS in this
Appendix; for notational simplicity we will suppress the
subscript c for all variables—for example, pA actually means
pcA. The values of color factors, denoted as CAB→CD for the
process A + B → C + D, are given in Table I.

1. qaqb → qaqb with a �= b

Following the Feynman diagram in Fig. 2, we obtain the
difference in the squared amplitude between the spin state
s2 = 1/2 and s2 = −1/2 for qb in the final state,

�Iqaqb→qaqb
M = Iqaqb→qaqb

M (s2 = 1/2) − Iqaqb→qaqb
M (s2 = −1/2)

= Cqaqb→qaqbg
4
sm

2 1

q2q′2 Tr
[
(p1 · γ + m)γ μ�1/2(−kA)(γ0 + 1)�−1

1/2(−k′
A)γ ν

]
× Tr

[
γ5(n · γ )(p2 · γ + m)γμ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γν

]
, (F1)

where q = kA − p1 and q′ = k′
A − p1 are momenta in the propagators.

2. q̄aqb → q̄aqb with a �= b

For the polarization of qb, we obtain

�I q̄aqb→q̄aqb
M = Cq̄aqb→q̄aqbg

4
sm

2 1

q2q′2 Tr
[
γ μ(p1 · γ − m)γ ν�1/2(−k′

A)(γ0 − 1)�−1
1/2(−kA)

]
× Tr

[
γ5(n · γ )(p2 · γ + m)γμ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γν

]
, (F2)

where q = kA − p1 and q′ = k′
A − p1 are momenta in the propagators.
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3. q̄aqa → q̄aqa

For the polarization of qa in the final state, we obtain

�I q̄aqa→q̄aqa
M = C(1)

q̄aqa→q̄aqa
g4

sm
2 1

q2
1q′2

1

Tr
[
γ5(n · γ )(p2 · γ + m)γ μ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ ν

]
× Tr

[
(p1 · γ − m)γν�1/2(−k′

A)(γ0 − 1)�−1
1/2(−kA)γμ

]
−C(2)

q̄aqa→q̄aqa
g4

sm
2 1

q2
1q′2

2

Tr
[
γ5(n · γ )(p2 · γ + m)γ μ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ ν

×�1/2(−k′
A)(γ0 − 1)�−1

1/2(−kA)γμ(p1 · γ − m)γν

]
−C(2)

q̄aqa→q̄aqa
g4

sm
2 1

q2
2q′2

1

Tr
[
γ5(n · γ )(p2 · γ + m)γμ(p1 · γ − m)γν

×�1/2(−k′
A)(γ0 − 1)�−1

1/2(−kA)γ μ�1/2(−kB)(γ0 + 1)�−1
1/2(−k′

B)γ ν
]

+C(1)
q̄aqa→q̄aqa

g4
sm

2 1

q2
2q′2

2

Tr
[
�1/2(−k′

A)(γ0 − 1)�−1
1/2(−kA)γ μ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ ν

]
× Tr[γ5(n · γ )(p2 · γ + m)γμ(p1 · γ − m)γν], (F3)

where q1 = kA − p1, q2 = kA + kB, q′
1 = k′

A − p1, and q′
2 = k′

A + k′
B are momenta in the propagators.

4. qaqa → qaqa

For the polarization of qa in the final state, we obtain

�Iqaqa→qaqa
M = C(1)

qaqa→qaqa
g4

sm
2 1

q2
1q′2

1

Tr
[
(p1 · γ + m)γ μ�1/2(−kA)(γ0 + 1)�−1

1/2(−k′
A)γ ν

]
× Tr

[
γ5(n · γ )(p2 · γ + m)γμ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γν

]
−C(2)

qaqa→qaqa
g4

sm
2 1

q2
1q′2

2

Tr
[
(p1 · γ + m)γ μ�1/2(−kA)(γ0 + 1)�−1

1/2(−k′
A)γ ν

× γ5(n · γ )(p2 · γ + m)γμ�1/2(−kB)(γ0 + 1)�−1
1/2(−k′

B)γν

]
−C(2)

qaqa→qaqa
g4

sm
2 1

q′2
1 q2

2

Tr
[
γ μ�1/2(−kA)(γ0 + 1)�−1

1/2(−k′
A)γ ν (p1 · γ + m)

× γμ�1/2(−kB)(γ0 + 1)�−1
1/2(−k′

B)γνγ5(n · γ )(p2 · γ + m)
]

+C(1)
qaqa→qaqa

g4
sm

2 1

q′2
2 q2

2

Tr
[
γ5(n · γ )(p2 · γ + m)γ μ�1/2(−kA)(γ0 + 1)�−1

1/2(−k′
A)γ ν

]
× Tr

[
�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γν (p1 · γ + m)γμ

]
, (F4)

where q1 = kA − p1, q2 = kA − p2, q′
1 = k′

A − p1, and q′
2 = k′

A − p2 are momenta in propagators.

