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Microscopic coupled-channel calculations of inelastic proton scattering are performed to study neutron
excitations in the 2+

1 states of 18O, 10Be, 12Be, and 16C. The proton-nucleus potentials in the coupled-channel
calculation are microscopically derived by folding the Melbourne g-matrix NN interaction with the matter
and transition densities of the target nuclei obtained via structure model calculations of the antisymmetrized
molecular dynamics. The calculated results reasonably reproduce the elastic and inelastic proton scattering cross
section, and support the dominant contribution of neutrons in the 2+

1 excitation of 12Be and 16C as well as 18O.
The sensitivity of the inelastic scattering cross sections to the neutron transition density is discussed as well as
the exotic behavior of the neutron transition density with amplitude in the outer regions of 12Be and 16C.
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I. INTRODUCTION

Shape differences in the proton and neutron matter dis-
tributions in nuclei are interesting phenomena in unstable
nuclei. To explore the difference between the neutron and
proton deformations (or collectivity), the neutron and pro-
ton transition matrix elements in the ground-band 2+

1 → 0+
1

transition have been investigated for a long time. In a naive
expectation for ordinary nuclei with the same proton and
neutron deformation, the ratio of the neutron transition matrix
element (Mn) to the proton transition matrix element (Mp)
should be N/Z . However, the relation Mn/Mp ≈ Z/N is not
satisfied, even in stable nuclei with proton or neutron shell
closure, as reported in Ref. [1]. For example, in 18O and
48Ca, this ratio becomes significantly larger than N/Z , which
indicates neutron dominance in the 2+

1 excitation due to proton
shell closure. The phenomena of shape differences and/or
neutron dominance have also been suggested to occur in
unstable nuclei such as 10Be, 12Be, and 16C [2–15].

Experimental information concerning the proton part Mp

can be directly obtained from the E2 strength. Conversely,
the determination of the neutron part (Mn) is not easy, even
for stable nuclei. As indirect measurements, inelastic hadron
scattering experiments have been performed using probes
such as α, proton, neutron, and π−/π+. By combining the
hadron scattering data with the electromagnetic data, Mn and
Mp have been discussed based on reaction analyses (see
Refs. [1,16] and references therein). For 18O, the neutron
matrix element of the 2+

1 → 0+
1 transition has been intensively

investigated and an anomalously large value of Mn/Mp ≈ 2
has been deduced from the inelastic scattering data [16–19],

consistent with the B(E2) of the mirror transitions of 18Ne and
18O [20].

In studies of unstable nuclei, the neutron collectivity, i.e.,
the Mn/Mp ratio, has been investigated extensively using in-
elastic proton scattering experiments. [3,7,9,12,21–32]. Cross
sections of inelastic proton scattering off unstable nuclei are
measured in inverse kinematics using radioactive ion beams
on proton targets. However, experimental data for exotic
nuclei are limited to a small range of scattering angles at
one of a few incident energies and are not high quality in
many cases except for very light unstable nuclei such as
6He. Under the constraint that the available data are limited,
reaction analyses may be influenced by model ambiguities.
For example, proton-nucleus optical potentials can be more
or less uncertain because the phenomenological tuning of
the potential parameters requires precise data of the elastic
scattering cross sections. Possible model ambiguity also arises
from the structure part. Collective model transition densities,
which are often adopted in reaction analyses, are no longer
valid in nuclei far from the stability line or in light stable
nuclei with cluster structures. When experimental information
is unknown or limited, it is useful to apply a more micro-
scopic framework that can systematically describe inelastic
scattering off various nuclei without fine tuning the model
parameters.

The ab initio approach [33,34] is one of the most suitable
frameworks for this purpose. Despite great progress in the
ab initio description of the nuclear structure and reactions,
however, it is applicable to rather limited systems (small
mass numbers). Further, such calculations are computation-
ally demanding and their applicability to systematic research

2469-9985/2019/100(6)/064616(13) 064616-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.064616&domain=pdf&date_stamp=2019-12-30
https://doi.org/10.1103/PhysRevC.100.064616


YOSHIKO KANADA-EN’YO AND KAZUYUKI OGATA PHYSICAL REVIEW C 100, 064616 (2019)

is nontrivial. Alternatively, in the present study, we adopt a
microscopic folding model (MFM) approach for the sake of
flexibility. As one research milestone in this direction, the
Melbourne group has demonstrated the success of MFM in
reproducing cross sections and spin observables of proton-
nucleus elastic scattering for a wide range of target mass
numbers at incident energies from 65 to 200 MeV with no
free adjustable parameters [35,36]. A striking feature of their
work is that the imaginary part of the g-matrix interaction is
also generated and directly employed in the MFM calculation.
This is an advantage over other MFM studies in which the
imaginary part of the effective nucleon-nucleon interaction is
treated phenomenologically [37–39].

Triggered by this complete MFM calculation by the Mel-
bourne group, a microscopic description of proton-nucleus
[40–43] and α-nucleus [42,44] elastic scattering has been
intensively developed. Very recently, this framework was
successfully applied to α-nucleus inelastic processes [43,45–
47]. In these studies, a simplified treatment of the exchange
term of the optical potential, validated in Refs. [40,48] for
nucleon-nucleus scattering above 65 MeV, was adopted. This
simplification makes the union of the nuclear reaction and
structure calculations easier because then only the nuclear
one-body density is needed. Note that the MFM framework
adopted in the present study is based on the multiple scattering
theory (MST) by Kerman, McManus, and Thaler [49]. In
Ref. [43], the applicability of the framework to nucleon-
nucleus elastic scattering was examined for a wide range
of incident energies. As described below, to treat the elastic
and inelastic scatterings on the same footing, we expand the
wave function of the reaction system by several eigenstates
of the target nucleus. This indicates that the higher-order
effects coming from the channels that have the asymptotics
assumed in the MST are explicitly taken into account. Con-
versely, possible coupling effects from rearrangement and
breakup channels are treated effectively within the accuracy of
the MST.

