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Reexamining fission-probability data using R-matrix Monte Carlo simulations:
Beyond the surrogate-reaction method
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This article describes an original approach to simultaneously analyzing cross sections and data obtained with
surrogate reactions, using an efficient Monte Carlo extended R-matrix theory algorithm based on an unique set
of nuclear structure parameters. The alternative analytical path based on the manifold Hauser-Feshbach equation
was intensively used in this work to gauge the errors carried by the surrogate-reaction method commonly taken
to infer neutron-induced cross sections from observed decay probabilities. The present paper emphasizes in
particular a dedicated way to treat ingoing direct reaction and outgoing channels widths correlations and to
recall the common absence of class-II states width fluctuation factor in standard codes for calculating average
fission cross sections. The present approach opens interesting perspectives on the matter of neutron cross section
inference as simultaneously measured fission and γ -emission probabilities become widely available.
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I. INTRODUCTION

A wealth of experimental neutron-induced fission cross-
section data for actinides and transuranic nuclides has been
collected over decades and is still being added. However,
the idea to supplement this database with particle-transfer-
induced reactions has been raised [1]. This was promoted as
long ago as the mid-1960s by Britt et al. [2] at Los Alamos
Scientific Laboratory. The original goal was to identify the
positions of major low-lying collective bands near fission
saddle by measuring fission-fragment angular correlations.
Within the next decade, Back et al. [3] investigated direct
nuclear reactions for studying sub-threshold-fission-barrier
vibrational structures with relatively low fission probabili-
ties. Over the years, a variety of direct reactions have been
used as stripping (d, p) and pickup (p, d) reactions; (3He, p),
(3He, d), and (3He, t) charge-exchange reactions; and even
two-neutron transfer reactions as (t, p) and (p, t ) reactions.
The measured fission probabilities were analyzed assuming
several simplifications contained in the so-called surrogate-
reaction method (SRM). Early promising neutron-induced
fission cross-section comparisons [1] made between SRM
reduced data and neutron spectroscopy (NS) data led to agree-
ment within 10% to 20% at neutron energy above 2 MeV
but exhibited larger deviations below. Major limitations in
the application of the SRM were promptly noticed [1,4] with
the difficulty to estimate (a) the compound nucleus formation
cross section by neutron absorption, (b) the possible influence
of the differences between the angular momentum distribu-
tions populated by neutron capture and direct reactions, and
(c) the validity of the Weisskopf-Ewing (WE) hypothesis on
reaction decay probability spin-parity independence [5].
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During the past decade, surrogate reactions received re-
newed interest in terms of simulation [6,7] and experimental
investigation (on the spur of study [8]; see also a list of
measurements in Ref. [9]). From the very beginning [1], the
SRM has been thought to be very helpful when infering cross
sections for target material with unsuitable lifetimes (less than
several days) or with high radio toxicity. The present design
of advanced reactor systems (e.g., accelerator-driven systems
and generation IV nuclear power reactors) strengthens the
need for conclusive determination of the confidence that can
be put in surrogate data feedback. Two clear benefits are
expected: better nuclear data assessment for standard reactor
fuel nuclides and actual experimental alternatives to achieve
suitably evaluated “neutron-induced” cross-section data for
more exotic nuclei, as already introduced by Britt and Wil-
helmy [4] in the 1970s.

Using energy derivative of probabilities, the authors of
the study [10] have recommended not using the WE approx-
imation to extract neutron-induced capture or fission cross
sections from surrogate-reaction data. Instead, the authors
suggested using these derivatives to extract complementary
information to NS such as fission barrier heights. Carrying
approximations was understandable in the 1970s because of
computer limitations, lack of precise information on nuclear
level densities across the deformation, and difficulties in
achieving confident optical model calculations over a large
range of nuclides. Nowadays, the bulk of those approxima-
tions can be overridden even if difficulties persist in the esti-
mation of the various direct, pre-equilibrium, and compound
nucleus components of the reaction cross section.

In a previous paper [11], we have discussed the actual pos-
sibility of carrying one-dimensional fission barrier extended
R-matrix calculations accurate enough to make predictions of
low-energy neutron-induced fission cross sections according
to the isotopes of a given isotopic chain for which no NS
measurements exist.
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However, in that study, reasonable predictions were made
also possible because of the use of fission probabilities in-
duced by surrogate reactions.

This “surrogate-reaction data” aspect was not documented
in the earlier publication and is the first aim of the present
article. Present analyses cover the 4- to 8-MeV excitation
energy range, meaning the domain below and above neutron
emission threshold (Sn) that is the most impacted by the SRM
hypotheses. One imagines that below Sn, where only γ - and
fission decays compete, there are few arguments to expect
better agreement between NS and surrogate data in a matter
of fission than in terms of capture cross section. Ultimately,
I would like to demonstrate that representation of transfer-
induced decay probabilities can indeed bring valuable com-
plementary information in terms of cross-section evaluation
for nuclear reactor applications.

This article is organized as follows. An overview of
surrogate-reaction studies and the associated modeling strat-
egy is first discussed. This is continued with the descrip-
tion of our original approach for surrogate-reaction data that
was made available using the in-house AVXSF-LNG (AVerage
CROSS Section Fission–Lynn and Next Generation) program.
This makes possible the investigation of the behavior of the
manifold Hauser-Feshbach equation components whenever
surrogate reactions are involved, namely spin-parity popula-
tion fractions, in-out channel width fluctuation correction fac-
tors, and reaction decay probabilities based in this work on the
efficient Monte Carlo extended R-matrix theory algorithm.
Inaccuracies brought by the SRM in regards to the above
baseline in the cases of both fertile and fissile heavy target
nuclides are emphasized and pictured across some isotopes
of the Pu family. The last section reviews the actual potential
of the present neutron cross-section inference from surrogate-
reaction data and introduces the next stage of our study.

