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Exploring experimental conditions to reduce uncertainties in the optical potential
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Background: Uncertainty quantification for nuclear theories has gained a more prominent role in the field, with
more groups attempting to understand the uncertainties in their calculations. However, recent studies have shown
that the uncertainties on the optical potentials are too large for the theory to be useful.
Purpose: The purpose of this work is to explore possible experimental conditions that may reduce the
uncertainties on elastic scattering and single-nucleon transfer cross sections that come from the fitting of the
optical model parameters to experimental data.
Method: Using Bayesian methods, we explore the effect of the uncertainties of optical model parameters on
the angular grid of the differential cross section, including cross-section data at nearby energies, and changes
in the experimental error bars. We also study the effect on the resulting uncertainty when other observables are
included in the fitting procedure, particularly the total (reaction) cross sections.
Results: We study proton and neutron elastic scattering on 48Ca and 208Pb. We explore the parameter space
with the Markov-chain Monte Carlo method, produce posterior distributions for the optical model parameters,
and construct the corresponding 95% confidence intervals on the elastic-scattering cross sections. We also
propagate the uncertainties on the optical potentials to the 48Ca(d, p)49Ca(g.s.) and 208Pb(d, p)209Pb(g.s.) cross
sections.
Conclusions: We find little sensitivity to the angular grid and an improvement of up to a factor of 2 on the
uncertainties by including data at a nearby energy. Although reducing the error bars on the data does reduce the
uncertainty, the gain is often considerably smaller than one would naively expect. We also find that the inclusion
of total reaction cross section can improve the uncertainty although the magnitude of the effect depends strongly
on the cases considered.
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I. INTRODUCTION

Nuclear reactions offer useful and versatile probes in the
study of nuclear structure and astrophysics. For example, nu-
cleon elastic scattering provides information on the effective
interactions between projectile and target, and single-nucleon
(d, p) transfer enables the study of the single-particle configu-
ration of orbitals in the final nucleus. On the astrophysics side,
we know that a good fraction of the heavy nuclei were gener-
ated through neutron capture reactions on unstable isotopes.
Here too, (d, p) reactions offer an important indirect probe
since direct neutron capture measurements are not feasible.
No matter the application, for a meaningful interpretation of
nuclear reaction data, one needs reliable reaction theory.

When intermediate and heavy nuclei are involved, most
often treating the reaction process in a fully microscopic ab
initio approach is not tractable. Instead, few-body theories
for reactions are developed, having as input the effective
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interactions between the composite particles (the so-called
optical potentials).

Over the decades there has been much work toward de-
veloping nucleon optical potentials (e.g., Refs. [1–4]); how-
ever, more recently, the focus is increasingly moving toward
extracting this quantity from first principles, without any
fitting parameters (e.g., Refs. [5–10]). For lighter systems,
computations can cover most of Hilbert space and predictions
compare well with data (e.g., Ref. [11]). For intermediate
mass systems, the ab initio approaches face challenges in
estimating correctly the absorption to other channels, due to
truncations in the model space. For heavy systems, ab initio
approaches are just not feasible. While these fully microscopic
efforts are important and should be pursued, it is clear that
semimicroscopic approaches, such as the dispersive optical
model [12–14], are currently more promising: They provide
a good description of the data while retaining some physical
insight based on theory. Nevertheless, for studying effects
across the nuclear chart, often the only alternative is to use
modern global phenomenological optical potentials, which
span a range of energies and masses. These are obtained from
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fitting a large body of data including elastic scattering and
total cross sections, and often analyzing powers on most stable
nuclei (e.g., Refs. [15–17]).

Just as important as developing reliable optical poten-
tials for reactions is the quantification of the uncertainties
associated with these potentials. The primary objective of
this work is not obtaining new optical potentials but rather,
through state-of-the-art statistical techniques, understanding
and quantifying their uncertainties and developing a path
toward reducing them systematically.

Over the past several years, the rigorous quantification of
theoretical uncertainties in low-energy nuclear physics has
been gaining traction, from Effective Field Theory [18–21] to
Density Functional Theory [22,23] and from ab initio methods
[24] to few-body reaction models [25–29]. The focus has also
recently shifted from the propagation of uncertainties using
covariance matrices, denoted here as frequentist methods and
defined by a χ2 minimization, to more sophisticated Bayesian
methods which provide a pathway for quantifying both para-
metric and model uncertainties. Most recently, DFT model
comparisons are being made using methods trending toward
machine learning techniques, with Gaussian processes and
Bayesian neural networks [30,31].