In the structure part, we adopt antisymmetrized molecular
dynamics (AMD), which is a structure model suitable for pro-
viding systematic inputs of nuclei with various structures. In
particular, it is a powerful model for cluster states in unstable
nuclei. Another merit of AMD is that it can directly examine
the nuclear deformation effect on the matrix elements, Mp and
Mn, using not the effective charges but the bare charges of the
protons and neutrons. However, AMD sometimes has quanti-
tative problems in fine reproductions of the electric transition
properties measured by electric probes. To reduce the struc-
ture model ambiguity as much as possible, we renormalize the
theoretical proton transition densities to fit the experimental
B(E2) if it exists. For N �= Z unstable nuclei, the neutron part
of the structure input may contain ambiguities and should be
tested against proton inelastic scattering data. 18O is a special
case of a Z �= N stable nucleus, for which detailed transition
densities are available from experimental data of electron and
proton inelastic scattering in normal kinematics [19]. These
data are used to check the applicability of the present reaction
model without structure model ambiguities.

In this paper, we investigate inelastic proton scattering to
the 2+

1 states of 18O, 10Be, 12Be, and 16C with coupled-channel

(CC) calculations of the MFM using the Melbourne g-matrix
effective NN interaction [35]. The proton and neutron matter
and transition densities of the target nuclei are calculated
using AMD [50–52]. As test cases, we first show applications
to proton scattering off Z = N nuclei, i.e., 12C and 16O. Then,
we apply the same method to proton scattering off 18O, 10Be,
12Be, and 16C. The sensitivity of the 2+

1 cross sections to
Mn and Mp is analyzed while focusing on the neutron-proton
difference in the transition densities of 12Be and 16C. Here,
we emphasize that we include no adjustment parameters in
the reaction calculations. Within the accuracy of MST, we
therefore unambiguously relate the structure inputs to the
scattering observables with a minimal task.

The paper is organized as follows. The next section de-
scribes the present framework of the microscopic coupled-
channel (MCC) calculation and that of the structure calcula-
tions for target nuclei. Results for 12C and 16O are shown in
Sec. III, and results and discussion for the N �= Z case of 18O,
10Be, 12Be, and 16C are given in Sec. IV. Finally, a summary
is given in Sec. V.

II. METHOD

The present reaction calculation for proton scattering is the
MCC calculation of the single-folding model. As inputs from
the structure calculations, the target densities are calculated
with AMD combined with and without the cluster model
of the generator coordinate method (GCM). The AMD and
AMD+GCM calculations of the target nuclei are the same as
those of Refs. [4,46,47,53–55]. The definitions of the densities
and form factors in the structure calculation are explained in
Ref. [46]. For details, the reader is referred to those references.

A. Microscopic coupled-channel calculation

The diagonal and coupling potentials for the nucleon-
nucleus system are microscopically calculated by folding
the Melbourne g-matrix NN interaction [35] with the target
densities described in Sec. II B. The Melbourne g matrix is
obtained by solving a Bethe-Goldstone equation in uniform
nuclear matter at a given incident energy; the Bonn B potential
[56] is adopted as a bare NN interaction. In Ref. [35], the
Melbourne g-matrix interaction was constructed and applied
to a systematic investigation of proton elastic and inelastic
scattering off various stable nuclei and some neutron-rich
nuclei at energies from 40 to 300 MeV. The nonlocality
arising from the exchange term was rigorously treated, and the
central, spin-orbit, and tensor contributions were taken into
account. As a result, it was clearly shown that microscopic
calculations with the Melbourne g matrix for proton-nucleus
scattering have predictive power for proton-nucleus elastic
and inelastic cross sections and spin observables. Later, the
framework was also applied to proton inelastic scattering off
10C and 18O [36].

In the present study, we adopt a simplified single-folding
model described in Ref. [40]. We employ the Brieva and
Rook (BR) prescription [57–59] to localize the exchange
terms. The validity of the BR localization for nucleon-
nucleus and nucleus-nucleus scattering has been confirmed
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in Refs. [40,48] and Ref. [60], respectively. This simpli-
fied single-folding model has been successfully applied to
nucleon-nucleus elastic scattering for various cases [40–43].
In this study, we extend this model to proton inelastic scat-
tering in a manner similar to that in our recent studies on α

inelastic scattering [46,47]. To avoid complexity, we only take
into account the central part of the proton-nucleus potential.
The spin-orbit interaction is known to smear the dip structure
of the diffraction pattern in general. Even though at higher
energies, say, above 150–200 MeV, it can also somewhat
affect the absolute amplitudes near the peaks, such an effect is
expected to be minor in the energy region considered in this
study. As in previous studies, including that by the Melbourne
group [35], the local density approximation is adopted to
apply the g-matrix interaction to a finite nucleus.

The cross sections of the elastic and inelastic scattering are
calculated via the CC calculations using the proton-nucleus
potentials obtained with the AMD densities for 18O, 10Be,
12Be, and 16C, and the AMD+GCM densities for 12C and 16O.
For 12C, we also use the densities of a 3α-cluster model of the
resonating group method (RGM) [61].

Note that a similar approach, an MCC calculation with the
Jeukenne-Lejeune-Mahaux (JLM) interaction [62], has been
applied to proton inelastic scattering off 10Be and 12Be in an
earlier study by Takashina et al. [11]. It has also been used in
continuum-discretized CC calculations for nucleon-induced
breakup reactions of 6,7Li [63–65] and 11Li [66]. The JLM
interaction is another type of g-matrix effective interaction
that only has the direct term. This property allows one to
implement it in reaction calculations with the minimal task.
However, in general, phenomenological tuning of the JLM
interaction is necessary to obtain the scattering data, though
not in the present interaction.