II. SURROGATE REACTIONS AS SUBSTITUTE
FOR NEUTRON SPECTROSCOPY

As mentioned in the introduction, surrogate-reaction mea-
surements are a substitute technique to determine reaction
cross sections for nuclei that are difficult to measure directly
by NS or to predict with some degree of confidence from sys-
tematics or theory. The surrogate technique is an alternative
to form the nucleus of interest, A∗,1 usually formed through
NS as n + (A-1) → A∗, whose decay properties one wants
to measure. Alternatively, another projectile-target combina-
tion, more accessible experimentally, can be chosen such
that projectile + (surrogate target) → A∗ + ejectile. By mea-
suring the number of coincidences between the observable
characterizing the exit channel (c′) pursued and the ejectile
that signals the nucleus to be analyzed, normalized to the
total number2 of surrogate events recorded, the experimental
probability PA∗

surr,c′ (Ex ) is derived.

1To prevent confusion between the NS target nucleus and the
compound system, the � notation is used in this article for the latter
such that A (of the element)∗.

2Actually corrected for the experimental detector efficiency.

A. Historical surrogate modeling

The starting point and appropriate formalism for describing
compound nucleus (CN) reactions is Hauser-Feshbach (HF)
statistical theory [12], meaning the pure Hauser-Feshbach
equation [11] that carries the Niels Bohr approximation of
independence between formation and decay processes of a
given CN [13]. A more realistic picture of the interaction
involves the term Wc,c′ , the customary in- and outgoing chan-
nel width fluctuation correction factor (often abbreviated by
WFCF). The average partial cross-section σcc′ formulation
for an entrance channel c and exit channel c′ applied to
neutron-induced reactions at given neutron energy En, using
L-j coupling; also described as “channel spin formalism”
[14, p. 311], is then

σn,c′ (En) =
∑
Jπ

[
σ CN

n (En, J, π )

×
I ′+i′∑

s′=|I ′−i′ |

J+s′∑
l ′=|J−s′ |

T J
π(l′s′ )

c′ (Ec′ )∑
c′′ T J

π(l′′s′′ )

c′′ (Ec′′ )
W Jπ

n,c′

]
, (1)

where σ CN
n (En, J, π ) is the neutron-induced partial compound

nucleus formation cross section related to a given (J, π )
couple; the expression of which is

σ CN
n (En, J, π ) = πλ̄2gJ

I+ 1
2∑

s=|I− 1
2 |

J+s∑
l=|J−s|

T Jπ(ls)

n (En), (2)

with gJ being the statistical spin factor or weight according to
total angular momentum J as gJ = (2J + 1)/[2(2I + 1)] and
T Jπ(ls)

n being the neutron entrance transmission coefficients.
The SRM postulates that the WFCF can be neglected

(equivalent to say Wn,c′ ≈ 1) although one knows that this
correction is substantial [15] for the limited number of reac-
tion channels observed below 1 MeV above neutron emission
threshold energy (Sn), as far as actinide neutron cross sections
are concerned. Specialized to fission decay, the amount of
correction depends on both the number of Bohr fission chan-
nels [16] involved and the magnitude of their average widths
[17]. Larger the sub-barrier effect is (in the case of fertile
heavy isotopes), larger is the amount of fluctuations: Wn, f ≈
35% at 1 keV neutron-incident energy for fertile isotopes
to be juxtaposed with the 20% observed for fissile isotopes.
Obviously Wn, f tends to unity as the number of opened fission
channels increases. In the present study, fluctuation calcula-
tions have been carried up to a maximum excitation energy of
2.1 MeV above the neutron binding energy. The question of
the actual WFCF behavior above and below neutron emission
threshold for both the fission and capture channels in the case
of surrogate reactions is among the items inspected in the
present article.

The absence of WFCF is indeed the basic hypothesis
behind the SRM. Equation (1) switches back to the pure
Hauser-Feshbach formulation that can be written in a concise
manner as

σn,c′ (En) =
∑
Jπ

[
σ CN

n (En, J, π )BJπ

c′ (Ec′ )
]
, (3)

064611-2



REEXAMINING FISSION-PROBABILITY DATA USING … PHYSICAL REVIEW C 100, 064611 (2019)

where BJπ

c′ (Ec′ ), the CN partial decay probability into channel
c′, is also commonly referred as branching ratio (BR) to
channel c′ in the literature related to surrogate reactions.
Equation (3) can be factorized as

σn,c′ (En) = σ CN
n (En)

∑
Jπ

[
σ CN

n (En, J, π )

σ CN
n (En)

BJπ

c′ (Ec′ )

]
, (4)

to make provision for [σ CN
n (En, J, π )/σ CN

n (En)], the fraction
of CN formed in a (J, π ) state, which is often referred as
FCN

n (En, J, π ) in the literature. By analogy, one states that

PA∗
surr,c′ (Ex ) =

∑
Jπ

[FA∗
surr (Ex, J, π )BJπ

c′ (Ec′ )
]
. (5)

A straightforward connection between neutron-induced cross
section and the surrogate probability is routinely made and de-
fines the SR method. Weisskopf and Ewing [5] suggested that
BRs could be independent of spin and parity considerations,
meaning substituting BJπ

c′ by Bc′ . In that case, branching ratios
are pulled out of the spin-parity sum in both Eqs. (3) and (5).
The combination of the resulting simplified equations leads to

σ SRM
n,c′ (En) ≡

[∑
Jπ

σ CN
n (En, J, π )

]
PA∗

surr,c′ (Ec′ ), (6)

since
∑
Jπ

FA∗
surr (Ex, J, π ) = 1. (7)

At first sight, this surrogate strategy supplies a suitable
estimate of the intended neutron-induced cross section with-
out any need [Eq. (5)] to be able to (1) measure individual
decay probabilities and (2) predict the FA∗

surr (Ex, J, π ) excited
state population fractions. By using Eq. (6), assumption is
made that the CN neutron-induced formation cross section,∑

Jπ σ CN
n (En, J, π ), can be ideally modeled using suitable

optical model potential.
One realizes promptly the following:

(1) The absence of WFCF at least hides issues related
to undeniable partial outgoing channel width corre-
lations over the energy range where fluctuations are
observed in the data. On the other hand, using the
classical definition of WFCF can distort surrogate data
to neutron cross-section conversion since one expects
conceptual WFCF differences between surrogate and
NS measurements.