The present work comes in the sequence of a number of
uncertainty quantification (UQ) studies [25–29]: The goal is
to use modern statistical tools to reliably understand, quantify,
and control uncertainties in the theory for direct reactions.
Over the past few years, our UQ efforts have focused on the
parametric uncertainties associated with the nucleon-target
optical potential, when informed by elastic scattering, and
understanding how those uncertainties propagate to deuteron-
induced transfer reactions. Beginning with standard covari-
ance propagation methods [26,28] and moving on to Bayesian
methods [27], we have quantified uncertainties from the fitting
of optical potentials to nucleon elastic scattering and then
propagated them to transfer cross sections, using both the dis-
torted wave Born approximation (DWBA) and the adiabatic
wave approximation (ADWA). We have also made a direct
and systematic comparison between the frequentist χ2 opti-
mization and Bayesian methods [29]. This study showed that,
despite popular belief, the two methods are not identical and
that, for the higher levels of confidence, frequentist methods
severely underestimate the uncertainties while the Bayesian
approach provides a truer representation of the uncertainty.
Overall, uncertainties on transfer cross sections obtained from
the Bayesian approach ranged from 40% to over 100%. Such
large uncertainties render these probes less useful for extract-
ing structure or astrophysical information. It is desirable that
the parametric uncertainties do not exceed the errors on the
experimental data, which are typically of the order of 10%.

When the model relies on well-defined expansions, the
reduction of uncertainties is, in principle, straightforward.
This is the case for effective field theories: Because of the
order-by-order nature of the problem, the uncertainties can
be reduced by adding each successive order [18,32]. The
complexity in uncertainty quantification increases for models
that are not expressed as expansions. This is the case for DFT
calculations: The source of uncertainties can come from both
the imprecise form of the functionals and the specific choice

of the data protocol used to optimize the functionals [33].
Because of the nonperturbative nature of the reactions we are
interested in, the few-body model used to describe the reaction
does not offer an order-by-order systematic improvement on
the uncertainties. Like DFT, improving uncertainties in the
optical potential will most likely come from including more
data into the fitting procedure.

The goal of the present work is to explore different avenues
to reduce the uncertainties found in Refs. [26–29]. The UQ
methods we begin to explore here fall under the umbrella of
Bayesian experimental design [34] and should be applicable
across the nuclear chart, whenever the concept of an optical
potential holds. For this reason, and to optimize computations,
we use phenomenological potentials in the current study, but
underline that the UQ tools developed are general and can be
coupled with other optical potential frameworks.

In this study, we investigate four different aspects of the
data with the intent to reduce the uncertainties coming from
the optical potential. We explore (i) different ranges for the
angles at which scattering is measured, (ii) the use of nearby
beam energies, (iii) the magnitude of the experimental errors,
and (iv) the addition of reaction data beyond differential elas-
tic cross sections. Here, we present applications to reactions
on 48Ca and 208Pb.

This paper is organized in the following way. In Sec. II,
we briefly discuss the theoretical models used in the current
work. Section III contains results and a discussion. Finally,
conclusions are drawn in Sec. IV.

II. THEORETICAL CONSIDERATIONS AND INPUTS

A. Bayesian statistical framework

In Bayes’ statistics, one tests a hypothesis H (model)
against some constraining external information D (data).
Bayes’ theorem tells us that

p(H |D) = p(H )p(D|H )

p(D)
, (1)

where p(H |D) is the posterior distribution of the hypoth-
esis, conditional on the data, and p(H ) represents prior
information.

In our work [27,29], the hypothesis is the optical model
with parameters x j ( j = 1, Npar) and the data are the elastic
scattering angular distributions σ (θi ) (with i = 1, Nθ ). The
prior distributions p(H ) summarize our knowledge before the
data are seen, and the likelihood function, p(D|H ), contains
information about how well the model reproduces the data.
Typically, as in Ref. [27], we use a standard normal distri-
bution for the likelihood, L = e−χ2/2. When considering only
elastic scattering angular distributions, χ2 becomes

χ2 = 1

Nθ

Nθ∑

i=1

[σ th(θi ) − σ exp(θi )]2

�σ 2
i

, (2)

with σ (θi ) being the elastic angular distribution at a given
angle θi and �σi being the experimental uncertainties at θi.

