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We use experimentally measured identified particle spectra and Hanbury Brown-Twiss radii to determine
the entropy per unit rapidity dS/dy produced in

√
s = 7 TeV pp and

√
sNN = 2.76 TeV Pb-Pb collisions.

We find that dS/dy = 11 335 ± 1188 in 0%–10% Pb-Pb, dS/dy = 135.7 ± 17.9 in high-multiplicity pp, and
dS/dy = 37.8 ± 3.7 in minimum bias pp collisions and compare the corresponding entropy per charged particle
(dS/dy)/(dNch/dy) to predictions of statistical models. Finally, we use the quantum chromodynamics kinetic
theory pre-equilibrium and viscous hydrodynamics to model entropy production in the collision and reconstruct
the average temperature profile at τ0 ≈ 1 fm/c for high-multiplicity pp and Pb-Pb collisions.
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I. INTRODUCTION

Ultrarelativistic collisions of nuclei as studied at the Rela-
tivistic Heavy Ion Collider (RHIC) and the Large Hadron Col-
lider (LHC) are typically modeled assuming rapid thermal-
ization within a time scale of 1–2 fm /c [1]. The subsequent
longitudinal and transverse expansion of the created quark-
gluon plasma (QGP) is then described by viscous relativistic
hydrodynamics [2]. In this picture the bulk of the entropy
is created during the thermalization process and the later
stages of the evolution add relatively little [3]. By correctly
accounting for the entropy production in different stages of the
collisions, one can therefore relate the measurable final-state
particle multiplicities to the properties of system, e.g., initial
temperature, at the earlier stages of the collisions.

Two different methods are frequently used to estimate
the total produced entropy in nuclear collisions. In the first
method, pioneered by Pal and Pratt, one calculates the entropy
based on transverse momentum spectra of different particle
species and their source radii as determined from Hanbury
Brown-Twiss correlations [4]. The original paper analyzed
data from

√
sNN = 130 GeV Au-Au collisions and is still the

basis of many entropy estimations at other energies [3]. The
second method uses the entropy per hadron as calculated
in a hadron resonance gas model to translate the final-state
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multiplicity dN/dy per unit of rapidity to an entropy dS/dy
[5,6]. Even though the estimate of the entropy from the mea-
sured multiplicity dNch/dη is relatively straightforward one
finds quite different values for the conversion factor between
the measured charged-particle multiplicity dNch/dη and the
entropy dS/dy in the literature [6–9].

This paper provides an up-to-date calculation of entropy
production in pp and Pb-Pb collisions at the LHC energies
and uses state-of-the-art modeling of the QGP to reconstruct
the initial conditions at the earliest moments in the collision.
In Sec. II we recap the method of Ref. [4], which we use in
Sec. III A and Sec. III B to calculate the total produced entropy
per rapidity, and the entropy per final-state charged hadron
S/Nch ≡ (dS/dy)/(dNch/dy) from the identified particle spec-
tra and femtoscopy data for

√
s = 7 TeV pp and

√
sNN =

2.76 TeV Pb-Pb collisions at LHC [10–16]. In Sec. IV the
result for the entropy per particle is then compared to different
estimates of the entropy per hadron calculated in hadron
resonance gas models at the chemical freeze-out temperature
of Tch ≈ 156 MeV [17]. Finally in Sec. V A we use different
models of the QGP evolution to track entropy production in
different stages of the collisions and to determine the initial
temperature profile at τ = 1 fm/c.

II. ENTROPY FROM TRANSVERSE MOMENTUM
SPECTRA AND HBT RADII

In this section we recap the entropy calculation from phase-
space densities obtained from particle spectra and femtoscopy
[4]. Foundations for this method were laid in Refs. [18,19].
The entropy S for a given hadron species at the time of kinetic
freeze-out is calculated from the phase space density f ( �p, �r)
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according to

S = (2J + 1)
∫

d3rd3 p

(2π )3 [− f ln f ± (1 ± f ) ln (1 ± f )],

(1)

where + is for bosons and the − for fermions. The factor 2J +
1 is the spin degeneracy. The total entropy in the collision is
then given by the sum of the entropies of the produced hadrons
species. The integral in Eq. (1) can be evaluated using the
series expansion,

±(1 ± f ) ln (1 ± f ) = f ± f 2

2
− f 3

6
± f 4

12
+ . . . . (2)

Three-dimensional source radii measured through Hanbury
Brown-Twiss two-particle correlations [20] are usually de-
termined in the longitudinally co-moving system (LCMS) in
which the component of the pair momentum along the beam
direction vanishes. The density profile of the source in the
LCMS is parametrized by a three-dimensional Gaussian so
that the phase space density can be written as

f ( �p, �r) = F ( �p) exp

(
− x2

out

2R2
out

− x2
side

2R2
side

− x2
long

2R2
long

)
, (3)

with

F ( �p) = (2π )3/2

2J + 1

d3N

d3 p

1

RoutRsideRlong
. (4)

The radii in Eqs. (3) and (4) are functions of the momentum
�p.

In many cases only the one-dimensional source radius
Rinv, which is determined in the pair rest frame (PRF), can
be determined experimentally owing to limited statistics. In
Ref. [4] the relation between Rinv in the PRF and the three-
dimensional radii in the LCMS was assumed to be

R3
inv ≈ γ RoutRsideRlong, (5)

where γ = mT/m ≡
√

m2 + p2
T/m. This is also our standard

assumption. In [21] and [22] the ALICE collaboration re-
ported values for both Rinv and Rout, Rside, Rlong obtained from
two-pion correlations in Pb-Pb collisions at

√
sNN = 2.76 TeV

and pp collisions at
√

s = 7 TeV, respectively. From these
results one can determine a more general version of Eq. (5) of
the form R3

inv ≈ h(γ )RoutRsideRlong with h(γ ) = αγ β . Results
for the entropy dS/dy obtained under this assumption are
given in Appendix A.