(2) The straightforward use of the unitarity property
[Eq. (7)] washes out (J, π ) population fraction dispar-
ities expected between neutron-induced and surrogate
reactions. On the other hand, stating that final results
are not sensitive to the spin-parity decay probabil-
ity distribution (WE assumption) leads to the same
approximated equation (SRM). This goes against in-
sights showing that transfer reactions populate excited
state spins that can be twice as high on average as those
produced by neutron-induced reactions [18] and that
γ and fission BR can be influenced by the angular
momentum and parity of the decaying nucleus as
discussed in Ref. [9].

The above arguments suggest that successful use of the
surrogate reaction method [Eq. (6)] could rely more on a
case-to-case situation than on a systematic rule although one
expects to fulfill the conditions at higher excitation energy
(reaching the so-called WE limit). This is also what I want
to clarify across this step-by-step study.

B. Questionable SRM neutron cross-section predictions
as a matter of fact

The lack of high confidence level on the use of the histor-
ical surrogate conversion technique unfortunately counteracts
the convenience of the method. Finally, it would be very
fortunate that the SRM will lead to the level of confidence
commonly aimed at major actinide neutron-induced cross sec-
tion evaluations (a few % uncertainty). Surrogate experiments
are undoubtedly of great help in the case of poorly known
nuclides whose half-lives range from minutes to hours. This
is well exemplified by the case of the (243Pu + n) system
for which capture and fission cross-section uncertainties in-
tegrated over a high neutron flux reactor spectrum with a
significant thermal contribution were respectively estimated
as 275% and 118% using the EAF2007/UN data library [19].
Lowering huge uncertainties is clearly doable by comple-
menting the cross-section evaluation process with surrogate
data. Beyond that statement, transfer reaction data analysis of
fissile target isotope supplies invaluable estimates of barrier
heights that lie below neutron separation energy. Figure 16 of
Ref. [11], which plots the fission cross section of the (243Pu +
n) system, well testifies to the extreme impact of substantial
change in 244Pu∗ barrier heights by bringing the nucleus from
the fertile to the fissile family. The present R-matrix Monte
Carlo simulation does not carry most of the approximations
involved routinely by the surrogate strategy or the simplifi-
cations adopted in the calculation of the two-peaked fission
barrier resonant penetration by Younes and Britt [6,7]. I expect
therefore that present step-by-step surrogate demarche will
bring convincing arguments in favor of indisputable inclusion
of surrogate data in standard evaluation task for a step further
toward low-uncertainty-evaluated neutron-induced reaction
cross sections. The present work intends to clarify most of
the dilemmas raised by recent surrogate analyses [10,20] that
suggest one could work with confidence from experimental
fission probabilities but not from γ -decay probabilities.

III. DEDICATED LNG APPROACH TO SURROGATE
REACTION DATA ANALYSES

From above theoretical background, the fission probability
induced by a surrogate reaction can be written as

PA∗
surr, f (Ex ) =

∑
Jπ

FA∗
surr (Ex, J, π )BJπ

f (Ex )W Jπ

surr, f , (8)

where Wsurr, f is the surrogate-dedicated WFCF factor
(SWFCF) that corrects for partial channel width fluctuation
correlations across flux conservation [15] according to a sur-
rogate reaction. For better display, the excitation energy (Ex )
dependence of the SWFCF has been dropped from Eq. (8);
I will embrace this notation throughout this paper. I must
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stress that the amount of correlation between formation and
decay processes is related to the nature of the reaction mech-
anisms leading to the excited nucleus. The question of the
memory preservation plays a major role in surrogate-reaction
experiments because of the necessary high energy of the inci-
dent charged particle to overcome the Coulomb barrier (with
24 MeV 3He beam in a recent 238U(3He, 4He)237U∗ measure-
ment [20]); the interaction time being not long enough to wash
out any prior history making of fragile support the use of the
CN hypothesis.

The accurate simulation of experimental fission proba-
bilities requires the best knowledge of the three quantities
involved in the right-hand side of Eq. (8). The description of
the LNG approach to deal with those quantities is the aim of
this chapter.

A. Excited nucleus spin-parity population as a function
of the entrance channel pattern

By reference to Eq. (8), I begin this discussion by fo-
cusing on the first ingredient, FA∗

surr (Ex, J, π ), whose level
of knowledge remains unsatisfactory in terms of surrogate
entrance channel pattern. For neutron-induced reactions, the
CN formation cross section is satisfactorily derived from
appropriate optical-model potential calculations or using the
LNG approach [Eq. (2)]. As described in a previous paper
[11], the latter involves computing the elastic neutron channel
transmission coefficients using the general form established
by Moldauer [21],

T Jπ(ls)

n = 1 − exp (−2πSl ), (9)

where Sl is the energy-dependent neutron strength function
for given relative orbital momentum l . Literature on heavy
nuclides supplies accurate values of Sl only for s- and p-
wave elastic channels extracted from resolved resonance re-
gion analyses and average cross section fits below 300 keV.
For the present demonstration according to the Pu isotopes
family, I have simply assumed Sl = 1.044 × 10−4 for even-l
waves and Sl = 1.48 × 10−4 for odd-l waves, referring to the
empirical rule that implies similar strength function values
for even l-waves (respectively for odd l-waves). The even
and odd values assumed in this work are mostly within the
uncertainties addressed in associated literature (±0.1 × 10−4

and ±0.4 × 10−4 at best respectively for s and p waves).
One observes that the definition of FCN

n (En, J, π ) is analog
to put both energy and level parity dependence of the neutron
entrance transmission coefficients in the statistical spin factor
[Eq. (2)] such that gJ → gJ,π (En). For benchmarking the
LNG entrance route based on the neutron transmission coeffi-
cients by Moldauer against the results obtained more directly
from an appropriate optical model potential (as mentioned
by Escher et al. [9]), I plot in Fig. 1 the distributions of
total angular momenta corresponding to the neutron-induced
reaction (n + 235U) calculated with the LNG code for selected
neutron energies. The foreground plot, corresponding to neu-
tron incident energies �100 keV, is quite close to Fig. 20 of
Ref. [9]. As expected, one observes that Jπ excited states other
than 3− and 4− (s waves) are populated only significantly at
high neutron energies.

