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Subbarrier fusion reactions of an aligned deformed nucleus
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We discuss heavy-ion fusion reactions of a well-deformed odd-mass nucleus at energies around the Coulomb
barrier. To this end, we consider the '°0 4- '*Ho reaction and take into account the effect of deformation of '**Ho
using the orientation average formula. We show that fusion cross sections are sensitive to magnetic substates of
the target nucleus, and cross sections for the side collision, which are relevant to a synthesis of superheavy
elements, may be enhanced by a factor of around two by aligning the deformed target nuclei. We also discuss the
effect of alignment on the fusion barrier distribution. We find that, for a particular choice of alignment, the shape
of barrier distribution becomes similar to a typical shape of barrier distribution for a deformed nucleus with a
negative hexadecapole deformation parameter, f,, even if the intrinsic 4 is positive in the target nucleus.
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I. INTRODUCTION

It has been well known that nuclear deformation of the
colliding nuclei plays an important role in heavy-ion fusion
reactions [1-5]. For medium-heavy systems, such as '°0 +
154Sm, fusion cross sections are largely enhanced at energies
around the Coulomb barrier compared to a prediction of a
simple potential model. This has been interpreted as a result
of a distribution of the Coulomb barriers that depends on
the orientation angle of the deformed target nucleus. Since
fusion cross sections have an exponential dependence on the
incident energy at energies below the Coulomb barrier, fusion
cross sections can be enhanced by orders of magnitude due to
the contribution of the configurations for which the Coulomb
barrier is lowered than the original barrier. The barrier dis-
tribution has been investigated experimentally for several
systems [2,6,7], and this picture has been well established by
now.

The nuclear deformation plays an important role also in
fusion reactions in massive systems, that is, those used to
synthesize superheavy nuclei. For prolately deformed nuclei,
a compact configuration is realized at the touching point
when a projectile nucleus approaches from the direction of
the shorter axis of the target nucleus, that is, the side col-
lision. This makes it a big advantage to overcome an inner
barrier and form a compound nucleus [8—14]. The notion of
compactness has recently been confirmed experimentally by
comparing the measured barrier distribution and the excitation
function of evaporation residue cross sections for the *3Ca +
248Cm system [15]. Moreover, employing the concept of the
compactness, the so-called hugging fusion was proposed for
fusion between deformed nuclei with negative hexadecapole
deformation, such as '"°Nd + '"°Nd, for which the touching
configuration is compact when the symmetry axis of each
nucleus is perpendicular to each other [16]. (Notice, however,
that the effective inner barrier will be considerably high for
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such symmetric systems [17] and it would be extremely
difficult to synthesize superheavy elements with hugging
fusion.)

In many experiments for fusion of a deformed nucleus,
an even-even nucleus has been chosen as a target nucleus,
partly because the ground state has zero spin and thus the
theoretical treatment is easy. However, a finite spin of odd-
mass nuclei may bring an interesting insight into dynamics
of heavy-ion fusion reactions [18] (see also Ref. [19]). As a
matter of fact, fusion of an aligned/polarized nucleus has been
theoretically investigated in the 1980s and 1990s and it has
been demonstrated that fusion cross sections are significantly
altered by aligning the odd-mass nuclei [20-24]. Notice that
this effect would be important in fusion in astrophysical envi-
ronments under a strong magnetic field, which leads to a natu-
ral polarization of colliding nuclei. Experimentally, fusion of
an aligned light nucleus, 2Na, has been measured [25-27].
For heavier deformed nuclei, a measurement of fusion cross
sections for the '°0 + 1% Ho system was planned [24], even
though the actual experiment has not yet been performed so
far [28].

In this paper, we revisit the problem of fusion of an
aligned deformed nucleus. In the previous studies, the effect
of alignment was discussed only in terms of fusion cross
sections as well as tensor analyzing powers, and the effect on
fusion barrier distributions has yet to be investigated. Notice
that the shape of fusion barrier distribution is sensitive to the
details of nuclear deformation, and one may gain a deeper
insight into the reaction dynamics of a deformed nucleus by
analyzing the fusion barrier distributions. Moreover, the effect
of alignment has never been discussed in connection to fusion
for superheavy elements, which may be important for future
experiments to synthesize new superheavy elements. Given
the new experiment for the barrier distribution for systems
relevant to superheavy elements [15], we consider that it is
timely to revisit this problem now.