5. gg → q̄aqa

In principle, the ghost diagrams should also contribute. However, its contribution is canceled when we calculate �Igg→q̄aqa
M .

For the polarization of qa in the final state, we obtain

�Igg→q̄aqa
M = C(1)

gg→q̄aqa
g4

s

1(
q2

1 − m2
)(

q′2
1 − m2

) I1 + C(2)
gg→q̄aqa

g4
s

1(
q2

1 − m2
)(

q′2
2 − m2

) I2

−C(3)
gg→q̄aqa

g4
s

1(
q2

1 − m2
)
q′2

3

I3 + C(2)
gg→q̄aqa

g4
s

1(
q′2

1 − m2
)(

q2
2 − m2

) I4

+C(1)
gg→q̄aqa

g4
s

1(
q2

2 − m2
)(

q′2
2 − m2

) I5 + C(3)
gg→q̄aqa

g4
s

1(
q2

2 − m2
)
q′2

3

I6

−C(3)
gg→q̄aqa

g4
s

1(
q′2

1 − m2
)
q2

3

I7 + C(3)
gg→q̄aqa

g4
s

1(
q′2

2 − m2
)
q2

3

I8 + C(4)
gg→q̄aqa

g4
s

1

q2
3q′2

3

I9, (F5)
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where q1 = kA − p1, q2 = p2 − kA, q3 = kA + kB, q′
1 = k′

A − p1, q′
2 = p2 − k′

A, and q′
3 = k′

A + k′
B are momenta in propagators,

and the terms Ii for i = 1, 2, . . . , 9 are given by

I1 = Tr[γ5(n · γ )(p2 · γ + m)γ ν (q1 · γ + m)γ μ(p1 · γ − m)γ μ′
(q′

1 · γ + m)γ ν ′
]gμμ′gνν ′ , (F6)

I2 = Tr[γ5(n · γ )(p2 · γ + m)γ ν (q1 · γ + m)γ μ(p1 · γ − m)γ ν ′
(q′

2 · γ + m)γ μ′
]gμμ′gνν ′ , (F7)

I3 = Tr[γ5(n · γ )(p2 · γ + m)γ ν (q1 · γ + m)γ μ(p1 · γ − m)γσ ′]gμμ′gνν ′

×[gσ ′μ′
(−q′

3 − k′
A)ν

′ + gμ′ν ′
(k′

A − k′
B)σ

′ + gν ′σ ′
(k′

B + q′
3)μ

′
], (F8)

I4 = Tr[γ5(n · γ )(p2 · γ + m)γ μ(q2 · γ + m)γ ν (p1 · γ − m)γ μ′
(q′

1 · γ + m)γ ν ′
]gμμ′gνν ′ , (F9)

I5 = Tr[γ5(n · γ )(p2 · γ + m)γ μ(q2 · γ + m)γ ν (p1 · γ − m)γ ν ′
(q′

2 · γ + m)γ μ′
]gμμ′gνν ′ , (F10)

I6 = Tr[γ5(n · γ )(p2 · γ + m)γ μ(q2 · γ + m)γ ν (p1 · γ − m)γσ ′]gμμ′gνν ′

× [gσ ′μ′
(−q′

3 − k′
A)ν

′ + gμ′ν ′
(k′

A − k′
B)σ

′ + gν ′σ ′
(k′

B + q′
3)μ

′
], (F11)

I7 = Tr[γ5(n · γ )(p2 · γ + m)γσ (p1 · γ − m)γ μ′
(q′

1 · γ + m)γ ν ′
]gμμ′gνν ′

× [gσμ(−q3 − kA)ν + gμν (kA − kB)σ + gνσ (kB + q3)μ], (F12)

I8 = Tr[γ5(n · γ )(p2 · γ + m)γσ (p1 · γ − m)γ ν ′
(q′

2 · γ + m)γ μ′
]gμμ′gνν ′

× [gσμ(−q3 − kA)ν + gμν (kA − kB)σ + gνσ (kB + q3)μ], (F13)

I9 = Tr[γ5(n · γ )(p2 · γ + m)γσ (p1 · γ − m)γσ ′][gσμ(−q3 − kA)ν + gμν (kA − kB)σ + gνσ (kB + q3)μ]

× [gσ ′μ′
(−q′

3 − k′
A)ν

′ + gμ′ν ′
(k′

A − k′
B)σ

′ + gν ′σ ′
(k′

B + q′
3)μ

′
]gμμ′gνν ′ . (F14)

6. gqa → gqa

In principle, the ghost diagram should also contribute. However, its contribution is canceled when we calculate �Igqa→gqa
M .