FIG. 1. Distributions of total angular momenta associated to the
neutron-induced reaction (n + 235U) resulting from LNG calcula-
tions for selected neutron energies. The foreground plot focuses on
fast neutron incident energies whereas the inset graphic shows the
full picture with an increased vertical scale. Solid lines, connecting
dots and addressing negative π (respectively dashed lines with open
squares for positive π ), are drawn to guide the eye.

In the past decade, literature has pointed out that a condi-
tion for the validity of the SRM relies on an idealized match-
ing between neutron-induced and surrogate spin-parity en-
trance distributions, reading FA∗

surr (Ex, J, π ) ≡ FCN
n (En, J, π ).

Indeed, this equivalence has been questioned since the pi-
oneer times [1]. The answer was inferred from the early
finite range interaction distorted-wave Born approximation
(DWBA) cross-section calculations for the (t, p), (d, p), and
(3He, d) reactions as reported by Back et al. (cf. Fig. 7 of
Ref. [3]), although those calculations were carrying large
uncertainties and would have to be refined. Regarding present
paper, I have chosen simply to stick with early direct calcula-
tions made by Andersen et al. [22] for the particular case of the
239Pu(d, p f ) one-particle stripping reaction and with results
quoted by Back et al. [3] for the remaining (d, p), (3He, d),
and (t, p) surrogate reactions. I have used for calculating
Eq. (8) the Jπ entrance fractions as a function of excitation
energy supplied by Andersen et al. [22] in graphic form3 and
related to excited states in 240Pu∗. In contrast, Ref. [3] returns
preferentially the distribution of orbital angular momentum
according to the transfer of a particle (separated out of the
light incident projectile) to given single-particle shell of the
target nucleus. The conversion of the latter to spin-parity
distribution has been made in this work following the j- j spin-
orbit vectorial coupling scheme. In case of (t, p) reactions
on even-even target isotopes carrying zero intrinsic spin and
positive parity, the weighting factors, FA∗

surr (Ex, J, π ), were
obtained from stripping theory where one assumes that the
released proton is scattered from the short-range part of the
proton-target nucleus interaction as if the dineutron (consti-
tuting with the proton the incident triton) was not present.

3With the distance between neighboring curves representing the
spin-parity probability of the upper curve.
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FIG. 2. The peculiar pattern of the total angular momentum
population distribution for the 238Pu∗(t, p) reaction. The above data
are retrieved using Eq. (12). Lines connecting dots for negative π

(respectively dashed lines with squares for positive π ) are drawn
to guide the eye. The thin red lines correspond to using Eq. (12)
unweighted (ρ = 1) whereas the thick blue ones have been obtained
with energy-dependent level density, ρ(Ex, J, π ), as supplied by the
approach of Ref. [11]. The green open circle emphasizes the absence
of 1+ states in (t, p) direct reactions.

On this assumption, one can consider a two-body problem
with a dineutron trapped into a shell with single-particle-type
character of the target nucleus. The excited nucleus total spin
is set up from the coupling of the spin of the bound residual
nucleus (meaning the target nucleus; indexed 0) with the
spin of the dineutron cluster (indexed 12). Applying the j- j
coupling scheme to this system leads to

−→
J A∗ = −→

I 0 + (
−→
i 12 + −→

l 12), (10)

with
−→
i 12 being the intrinsic spin of the dineutron cluster and

l12 being the relative orbital angular momentum between the
dineutron and the target nucleus. The excited state parity, πA∗ ,
is ruled accordingly

πA∗ = (−1)l12 ∗ π0 ∗ π12, (11)

with π12 and π0 being the respective parities of the dineutron
cluster and even-even target nucleus (meaning π0 = 0+). If
one assumes also antisymmetrical intrinsic spin character
(i12 = 0) and positive parity for the dineutron cluster, the
exact equivalence JA∗ ≡ l12 is verified. Since the parity of the
excited state is also driven by the even or odd character of
l12, even J are built solely with positive parity and odd J
with negative parity. In the case of symmetrical intrinsic spin
(i12 = 1), the conversion will lead to additional possibilities
as | l12 − 1 |� JA∗ � (l12 + 1) but the lowest single-particle
state, 3P0 in spectroscopic notation, is expected to occupy a
higher shell and is thus less favored. Figure 2 illustrates that
peculiar pattern for triton-induced direct reactions on even-
even (0+) target nucleus where only natural-parity4 states

4Meaning positive-parity states of even angular momenta and
negative-parity states of odd angular momenta.

FIG. 3. Calculated population distributions of total angular mo-
mentum for the 240Pu∗ formed by a neutron-induced reaction (n +
239Pu) at 1 keV and 1 MeV, by a 238Pu(t, p) reaction (Back et al.
[3]), and by a 239Pu(d, p) reaction (Andersen et al. [22]). Solid lines
connecting diamonds and addressing negative π (respectively dashed
lines with open squares for positive π ) are drawn to guide the eye.

are populated (iπ12 = 0+). Expanding the context of the (t, p)
reactions to non-even-even target nuclei, the spin-parity state
population distribution expected under j-j coupling is

FA∗
surr (Ex, J, π )

= ρ(Ex, J, π )
J+I∑

j=|J−I|

j+i∑
l=| j−i|

Plδ(πJ , πiπI (−1)l )∑J+I
j=|J−I|

∑ j+i
j=| j−i| 1

(12)

with

Pl = (2l + 1)σl∑
l (2l + 1)σl

,

with σ (l ), the angular momentum transfer cross section given
by Ref. [3] and ρ(Ex, J, π ), the excited nucleus level density
(LD). The final expression for FA∗

surr (Ex, J, π ) is normalized,
consistent with Eq. (7).