Using Eq. (5) one arrives at

dS

dy
=

∫
d pT 2π pT E

d3N

d3 p

(
5

2
− lnF ± F

25/2

− F2

2 × 35/2
± F3

3 × 45/2

)
, (6)

with

F = 1

m

(2π )3/2

2J + 1

1

R3
inv(mT)

E
d3N

d3 p
, (7)

TABLE I. Estimate of the entropy (dS/dy)y=0 for 0%–10% most
central Pb-Pb collisions at

√
sNN = 2.76 TeV. The table shows the

hadrons considered as stable final-state particles and their contribu-
tion to the total entropy.

Particle (dS/dy)one state
y=0 Factor (dS/dy)total

y=0

π 2182 3 6546
K 605 4 2420
η 399 1 399
η′ 66 1 66
p 266 2 532
n 266 2 532
� 160 2 320
	 58 6 348

 39 4 156
� 8 2 16

Total 11 335

where m is the particle mass and + is for bosons and − for
fermions. Note that Eq. (6) includes the terms up to f 4

i /12 of
the Taylor expansion in Eq. (2).

Pions have the highest phase space density of the con-
sidered hadrons and the approximation made in Eq. (6) is
better than 1% for pions in central Pb-Pb collisions at

√
sNN =

2.76 TeV. In pp collisions at
√

s = 7 TeV the maximum pion
phase space density F (pT) exceeds unity at low pT rendering
the series expansion in Eq. (2) unreliable. For pions in pp
collisions we therefore approximate the (1 + f ) ln(1 + f )
term of Eq. (1) by a polynomial of order 8. This gives an
approximate expression with numerical coefficients ai which
is also valid for values of F obtained for pions in high-
multiplicity pp collisions:

dS

dy
=

∫
d pT 2π pT E

d3N

d3 p

(
5

2
− lnF +

7∑
i=0

aiF i

)
. (8)

III. RESULTS

A. Entropy in Pb-Pb collisions at
√

sNN = 2.76 TeV

We determine the entropy in Pb-Pb collisions at
√

sNN =
2.76 TeV for the 10% most central collisions considering
as final-state hadrons the particles given in Table I. The
calculation uses transverse momentum spectra of π , K, p
[10], � [11], and 
, � [12] from the ALICE collaboration
as experimental input. We also use HBT radii measured by
ALICE [23].

For the entropy determination the measured transverse
momentum spectra need to be extrapolated to pT = 0. To
this end we fit different functional forms to the pT spectra
(Tsallis, Bose-Einstein, exponential in transverse mass mT =√

p2
T + m2, Boltzmann, as defined in [10]). In the entropy

calculation we only use the extrapolations in pT regions where
data are not available; otherwise we used the measured spec-
tra. Differences of the entropy estimate for different functional
form are taken as a contribution to the systematic uncertainty.
We have checked that the pT-integrated π , K, p multiplicities
(dn/dy)y=0 agree with the values published in [10].
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FIG. 1. Transverse momentum spectrum of positive pions (top)
and scaled HBT radii Rinv (bottom) in 0%–10% Pb-Pb collisions at√

sNN = 2.76 TeV. A Tsallis function [24,25] is fitted to the spectrum
to extrapolate to pT = 0. The one-dimensional HBT radii divided
by ((

√
γ + 2)/3)1/2 [26] where γ = mT/m as a function of the

transverse mass mT are parametrized by a power law function αmβ

T

and by an exponential function a exp(−mT/b) + c.

The one-dimensional invariant HBT radii Rinv are only
available for π , K, and p. When plotted as a function of
transverse mass mT =

√
m2 + p2

T the Rinv values for these
particles do not fall on a common curve. However, in [26]
it was shown that the HBT radii Rinv divided by ((

√
γ +

2)/3)1/2 where γ = mT/m are approximately a function of
mT only. This empirical scaling factor for Rinv is related to
the fact that for a three-dimensional Gaussian parametriza-
tion of the source the one-dimensional source distribution in
general cannot be described by a Gaussian (see Appendix
of [26]). We use this mT scaling of the scaled HBT radii to
obtain Rinv(mT) for all considered particles. The bottom panel
of Fig. 1 shows parametrizations of the scaled HBT radii
with a power law function and with an exponential function
which provide different extrapolation towards the pion mass.
We propagate the systematic uncertainties of the measured
HBT radii as well as the uncertainty related to the two
different parametrizations to the uncertainty of the extracted
entropy.

For the entropy calculation the particle species in Table I
are considered stable. The entropy carried by neutrons, neutral
kaons, η, η′, and 	 baryons is estimated based on measured
species assuming that the entropy per particle is similar for
particles with similar masses. The entropy carried by neutrons

is assumed to be the same as the entropy carried by protons.
The entropy associated with neutral kaons and η mesons
is determined from charged kaons, the entropy of η′ from
protons, and the entropy of 	 baryons from �.

The yields of particles in Table I contain contributions from
strong decays. To take into account mass differences and to
estimate the contributions from strong decays to the different
particle species we simulate particle decays with the aid of
PYTHIA 8.2 [27,28]. To this end we generate primary particles
available in PYTHIA 8.2 with rates proportional to equilibrium
particle densities in a noninteracting hadron gas [29,30]:

n =
∞∑

k=1

T g

2π2

(±)k+1

k
m2K2

(
km

T

)
ekμ/T . (9)

Here g = 2J + 1 is the spin degeneracy factor and K2 the
modified Bessel function of the second kind. The + is for
bosons and the − for fermions. For the chemical potential
we use μ = 0. For the temperature we take T = 156 MeV as
obtained from statistical model fits to particle yields measured
at the LHC [17]. We then simulate strong and electromagnetic
decays of the primary particles. Particle ratios after decays are
used to estimate the entropy of unmeasured particles. In case
of the η meson we find that after decays the η/K+ ratio is
0.69 while the primary ratio is ηprim/K+

prim = 0.79. For the η′

we find η′
prim/pprim = 0.45 and η′/p = 0.25 after decays. The

primary 	−
prim/�prim ratio is about 0.66. The entropy carried

by the 	 baryons is derived from the ratios 	−/� ≈ 0.26 and
	0/� ≈ 0.27 after decays.