For the polarization of qa in the final state, we obtain

�Igqa→gqa
M = C(1)

gqa→gqa
g4

sm
1

q2
1q′2

1

I1 + C(2)
gqa→gqa

g4
sm

1

q2
1

(
q′2

2 − m2
) I2 − C(2)

gqa→gqa
g4

sm
1

q2
1

(
q′2

3 − m2
) I3

+C(2)
gqa→gqa

g4
sm

1

q′2
1

(
q2

2 − m2
) I4 + C(3)

gqa→gqa
g4

sm
1(

q2
2 − m2

)(
q′2

2 − m2
) I5 + C(4)

gqa→gqa
g4

sm
1(

q2
2 − m2

)(
q′2

3 − m2
) I6

−C(2)
gqa→gqa

g4
sm

1

q′2
1

(
q2

3 − m2
) I7 + C(4)

gqa→gqa
g4

sm
1(

q′2
2 − m2

)(
q2

3 − m2
) I8 + C(3)

gqa→gqa
g4

sm
1(

q2
3 − m2

)(
q′2

3 − m2
) I9,

(F15)

where q1 = kA − p1, q2 = p2 − kA, q3 = kA + kB, q′
1 = k′

A − p1, q′
2 = p2 − k′

A, and q′
3 = k′

A + k′
B are momenta in propagators,

and the terms Ii for i = 1, 2, . . . , 9 are given by

I1 = Tr
[
γ5(n · γ )(p2 · γ + m)γσ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γσ ′

]
× gμμ′gνν ′ [gμν (kA + p1)σ + gνσ (q1 − p1)μ + gσμ(−q1 − kA)ν]

× [gμ′ν ′
(k′

A + p1)σ
′ + gν ′σ ′

(q′
1 − p1)μ

′ + gσ ′μ′
(−q′

1 − k′
A)ν

′
], (F16)

I2 = Tr
[
γ5(n · γ )(p2 · γ + m)γσ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ ν ′

(q′
2 · γ + m)γ μ′]

gμμ′gνν ′

× [gμν (kA + p1)σ + gνσ (q1 − p1)μ + gσμ(−q1 − kA)ν], (F17)

I3 = Tr
[
γ5(n · γ )(p2 · γ + m)γσ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ μ′

(q′
3 · γ + m)γ ν ′]

gμμ′gνν ′

× [gμν (kA + p1)σ + gνσ (q1 − p1)μ + gσμ(−q1 − kA)ν], (F18)

I4 = Tr
[
γ5(n · γ )(p2 · γ + m)γ μ(q2 · γ + m)γ ν�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γσ ′

]
gμμ′gνν ′

× [gμ′ν ′
(k′

A + p1)σ
′ + gν ′σ ′

(q′
1 − p1)μ

′ + gσ ′μ′
(−q′

1 − k′
A)ν

′
], (F19)

I5 = Tr
[
γ5(n · γ )(p2 · γ + m)γ μ(q2 · γ + m)γ ν�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ ν ′

(q′
2 + m)γ μ′]

gμμ′gνν ′ , (F20)

I6 = Tr
[
γ5(n · γ )(p2 · γ + m)γ μ(q2 · γ + m)γ ν�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ μ′

(q′
3 · γ + m)γ ν ′]

gμμ′gνν ′ , (F21)
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I7 = Tr
[
γ5(n · γ )(p2 · γ + m)γ ν (q3 · γ + m)γ μ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γσ ′

]
gμμ′gνν ′

× [gμ′ν ′
(k′

A + p1)σ
′ + gν ′σ ′

(q′
1 − p1)μ

′ + gσ ′μ′
(−q′

1 − k′
A)ν

′
], (F22)

I8 = Tr
[
γ5(n · γ )(p2 · γ + m)γ ν (q3 · γ + m)γ μ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ ν ′

(q′
2 · γ + m)γ μ′]

gμμ′gνν ′ , (F23)

I9 = Tr
[
γ5(n · γ )(p2 · γ + m)γ ν (q3 · γ + m)γ μ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ μ′

(q′
3 · γ + m)γ ν ′]

gμμ′gνν ′ . (F24)

7. q̄aqa → q̄bqb with a �= b

For the polarization of qb in the final state, we obtain

�I q̄aqa→q̄bqb
M = Cq̄aqa→q̄bqbg

4
sm

2 1

q2q′2 Tr
[
�1/2(−k′

A)(γ0 − 1)�−1
1/2(−kA)γ μ�1/2(−kB)(γ0 + 1)�−1

1/2(−k′
B)γ ν

]
× Tr[γ5(n · γ )(p2 · γ − m)γμ(p1 · γ − m)γν], (F25)

where q = kA + kB and q′ = k′
A + k′

B are momenta in propagators.
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