The remaining piece in Eq. (1) is the evidence, p(D).
Evaluating the Bayesian evidence is numerically difficult and
often intractable, and therefore Monte Carlo methods are
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needed to sample the posterior distribution of parameters.
Here, we use the Metropolis-Hastings Markov-chain Monte
Carlo method (numerical details can be found in Ref. [27]).

Once we have the posterior distributions of optical model
parameters from the elastic scattering Bayesian fitting, we can
use these to generate predictions for the ADWA transfer cross
sections.

B. Optical potential and elastic scattering

Optical potentials, Uopt, capture the complex many-body
effects of nucleon-nucleus scattering. These potentials contain
a real part, representing the mean field seen by the nucleon
approaching the target, and an imaginary part that accounts
for flux that leaves the elastic channel. In general, optical
potentials contain (i) a real volume term of Woods-Saxon
shape with parameters V , r, and a for the depth, radius, and
diffuseness; (ii) an imaginary volume term (of Woods-Saxon
shape) with parameters Wv , rv , and av; (iii) a surface imagi-
nary term (derivative of Woods-Saxon shape) with parameters
Ws, rs, and as; (iv) a standard spin-orbit term; and (v) a
regular Coulomb term for charged projectiles. In this work,
the spin-orbit and Coulomb terms are kept constant, but all
other terms are allowed to vary. Thus, we typically deal with
nine parameters.

As in previous work, optical potential parameters are
initialized using the Becchetti and Greenlees (BG) global
parametrization [15]. In order to avoid restricting ourselves to
the limited available data, we use mock data generated from
the Koning-Delaroche (KD) global optical potential [16]. This
allows us total freedom in exploring angular and energy
discretization of observables. Unless otherwise stated, we take
the error on the data to be 10%. Concerning the Bayesian
method, wide Gaussian priors, centered on the original BG
parameter value and with a standard deviation equal to the
mean value of the distribution, were chosen to ensure that
parameter space was adequately sampled. In some cases, one
of the imaginary depths of the BG parametrization can be
zero; when this occurs, we take the parameter value to be 1
MeV with a width of 10 MeV to adequately sample this piece
of the potential as well. Then, 1600 parameter sets were drawn
to create 95% confidence intervals by taking the densest 95%
of the cross-section values at each angle. The wrapper codes
used to perform these calculations make use of the reaction
codes FRESCO and SFRESCO [35].

C. Transfer cross sections

Following the quantification of uncertainties in nucleon
elastic scattering, we also investigate how these uncertainties
propagate to single-nucleon (d, p) transfer reactions. The
model here used to describe (d, p) reactions is the adia-
batic wave approximation (ADWA) [36], which provides an
effective simple way of incorporating deuteron breakup to
all orders in the reaction formalism. In this formalism, one
starts from a three-body Hamiltonian of the n + p + A system,
and the key inputs are the pairwise interactions, namely
proton-target and neutron-target optical potentials, and the
well-known proton-neutron interaction. In ADWA, the cross

section can be directly obtained from the following T matrix:

T = 〈φnAχ
(−)
pB |Vnp

∣∣φnpχ
ad
d

〉
, (3)

where the adiabatic wave χad
d is generated from the effective

adiabatic potential:

UAD = −〈φ0|Vnp(UnA + UpA)|φ0〉, (4)

with φ0 being the first Weinberg eigenstate. A detailed discus-
sion of the advantages of ADWA can be found in Ref. [37].

Note that the beam energies used for the transfer reactions
studied are consistently chosen to match the sum of the
neutron and proton energies in the incoming channel. ADWA
transfer angular distributions are obtained with the reaction
code NLAT [38].

III. RESULTS

As stated in the introduction, the goal of this work is to
study the uncertainties in the optical potential through modern
UQ tools and explore experimental conditions that may lead
to reducing the uncertainties on the resulting observables. Our
UQ methods are general: Their applicability is valid as long at
the optical potential concept is a good approximation. We thus
choose as targets two doubly magic nuclei in different regions
of the nuclear chart, namely 48Ca and 208Pb. Nucleon elastic
scattering off of these targets can be well described by the
optical model. Because we are also interested in propagating
the uncertainties to (d, p) reactions, our applications include
beam energies in the range of 10–65 MeV.