©2019 American Physical Society
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The paper is organized as follows. In Sec. I, we summarize
the theoretical framework to describe fusion cross sections for
an aligned deformed target. To this end, we consider fusion of
a well-deformed nucleus, for which fusion cross sections are
approximately given as an average of fusion cross sections for
fixed orientation angles. In Sec. III, we apply the formula to
the '°O + 'SHo reaction and discuss the effect of alignment
on the fusion cross sections and the fusion barrier distribution.
We also discuss an implication of the effect of alignment for
fusion for superheavy nuclei. We then summarize the paper in
Sec. IV.

II. FUSION CROSS SECTIONS FOR AN ALIGNED
DEFORMED TARGET

We consider fusion between an inert projectile and a well-
deformed target nucleus. In this case, the relative motion
between the colliding nuclei couples to the rotational motion
of the deformed target. We take a rigid rotor model to describe
the wave functions for the ground-state rotational band of
the target nucleus. That is, for the state with the angular
momentum / and its z component M, the wave function reads
[29]

21 +1
1672(1 + 8k.0)

+ (=)D, (Q)pr (5], (1)

where K is the K-quantum number, that is, the projection of
the angular momentum on the body-fixed frame. Here we have
assumed that the deformed nucleus has axially symmetric
shape so that the K-quantum number is conserved. D}, ($2)
is the Wigner D-function, in which Q = (¢, 6, x) denotes the
Euler angles. ¢k (&) is the intrinsic wave function, where & is
the intrinsic coordinate, and ¢y is the time-reverse of ¢.

To simplify the angular-momentum coupling, we employ
the isocentrifugal approximation [3]. In this approximation,
one transforms the whole system to the rotating frame where
the z axis is along the direction of the relative motion, r, at
every instant. The interaction between the projectile and the
target nuclei in this approximation then reads [3,30],

V(r,0)=Vy(r,0)+ Vc(r,0), 2)

Wikm(Q) = [D}x (D (§)

with the nuclear potential given by

Vo
1+ exp{[r — Ry — Ry ), BiYao(0)]/a}’
and the Coulomb potential given by
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Here B, are the deformation parameters of the deformed
target and 6 denotes the angle between the symmetry axis
of the deformed target and the relative coordinate, r. For a
prolately deformed target, 8 =0 (9 = 7 /2) corresponds to

the case where the projectile nucleus approaches from the
longer (shorter) axis of the target and refers to as the tip
(side) collision. Ry and Z; are the radius and the charge
number of the target nucleus, respectively, and Zp is the charge
number of the projectile nucleus. Here we have assumed a
Woods-Saxon shape for the nuclear potential and expand the
Coulomb potential up to the second order of B, and the first
order of B4. Notice that in the isocentrifugal approximation the
value of M is conserved during the reaction, since the coupling
potential, Eq. (2), does not change the z component of the
angular momentum [3,31]. The fusion cross sections can thus
be labeled with M.

In addition to the isocentrifugal approximation, we take
the sudden tunneling approximation by setting the rotational
energy of the target nucleus to be zero. In this approximation,
together with the isocentrifugal approximation, fusion cross
sections are given as a weighted average of cross sections
for fixed values of the angle 6, with the weight factors given
by the square of the ground-state wave function of the target
nucleus [3,20,32-34]. That is, fusion cross sections for a
magnetic substate M read

opn (E) = / A2 | Wy om ()| 01 (6), 5)

2 b4 2 2
_ / d¢/ sin 66 / x| Wik ()] 01us(0),
0 0 0
©)

where Iy and Kj are the value of / and K for the ground
state and oyp,s(0) is the fusion cross section evaluated with a
potential given by Eq. (2) for a fixed value of 6. Notice that
M is a projection of the angular momentum on the z axis,
which coincides with the beam direction at the initial stage
of reaction. That is, the quantization axis for the ground-state
spin of the target nucleus is in the beam direction in this
formula. Since the integrals of the ¢ and x are trivial in
Eqg. (6), one finally obtains

1 /2
/ sin 6d6
0

x [|dlh @) + |dis_. @] 0@, (D)

which coincides with Eq. (19) in Ref. [24] (see also Ref. [35]).
Here we have used the relation oys(0) = ops(r — 6), which
is valid for deformed nuclei with a reflection symmetric shape.
Notice that, using the relation Y, |dl,,(6)> = 1, fusion
cross sections for the unpolarized target reads

Z W (E), ®)

21y +
o (E) = =

(unpol)
fus ( ) - 21 4 1

/2
= / sin 0d6 opys(0), 9
0

which is identical to the formula for even-even deformed
nuclei [3].

Fusion cross sections for another direction of the quanti-
zation axis can also be computed by expanding the quantized
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state, [IM), with the eigenstates of I, as

M) =" cy|IM). (10)
M

Notice that the absolute value of the expansion coefficient, cy,
is actually given by

lem| = |dy,,(6a)], an

where 6, is the angle between the quantization axis and the z
axis. Fusion cross sections are then given by

o (E) =Y lenlPopl (E). (12)
M

where af(lf‘: )(E ) is the fusion cross section when the quantiza-
tion axis is taken to be the z axis, given by Eq. (6).