The η, η′ mesons and 	0 baryons decay electromagnet-
ically. Decay products from these decays (η, η′ → pions,
and 	0 → �γ ) are not subtracted from the experimentally
determined particle spectra. As η, η′, and 	 are considered
stable in the entropy calculation (see Table I) we correct for
this feed-down contributions. In the particle decay simulation
described above we determine the feed-down fraction,

Rfd(X → Y ) = number of Y from X

total number of Y
, (10)

and find Rfd(η → π+) = 3.6%, Rfd(η′ → π+) = 1.2%,
Rfd(η′ → η) = 5.9%, and Rfd(	0 → �) = 27.0%.

The entropies for the particle species considered stable
are summarized in Table I. These values represent the av-
erage of the entropies obtained for the power law and the
exponential parametrization of the scaled invariant HBT radii.
In both cases the Tsallis function was used to extrapolate
the measured transverse momentum spectra to pT = 0. We
considered the uncertainties of the measured transverse mo-
mentum spectra, the choice of the parametrization of the pT

spectra, the uncertainties of the measured HBT radii, and the
choice of the parametrization of the HBT radii as a function
of mT as sources of systematic uncertainties. The estimated
total entropy in 0%–10% most central Pb-Pb collisions at√

sNN = 2.76 TeV is 11 335 ± 1188. The uncertainty of the
estimated entropy is the quadratic sum of the uncertainties
related to the transverse momentum spectra (σspectra = 629)
and invariant HBT radii (σRinv = 1007).

It is interesting to calculate the entropy per charged
hadron in the final state from the total entropy. From [31]
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we obtain for 0%–10% most central Pb-Pb collisions at√
sNN = 2.76 TeV a charged-particle multiplicity at midrapid-

ity of dNch/dη = 1448 ± 54. From our parametrizations of
the pion, kaon, and proton spectra we find a Jacobian for
the change of variables from pseudorapidity to rapidity of
(dNch/dy)/(dNch/dη) = 1.162 ± 0.008. This yields an en-
tropy per charged hadron in the final state of S/Nch = 6.7 ±
0.8.

In the paper by Pratt and Pal the entropy was determined
for the 11% most central Au-Au collisions at a center-of-mass
energy of

√
sNN = 130 GeV. The total entropy per unit of ra-

pidity around midrapidity was found to be dS/dy = 4451 with
an estimated uncertainty of 10%. Using dNch/dy = 536 ± 21
from [32] and (dNch/dy)/(dNch/dη) ≈ 1.15 we find an en-
tropy per charged particle of S/Nch ≡ (dS/dy)/(dNch/dy) =
7.2 ± 0.8. This value for Au-Au collisions at a center-of-mass
energy of

√
sNN = 130 GeV agrees with the value of S/Nch =

6.7 ± 0.8 we obtain for the LHC energy in this paper.

B. Entropy in pp collisions at
√

s = 7 TeV

Not only in high-energy nucleus-nucleus collisions but
also in proton-proton and proton-nucleus collisions transverse
momentum spectra and azimuthal distributions of produced
particles can be modeled assuming a hydrodynamic evolution
of the created matter [33–35]. This provides a motivation
to determine the entropy dS/dy with the Pal-Pratt method
also in pp collisions. Moreover, the experimentally determi-
nation of the entropy is of interest in the context of mod-
els which are based on entropy production mechanisms not
related to particle scatterings (see, e.g., [36,37]). Here we
focus on minimum bias and high-multiplicity pp collisions at√

s = 7 TeV.
Transverse momentum spectra for both minimum bias

collisions (π , K, p [13], � [11], and 
, � [14]) and high-
multiplicity pp collisions (π , K, p [15], �, 
, � [16]) are
taken from the ALICE experiment. The high-multiplicity
sample (class I in [16] and [15]) roughly corresponds to the
0%–1% percentile of the multiplicity distribution measured at
forward and backward pseudorapidities. HBT radii are taken
from [22]. In minimum bias pp collisions there is little depen-
dence of Rinv on transverse mass and a constant value Rinv =
1.1 ± 0.1 fm is assumed. For the high-multiplicity sample
mT scaling of Rinv is assumed and the same power law and
exponential functional forms as in the Pb-Pb analysis are fit
to the data from [22] (Nch = 42–51 class in [22]). Taking into
account the uncertainty of associating the multiplicity class in
[15,16] with the one in [22] we assume an uncertainty of Rinv

for the high-multiplicity sample of about 10%.
With the same assumptions for the contribution of un-

observed particles and feed-down as in Pb-Pb collisions we
obtain dS/dy|MB = 37.8 ± 3.7 in minimum bias (MB) colli-
sions and dS/dy|HM = 135.7 ± 17.9 for the high-multiplicity
(HM) sample. The contribution of the different particle
species to the total entropy are given in Tables II and III.
With dNch/dη = 6.0 ± 0.1 [38] and (dNch/dy)/(dNch/dη) =
1.21 ± 0.01 for minimum bias pp collisions we obtain
S/Nch|MB = 5.2 ± 0.5 for the entropy per final-state charged
particle. For the high-multiplicity sample with dNch/dη =

TABLE II. Estimate of the entropy (dS/dy)y=0 in minimum bias
pp collisions at

√
s = 7 TeV.

Particle (dS/dy)one state
y=0 Factor (dS/dy)total

y=0

π 6.7 3 20.1
K 2.1 4 8.4
η 1.4 1 1.4
η′ 0.3 1 0.3
p 1.2 2 2.4
n 1.2 2 2.4
� 0.6 2 1.2
	 0.2 6 1.2

 0.1 4 0.4
� 0.01 2 0.02

Total 37.8

21.3 ± 0.6 [15] and (dNch/dy)/(dNch/dη) = 1.19 ± 0.01 we
find S/Nch|HM = 5.4 ± 0.7.