Figure 2 obviously invalidates the hypothesis of compara-
ble neutron and (t, p) reaction spin-parity entrance distribu-
tions. Spin-parity distribution comparisons with less quirky
signatures as involved in (d, p) processes deliver a similar
verdict as exemplified by the 239Pu(d, p)240Pu∗ DWBA dis-
tribution calculated by Andersen et al. [22] (shown here in
Fig. 3). The pattern of the positive-parity population distri-
bution, which is closed to a truncated Gaussian distribution
centered about J = 3h̄ with dispersion of 1.5h̄, would require
high-energy neutron-induced reactions.

B. Modeling of in- and outgoing channel width
fluctuation correction factors

One knows from Moldauer [21] that the in- and outgoing
channel width fluctuation correction factor, Wc,c′ , plays a
major role in low-energy neutron-induced reactions in aver-
aging over partial width distributions to assess average cross
sections. This was well quantified in a model comparison by
Hilaire et al. [15]. In the matter of surrogate reactions, the
question of the correlation between entrance and exit channel
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widths is obviously sensitive because it depends on the direct
entrance reaction type. For instance, in a (t, p f ) reaction,
considered later in this paper, two neutrons in paired orbits
are stripped into the field of a target nucleus that has two
neutrons less than the residual nucleus. Its formation cross
section is then proportional to the reduced width,5 γ 2

′2n′ , for a
“dineutron” single-particle channel for which the reaction en-
ergy threshold is close to twice the neutron separation energy.
I guess that the correlation between the entrance dineutron
reduced width and the similar decay channel reduced width of
the compound system excited state, restricted over the studied
low excitation energy range to (1) single-neutron emission
(above Sn), (2) γ emission, and (3) fission will likely be of
third order magnitude and can be easily ignored. However,
other direct reaction entrance channels that have been con-
sidered in this work as (3He, d) and (3He, t) charge-exchange
reactions where a proton is pulled into the field of a target
nucleus (e.g., 240Pu) must be considered with more attention.
The question of the correlation between entrance single-
particle proton width and compound system proton decay
channel width is, however, simplified by the fact that above
the proton emission energy (Sp = 4.48 MeV in 241Am), the
charged-particle penetrability becomes appreciable only when
the exit proton energy approaches the Coulomb barrier value,
meaning B ≈ [1.44 ZpZ240]/[1.60[A1/3

p + A1/3
240]] ≈ 11.7 MeV

and thus its proton emission width. In the matter of stripping
(d, p) reactions, the question of the correlation between for-
mation and decay widths is more tricky. Later reaction can
be illustrated as a deuteron sweeping past the target nucleus
with its proton repelled by the Coulomb field and the neutron
coming into close enough proximity to the target to be pulled
into one of the (bound) single-particle orbit in the nuclear
field. If the excitation energy of the single-particle neutron
is above neutron emission energy, the corresponding elastic
neutron emission width is nonzero and there might be inter-
ference between both partial widths. Theory related to width
fluctuation effects for that type of surrogate reactions has been
developed by Kerman and McVoy [24] but is not handled

in present work because of the following reasons: For fissile
isotopes, particle-transfer-induced fission data are studied to
infer fission barrier height values lying below the neutron
separation energy. In addition, right above Sn, the neutron
width remains small compared to the total width; this state-
ment is still reinforced since surrogate reactions populate in
general high total angular momentum levels. In consequence,
the assumption that the formation width does not participate in
the width fluctuation correction sounds quite reasonable also
for (d, p) reactions. The present SWFCF calculations have
been carried without considering any relationship between
formation channel and analogous decay channel such that one
can state〈FA∗

surr	c′

	tot

〉
≡ FA∗

surr

〈
	c′

	tot

〉
= FA∗

surr

〈
	c′∑

j 	 j + 	cst

〉

= FA∗
surr

〈	c′ 〉〈∑
j 	 j + 	cst

〉Wsurr,c′ , (13)

where 	cst represents a global nonfluctuating lumped channel
merging various constant (cst) components, meaning total
radiative decay, delayed fission in the second well, and fission
over outer barrier continuum transition states. Very small
channel width values corresponding to the highest orbital
angular momenta are also put in 	cst in order to speed up
the computation of fluctuation factors as well as weakly
fluctuating channel contributions, according to a width dis-
tribution degrees of freedom (DoF) larger than 2.0 units.
The entrance surrogate channel width would be identified as
the dissimilar entrance single-particle channel width.

∑
j 	 j

regroups the most fluctuating decay channel widths (i.e.,
largest particle emission and fission channels). Numerical
evaluation of SWFCF in the framework of Hauser-Feshbach
statistical theory is carried out analogously to the general
single variable integral established by Dresner [25], assuming
that the partial width of given channel, c, can be represented
by a χ2 distribution with νc degrees of freedom. This results in

〈
	c′∑

j 	 j + 	cst

〉
λI

n = νc′

2

∏
j

(
ν j	cst

2	̄ j

) ν j
2

∫ ∞

0
dt

[
e−t

(
t + νc′	cst

2	̄c′

)−1∏
j

(
t + ν j	cst

2	̄ j

)− ν j
2
]
, (14)

while that quantity expressed for the lumped channels reduces to〈
	cst∑

j 	 j + 	cst

〉
=
∏

j

(
ν j	cst

2	̄ j

) ν j
2
∫ ∞

0
dt

e−t

∏
j

(
t + ν j	cst

2	̄ j

)− ν j
2

. (15)

The SWFCF is among the items I want to emphasize
in this paper. Beyond its specific shape and magnitude
pattern (illustrated later in the text), I recall that statistical

5γ 2
c is known as the reduced width whereas γc is the reduced width

amplitude which is the value of the internal eigenfunction Xλ at
the entrance to channel c. Observed width, 	c, and reduced width
are connected [23] through centrifugal and Coulomb penetrabilities,
meaning 	1/2

c ≡ γc
√

2Pc.

treatment specialized to fission decay probability involves
an additional width fluctuation correction factor brought by
class-II state properties, the so-called WII [17], whose impact
is usually disregarded in standard average cross-section
evaluation codes. For the present illustration of Wc,c′ and
WII effects, a modified formulation of the analytical Eq. (8)
is envisioned although the real situation avoids decoupling
fine structure width fluctuations from class-II state width
fluctuations brought by double fission barrier treatment. More
reliable calculations based on Monte Carlo simulations are
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favored in this work for valuable partial cross sections or
surrogate-reaction probabilities modeling.