III. APPLICATION TO THE '°O + '*Ho SYSTEM

Let us now apply the formulas in the previous section to the
160 + 195Ho system and discuss the effect of alignment of the
target nucleus, 165Ho, that is, a well-deformed nucleus with
the ground-state spin and parity of Iy = 7/27. The ground-
state rotational band has KJ = 7/27. Notice that this nucleus
has an ideal property as a material of the spin-aligned target.
That is, due to its extremely strong hyperfine field, a large spin
alignment of up to 80-90% of the maximum theoretical value
can be achieved by cooling down a single crystal of Ho metal
[36—41].

We first take the quantization axis to be parallel to the beam
direction. Figure 1 shows the weight factor in the fusion cross
sections [see Eq. (7)],

2y + 1
2

without (the upper panel) and with (the lower panel) the
statistical factor of sin 8. For comparison, the weight factor
for the unpolarized case, w(f#) =1 [see Eq. (9)], is also
shown. One can see that, whereas the distribution is isotropic
for the unpolarized case, the side (the tip) collision is more
emphasized forM = 1/2 (M =17/2).

In fusion reactions to synthesize superheavy elements,
the side collision around 6 ~ 7 /2 contributes predominantly
[14,15]. The figure implies that evaporation residue cross
sections of superheavy nuclei could be increased by a factor
of around two as compared to the unpolarized case if the
target nucleus could be selectively prepared with M = +1/2.
In the synthesis of superheavy elements with extremely low
cross sections as well as in fusion reaction with low-intensity
radioactive-ion beams, it is critically important to reduce
beam times by making all possible efforts. The enhancement
by a factor of two suggested by this calculation indicates
that a spin alignment can be used for such purposes, even
though a spin-aligned target which is applicable to fusion
measurements will have to be developed.

Fusion cross sections for the '°0O + ' Ho are shown in
the upper panel of Fig. 2. To this end, we take the Woods-
Saxon form for the internuclear potential, with the depth, the
radius, and the diffuseness parameters of Vy = 104 MeV, ry =
1.15 fm, and a = 0.63 fm, respectively. This potential yields a

W (0) = [ i, @ + |ds_, @[ (3)

quantization axis: the beam direction

(@) |

-~ T T T
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FIG. 1. The weight factor for fusion cross sections of a deformed
target nucleus with the ground-state spin and parity of I = 7/2~
and the K quantum number of K, = 7/2. It is plotted as a function
of the angle between the symmetry axis of the target and the relative
coordinate between the projectile and the target. The quantization
axis is set to be parallel to the beam direction. The upper and the
lower panels show the weight factor without and with the factor sin 6.
The solid, dot-dashed, dot-dot-dashed, and dashed lines are for M =
1/2,3/2,5/2, and 7/2, respectively, where M is the projection of the
ground-state spin of the target onto the quantization axis. The weight
factor for the unpolarized case is also shown by the dotted lines.

similar barrier height as that with the Akyiiz-Winther potential
[42]. For the deformation parameters, we follow Ref. [43] and
take 8, = 0.284 and B4 = 0.020, with the radius parameter of
Ry = 1.2AIT/ > fm. The excitation of '°O is taken into account
only through the potential renormalization [3,44] and is not
explicitly included in the calculations. The figure corresponds
well to Fig. 3 in Ref. [24]. Since the tip collision has a lower
Coulomb barrier than the side collision, fusion cross sections
for M = 7/2 are much more enhanced as compared to those
for M = 1/2, reflecting the angle dependence of the weight
factor as shown in Fig. 1.

This fact can be seen more transparently in the fusion
barrier distributions shown in the lower panel of Fig. 2.
Here the fusion barrier distribution, Dy,s(E), is defined as the
second energy derivative of Eopys(E) [2,6], that is,

dz(EUfus)
dE?
Here we evaluate the barrier distributions using the point dif-

ference formula [2] with the energy step of AE = 2 MeV. One
can see that the shape of barrier distribution is considerably

Dyy(E) = 14
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FIG. 2. Fusion cross sections (the upper panel) and the fusion
barrier distribution (the lower panel) for the '°O + '*Ho reaction.
The meaning of each line is the same as in Fig. 1.
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FIG. 3. Same as Fig. 1 but for the case where the quantization
axis is perpendicular to the beam direction.
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FIG. 4. Same as Fig. 2 but for the case where the quantization
axis is perpendicular to the beam direction.

altered by the alignment, and moreover it is sensitive to the
value of M, again by reflecting the angle dependence of the
weight factor.