IV. COMPARISONS TO STATISTICAL MODELS

To compare the S/Nch value determined from the measured
final-state particle spectra to calculations in which particles
originate from a hadron resonance gas one needs to know
the ratio N/Nch of the total number of primary hadrons N (≡
Nprim ) to the total number of measured charged hadrons in
the final state Nch(≡ Nfinal

ch ). The latter contains feed-down
contributions from strong and electromagnetic hadron decays.
If only pions were produced one would get N/Nch = 3/2.
With the aforementioned PYTHIA 8.2 simulation and the list
of stable hadrons implemented in PYTHIA [again with hadron
yields given by Eq. (9) for T = 156 MeV and μb = 0] we
obtain a value of (N/Nch )Pythia = 1.14. In this calculation
particles with a lifetime τ above 1 mm/c were considered
stable. Using the implementation of the hadron resonance gas
of Ref. [39] we find (N/Nch )TF = 1.09. In the following we
use N/Nch = 1.115 ± 0.03, i.e., we take the average of the two
results as central value and the difference as a measure of the
uncertainty.

TABLE III. Estimate of the entropy (dS/dy)y=0 in high-
multiplicity pp collisions (class I in [16] and [15])) at

√
s = 7 TeV.

Particle (dS/dy)one state
y=0 Factor (dS/dy)total

y=0

π 23.8 3 71.4
K 7.5 4 30.0
η 4.9 1 4.9
η′ 1.0 1 1.0
p 4.2 2 8.4
n 4.2 2 8.4
� 2.3 2 4.6
	 0.8 6 4.8

 0.5 4 2.0
� 0.1 2 0.2

Total 135.7
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FIG. 2. Entropy per primary hadron S/N for a noninteracting
thermal hadron resonance gas at a temperature of T = 156 MeV as
given by Eq. (12) as a function of the upper mass limit for particles
listed in the particle data book [40]. The entropy per hadron saturates
for high upper mass limits at a value of S/N = 6.9.

In the simplest form of the description of a hadron res-
onance gas the system is treated as a noninteracting gas
of pointlike hadrons where hadronic resonances have zero
width. The entropy density for a primary hadron with mass
m at thermal equilibrium with temperature T and vanishing
chemical potential μ = 0 is then given by [30]

s = 4gT 3

2π2

∞∑
k=1

(±)k+1

k4

[(
km

T

)2

K2

(
km

T

)

+ 1

4

(
km

T

)3

K1

(
km

T

)]
, (11)

where + is for bosons and − for fermions. K1 and K2 are
modified Bessel functions of the second kind. Using Eqs. (9)
and (11) the entropy per primary hadron in the thermal hadron
resonance gas can be calculated as

S/N =
∑

i si∑
i ni

, (12)

where the index i denotes the different particles species. For
illustration, the entropy per hadron is shown in Fig. 2 as a
function of the upper limit on the mass for all particles listed
in the particle data book [40].

More sophisticated implementations of the hadron res-
onance gas take the volume of the hadrons and the finite
width of hadronic resonances into account [17,39,41–48].
Some of these models implement chemical nonequilibrium
factors which we do not consider here. Models can also differ
in the set of considered hadron states. In the following we
concentrate on the models by Braun-Munzinger et al. [17]
(“model 1”) and Vovchenko and Stöcker [39] (“model 2”).
The corresponding values for the entropy per primary hadron
S/N and the entropy per final-state charged hadron S/Nch are
given in Table IV. The S/Nch values for these models are
somewhat larger than the measured value of S/Nch = 6.7 ±
0.8, but the deviations are not larger than 1–2σ . We note here
that the two approaches calculate slightly different quantities.

TABLE IV. Entropy per primary hadron S/N at a temperature
of T = 156 MeV for different hadron resonance gas models. The
entropy per final-state charged hadron is calculated from S/N by
multiplying with the factor N/Nch = 1.115 ± 0.03. The volume cor-
rection of model 2 is based on the quantum van der Waals model.
Within 1–2σ the S/Nch values of these models agree with the value
of S/Nch = 6.7 ± 0.8 obtained from data.

Model S/N S/Nch

Simple HRG [Eq. (12)] 6.9 7.7 ± 0.2
Model 1 (Braun-Munzinger et al. [17,49])
Without volume correction 7.3 8.1 ± 0.2
With volume correction 7.6 8.5 ± 0.2

Model 2 (Vovchenko, Stöcker [39])
Ideal 6.9 7.7 ± 0.2
With volume correction, zero width 7.2 8.1 ± 0.2
With volume correction, finite width 7.1 7.9 ± 0.2

Our estimate is based on the nonequilibrium distributions of
a few final state hadrons, while Eq. (12) sums the entropy
contributions of all primary hadrons in a thermal state before
the decays. Although on general grounds we expect the total
entropy to increase during the decays and rescatterings in
the hadronic phase, there are some decay products, e.g.,
photons, which are not included in our current entropy count.
Accounting for such differences between the two approaches
might bring the estimates closer together.

V. INITIAL CONDITIONS AND ENTROPY PRODUCTION

A. Pb-Pb collisions

The entropy in nuclear collisions, which we calculated in
previous sections, is not created instantaneously, but rather the
entropy production takes place in several stages in nuclear
collisions [3]. In this section we will use different models
to describe the boost invariant expansion and, in particu-
lar, to determine the average initial conditions in 0%–10%
most central Pb-Pb collisions at

√
sNN = 2.76 TeV at time

τ0 = 1 fm.
First, we can make an estimate of the initial temperature

T (τ0) by simplifying the early time evolution of the QGP.
As it was done in the original work by Bjorken [50], we
will consider a one-dimensional boost-invariant expansion of
homogeneous plasma with the transverse extent determined
by the geometry of the nuclei, i.e., the transverse area A. The
time evolution of the energy density is then solely a function
of proper time τ and the assumed constituent equation for the
longitudinal pressure PL = τ 2T ηη. For collisionless gas with
PL = 0, the energy density falls as e ∝ τ−1, i.e., energy per
rapidity dE/dy = eτA is constant [50]. For an ideal fluid with
equation of state p = c2

s e, where cs is the (constant) speed
of sound, the energy density decreases faster, e ∝ τ−1−c2

s ,
because of the work done against the longitudinal pressure
[50–52]. However, total entropy per rapidity dS/dy = sτA
stays constant irrespective of the equation of state as long
as viscous dissipation can be neglected [50–53]. Below we
compare the initial temperature estimates at time τ0 = 1 fm
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obtained from the final entropy dS/dy and energy dE/dy
using, respectively, isentropic ideal fluid and free-streaming
evolutions of QGP1.