The usual WFCF quantities needed in this work to cal-
culate NS average partial cross sections were implemented
on the grounds of Eqs. (17) and (16) of Ref. [26] that cor-
respond respectively to treatment of the elastic (c′ = c) and
nonelastic partial channels (c′ �= c). Because its formulation is
analogous to latter nonelastic partial channel width correlation
treatment, Eq. (14) sets a weak relationship between the en-
trance surrogate-reaction channel width and any exit reaction
channel.

C. In-house fission decay probability calculation
using the Monte Carlo route

A major difficulty in fission decay probability calculations
lies in poor model representation of the fission channel. Con-
sistently to common state-of-art evaluation, this study uses
the well-known Hill and Wheeler [27] transmission coeffi-
cient formula that is based on two common approximations:
a unique one-dimensional fission path and a representation
of each single-humped fission barrier as inverted parabola.
The approximation of a unique one-dimensional fission path
appears well justified in the case of the plutonium isotopes
I study here, as predicted by the static finite-range droplet
model (FRDM) calculations of Möller et al. [28]. The asym-
metric mode remains the main contribution to fission until
past the outer saddle point, from which the symmetric path
becomes relevant. Even when these two modes coexist, they
remain distinct because of the existence of a significant sep-
arating ridge (at least 1 MeV above the upper valley). One
can nevertheless argue that triaxiality is observed at the inner
barrier (see Table XI of Ref. [29]) and must be taken into
account somehow. This is achieved in our calculations by
modulating, for instance, the circular frequency associated to
the γ -axis primary phonon vibration excitation. Whenever the
axial symmetry is recovered (at the outer barrier, for instance),
the softness toward this axis is released by putting a high
phonon quantum value. Our original approach in the matter of
A. Bohr transition states above fundamental fission humps has
been described in Ref. [11]. It relies on ad hoc sequences of
individual transition states above fundamental barriers at low
excitation energies built consistently with our combinatorial
quasi-particle-vibrational-rotational (QPVR) calculations that
are performed to construct LD on top of the individual tran-
sition state sequence. Over the upper energy range, detailed
resonance structure is of much less importance. The fission
cross section mainly depends on both level densities of the
compound nucleus at barrier deformations and the level den-
sity of target nucleus at normal deformation, which controls
the competing inelastic neutron scattering reaction. Therefore,
special attention was paid to modeling level density functions
and interpreting fits to them where these are required for
matching neutron-induced cross-section data. Regarding the
validity of the inverted parabola approximation, we have
shown in our previous paper [11] (Fig. 7) that this latter
assumption clearly appears to be well justified only for the
heaviest isotopes of plutonium (above mass 241). I emphasize
that the present work is restrained to inverted parabola fission
barrier calculations.

I can then argue that present fission decay probability
calculations carry the most accurate and physical approach
available routinely for low excitation energy (i.e., lower than
second-chance fission) fission cross-section calculations. In
this sense, this is a smart complement to the work by Younes
and Britt [6,7] on the inference of neutron-induced fission
cross sections by fission-probability data regarding to the
Pu isotope family. In particular, present theory is based on
an extension of R-matrix theory to the fission deformation
variable as outlined by Bjornholm and Lynn [30]. Since this
theory has been exhaustively described in Ref. [11], I will
focus here on what is essential to ensure a clear understanding.

1. Typical analytical coupling formulas modeling double-humped
fission barrier potential

a. Statistical regime. For excitation energies above the fis-
sion barrier, the fission transmission coefficient is calculated
using the well-known statistical regime equation, which is
derived as follows,

In the framework of a double-humped fission barrier whose
two humps are uncorrelated and each described by a (single-
humped) Hill-Wheeler form [27], standard probability treat-
ment (Ref. [30], p. 752) returns the probability6 to fission from
an excited state in the first well of the fission barrier as

BI→ f = TATB

(TA + TI )(TA + TB + TII ) − T 2
A

, (16)

where TI and TII are the damping coefficients respectively in
the first and second wells. TI and TII include particle emissions
and electromagnetic decays. TA and TB are the total fission
transmission coefficients over inner A and outer B humps,
respectively. The above equation can be reformulated as a
function of the whole fission barrier transmission coefficient
Tf , according to a Hauser-Feshbach-type equation,

BI→ f = Tf

Tf + TI + TII
. (17)

Making the equivalence between Eqs. (16) and (17) leads to

Tf = (TI + TII )TATB

TATII + TI (TA + TB + TII )
. (18)

Equation (18) can be further modified as

Tf = TATB

TA + ε(TB + TII )

with 0 � ε ≡
(

1 − TII

TI + TII

)
� 1. (19)

Two limiting cases must be mentioned:

(1) No damping in the first well, meaning TI = 0 or equiv-
alently

ε = 0 → Tf = TB. (20)

6Probability or branching ratio regarding present surrogate-reaction
topic.
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(2) No damping in the second well, meaning TII = 0 or
equivalently

ε = 1 → Tf = TATB

TA + TB
. (21)

Equation (21) is the well-known statistical regime formula
that is used in the present study at excitation energies above
the fission barrier. I emphasize that Eq. (19) corresponds to
the most exact equation that covers in particular the two
limiting situations above. Configurations favoring Eq. (20) are
expected to happen as, for instance, in heavy-ion collision
experiments forming high total angular momentum excited
states at excitation energies below neutron separation energy.
Over the same energy domain as the present study, not just
neutron emission is blocked but also γ decays. The fission
across the very low fission barrier of the superheavy com-
pound system formed remains as a unique decay mode. Over
those atypical configurations, the error brought by classic use
of Eq. (21) would have to be examined carefully.

b. Sub-barrier excitation energies. At sub-barrier and near-
barrier excitation energies, the detailed structure of class-II
levels has significant impact on Tf . Since the bulk of the
strength of Tf is concentrated in a narrow energy interval
at about a class-II level, the actual average fission prob-
ability magnitude will be rather recovered by an average
over the large energy intervals separating the class-II states.
The consequence is a noticeable reduction of the average
fission probability resulting from the use of Eq. (21). This is
equivalent to considering the fission transmission coefficient
as a sum of the direct term with an indirect term, the latter
manifesting the class-II nucleus structure. On the assumption
of uniform class-I and class-II level spacings (so-called picket
fence model), Lynn and Back [31] have worked out a formula-
tion for the average fission probability B f , now incorporating
the intermediate structure (indexed IS) that, in the limit of
complete damping in the second well (i.e., no direct fission,
only indirect fission after inner barrier tunneling) reduces
to

B f ,IS =
[

1 +
(

TI

Tf

)2

+
(

2TI

Tf

)
coth

(
TA + TB

2

)]−1/2

.