We first consider neutron and proton elastic scattering on
48Ca at 12 MeV and on 208Pb at 30 MeV. We also include in
our study proton elastic scattering on these targets are 21 and
61 MeV respectively [corresponding to the exit channel ener-
gies for the (d, p) process]. Applying the Bayesian procedure
described in Sec. II, we obtain parameter posterior distribu-
tions for the optical potentials and uncertainty intervals for
the elastic scattering angular distributions. The corresponding
parameter posteriors are then used to propagate the uncer-
tainty to the transfer 48Ca(d, p)49Ca(g.s.) at Ed = 21 MeV
and 208Pb(d, p)208Pb(g.s.) at Ed = 61 MeV. Here, we explore
four different experimental conditions in an attempt to reduce
the uncertainties in the calculated angular distributions.

A. Angular coverage

Because all of our previous studies [25–29] use angular
distributions as our external information, p(D), we first ex-
plore the information content in the various ranges of angles
to determine whether, by varying the angular grid, one can
reduce the uncertainties. The angular distributions of the cross
sections can be expressed by a partial wave decomposition:

dσ

d�
= 1

4k2

∣∣∣∣∣

∞∑

L=0

(2L + 1)PL(cos θ )(SL − 1)

∣∣∣∣∣

2

, (5)

where k is the incoming momentum in the center of mass,
PL(cos θ ) are the Legendre polynomials, and SL are the S-
matrix elements [39]. From this relationship, one can ex-
pect that constraining one angle provides constraints to other
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angles (correlations between angles have been discussed in
Ref. [26]). However, it is also understood that, for proton
elastic scattering, the forward angles are dominated by the
Coulomb interaction and it is only the more backward angles
that contain the desired optical potential information. Finally,
for the largest angles corresponding to central collisions, one
does not expect the optical model to hold and therefore one
may obtain disparate results. This qualitative analysis can now
be rigorously quantified with Bayesian methods.

We start by carefully choosing an angular grid that is
well suited to each particular case: We take 6–12 data points
between each pair of minima in the angular distribution.
This level of discretization provides a statistically significant
set and is comparable to the number of data points present
in typical experimental data sets. We then use the Koning-
Delaroche optical potential [16] to generate our cross-section
reference data set, including angles from θ = 5–160◦. The
Bayesian procedure is then run using this data, and we refer to
the results of this calculation as full. We also generate a second
set of cross-section data by dropping all angles backward of
θ = 100◦ (we refer to this calculation as forward). Finally, we
use the original data set from θ = 5–160◦ and drop every other
angle, reducing the number of data points by half (we refer to
this calculation as reduced).

Figure 1 contains all these results for 48Ca: Figures 1(a) and
1(c) show the 95% confidence intervals for the elastic scatter-
ing of neutrons and protons off 48Ca at 12 MeV; Figs. 1(b)
and 1(d) are the corresponding percentage error, quantified
as the width of the 95% confidence interval divided by the
mean, multiplied by 100; Figs. 1(e) and 1(f) show the same
quantities but now for proton scattering off 48Ca at 21 MeV;
and finally, Figs. 1(g) and 1(h) are the predicted quantities for
48Ca(d, p)49Ca at Ed = 21 MeV. The identical quantities for
208Pb are shown in Fig. 2. Shown are the results with the full
angular range (blue solid), with forward angular range (orange
dashed), and with reduced the data points (green dotted).

For all cases, the uncertainties obtained with the reduced
data sets are very similar to those obtained when the full set
is considered (the parameter posteriors, not shown here, are
also overlapping). We repeated this analysis and included a
larger set of angles (considering data points for every degree)
and still the results were identical. As far as elastic scattering
is concerned, adding more angles to the angular distribution
offers no additional constraints to the optical potential param-
eters. Data that provide only a rough outline of the diffraction
pattern are sufficient. This is consistent with the observation
that different angles are correlated [26].

Concerning the results when dropping the larger angles, we
see only small changes in the posterior distributions for some
parameters of the imaginary terms in the optical potential. The
uncertainty on the cross sections does increase at backward
angles for the elastic distribution, and in some cases the uncer-
tainty at the intermediate angles is reduced. We attribute this
complex picture to the fact that, at the most backward angles,
the optical model does not provide a reliable description of
the process and there is a chance of ending up with artificial
parameters.