B. Structure calculations for target nuclei

For the structure calculation of the target nuclei, we
adopted the AMD wave functions obtained via the variation
after projections (VAP). In the AMD+VAP method, the vari-
ation is performed for the spin-parity projected AMD wave
function, as in Refs. [67,68]. The method was applied in the
structure studies of 10Be, 12Be, and 16C in Refs. [4,53,54]. In
the present paper, the same method is applied to 18O to obtain
the wave functions of the 0+

1 and 2+
1 states. For 12C and 16O,

the AMD+VAP method is combined with the 3α- and 12C +
α-cluster GCM, respectively, as in Refs. [46,47,55,69,70]. In
this paper, we simply call the AMD+VAP method “AMD”
and that with the cluster GCM “AMD+GCM.”

The AMD wave functions used in this paper are, in prin-
ciple, the same as those in Refs. [54,67]. We utilized the
10Be wave function for 10C by assuming mirror symmetry.
For 16C, the VAP(c) wave function of Ref. [4] was adopted.
The wave functions and transition densities of 12C and 16O are
consistent with those of AMD+GCM used for α scattering in
Refs. [46,47].

The neutron and proton matter and transition densities are
calculated with the AMD and AMD+GCM wave functions.
We denote the neutron and proton transition densities as ρ tr

n (r)
and ρ tr

p (r), respectively. For N = Z nuclei (12C and 16O),

half of the isoscalar density is used as the proton (neutron)
density in the mirror symmetry assumption. For quantitative
discussions of inelastic cross sections, we scale the original
transition densities ρ tr-cal

p (r) to adjust the theoretical B(Eλ)
values to the experimental data as

ρ tr
p (r) = (

Mexp
p /Mcal

p

)
ρ tr-cal

p (r). (1)

Here, the rank λ (λ > 0) transition matrix elements for the
neutron and proton parts are defined as

Mn,p ≡
∫

r2+λρ tr
n,p(r)dr (2)

and are related to the transition strengths as

B(n),(p)
λ = 1

2Ji + 1
|Mn.p|2, (3)

where Ji is the angular momentum of the initial state. The
E2 transition strength is given by the proton λ = 2 transition
strength as B(E2) = e2B(p)

λ=2.
The adopted states in the CC calculations for 10Be,

12Be, 16C, and 18O are 10Be(0+
1,2, 2+

1,2,3), 12Be(0+
1,2, 2+

1,2),
16C(0+

1 , 2+
1,2), and 18O(0+

1 , 2+
1 ), respectively. All λ = 0 and

λ = 2 transitions between these states are taken into account.
The experimental values of the excitation energies are adopted
as inputs to the CC calculations.

In the CC calculations for 12C and 16O, all the inputs
from the structure part, such as the adopted states, excitation
energies, and transitions, are the same as those used for
the α scattering with the AMD+GCM wave functions in
Refs. [46,47].

As shown later, the CC effect makes only a minor contri-
bution to the inelastic scattering to the 2+

1 state at incident
energies higher than 25 MeV and the cross sections are ap-
proximately described by the one-step process of the distorted
wave Born approximation (DWBA).

III. RESULTS FOR 12C AND 16O

The 0+
1 and 2+

1 cross sections of 12C at incident energies of
Ep = 35, 65, and 135 MeV are shown in Fig. 1, and those of
16O at Ep = 35 and 135 MeV are shown in Fig. 2. In addition
to the CC calculation, the one-step cross sections obtained by
the DWBA calculation are also shown. The small difference
between the CC and DWBA cross sections indicates that the
CC effect is minor.

The AMD+GCM result for 12C was compared to experi-
mental data and also to the calculation using the RGM density.
From the electron scattering data, the RGM density is known
to be of good quality and better than the AMD+GCM density
[46,61]. As seen in Fig. 1, the present calculation with the
AMD+GCM density reproduces the elastic proton scattering
cross sections of 12C at forward angles well but somewhat
underestimates the third peak. A better result is obtained by
the calculation with the RGM density, which is consistent
with the findings of Ref. [43]. The inelastic proton scattering
cross sections of 12C(2+

1 ) are described reasonably well with
the AMD+GCM and RGM calculations except for the cross
sections at Ep = 35 MeV. The RGM density again gives a
better agreement with the data at large angles. This result
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FIG. 1. Cross sections of the elastic and inelastic proton scat-
tering off 12C at Ep = 35 MeV, Ep = 65 MeV (×10−2), and Ep =
135 MeV (×10−4) calculated using the AMG+GCM and RGM
densities. The results of the CC and DWBA calculations with the
AMD+GCM densities and the CC calculation with the RGM den-
sities are shown by the red solid, blue dotted, and magenta dashed
lines, respectively. The experimental data are from Refs. [71–75].

indicates that the quality of the structure model densities
can be tested using detailed proton scattering data. For the
proton scattering off 16O, the present calculation reproduces
the elastic and inelastic cross sections well (Fig. 2). Note that
the 2+

1 state of 16O is not the ground-band member but belongs
to the 12C + α-cluster band built on the 0+

2 state. The present
microscopic approach works well even for such a developed
cluster state with a structure very different from the ground
state.
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FIG. 2. Cross sections of the elastic and inelastic proton scatter-
ing off 16O at Ep = 35 MeV and Ep = 135 MeV (×10−2) calculated
using the AMG+GCM densities. The results of the CC and DWBA
calculations are shown by the red solid and blue dotted lines, respec-
tively. The experimental data are from Refs. [71,76,77].