Assuming that the subsequent near ideal hydrodynamic
evolution does not change the total entropy per rapidity dS/dy
(which is also true for free-streaming expansion) the initial
entropy density is equal to

s(τ0) = 1

Aτ0

dS

dy

∣∣∣∣
y=0

. (13)

Using for the transverse area A = πR2
Pb with RPb = 6.62 fm

[55,56] gives an initial entropy density for the 0%–10% most
central Pb-Pb collisions at

√
sNN = 2.76 TeV,

s(τ0) = 82.3 fm−3. (14)

According to the lattice QCD equation of state [57,58], this
corresponds to a temperature,

T (τ0) ≈ 340 MeV. (15)

The transverse energy at midrapidity for the 10% most
Pb-Pb collisions at

√
sNN = 2.76 TeV was measured to be

dET/dy ≈ 1910 GeV [59,60]. Using again A = πR2
Pb with

RPb = 6.62 fm as an approximation for the transverse overlap
area the initial energy density can be calculated according to
the Bjorken formula [50],

e(τ0) = 1

Aτ0

dET

dy

∣∣∣∣
y=0

, (16)

which gives an energy density e(τ0) ≈ 13.9 GeV/fm3. This
would correspond to much lower initial temperature T (τ0) ≈
305 MeV. This is because Eq. (16) is derived under the
assumption of a constant energy per rapidity [50]. This holds
for a free-streaming (or pressureless) expansion, but in hy-
drodynamics the system cools down faster from work done
against the longitudinal pressure. Taking τf = RPb as a rough
estimate for the lifetime of the fireball, ideal hydrodynamics
predicts an (τf/τ0)

1
3 ≈ 1.9 times larger initial energy density,

which would revise the initial temperature estimate upwards
to T (τ0) ≈ 355 MeV and closer to the value we obtained from
the entropy method.

Instead of assuming a constant entropy density in a col-
lision, it is more realistic to use an entropy density profile
s(τ, �r), where �r is a two-dimensional vector in the transverse
plane (we still assume boost invariance in the longitudinal di-
rection). We will employ the two-component optical Glauber
model to construct the transverse profile of initial entropy
density [61]. In this model the initial entropy is proportional
to the participant nucleon number and the number of binary
collisions. For a collision at impact parameter �b, the entropy
profile is then

s(τi, �r; �b) = κs

τi

(
1 − α

2

dNpart(�r, �b)

d2r
+ α

dNcoll(�r, �b)

d2r

)
, (17)

1For initial energy estimates at even earlier times, see a recent
publication [54], where a generalized constitutive equation of a
hydrodynamic attractor was considered.

where κs(1 − α)/2 is entropy per rapidity per participant
and κsα is entropy per rapidity per binary collision. The
number densities are calculated using the nucleon-nucleon
thickness functions (see Appendix B for details), and the value
α = 0.128 reproduces centrality dependence of multiplicity
[56]. We average over the impact parameter |�b| � 4.94 fm to
produce entropy profile corresponding to 0%–10% centrality
bin of Pb-Pb collisions at

√
sNN = 2.76 TeV [56]. The overall

normalization factor κs is adjusted to reproduce the final-state
entropy estimated in Sec. III A, which depends on the expan-
sion model. To simulate the evolution and entropy production
in nucleus-nucleus collisions we employ two recently devel-
oped models: kinetic pre-equilibrium propagator KøMPøST
[62,63], and viscous relativistic hydrodynamics code FLU-
IDUM [64].2 For simplicity we employ a constant value of
specific shear viscosity η/s and vanishing bulk viscosity ζ/s
throughout the evolution.

KøMPøST uses linear response functions obtained from
QCD kinetic theory3 to propagate and equilibrate the highly
anisotropic initial energy momentum tensor, which can be
specified at an early starting time τEKT = 0.1 fm. We specify
the initial energy-momentum tensor profile to be4

T μν (τEKT, �r) = e(τEKT, �r) diag
(
1, 1

2 , 1
2 , 0

)
. (18)

At the end of KøMPøST evolution all components of the
energy momentum tensor, the energy density, transverse flow,
and the shear-stress components, are passed to the hydrody-
namic model at fixed time τhydro = 0.6 fm.

The FLUIDUM package solves the linearized Israel-Stewart-
type hydrodynamic equations around an azimuthally sym-
metric background profile. In this work we propagate the
radial background profile until the freeze-out condition is
met, which we define by a constant freeze-out temperature
Tfo = 156 MeV. Above this temperature the equation of state
is that of lattice QCD [58]. Unless otherwise stated, we use
a constant specific shear viscosity η/s = 0.08 and vanishing
bulk viscosity ζ/s = 0.

We start by showing the temperature evolution in the
hydrodynamic phase in Fig. 3. The combined solid and dotted
white lines represent the freeze-out line at Tfo = 156 MeV.
The dashed horizontal line indicates the spatial slice of the
fireball at some fixed time τ and above the freeze-out temper-
ature. We now can define entropy as an integral of the entropy
current suμ over a hypersurface 	i where 	i is one or more
of the contours shown in Fig. 3. We define the total entropy in

2We neglect the entropy production in the hadronic phase and
match the entropy on the freeze-out surface.

3The current implementation of KøMPøST uses results of pure
glue simulations, but recent calculations with full QCD degrees of
freedom indicate that the evolution of the total energy-momentum
tensor will not be significantly altered by chemical equilibration
[65,66].