When these results are propagated to the transfer, the ef-
fects are mixed due to the nonlinear form by which the various

FIG. 1. A comparison of results using the full angular range
(blue solid line) with those where only forward angles are used
(orange dashed) or half of the data points are considered (green
dotted): (a) and (b) 48Ca(n, n) at 12 MeV 95% confidence intervals
and percentage uncertainty plot; (c) and (d) 48Ca(p, p) at 12 MeV
95% confidence intervals and percentage uncertainty plot; (e) and (f)
48Ca(p, p) at 21 MeV 95% confidence intervals and percentage un-
certainty plot; and (g) and (h) 48Ca(d, p) at 21 MeV 95% confidence
bands and percentage uncertainty plot.

parameter posteriors enter in the calculation. For example, if
we focus only on the forward angles, dropping the larger an-
gles in the fit produces a small increase in the uncertainty for
the transfer cross section on 48Ca but a significant reduction
of the uncertainty for the transfer cross section on 208Pb.

B. Nearby energy range

It has been argued that local optical potentials can be better
constrained by fitting data taken at several nearby energies
(e.g., Ref. [40]). The assumption is that by using a small
range of energies around the energy of interest, one reduces
possible spurious effects and imposes a tighter constraint.
We have explored this idea by generating another set of data
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FIG. 2. A comparison of results using the full angular range
(blue solid line) with those where only forward angles are used
(orange dashed) or half of the data points are considered (green
dotted): (a) and (b) 208Pb(n, n) at 30 MeV 95% confidence intervals
and percentage uncertainty plot; (c) and (d) 208Pb(p, p) at 30 MeV
95% confidence intervals and percentage uncertainty plot; (e) and (f)
208Pb(p, p) at 61 MeV 95% confidence intervals and percentage un-
certainty plot; and (g) and (h) 208Pb(d, p) at 61 MeV 95% confidence
intervals and percentage uncertainty plot.

at a nearby energy and comparing the confidence interval
obtained when only a single set σ

E1
el (θ ) is included in the

method to the case when both the original and the additional
set σ

E2
el (θ ) of mock data are included. As additional sets, we

included mock data generated with Ref. [16] at 14 MeV for
n + 48Ca, 14 MeV for p + 48Ca, 24 MeV for p + 48Ca, 32
MeV for n + 208Pb, 32 MeV for p + 208Pb, and 65 MeV for
p + 208Pb. There are two possibilities of incorporating the
respective pair of angular distributions. In the first, we find
a joint parametrization for the two data sets (this approach is
denoted by multiple). We take equal weights in the χ2 function
for the two data sets and consider the cross sections at the
exact same angles. In a second procedure, we first consider
the nearby energy data set and generate the posteriors from it.

FIG. 3. A comparison of results using a single data set (blue
solid line) with those using two sets at nearby beam energies, either
sequentially (green dotted) and simultaneously (orange dashed):
(a) and (b) 48Ca(n, n) at 12 MeV 95% confidence intervals and
percentage uncertainty plot; (c) and (d) 48Ca(p, p) at 12 MeV 95%
confidence intervals and percentage uncertainty plot; (e) and (f)
48Ca(p, p) at 21 MeV 95% confidence intervals and percentage un-
certainty plot; and (g) and (h) 48Ca(d, p) at 21 MeV 95% confidence
intervals and percentage uncertainty plot.

These are then introduced as priors in the fit to the first data
set (this approach is denoted by sequential).

Figure 3 (Fig. 4) show the results obtained for the 95%
confidence intervals for the reactions on 48Ca (208Pb): We
show on the left the differential angular distributions as a
function of scattering angle and on the right the uncertainty
interval as a percentage. We note that if the two data sets
are included sequentially, no improvement is found, although
the sequential method finds a slightly different minimum in
parameter space. In contrast, when both sets are included
simultaneously, the minimum found in parameter space is the
same as that obtained when using only the single original data
set, but now, with the additional constraint, the uncertainty can
be further reduced. For 48Ca, the inclusion of the additional
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FIG. 4. A comparison of results using a single data set (blue solid
line) with those using two sets and nearby beam energies, either
sequentially (green dotted) and simultaneously (orange dashed):
(a) and (b) 208Pb(n, n) at 30 MeV 95% confidence intervals and
percentage uncertainty plot; (c) and (d) 208Pb(p, p) at 30 MeV 95%
confidence intervals and percentage uncertainty plot; (e) and (f)
208Pb(p, p) at 61 MeV 95% confidence intervals and percentage un-
certainty plot; and (g) and (h) 208Pb(d, p) at 61 MeV 95% confidence
intervals and percentage uncertainty plot.

data at a nearby energy produces at most a modest reduction
on the uncertainty intervals in elastic scattering or transfer,
except for neutron elastic scattering where the effect is im-
portant. For 208Pb, the improvement is very significant for all
elastic scattering cases considered and results in a factor of 2
reduction in the uncertainty interval at forward angles for the
transfer cross section.