IV. RESULTS FOR Z �= N NUCLEI

A. Structural properties

The theoretical and experimental values of structural prop-
erties of the target nuclei are listed in Tables I and II. The
energies are shown in Table I, and the radii and λ = 2 tran-
sition strengths, as well as the Mn/Mp ratio, are shown in
Table II. The structure calculations of 10Be, 12Be, and 16C are
consistent with Refs. [4,53,54].

B. Results for 18O

In the 2+
1 → 0+

1 transition of 18O, the significant B(p)
λ=2 is

experimentally known but is significantly underestimated by
the AMD calculation meaning that the proton excitation from
the p-shell closure is not sufficiently described in the theory.
For the neutron part, the large B(n)

λ=2 of the AMD calculation
indicates neutron dominance, which is qualitatively consistent
with the mirror transition of 18Ne [20] and the proton scatter-
ing experiment [19].

The calculated densities and form factors of 18O are shown
in Figs. 3 and 4, respectively, together with the data measured
by the electron scattering experiments. Here the theoretical
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TABLE I. Binding and excitation energies of 18O, 10Be, 12Be,
and 16C. The theoretical values of 10Be, 12Be, and 16C are from
Refs. [4,53,54], and the experimental values are from Refs. [78–81].
The band assignment (Kπ ) is given based on the AMD calculation.

Energy (MeV)

Band AMD Exp.

18O(0+
1 ) K = 0+

1 131.1 139.80
18O(2+

1 ) K = 0+
1 2.0 1.98

10Be(0+
1 ) K = 0+

1 61.1 64.98
10Be(2+

1 ) K = 0+
1 2.7 3.37

10Be(2+
2 ) K = 2+ 6.8 5.96

10Be(0+
2 ) K = 0+

2 7.8 6.179
10Be(2+

3 ) K = 0+
2 9.0 7.54

12Be(0+
1 ) K = 0+

1 61.9 68.65
12Be(2+

1 ) K = 0+
1 1.8 2.11

12Be(0+
2 ) K = 0+

2 3.6 2.251
12Be(2+

2 ) K = 0+
2 4.6

16C(0+
1 ) K = 0+

1 102.6 110.75
16C(2+

1 ) K = 0+
1 2.4 1.77

16C(2+
2 ) K = 2+ 7.8 3.99

proton transition density ρ tr-cal
p (r) and form factors F cal(q)

are scaled by the factor Mexp
p /Mcal

p = 3.88 such that ρ tr
p (r) =

(Mexp
p /Mcal

p )ρ tr-cal
p (r) and F (q) = (Mexp

p /Mcal
p )F cal(q) so as to

fit the experimental B(E2) value. After the scaling, the exper-
imental data are reproduced well except in the small r (large
q) region.

For the neutron transition density ρ tr
n (r) of 18O, we tenta-

tively assume mirror symmetry and scale ρ tr-cal
n (r) with the

scaling factor Mexp
p (18Ne)/Mcal

n = 1.72 to prepare the default
input ρ tr

n (r) in the reaction calculation. However, if we take
into account mirror symmetry breaking, another choice may
be possible; for example, an approximately 10% smaller
value than Mexp

p (18Ne) was theoretically recommended for
Mn(18O) in Ref. [19]. In Figs. 3(b) and 3(c), the default
ρ tr

n (r) is compared to the experimental estimation [denoted
ρ

tr(p,p′ )
n,exp (r)] in Ref. [19], which was reduced from inelastic

proton scattering at E = 135 MeV/u via a model analysis.
ρ

tr(p,p′ )
n,exp (r) gives B(n)

λ=2 = 38 fm4, which is slightly smaller than
the B(n)

λ=2 = 50 fm4 of ρ tr
n (r) adjusted to B(E2; 18Ne). The 12%

reduced transition density [0.88ρ tr
n (r)] gives the same strength

(B(n)
λ=2 = 38 fm4) as ρ

tr(p,p′ )
n,exp (r) but shows a different radial

behavior compared to ρ
tr(p,p′ )
n,exp (r). Compared to the theoretical

transition density, ρ
tr(p,p′ )
n,exp (r) has a smaller amplitude at the

nuclear surface (r = 3–4 fm) and an enhanced outer tail in
the r � 5 fm region [see Fig. 3(c)]. In the reaction analysis,
we consider this difference between ρ

tr(p,p′ )
n,exp (r) and the default

ρ tr
n (r) as a model ambiguity arising from the neutron transition

density.
We calculated the cross sections of the proton scattering

at E = 24.5, 35, 43, and 135 MeV/u, and those of the
neutron scattering at E = 24 MeV/u. These cross sections

TABLE II. Matter, proton, and neutron radii, and transition
strengths of 18O, 10Be, 12Be, and 16C. The theoretical values of the
AMD calculation for 10Be, 12Be, and 16C are from Refs. [4,53,54],
and the experimental values are from Refs. [78–81]. The data of
B(p)

λ=2 = B(E2)/e2 for 16C are the values reported in Refs. [13,82].
The experimental values of B(E2)/e2 for the mirror nuclei (18Ne and
10C) are shown for B(n)

λ=2 for 18O and 10Be (labeled *mir).