4As a purely practical tool we use a lattice equation of state to
convert entropy density profile obtained from the Glauber model
Eq. (17) to the energy density needed to initialize KøMPøST, even
though the system at τEKT = 0.1 fm is not in thermodynamic equilib-
rium.
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FIG. 3. Temperature in hydrodynamic evolution of an averaged
0%–10% Pb-Pb event at

√
sNN = 2.76 TeV. Lines 1 and 3 are

the freeze-out Tfo = 156 MeV contour, whereas line 2 indicates a
constant time contour in the QGP phase, i.e., T (τ, �r) > Tfo. Ini-
tial conditions for hydrodynamics at τhydro = 0.6 fm were provided
by KøMPøST pre-equilibrium evolution from the starting time of
τEKT = 0.1 fm.

the QGP state at time τ as the integral over the contour 2:

S(τ )|QGP ≡
∫

	2(τ )
dσμsuμ. (19)

To include the entropy outflow from the QGP because of
freeze-out we also define entropy on the contours 	1(τ ′ <

τ ) + 	2(τ ):

S(τ )|QGP+freeze-out ≡
∫

	1(τ ′<τ )+	2(τ )
dσμsuμ. (20)

Because of viscous dissipation S(τ )|QGP+freeze-out increases
until the temperature in every hydrocell drops below the
freeze-out temperature and the maximum value is simply the
entropy current integral over the freeze-out surface 	1(τ ′ <

τ ) + 	3(τ ′ > τ ). In Fig. 4(a) we show the time dependence
of entropy per rapidity in the QGP phase (yellow line) and
including freeze-out outflow (green line) in hydrodynamically
expanding plasma. The solid lines are for the simulation with
η/s = 0.08 and dashed lines correspond to η/s = 0.16. In
both cases the initial entropy profile, Eq. (17), is adjusted
so that after the pre-equilibrium (KøMPøST) and hydrody-
namic (FLUIDUM) evolution the final entropy on the freeze-out
surface is equal to dS/dy = 11 335 estimated in Sec. III A.
We see that at early times entropy is produced rapidly, but
there is little entropy outflow through the freeze-out surface.
At τ ≈ 2 fm the entropy in the hot QGP phase starts to drop
because matter is crossing the freeze-out surface and at τ ≈
10 fm there is no hot QGP phase left.

Here we note that the early time viscous entropy pro-
duction in the hydrodynamic phase depends strongly on the
initialization of the shear-stress tensor. In this work we use
the pre-equilibrium propagator KøMPøST, which provides all
components of the energy-momentum tensor at the hydrody-
namic starting time and the shear-stress tensor approximately
satisfies the Navier-Strokes constitutive equations [62,63]. We
determine that for evolution with η/s = 0.08 the entropy per
rapidity at time τ0 = 1.0 fm is ≈95% of the final entropy on
the freeze-out. For twice larger shear viscosity the entropy
production doubles and to produce the same final entropy we
need only ≈90% at τ0 = 1.0 fm. Such entropy production is
neglected in the naive estimate of Eq. (13).

Analogously to entropy, we use the same contours to define
energy in the collision, that is, as integrals of the energy
current euμ. In Fig. 4(b) we show the energy per rapidity
in different phases of the collision. We confirm that the
energy per rapidity decreases rapidly in the hydrodynamic
phase and at τ0 = 1.0 fm is nearly twice larger than on the
freeze-out surface and therefore invalidating the naive initial
energy density estimates using the Bjorken formula Eq. (16).
However, we do note that the magnitude of the final energy
per rapidity in our event is below the measured value. In
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FIG. 4. (a) Entropy per rapidity in viscous hydrodynamic expansion with specific shear viscosity η/s = 0.08 for central
√

sNN = 2.76 TeV
Pb-Pb collisions (centrality class 0%–10%) as a function of time of contour 2 in Fig. 3. The yellow line corresponds to entropy in the QGP
phase (T (τ, r) > Tfo) (contour 2 in Fig. 3), whereas the green line shows the total cumulative entropy (contour 1 + 2 in Fig. 3). Dashed red
lines show the corresponding result for a simulation with η/s = 0.16. In both cases the initial conditions, i.e., parameter κs in Eq. (17), were
tuned to reproduce the final freeze-out entropy dS/dy = 11 335 after the pre-equilibrium and hydrodynamic evolutions. (b) Analogous plot for
energy per rapidity in hydrodynamic expansion with η/s = 0.08. The additional points show energy per rapidity in the pre-equilibrium stage.
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FIG. 5. (a) Entropy density profile (multiplied by τ ) in viscous hydrodynamic simulation with η/s = 0.08 at times τ = 1, 3, 6 fm. The
black dotted square indicates the initial entropy density estimate τ0s(τ0) = 82.3 fm−2; see Eq. (13). (b) Temperature profile at τ = 1, 3, 6 fm.
The black dotted line corresponds to T = 340 MeV.

addition we show points for the energy per rapidity in the
pre-hydrophase simulated by KøMPøST. Despite the large
anisotropy in the initial energy-momentum tensor (T zz ≈ 0
initially), the energy per rapidity is rapidly decreasing in this
phase. We note that at the same time there is a significant
entropy production in the kinetic pre-equilibrium evolution
[63].

Next in Fig. 5(a) we look at the transverse entropy density
profile τ s(τ, �r) at different times τ = 1.0, 3.0, 6.0 fm in the
hydrodynamic evolution with η/s = 0.08. We see that the
profile changes only little between 1 fm and 3 fm, which
is because of an approximate one-dimensional expansion
and viscous entropy production. At later times the profile
expands radially and drops in magnitude. The black-dotted
line indicates the naive estimate of entropy density τ0s(τ0) =
82.3 fm−2 for a disklike profile with radius RPb = 6.62 fm; see
Eq. (14). Despite an overestimation of the net entropy at τ0 =
1 fm, the actual density at the center of entropy profile is twice
larger than the naive estimate. Correspondingly, the transverse
temperature profile at τ0 = 1 fm, shown in Fig. 5(b), is larger
than the simple estimate and can reach 400 MeV in the center
of the fireball.