We have verified that there are two factors contributing to
the different findings in 48Ca and 208Pb. The first has to do
with the different energy regimes. If one repeats the process
for 48Ca reaction at the same energies as those for 208Pb,
the resulting uncertainties are significantly reduced, in line
with the results show in Fig. 4. The second has to do with
how close the nearby energy is to the original energy. This

TABLE I. Ratio of the average uncertainties obtained with
changing the experimental error bars on the elastic scattering data.
More details in the text.

Reaction �ε20/10 �ε10/5

48Ca(n, n) at 12 MeV 1.53 1.94
48Ca(p, p) at 12 MeV 1.68 1.71
48Ca(p, p) at 21 MeV 1.55 1.74
48Ca(d, p) at 21 MeV 1.68 1.52
208Pb(n, n) at 30 MeV 1.62 1.79
208Pb(p, p) at 30 MeV 1.39 1.61
208Pb(p, p) at 61 MeV 1.99 1.74
208Pb(d, p) at 61 MeV 1.41 1.58

value cannot be too far from the original value; otherwise, the
energy dependence of the optical potential would need to be
explicitly considered (introducing a larger array of parame-
ters). However, this nearby energy should not be too close to
the original; otherwise, the added data becomes redundant. If
we repeat the 208Pb calculation using as the second energy
E = 35 instead of E = 32 MeV (same percent difference as
in the 48Ca case), we obtain only a modest improvement on
the uncertainty, a result more in line with Fig. 3.

C. Experimental error bar

One obvious way to impose a more stringent constraint
is by reducing the error bars on the experimental data. Up
to this point, we have considered as our standard value the
nominal error on all data of 10%. While this value is more
common in stable beam experiments where statistics are
plentiful (in some cases the error obtained in stable beam
experiments is even lower than 5%), the same cannot be said
for radioactive beam experiments in inverse kinematics. In
those cases, statistics often limit errors closer to 20%. In this
subsection, we explore the consequences on the confidence
intervals predicted by theory of reducing the experimental
error bar from the nominal 10% to 5% or increasing it to 20%.

Our results are summarized in Table I. We consider the
percentage error obtained when the data has an error of 20%,
averaged over angle (ε20) and the percentage error obtained
when the data has an error of 10%, averaged over angle (ε10).
The ratio �ε20/10 = ε20

ε10
corresponds to the second column in

Table I. The third column shows the ratio between the results
assuming 10% error on the data and 5% error on the data:
�ε10/5 = ε10

ε5
.

Expectedly, reducing (increasing) the error bar on the elas-
tic scattering data does translate to a reduction (increase) in
the predicted uncertainty. However, this effect is not directly
proportional to the change in error, underlining the nonlinear-
ity of the effect. The conclusion here is that while there is
significant gain by reducing the error bar for reactions on both
48Ca and on 208Pb, the magnitude of the improvement depends
on the particular reaction and the angular region considered
and is seldom a factor of 2. This aspect may make it less
attractive to the experimental community to work on increased
precision in the experiment.
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TABLE II. Comparing Bayesian interval for total (reaction) cross
sections with mock data.

Reaction E (MeV) σCI (mb) σ KD (mb)

48Ca(n, n) 12 1221–1436 1322
48Ca(p, p) 12 920–1095 999
48Ca(p, p) 21 984–1189 1083
208Pb(n, n) 30 2324–2688 2486
208Pb(p, p) 30 1688–2191 1891
208Pb(p, p) 61 2037–2254 2133

D. Additional reaction data

Other groups have found success in including more infor-
mation in the fitting procedure, particularly with total reaction
cross sections [41]. Motivated by that work, we investigated
the impact on our uncertainties when including the total
(reaction) cross section data in addition to differential cross
section data for neutron (proton) elastic scattering. Again, we
use the optical model parametrization of Ref. [16] to generate
these results and apply equal weight to this additional data
point as that of the whole differential angular distribution
used previously. This choice is rather ambiguous, but by
doing it this way, we maximize the effects of this additional
information.