Rp (fm) Rn (fm) Rm (fm)

18O(0+
1 ) 2.75 2.88 2.82

Exp. 2.62 2.83*mir 2.61(8)

B(p)
λ=2 (fm4) B(n)

λ=2 (fm4) Mn/Mp
18O(2+

1 → 0+
1 ) 0.7 18.6 5.4

Exp. 9.3(3) 50(5)*mir 2.3(2)*mir

Rp (fm) Rn (fm) Rm (fm)
10Be(0+

1 ) 2.50 2.56 2.54
Exp. 2.17 2.30(2)

B(p)
λ=2 (fm4) B(n)

λ=2 (fm4) Mn/Mp
10Be(2+

1 → 0+
1 ) 11.6 8.9 0.9

Exp. 10.2(1.0) 12.2(1.9)*mir 1.1(1)*mir

10Be(2+
2 → 0+

1 ) 0.2 3.2 3.9
10Be(2+

3 → 0+
1 ) 0.1 0.7 2.5

10Be(2+
3 → 0+

2 ) 34.5 118 1.8

Rp (fm) Rn (fm) Rm (fm)
12Be(0+

1 ) 2.67 2.94 2.85
Exp. 2.39 2.59(6)
12Be(0+

2 ) 2.56 2.84 2.75

B(p)
λ=2 (fm4) B(n)

λ=2 (fm4) Mn/Mp
12Be(2+

1 → 0+
1 ) 14.4 51.1 1.9

Exp. 14.2(2.8)
12Be(2+

2 → 0+
1 ) 0.0 7.4 25.4

12Be(2+
2 → 0+

2 ) 7.5 9.0 1.1

Rp (fm) Rn (fm) Rm (fm)
16C(0+

1 ) 2.58 2.85 2.75
Exp. 2.70(3)

B(p)
λ=2 (fm4) B(n)

λ=2 (fm4) Mn/Mp
16C(2+

1 → 0+
1 ) 2.7 27.0 3.2

Exp. [82] 2.6(9)
Exp. [13] 4.15(73)
16C(2+

2 → 0+
1 ) 2.6 0.1 0.2

were compared to the experimental data. The results are
shown in Figs. 5 and 6. The calculation reproduces the elastic
and inelastic proton scattering cross sections reasonably well
over a wide range of energies, i.e., E = 24–135 MeV/u. It
also reproduces the neutron scattering cross sections at E =
24 MeV/u well. In comparison to the DWBA calculation
shown in Fig. 7, one can see that the CC effect is minor in
the 2+

1 cross sections.
Let us discuss the ambiguity arising from the proton and

neutron transition densities. As shown previously, the (scaled)
proton part ρ tr

p (r) used in the present calculation reproduces
the experimental data measured by the electron scattering
well, whereas the neutron part ρ tr

n (r) has different r behavior
from the experimental one ρ

tr(p,p′ )
n,exp (r). To see the effect of this
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FIG. 3. Neutron and proton densities of 18O: (a) the neutron and
proton matter densities of the ground state, (b) the neutron and
proton transition densities for the 0+

1 → 2+
1 transition, and (c) the

r2-weighted neutron transition density calculated with AMD. The
renormalized proton and neutron transition densities adjusted to the
experimental B(E2) of 18O and that of 18Ne are shown, respectively.
The experimental neutron transition density ρ tr(p,p′ )

n,exp reduced from
the (p, p′) scattering at E = 135 MeV/u [19] and the experimental
proton transition density ρ tr(e,e′ )

p,exp measured with the electron scattering
data [83] are also shown.

difference in the neutron transition density on the inelastic
cross sections, we performed the same reaction calculation
using ρ

tr(p,p′ )
n,exp (r) and 0.88ρ tr

n (r). Figures 5(b) and 6(b) show
the proton and neutron scattering cross sections obtained
with ρ

tr(p,p′ )
n,exp (r) (light-blue dashed lines) and 0.88ρ tr

n (r) (blue
dotted lines) in comparison to the default calculation (red
solid lines) and experimental data. In the result of proton
scattering with ρ

tr(p,p′ )
n,exp (r), the cross sections at forward angles

slightly decrease to 70% of the default calculation, and the
second and third peaks at large angles are reduced further to
40–60% of the default calculation. The reduction rate at large
angels is larger than the naive expectation of 38/50 ≈ 75%
from the B(n)

λ=2 ratio. This means that the outer tail amplitude
of the neutron transition density makes a relatively minor
contribution to the proton scattering cross sections compared
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FIG. 4. Elastic and inelastic form factors of 18O. The inelastic
form factors for 0+

1 → 2+ are the renormalized ones adjusted to the
experimental B(Eλ). The experimental data measured by the electron
scattering are from Ref. [83].

to the surface amplitude even though it significantly enhances
Mn, i.e., B(n)

λ=2. The calculation with ρ
tr(p,p′ )
n,exp (r) obtains better

agreement with the proton scattering data at least at E = 24.5
and 35 MeV/u suggesting that ρ

tr(p,p′ )
n,exp (r) may be more appro-

priate than the default ρ tr
n (r) used in the present calculation.

This indicates that proton scattering is a sensitive probe for
the neutron transition density. In contrast to proton scattering,
the neutron scattering cross sections are not very sensitive to
the difference in the neutron transition densities, as expected
from weaker nn interactions than pn interactions.

C. Results for 10Be, 12Be, and 16C

Structure studies of 10Be, 12Be, and 16C with AMD have
been conducted in Refs. [4,53,54]. Here, we briefly describe
the structural properties, in particular, of the ground bands in
these nuclei.

In 10Be, the Mn/Mp = 0.9 of the ground-band transition
2+

1 → 0+
1 in the AMD calculation is smaller than the N/Z =

1.5 naively expected from the collective model and in rea-
sonable agreement with the experimental value (Mn/Mp =
1.1) reduced from the B(E2) of the mirror transitions. This
indicates that the neutron excitation is somewhat suppressed
compared to the proton excitation in the 2+

1 state. In addition
to the 2+

1 state of the ground Kπ = 0+ band, the 2+
2 state

of the side band (Kπ = 2+) is obtained due to the triaxial
deformation. In the higher energy region, a second Kπ = 0+
band with a developed cluster structure appears.
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FIG. 5. Cross sections of the elastic and inelastic proton scat-
tering off 18O at E = 24 MeV/u (×10), 35 MeV/u, 43 MeV/u
(×10−1), and 135 MeV/u (×10−2) calculated using the default AMD
densities (solid lines). The experimental data for E = 43 MeV/u are
the cross sections measured in inverse kinematics. For the 2+

1 cross
sections, the calculated result with the experimental neutron transi-
tion density ρ tr(p,p′ )

n,exp (r) and that with the reduced neutron transition
density 0.88ρ tr

n (r) are also shown by the dashed and dotted lines,
respectively. The experimental data are from Refs. [19,21,71,84].