B. Central pp collisions

In this section we present a similar analysis of entropy
production in ultracentral pp collisions. Because of much
smaller initial size, the QGP fireball (if created), has a much
shorter lifetime than the central Pb-Pb collisions. This should
enhance the relative role of the pre-equilibrium physics of
QGP formation.

To model the initial entropy density in pp collision, we
use a Gaussian parametrization of the transverse entropy
distribution,

s(τ0, �r) = κs

τ02πσ 2
e− r2

2σ2 , (21)

with a width σ = 0.6 fm, as used in other parametrizations
[67]. We use a fixed value of η/s = 0.08 and, in view of
the range of applicability of the linearized pre-equilibrium

propagator, we use KøMPøST for a shorter time from τEKT =
0.1 fm to τhydro = 0.4 fm.

First we show the temperature evolution in Fig. 6 and
indicate the freeze-out contour (lines 1 and 3). We note that
because of the compact initial size, the transverse expansion is
so explosive that the center of the fireball actually freezes out
before the edges (similar results were found in Refs. [68,69]).
Next in Fig. 7(a) we show the entropy evolution in the
QGP phase and together with the outflow from through the
freeze-out surface. In a smaller system, the radial flow builds
up faster and the QGP and the combined QGP+ freeze-out
surface contributions starts to deviate early. This does not
capture the entropy which already left T > Tfo region in
the KøMPøST phase, but for the early hydro starting time
τhydro, this fraction is small. We see that as a fireball of QGP
ultracentral pp collisions have a lifetime just above τ = 2 fm.
Therefore the τ0 = 1 fm reference time is no longer adequate
time to discuss the “initial conditions” in such collisions.
Next, in Fig. 7(b) we show the energy per rapidity in the
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FIG. 6. Temperature in hydrodynamic evolution of an averaged
0%–1% pp event at

√
s = 7 TeV. Lines 1 and 3 are the freeze-

out Tfo = 156 MeV contour, whereas line 2 indicates a constant
time contour in the QGP phase, i.e., T (τ, �r) > Tfo. Initial con-
ditions for hydrodynamics at τhydro = 0.4 fm were provided by
KøMPøST pre-equilibrium evolution from the starting time of
τEKT = 0.1 fm.
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FIG. 7. (a) Entropy per rapidity in viscous hydrodynamic expansion with specific shear viscosity η/s = 0.08 for
√

s = 7 TeVpp collisions
(0%–1% collisions with the highest multiplicity) as a function of time of contour 2 in Fig. 6. The yellow line corresponds to entropy in the
QGP phase (T (τ, r) > Tfo) (contour 2 in Fig. 6), whereas the green line shows the total cumulative entropy (contour 1 + 2 in Fig. 6). The
initial conditions, i.e., parameter κs in Eq. (21), was tuned to reproduce the final freeze-out entropy dS/dy = 135.7 after the pre-equilibrium
and hydrodynamic evolutions. (b) Analogous plot for energy per rapidity in hydrodynamic expansion with η/s = 0.08. Additional points show
energy per rapidity in the pre-equilibrium stage.

hydrodynamic and pre-equilibrium stages. Here again we see
that energy per rapidity decreases more rapidly in comparison
of entropy production.

For the transversely resolved picture of entropy and tem-
perature profiles, we supply Figs. 8(a) and 8(b) correspond-
ingly. At τ0 = 1 fm the maximum entropy density is much
smaller than in 0%–10% centrality Pb-Pb collisions and only
at τ = 0.5 fm the temperature at the center reaches above
T = 300 MeV.

VI. SUMMARY AND CONCLUSIONS

We provide independent determination of the final-state
entropy dS/dy in

√
s = 7 TeV pp and

√
sNN = 2.76 TeV Pb-

Pb collisions from the final phase space density calculated
from the experimental data of identified particle spectra and
HBT radii. In addition, we have calculated the entropy per
final-state charged hadron (dS/dy)/(dNch/dy) in different
collision systems. We find the following values for pp and
Pb-Pb collisions.

System dS/dy (dS/dy)/(dNch/dy)

Pb-Pb, 0%–10% 11 335 ± 1188 6.7 ± 0.8
pp minimum bias 37.8 ± 3.7 5.2 ± 0.5
pp high multiplicity 135.7 ± 17.9 5.4 ± 0.7

We compare our results for (dS/dy)/(dNch/dy) ratio based
on experimental data, to the values obtained from the statis-
tical hadron resonance gas model at the chemical freeze-out
temperature of Tch = 156 MeV. For the 0%–10% most central
Pb-Pb collisions statistical model values are systematically
higher than our estimate, but in agreement at the 1–2σ level.
However, the measured (dS/dy)/(dNch/dy) values in mini-
mum bias and high-multiplicity pp collisions at

√
s = 7 TeV

are below the theory predictions for a chemically equilibrated
resonance gas at Tch = 156 MeV, perhaps indicating that full
chemical equilibrium is not reached in these collisions. Here
we note that, interestingly, in pp collisions the estimated
soft pion phase-space density exceeds unity. Finally, we have
checked the dependence of our results on the relation between
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FIG. 8. (a) Entropy density profile (multiplied by τ ) in viscous hydrodynamic simulation with η/s = 0.08 at times τ = 0.5, 1.0, 1.5 fm.
(b) Corresponding temperature profiles at τ = 0.5, 1.0, 1.5 fm.
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one-dimensional and three-dimensional HBT radii, Eq. (5),
in Appendix A. We found no significant change for Pb-Pb
results, but pp entropy increased by 10%, which corresponds
to 1σ deviation from the results above using Eq. (5).