(22)

I emphasize that a variety of analytical formulas valid only
under specific class-I/II coupling situations are quoted in
literature [30]. Whenever the fission model contains the class-
II states nucleus structure, a correlation factor between the
class-II states (λII ) coupling, 	λII (↓) , and fission, 	λII (↑) , widths
is expected. Using again the general form established by
Moldauer [21], one can define TA = 2π〈	λII (↓)〉II /DII and
TB = 2π〈	λII (↑)〉II /DII with 	λII,tot ≈ 	λII (↓) + 	λII (↑) and DII ,
the corresponding total width and mean resonance spacing of
the class-II states:〈

	λII ↓	λII ↑(μ)

	λII

〉
λII

= WII (μ)

〈
	λII ↓

〉〈	λII ↑(μ)〉
〈	λII 〉

. (23)

In view of Eq. (23), Eq. (1) becomes for a fission reaction

σn f (En) =
∑
Jπ

⎡
⎣σ CN

n (En, J, π )

×
⎡
⎣∑

μ∈Jπ

B f (E f , μ)WII (μ)

⎤
⎦W Jπ

n, f

⎤
⎦, (24)

or analogously in terms of surrogate-reaction decay probabil-
ity

PA∗
surr, f (Ex ) =

∑
Jπ

⎧⎨
⎩FA∗

surr (Ex, J, π )

×
⎡
⎣∑

μ∈Jπ

B f (Ex, μ)WII (μ)

⎤
⎦W Jπ

surr, f

⎫⎬
⎭. (25)

Recent calculations [17] have reported the global amount
of correction brought by WII [Eq. (23)] that is of the same
order of magnitude for fertile (20%) and fissile (10%) target
nuclides, although the sub-barrier effect, as expected, is much
smaller in the fissile case. This returns a 10% to 20% estimate
on the error brought by the absence of WII (mainly) below
300-keV incident neutron energy in calculated average fission
cross section by codes that rely only on the standard width
fluctuation corrected Hauser-Feshbach formulation [Eq. (1)].

However, still more trouble is expected because of the
IS pattern in average cross-section calculation. Classically,
one assumes that statistical fluctuations of the class-II partial
fission widths, 	λII ↑, exhibit an independent Porter-Thomas
[32] (ν = 1) distribution across n fully open Bohr fission
channels. If each average partial fission width according to a
given outer Bohr channel is equal, then the distribution of the
total fission widths is ruled by a χ2 law with ν f = n DoF. In
Hauser-Feshbach statistical theory with adequate Wn, f factor,
the associated DoF ν f must be equal to the number of open
channels at the outer barrier. However, the IS, which lowers
the transmission across the outer fission channels, manifests
as an actual reduction of ν f . In our calculations, each effective
value of ν f has been derived by maximum likelihood method
from the value of the double barrier fission width averaged
over 1600 Monte Carlo trials. The results were presented [17]
as a function of the inner barrier transparency for a range
of fully open outer barrier channels. The conclusion was
that an ideal one fission channel according to a single-hump
situation (i.e., no IS and ν f → 1) is recovered only when
the inner barrier DoF, νA, is sizable. In any other coupling
situation, ν f is strongly reduced by the IS (0 < ν f < 1) and
any subsequent Wn, f calculation will have to be corrected
accordingly. In practice, this is equivalent to substituting
Wn, f (ν f ) by Wn, f (νeff

f ) in Eq. (24) [respectively for Eq. (25)]
with νeff

f , the effective DoF. This is another source of error
that is usually compensated for by another parameter during
the fitting process on experimental data.
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2. Monte Carlo calculations of the intermediate structure

Real situations avoid the decoupling hypotheses of Eq. (24)
since class-I and class-II state width statistical properties are
obviously correlated across the intermediate fission barrier.
Although Eq. (24) supplies valuable estimate of the average
neutron-induced fission cross section, an exact solution for
this equation relies on the possible derivation of an analytical
expression pertaining to the actual coupling strength situation.
A powerful alternative to analytical formulas is our Monte
Carlo–type (MC) method [11], which presents the advantage
of computing average cross sections and average surrogate-
reaction decay probabilities, taking full account of the various
parameter statistical fluctuations under the exact coupling
conditions. Our MC approach simulates R-matrix resonance
properties, relevant to each selected class-II state and neigh-
boring class-I states (over at least a full class-II energy
spacing), using a chain of pseudorandom numbers for a fine-
tuned selection process based on both level width and spacing
statistical distributions with suitable averages. For backup, the
obtained MC average total cross section (respectively, the total
decay probability) according to given spin parity is compared
with the entrance channel total cross section (respectively,
the excited nucleus population fraction), making an allowance
to slight magnitude renormalization whenever computing ac-
celerations carried by the MC procedure bring differences.
This MC procedure carries the compact formulation of the
previously cited equations, meaning

σn f (En) =
∑
Jπ

[
σ CN

n (En, J, π )BJπ

f ,MC−xs(E f )
]
, (26)

in terms of MC fission cross sections or surrogate reactions
MC fission probability,

PA∗
surr, f (Ex ) =

∑
Jπ

[FA∗
surr (Ex, J, π )BJπ

f ,MC−surr (Ex )
]

. (27)