In 12Be, the breaking of N = 8 magicity is known in the
ground state from various experimental observations such as
the Gamov-Tellar transitions, inelastic scattering, and knock-
out reactions [3,88–92]. The AMD calculation obtains the
largely deformed ground band (Kπ = 0+

1 ) with the dominant
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FIG. 6. Cross sections of (a) elastic and (b) inelastic neutron
scattering off 18O at E = 24 MeV/u. For the 2+

1 cross sections,
the CC calculation with the experimental neutron transition density
ρ tr(p,p′ )

n,exp (r) and that with 0.88ρ tr
n (r) are also shown by the blue dotted

and light-blue dashed lines, respectively, in addition to that with
the default AMD densities (the red solid lines). The data are from
Ref. [18].

neutron 2h̄ω component. The ground-band transition, 2+
1 →

0+
1 , is strong due to the large deformation compared to the

weaker transition in the Kπ = 0+
2 band, which corresponds to

the normal neutron p-shell closed configuration. In particular,
the neutron transition is very strong due to the contribution of
the two sd-orbit neutrons. The value of the ratio Mn/Mp = 1.9
(Mn/Mp = 1.1) was obtained for the Kπ = 0+

1 (Kπ = 0+
2 )

band. The ratio of the ground band is as large as N/Z = 2
due to the breaking of the N = 8 magicity.

In the case of 16C, the AMD calculation predicted the
weak proton transition in 2+

1 → 0+
1 due to the Z = 6 subshell

closure. The observed B(E2) values are consistent with this
prediction. Conversely, the neutron transition is very large due
to the contribution of the sd-orbit neutrons and results in the
much larger ratio of Mn/Mp = 3.2 compared to N/Z = 1.67,
i.e., the dominant neutron contribution in the ground-band
transition.

Figures 8 and 9 show the neutron and proton matter densi-
ties of the ground state and the neutron and proton transition
densities of the 2+

1 → 0+
1 transition of 10Be, 12Be, and 16C. In

10Be, the proton and neutron transition densities have peak
amplitudes at the same position at the nuclear surface and
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FIG. 7. Comparison of the CC and DWBA calculations of the
proton scattering off 18O with the default ρ tr

n (r). The (a) elastic and
(b) inelastic cross sections at E = 24.5 MeV/u and 35 MeV/u are
shown in comparison to the experimental data [71,84].

approximately satisfy the relation ρ tr
n (r) = (Mn/Mp)ρ tr

p (r). By
contrast, for 12Be and 16C, the neutron transition density
shows r behavior that is very different from the proton tran-
sition density. It has a peak amplitude in the r ≈ 3 fm region
much further out compared to the proton transition density
due to the contribution of the sd-orbit neutrons and no longer
satisfies the relation ρ tr

n (r) = (Mn/Mp)ρ tr
p (r). This is different

from the case of 10Be, where the protons and neutrons in the
same p shell contribute to the 2+

1 excitation.
The proton scattering cross sections were calculated using

the AMD densities. For 10Be, the theoretical proton and
neutron transition densities are renormalized to fit the exper-
imental transition strengths (B(p),(n)

λ=2 ) by the scaling factors
Mexp

p,n /Mcal
p,n listed in Table II. For 12Be and 16C, we use

the original AMD transition densities, which reproduce the
experimental B(E2) values well. The calculated elastic and
inelastic cross sections of 10Be at E = 60 MeV/u, 12Be at
E = 55 MeV/u, and 10C at E = 45 MeV/u are shown in
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FIG. 8. Neutron and proton matter densities of the ground states
of (a) 10Be, (b) 12Be, and (c) 16C calculated with AMD.

Figs. 10 and 11. They are compared to the experimental data
measured in inverse kinematics. In Fig. 12, the calculated
cross sections of 16C at E = 33 MeV/u are compared to the
experimental data. The present calculation reproduces well
the absolute amplitude of the 2+

1 cross sections as well as the
elastic cross sections.

In Fig. 11(b) for 12Be, the DWBA calculation with the neu-
tron transition density ρ tr

n (r) = (Mn/Mp)ρ tr
p (r) is also shown.

This calculation corresponds to the case with the collective
model transition density. Compared to the result using the
original AMD transition density, the cross sections somewhat
increase and the peak and dip positions slightly shift toward
larger angles.

For the neutron transition in 12Be and 16C, there are no
data from the mirror nuclei. The good reproduction of the
inelastic cross sections supports the reliability of the neutron
transition densities adopted in the present calculation, that
is, the dominant neutron contributions of Mn/Mp ≈ 2 and
Mn/Mp ≈ 3 for 12Be and 16C, respectively. This result is
qualitatively consistent with those in Refs. [9,11]. Note that
that phenomenological adjustment parameters were needed
in the reaction models of Refs. [9,11] but not in the present
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FIG. 9. Neutron (ρ tr
n ) and proton (ρ tr

p ) transition densities for
0+

1 → 2+
1 for (a) 10Be, (b) 12Be, and (c) 16C calculated with AMD.