The results including the reaction data (orange dashed
lines) are compared to those including only elastic angular
distribution (blue solid lines) in Figs. 5 and 6. Including the
total cross section (or reaction cross section) can result in a
reduction on the uncertainties in the elastic scattering distribu-
tion, but the magnitude of the effects depends on the angle and
particular reaction considered. For the transfer cross sections,
we find that, for 48Ca, there is no significant change in the
uncertainty intervals, but the contrary is true for 208Pb, where
we find a reduction of ≈20% at forward angles. This can
be explained by the fact that the optical potential posteriors
generated when including the total (reaction) cross sections
shift significantly for 208Pb, particularly in the imaginary
depths and diffusenesses. Although the parameter posteriors
themselves are not narrower, they result in a narrower range
for this observable. The differences between the 48Ca and
the 208Pb cases are primarily due to the different energy
regimes. When we repeated the 48Ca calculations at the same
energies as the 208Pb, we obtained similar reductions in the
uncertainty intervals when including reaction cross sections.
For completeness, we present in Table II the predicted 95%
intervals for the total (reaction) cross section σCI from this
work (when both elastic and total (reaction) cross sections
are included in the likelihood). The predicted intervals are
consistent with the mock data σ KD.

It is also known that polarization observables can be used
to further constrain the optical potential. As a first step in
exploring the information content of polarization observ-
ables, using the same global optical potential [16], we have
generated vector analyzing powers, Re(iT11) = √

3/2 Ay, for
all the elastic-scattering cases in our study. We have intro-
duced the nominal uncertainty on the data of ε = |10%iT11|,
just as before. We first apply the Bayesian procedure to

FIG. 5. A comparison of results using elastic scattering angular
distributions (blue solid line) with those using in addition the total
(reaction) cross section (orange dashed): (a) and (b) 48Ca(n, n) at
12-MeV 95% confidence intervals and percentage uncertainty plot;
(c) and (d) 48Ca(p, p) at 12-MeV 95% confidence intervals and
percentage uncertainty plot; (e) and (f) 48Ca(p, p) at 21-MeV 95%
confidence intervals and percentage uncertainty plot; and (g) and
(h) 48Ca(d, p) at 21-MeV 95% confidence intervals and percentage
uncertainty plot. Mock data from KD (black circles) and real experi-
mental data (purple stars) are also shown.

constrain the same nine optical potential parameters as in the
previous sections but now with this polarization data alone.
The resulting posteriors were much narrower (by an order
of magnitude). This result is unrealistic and is caused by the
artificial error bars: The Re(iT11) angular distribution oscil-
lates around zero, and the percent error ends up introducing
absolute errors close to zero and driving the minimization
procedure. We thus corrected this by taking a minimum error
representing a lower bound from systematic uncertainties
in the measurement: When |Re(iT11)| becomes lower than
5% of its maximum value, we take ε = |5%Max(Re(iT11))|.
This choice is rather ambiguous and the results obtained are
more in line with the uncertainty intervals produced in the
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FIG. 6. A comparison of results using elastic scattering angular
distributions (blue solid line) with those using in addition the total
(reaction) cross section (orange dashed): (a) and (b) 208Pb(n, n) at
30-MeV 95% confidence intervals and percentage uncertainty plot;
(c) and (d) 208Pb(p, p) at 30-MeV 95% confidence intervals and
percentage uncertainty plot; (e) and (f) 208Pb(p, p) at 61-MeV 95%
confidence intervals and percentage uncertainty plot; and (g) and
(h) 208Pb(d, p) at 61-MeV 95% confidence intervals and percentage
uncertainty plot. Mock data from KD (black circles) and real experi-
mental data (purple stars) are also shown.

elastic-scattering angular distributions shown in Figs. 5 and
6. Further work is in progress to incorporate polarization
consistently and correctly in the definition of the likelihood
and will be reported elsewhere.

E. Confronting our results with real data

As mentioned before, in order to have control over the
experimental conditions, we used mock data generated from
the global optical model [16]. Global parametrizations such
as Ref. [16] cannot provide a perfect reproduction for elastic
scattering of any single data set. However, on average, these
parametrizations should be able to provide a fair description

of reality. Most importantly, we have now quantified the
uncertainty in the determination of the optical model pa-
rameters and therefore it is useful to confront the predicted
uncertainties with real data.