Let us next discuss the case where the quantization axis
of the ground-state spin of the target nucleus is perpendicular
to the beam direction, that is, the x axis. Figure 3 shows the
weight factor, Wy, (0),

W, (0) = Y |diy (= /D[ wn®),  (15)
M

where wy,(0) is the weight factor given by Eq. (13). Here we
have used the notation M, to denote the magnetic substates
in this case in order to distinguish them from those in the
case where the quantization axis is along the beam axis. One
can see that the role of M = 1/2 and M = 7/2 is inverted
from the case where the quantization axis is parallel to the
beam axis (see Fig. 1). That is, the tip (the side) collision is
more emphasized for M, = 1/2 (M, = 7/2), that is, opposite
to Fig. 1. For M, = 7/2, even though the weight at 0 = 7 /2 is
somewhat reduced compared to the weight factor for M = 1/2
shown in Fig. 1, it is still significantly larger than the weight
factor for the unpolarized case by a factor of about 1.5. This
would be an important implication for evaporation residue
cross sections for superheavy nuclei.

The fusion cross sections and the fusion barrier distribu-
tions are shown in Fig. 4. The fusion cross sections for M, =
7/2 are considerably smaller than those for the other values
of M,, because this configuration contains much smaller
component of the tip collision (6 ~ 0), which has the lowest
Coulomb barrier, compared to the other configurations (see
Fig. 3). As in the case where the quantization axis is parallel to
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FIG. 5. Comparison of the fusion barrier distributions for the
160 + 1%Ho reaction obtained with several schemes. The meaning
of the dotted and the solid lines is the same as in Fig. 4(b), that is,
the dotted line denotes the barrier distribution for the unpolarized
case while the solid line shows the result for M, = 1/2 with the
quantization axis being perpendicular to the beam direction. The
dashed line shows the barrier distribution for the unpolarized case
but by changing the sign of the hexadecapole deformation parameter
of '%Ho. To facilitate the comparison, the dashed line is shifted in
energy by —0.8 MeV.

the beam axis, one can see that the shape of barrier distribution
depends sensitively on the value of M,. Interestingly, the
shape of barrier distribution for M, = 1/2 is a typical one for
an even-even deformed nucleus with 8, > O and 84 < 0[2,7].
To demonstrate this, Fig. 5 compares the barrier distribution
for M, = 1/2 (the solid line) with that for the unpolarized
case obtained by inverting the sign of 4 (the dashed line). To
facilitate the discussion, the dashed line is shifted in energy by
—0.8 MeV. For a comparison, the figure also shows the barrier
distribution for the unpolarized case with the positive sign of
B4 (the dotted line). In addition to the well-known fact that the
shape of barrier distribution is sensitive to the sign of 84 [2,7],
one can see that the solid line is indeed similar to the dashed
line. This may suggest that the hexadecapole deformation can
be effectively changed rather arbitrarily in heavy-ion fusion
reactions by appropriately aligning an odd-mass target, even

though the intrinsic hexadecapole deformation itself remains
the same.

IV. SUMMARY

We have discussed the role of alignment in heavy-ion
subbarrier fusion reactions of a well-deformed odd-mass
nucleus. Such a nucleus has a finite spin in the ground
state, and fusion cross sections differ depending on how the
nucleus is polarized. We have in particular considered the
160 4 195Ho system and employed the isocentrifugal and the
sudden tunneling approximations. With these approximations,
the fusion cross sections are given as a weighted average
of orientation dependent cross sections, in which the weight
factor is given in terms of the ground-state wave function of
the target nucleus for each quantum number M, M being the
projection of the initial spin of the deformed target nucleus
on to the direction of the beam axis. We have shown that
the fusion cross sections and the shape of barrier distribution
are sensitive to the magnetic substate of the target nucleus.
In particular, whereas B4 is positive in '©Ho, the shape of
barrier distribution becomes similar to a typical one for an
even-even deformed nucleus with a negative value of 84 when
the odd-mass target is aligned along the axis perpendicular
to the beam axis. This may imply that one can control the
hexadecapole deformation in subbarrier fusion reactions by
aligning deformed target nuclei. We have also pointed out that
fusion cross sections for the side collision can be enhanced by
a factor of around 2 by selectively choosing a particular value
of a magnetic substate. This would be a good advantage for
synthesizing superheavy elements for which the side collision
predominantly contributes. Moreover, use of a spin-aligned
target would enable one to control the orientation of the
deformed nuclei and to investigate the dynamics of fusion
reactions by decomposing tip and side contributions.
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