The proton and neutron transition densities of 10Be are renormal-
ized to adjust the experimental B(E2) values of 10Be and 10C,
respectively.

model. For a further detailed discussion of the transition
densities, higher quality data are necessary

D. Discussions

We discuss how the inelastic proton scattering cross sec-
tions can be linked with the neutron transition matrix element
Mn of the 0+

1 → 2+
1 transition. The experimental studies of

Refs. [3,9] discussed the neutron matrix elements of 12Be and
16C via a reaction analysis of the proton scattering data and
concluded that there was a significant neutron contribution
in the 0+

1 → 2+
1 transition. According to the model analysis

in Refs. [3,9] using the Bernstein prescription [1], B(n)
λ=2 =

17 fm4 of 12Be was obtained via a reaction analysis using
B(E2) = 14.2(2.8) e2 fm4, and B(n)

λ=2 = 25 fm4 of 16C was
reduced using the updated data of B(E2) = 2.6(9) e2 fm4

[9]. The value of 16C is consistent with our value of B(n)
λ=2 =

27.0 fm4; however, the value of 12Be is much smaller than
the B(n)

λ=2 = 51.1 fm4 found in the present calculation. In a
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FIG. 10. Cross sections of elastic proton scattering off (a) 10Be
at E = 60 MeV/u, (b) 12Be at E = 55 MeV/u, and (c) 10C at E =
45 MeV/u according to CC calculations with the AMD densities
(red solid lines). The one-step cross sections obtained by the DWBA
calculation are also shown (blue dotted lines). The calculations are
compared to the experimental data measured in inverse kinematics
of 10Be at 59.2 MeV/u [85], 12Be at 55 MeV/u [86], and 10C at
45.3 MeV/u [7].

theoretical study of proton scattering of 12Be with an MCC
calculation using the same AMD densities [11], a slightly
smaller value B(n)

λ=2 = 37 fm4 was used to reproduce the
inelastic cross sections.

Reaction analyses with the Bernstein prescription usually
assume the simple collective model transition densities given
by the derivative of the matter density, and follows the relation
of inelastic hadron (h, h′) scattering cross sections with the
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FIG. 11. Cross sections of inelastic proton scattering to the 2+
1

state of (a) 10Be at E = 60 MeV/u, (b) 12Be at E = 55 MeV/u,
and (c) 10C at E = 45 MeV/u according to CC calculations (red
solid lines). The one-step cross sections obtained by the DWBA
calculation are also shown (blue dotted lines). In panel (b) for
12Be, the DWBA calculation using the neutron transition density
ρ tr

n (r) = (Mn/Mp)ρ tr
p (r) is also shown for comparison (the magenta

dash-dotted line). The calculations are compared to the experimental
data measured in inverse kinematics of 10Be at 59.2 MeV/u [3], 12Be
at 53.8 MeV/u [3], and 10C at 45.3 MeV/u [7]. For the inelastic
scattering of 10Be(12Be), θlab is kinematically limited within 5.6 (4.7)
degrees; however, the data contain effects due to the finite size and
angular spread of the incident beam, multiple scatterings in the target,
and the detector geometry.

transition matrix elements such that

σ (h, h′) ∝ ∣∣b(h,h′ )
n Mn + b(h,h′ )

p Mp

∣∣2
, (4)
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FIG. 12. (a) Cross sections of elastic proton scattering off 16C
at E = 50 MeV/u and (b) those of inelastic scattering at E =
33 MeV/u according to CC calculations with the AMD densities
(red solid lines). The one-step cross sections obtained via the DWBA
calculation are also shown (blue dotted lines). The calculations
are compared to the experimental data [9,87] measured in inverse
kinematics. For the inelastic scattering, θlab is kinematically limited
within 3.6 degrees; however, the data contain effects due to the finite
size and angular spread of the incident beam, multiple scatterings in
the target, and the detector geometry.

where b(h,h′ )
n and b(h,h′ )

p are the neutron and proton field
strengths of the external field from the hadron probe. For
proton scattering, b(p,p′ )

n /b(p,p′ )
p depends on the energy. A

standard value of b(p,p′ )
n /b(p,p′ )

p ≈ 3 at E = 10–50 MeV/u ob-
tained from the data of various ordinary nuclei, is often used.
The Bernstein prescription has been widely used for inelastic
proton scattering; however, it relies heavily on the reaction
model, which contains ambiguities such as the proton-nucleus
optical potentials and the transition densities. The ansatz of
Eq. (4) indicates the linear relationship of the squared cross
section with the neutron (Mn) and proton (Mp) transition ma-

trix elements. The ratio b(p,p′ )
n /b(p,p′ )

p indicates the sensitivity
of the cross sections to the neutron transition matrix element
(Mn) relative to the proton transition matrix element (Mp) and
is supposed to be system independent. This linear relationship
may only be valid if the relation ρ tr

n (r) ∝ ρ tr
p (r) is satisfied.

However, this is not the case with 12Be and 16C, for
which the neutron transition density has an outer ampli-
tude compared to the proton transition density. Such an ex-
otic neutron transition density behavior may have nontrivial
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p ratio of the proton scattering at E = 30,
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squares), 10Be (green crosses), 12Be (red filled circles), and 16C (blue
filled triangles) were calculated with the default densities, and the
values for 12Be (red open circles), and 16C (blue open triangles) for
the ρ tr

n (r) = (Mn/Mp)ρ tr
p (r) case are shown.

effects on the relationship between the cross sections and the
transition matrix elements (Mn and Mp). To see these effects,

we microscopically derive the ratio b(p,p′ )
n /b(p,p′ )

p within the
present MCC approach and discuss how the sensitivity of the
cross section to Mn changes depending on the system as well
as on the incident energy.