The precise knowledge of the total produced entropy in
heavy ion collisions and the entropy per final-state charged
hadron is important for constraining the bulk properties of
the initial-state from the final-state observables [54,62,66]. To
determine the initial medium properties for high-multiplicity
pp and Pb-Pb collisions, we performed simulations of aver-
aged initial conditions starting at τ0 = 0.1 fm/c with kinetic
pre-equilibrium model KøMPøST [62,63,70] and viscous
relativistic hydrodynamics code FLUIDUM [64]. Importantly,
these calculations take into account the produced entropy and
work done in both the pre-equilibrium and hydrodynamic
phases of the expansion [50–54]. We find that for simulations
with the specific shear viscosity value η/s = 0.08 the initial
pre-equilibrium energy per unity rapidity is about three times
larger than at the final state in 0%–10% most central Pb-
Pb collisions at

√
sNN = 2.76 TeV, and approximately twice

larger in high-multiplicity pp collisions at
√

s = 7 TeV. At the
time τ = 1 fm/c, the temperature in the center of the approxi-
mately equilibrated QGP fireball is about T ≈ 400 MeV for
Pb-Pb and T ≈ 250 MeV for high-multiplicity pp collision
systems. Finally, we note that in our simulations of Pb-Pb
collisions with η/s = 0.08 only about 5% of the total final
entropy is produced after τ = 1 fm/c, meaning that most of
entropy production occurs in the pre-equilibrium phase.
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APPENDIX A: RELATION BETWEEN THE 1D HBT
RADIUS Rinv AND THE 3D HBT RADII Rout, Rside, Rlong

A transformation of the three-dimensional Gaussian HBT
radii from the longitudinally co-moving system (LCMS) to
the pair rest frame (PRF) only affects the outwards di-
rection according to RPRF

out = γ RLCMS
out where γ = mT/m ≡√

m2 + p2
T/m. For a three-dimensional Gaussian parametriza-

tion of the source, the one-dimensional distribution in radial
distance from the origin is not in general a one-dimensional
Gaussian. Therefore, there is no exact formula relating the
radius Rinv of the one-dimensional Gaussian parametrization
of the source and Rout, Rside, Rlong [26].

The maximum phase space density F for a more general
version of Eq. (5) of the form,

R3
inv ≈ h(γ )RoutRsideRlong, (A1)

FIG. 9. Comparison of measured one-dimensional HBT radii
Rinv as a function of the transverse pair momentum kT from the
ALICE collaboration and Rinv values calculated from measured
three-dimensional HBT radii Rout, Rside, Rlong according to R3

inv ≈
αγ βRoutRsideRlong. The bands reflect the uncertainties of the measured
Rinv values. The calculated Rinv values are shown for α = β = 1
and for the values of α and β which fit the measured Rinv radii
best. Results are shown for Pb-Pb collisions (centrality 0%–5%) at√

sNN = 2.76 TeV [21] (upper panel), “minimum bias” pp collisions
(Nch = 12–16 in Aamodt [22]) at

√
s = 7 TeV [22] (middle panel),

and high-multiplicity pp collisions (Nch = 42–51 in Aamodt [22]) at√
s = 7 TeV [22] (lower panel).
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is given by

F = h(γ )

mT

(2π )3/2

2J + 1

1

R3
inv

E
d3N

d3 p
. (A2)

In this section we use assume h(γ ) = αγ β and use data from
ALICE [21,22] to determine the values of α and β which best
describe the relation between the measured one-dimensional
radii Rinv and the three-dimensional radii Rout, Rside, Rlong.
The results are shown in Fig. 9. The best fit values for α

and β turn out to be significantly different between Pb-Pb
and pp collisions. We then use these values to calculate
maximum phase space densities according to Eq. (A2). The
corresponding results for the entropy and the entropy per
final-state charged particle are as follows.

System dS/dy (dS/dy)/(dNch/dy)

Pb-Pb, 0%–10% 11534 ± 1188 6.9 ± 0.8
pp minimum bias 41.7 ± 4.1 5.7 ± 0.6
pp high multiplicity 159.0 ± 19.8 6.3 ± 0.8

We note that for Pb-Pb collisions the entropy estimates
increases only very slightly. For pp collisions, the values for
the entropy are higher than our standard results obtain using
α = β = 1, but they agree at the 1σ level.

APPENDIX B: TWO-COMPONENT GLAUBER MODEL

In this section we recap the details of the two-component
Glauber model used to generate initial conditions for
KøMPøST evolution. The nuclear charge density distri-
bution of lead nuclei is parametrized by Wood-Saxon

distribution [61],

ρ(�r) = ρ0
1

1 + exp
( |�r|−R

a

) , (B1)

where for our purposes we will choose ρ0 such that the
total volume integral of ρ is equal to the number of nucle-
ons NA = 208. Then ρ0 = 0.160391 fm−3, R = 6.62 fm, and
a = 0.546 fm. For Lorentz contracted nuclei, the longitudinal
direction can be integrated out to obtain the density per unit
transverse area,

T (�r⊥) =
∫ ∞

−∞
ρ(�r⊥, z)dz. (B2)

Then the collision probability of two nuclei with NA and NB

nucleons is given by

dNcoll(�r, �b)

d2�r = TA(�r)TB(�r − �b)σ NN
inel , (B3)

where the radius is implicitly assumed to be in the transverse
plane and σ NN

inel = 6.4 fm2 is the inelastic nucleon-nucleon
cross section. The number of participant nucleons per trans-
verse area is given by

dNpart(�r, �b)

d2�r = TA(�r)
[
1 − (

1 − TB(�r − �b)σ NN
inel

/
NB

)NB
]

+ TB(�r − �b)
[
1 − (

1 − TA(�r)σ NN
inel

/
NA

)NA
]
.

(B4)

These probabilities are combined in the two-component
Glauber model [56,61] where α is an adjustable parameter,

(sτ )0 = κs

(
1 − α

2

dNpart(�r, �b)

d2r
+ α

dNcoll(�r, �b)

d2r

)
. (B5)

We use α = 0.128, which is the same value as in ALICE pub-
lication [56], but with different parametrization of Eq. (B5),
namely α = 1− f

1+ f .
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