In Fig. 5, we have included real data (open purple stars),
with real error bars, from Refs. [13,42,43] for scattering on
48Ca. Data from Refs. [44–46] for scattering on 208Pb is used
in Fig. 6. The percentage of time that the real data (with
real error bars) falls into the predicted uncertainty interval
varies from case to case, but ranges from 75 to 100%. These
values are to be compared with the 95% confidence level
calculated. The exception is for n+48Ca at 12 MeV, for which
the empirical coverage is only 26%. Clearly for this case the
KD potential [16] does not provide a good description. In
addition, we have also included (d, p) data from Ref. [47]
in Fig. 5(g) (no additional normalization is applied). We
conclude that the UQ intervals obtained with mock data are
physically reasonable.

IV. CONCLUSIONS

In this work, we use the Markov-chain Monte Carlo
Bayesian approach to explore different aspects of experimen-
tal conditions in an attempt to reduce the uncertainties associ-
ated with elastic scattering and transfer reactions. We perform
systematic studies of neutron and proton elastic scattering
on 48Ca and 208Pb and the associated (d, p) reactions using
the three-body model ADWA for the reaction. We use mock
data generated from a global optical potential so there is total
control on the assumed conditions for the experiment.

As a first step, we explore the information content of
the angular distribution. We compare uncertainty intervals
obtained for elastic and transfer observables using a dense
angular grid and a sparse angular grid, and including only
forward angles. We find the results are not significantly sen-
sitive to the number of angles included, as long as it can
roughly capture the diffraction pattern. Expectedly, by not in-
cluding the backward angles in the fit, the uncertainties for the
elastic-scattering angular distributions increase significantly
at backward angles, but this does not translate into a larger
uncertainty in the transfer, a result that points to the nonlinear
nature of the problem.

Second, we explore the constrain coming from an ad-
ditional angular distribution data set measured at a nearby
energy. For this case, we demonstrate that when including
two sets of data at nearby energies simultaneously in the
procedure, one can improve the uncertainty intervals by up
to a factor of 2. However, for the two cases considered here,
the method works best at higher energies and if the nearby
energies are chosen to be ≈7% apart.

We next explored the impact of the uncertainty intervals
coming from reducing the experimental error bar. While the
uncertainty decreases with smaller errors bars as one would
expect, the gain is not directly proportional to the reduction
factor for the error bars. In most cases, there is a loss coming
from the complex way in which the various parameter poste-
riors work together to produce the desired observable.

Finally, we considered the inclusion of the total (reaction)
cross sections in the Bayesian procedure. Although the results
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depend on the case considered, we find that the inclusion
of total (reaction) cross section can offer a reduction on the
uncertainty in the elastic and transfer observables, but the
magnitude depends on the particular reaction, beam energy,
and the angular range. Finally, we also performed preliminary
work to include vector analyzing powers in the Bayesian pro-
cedure. Our results indicate that a dedicated study, exploring
other statistical tools, is needed to obtain useful results. Such
a study is in progress.

The UQ tools we have so far developed make use of
global phenomenological potentials and the adiabatic wave
approximation for (d, p) reactions. However, the UQ tools
themselves are very general and can be coupled with more
advanced optical potential approaches and reaction theories.
As the UQ tools become established, future planned collabo-
rations entail attaching the UQ framework to upgraded optical
model approaches and reaction theories for the most reliable
interpretation of the physics.

As mentioned in the introduction, reactions at the limits
of stability are particularly relevant for astrophysics because
a fraction of the production of heavy nuclei involves neutron
capture reactions on unstable nuclei. Since we cannot mea-
sure neutron capture on exotic nuclei directly, (d, p) transfer
reactions are used as an indirect probe [48]. These transfer
reactions are typically performed in inverse kinematics, where
the unstable nucleus is the beam and the target is the light
particle (either the proton or the deuteron). Currently, with
the rapid development of a number of active target time

projection chambers (AT-TPC), and given their astonishing
tracking capabilities, we are already able to scan energy in one
single experiment due to the beam energy loss in the active
target. This is very fortunate given that, of the cases explored
in this work, we find that the most promising case for reducing
the uncertainties in the optical potential is by including data at
nearby energies.

Given the demand for beam time and the limited resources,
we expect data on rare isotopes will continue to be scarce. This
makes it even more important that we know the theory uncer-
tainties associated with interpreting any given measurement
involving reactions with unstable beams and using modern
UQ tools to help identify the experimental design that will
hold the most information.
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