Here we assume that the AMD calculation gives the correct
r dependence of ρ tr

n (r) and ρ tr
p (r) but contains ambiguity for

the overall factor in each of the neutron and proton parts.
By artificially changing the overall factor of ρ tr

n (r) or ρ tr
p (r),

we can calculate the integrated cross sections and reduce the
coefficients in the relation

σ (p, p′) = ∣∣a(p,p′ )
n (AZ, E )Mn + a(p,p′ )

p (AZ, E )Mp

∣∣2
. (5)

Here a(p,p′ )
n and a(p,p′ )

p are the system- and energy-dependent
parameters determined from the calculated cross sections. The
ratio a(p,p′ )

n /a(p,p′ )
p is nothing but the ratio b(p,p′ )

n /b(p,p′ )
p to be

discussed.
In Fig. 13, we show the obtained result of b(p,p′ )

n /b(p,p′ )
p =

a(p,p′ )
n /a(p,p′ )

p for each system, 18O, 10Be, 12Be, and 16C, with
the default transition densities depicted by open squares,
crosses, filled circles, and filled triangles, respectively. For
12Be and 16C, we also show the result for the naive case
of ρ tr

n (r) ∝ ρ tr
p (r) depicted by open circles and triangles,

respectively, which were via the MCC calculation using
ρ tr

n (r) = (Mn/Mp)ρ tr
p (r). In all cases, the calculated values

of b(p,p′ )
n /b(p,p′ )

p show a similar energy dependence, i.e., de-
creasing with increasing E . This energy dependence primarily

arises from the energy dependence of the effective g-matrix
NN interactions. In fact, if the nucleon-nucleus optical po-
tentials fixed at E = 60 MeV/u is used, b(p,p′ )

n /b(p,p′ )
p varies

slightly from 1.90 (1.64) to 1.89 (1.57) in the energy range of
30–120 MeV/u for proton scattering off 10Be (12Be).

At each energy, nearly the same values of b(p,p′ )
n /b(p,p′ )

p

are obtained for 18O and 10Be. In the calculation using the
ρ tr

n (r) = (Mn/Mp)ρ tr
p (r) assumption for 12Be and 16C, we ob-

tained almost the same values as 18O and 10Be. These values
can be regarded as standard values for ordinary systems with
ρ tr

n (r) ≈ (Mn/Mp)ρ tr
p (r). However, in the exotic case ρ tr

n (r) �=
(Mn/Mp)ρ tr

p (r) of 12Be and 16C with the default transition

densities, the values of b(p,p′ )
n /b(p,p′ )

p deviate significantly from
the standard values: they are smaller than the standard val-
ues by approximately 0.3, indicating that the sensitivity of
the cross sections to Mn is approximately 15% weaker than
in the ordinary case of ρ tr

n (r) = (Mn/Mp)ρ tr
p (r). The reason

for the weaker sensitivity of the cross sections is that the
outer amplitude of the neutron transition density significantly
contributes to Mn but does not contribute much to the cross
sections.

This result may suggest a possible modification to phe-
nomenological reaction analyses. For simplicity, let us sup-
pose that there is no ambiguity in the reaction model except
for the neutron transition density ρ tr

n (r) and that other inputs
are so reliable that the model can properly reproduce the cross
sections for the ordinary case. If one performs an inconsistent
analysis using ρ tr

n (r) = (Mn/Mp)ρ tr
p (r) for the exotic case,

one could extract an underestimated value of Mn from the
observed cross sections.

V. SUMMARY

We investigated proton inelastic scattering off 18O, 10Be,
12Be, and 16C to the 2+

1 states with a MCC calculation.
The proton-nucleus potentials are microscopically derived by
folding the Melbourne g-matrix NN interaction with the AMD
densities of the target nuclei. The calculated result reasonably
reproduces the elastic and inelastic proton scattering cross
sections, and supports the dominant neutron contribution in
the 2+

1 excitation of 12Be and 16C.
The sensitivity of the inelastic scattering cross sections

to the neutron transition density was discussed. Particular
attention was paid to exotic systems such as 12Be and 16C
in which the neutron transition density has a remarkable am-
plitude in the outer region compared to the proton transition
density. This outer amplitude of the neutron transition density
significantly contributes to the neutron matrix element Mn.
However, its contribution to the inelastic cross sections is
quite modest because the reaction process considered does
not have a strong selectivity for the outer region. This result
indicates that the Bernstein prescription is not valid in the
case that the neutron transition density has an outer amplitude
compared to the proton transition density. For such the exotic
systems, a phenomenological analysis with a simple ansatz of
the same transition densities for protons and neutrons tends to
underestimate Mn.
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The reaction model adopted here relies on MST with
the g-matrix approximation to the nucleon-nucleon effective
interaction, which becomes inadequate at low energies in
general. Nevertheless, this framework appears to work quite
well even near 25 MeV/nucleon, which is consistent with the
result in Ref. [43]. To investigate the structure and reaction
properties of unstable nuclei in detail, however, a more precise
description of the reaction system will be necessary. The
explicit treatment of rearrangement channels will be important
at lower energies.
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APPENDIX: RESUMMATION FACTOR IN THE
FOLDING MODEL CALCULATION

According to the multiple scattering theory for nucleon-
nucleus scattering constructed by Kerman, McManus, and

Thaler [49], the transition matrix T is given by

T = A

A − 1
T ′, (A1)

where A is the mass number of the nucleus and T ′ is the
transition matrix corresponding to the Schrödinger equation

[
K + h + A − 1

A

A∑
j=1

τ j − E

]

 = 0, (A2)

where K is the kinetic energy operator, h is the internal
Hamiltonian of the nucleus, E is the total energy, and 
 is
the total wave function. τ j is the effective interaction between
the incident nucleon and a nucleon inside the nucleus, which
is approximated to the Melbourne g-matrix NN interaction
in this study. The two factors, A/(A − 1) in Eq. (A1) and
(A − 1)/A in Eq. (A2), appear as a result of the resummation
of the NN collisions originally written in terms of a bare NN
interaction. Even though these resummation factors usually
do not play a role, for nucleon scattering off a light nucleus
especially at low energies, these factors may slightly modify
the result as shown in Ref. [43]. These factors are taken into
account in all the calculations shown in the present paper.
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