D. In-house γ decay probability Monte Carlo
calculation using LNG

One realizes immediately that calculating Eqs. (26) or (27)
involves simultaneous transmission coefficient calculations of
competing γ channels, neutron elastic channel(s), as well as
open inelastic channels to satisfy to total flux conservation.
As mentioned in Sec. III A, neutron channels are modeled on
the ground of Eq. (9) but the calculation of γ -channel trans-
mission coefficients borrows the classic narrow resonance
approximation limit according to weak strength functions,
meaning

T Jπ

γ = 2π

〈
	Jπ

γ

〉
DJπ

, (28)

where DJπ is the mean average resonance spacing for given
spin J and parity π . However, the question of the energy de-
pendence below Sn for the fissile isotopes is also sensitive. The
LNG default route involves the equiprobable parity composite
prescription of Gilbert and Cameron [33] for DJπ and parame-
ters have been adjusted to reproduce the experimental s-wave
mean level density at Sn (see Table III [11]). With the present
objective of modeling that surrogate data as well as possible,

one cannot afford the default semiempirical approach and I
will rather rely on the QPVR LD procedure [11]. For an
even-even excited nucleus, the lowest excited states are built
solely from pure collective excitations up to the energy of the
breaking of a neutron or proton pair, whereas the spectrum of
odd-N , even-Z fissioning nuclei involves single-quasineutron
states that carry vibrational states. As excitation energy in-
creases, meaning above the breaking of a neutron or proton
pairing energy for an even-even nucleus, multi-quasiparticle
states carrying multiphonon vibrational states show up in the
level spectrum. Finally, rotational bands following classical
rules are built on those bandheads. QPVR LD have also been
used for better estimates of 〈	Jπ

γ 〉. Full model description and
numerical applications are available in Refs. [11,34].

IV. SCANNING THE SURROGATE-REACTION METHOD

A. WFCF versus SWFCF shape and magnitude

Following equations formulated above, I am able to quan-
tify the global impact of Wn, f , Wsurr, f , and WII for both
categories of heavy nuclides: Those which are fertile or fissile
according neutron-induced reactions. Reader might also refer
to the exhaustive study by Hilaire et al. [15] about the various
approximated WFCF formulas and expectations when applied
to heavy and light nuclides. I start this chapter by verifying if
WFCF expected features are reproduced by present numerical
calculations.

1. WFCF features according to heavy target nuclides

a. Fertile nuclides. I illustrate this category with 241Pu∗

formed by neutron capture. One should recover in terms
of WFCF the well-known pattern of a medium-mass target
nucleus with substantial capture cross section. Below fission
threshold, meaning a few hundred of keV according to in-
ner and outer fundamental barrier heights (labeled VA and
VB), only scattering and capture reactions are opened. In
addition, if the neutron energy lies below inelastic threshold
(En < 50 keV on Fig. 4), it all depends on a competition
between elastic and capture. Since both cross-section magni-
tudes are of same order, elastic enhancement is already signif-
icant at low energy (larger than +10%; Fig. 5, see W xs

n,n) but
becomes much larger (up to +120%; Fig. 6, see inset) when
crossing the inelastic threshold energy. The observed drop in
the inelastic cross section is quite large (about −40%) and in
agreement with the amount of flux redistributed to the elastic
channel. The depreciation of the inelastic cross section is still
amplified by the gradual disappearance of the competitive
capture channel which is not capable of bringing back some
neutron flux to the elastic (in contrast to low energies where
the decrease in the capture cross section reaches −25%).
The WFCF correction applied on the fission cross section is
substantial (W xs

n, f ≈ 0.80) for this fertile target isotope and
reaches unity only above 1 MeV, where the total number
of open channels involved becomes very large (attested on
Fig. 4 by full opening of both fission and inelastic channels).
The specific correction due to the statistical fluctuations of
the class-II state widths is rather constant (W xs

II < 0.80) over
the whole fluctuation range until the total number of playing
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FIG. 4. 240Pu neutron-induced partial cross sections computed
analytically with LNG. Thick, medium-thick, and thin solid curves
and dashed line correspond respectively to the (n, f ), (n, γ ), total
inelastic (n, n′

tot), and elastic (n, n) compound nucleus cross sections.

fission channels becomes large, meaning the energy where
the inelastic cross section reaches its plateau and both VA and
VB – see Fig. 4 – are actually surpassed.

b. Fissile nuclides. Recommending the case of the 240Pu∗

formed by neutron interaction sounds to be the logical exten-
sion to raise the issue of fissile nuclides. Unlike the fertile
case, the amount of flux redistributed to the elastic channel is
quite large right above Sn (inset of Fig. 8) since low-energy

FIG. 5. Comparison of the Wn, f , WII , Wn,γ , Wn,n, and Wn,n′ pat-
terns for the (240Pu +n) compound nucleus involved for calculating
average cross sections (superscript label xs). The WFCF coefficients
displayed must be seen as global coefficients related to each partial
reaction (elastic, inelastic, fission, and capture) but integrated over
all Jπ compound nucleus excited states. Note that present Wn, f

and WII curves differ from Ref. [11] (Fig. 4) by their smoother
character because Dresner numerical integrations are here performed
on the whole fluctuating energy range. The default route involves
Dresner integration and appropriate WFCF asymptotic formulas to
save computing time.

FIG. 6. Same as Fig. 5 but using x-axis linear scale. In addition,
an inset image displays the whole WFCF pattern, showing the well-
known strong elastic enhancement.

fission and capture cross section magnitudes are comparable
(Fig. 7). Above first inelastic threshold, and by analogy to
the 241Pu∗ case, the elastic enhancement strength is strongly
supported by the flux borrowed from the inelastic channels.
The W xs

II (Fig. 8) correction cannot be neglected (≈10%
up to Sn + 300 keV) although the average sub-barrier effect
that lowers the statistical regime fission probability is much
smaller for a fissile than for a fertile heavy nuclide (Fig. 9).

2. Foreseen WFCF features for surrogate reactions

According to the WFCF extreme limit that I postulated
for surrogate-reaction experiments [Eq. (13)], one can now
address the main features as a function of the excited nucleus
excitation energy. Since I aim to argue on (global) WFCF
features according to both neutron-induced and particle-
induced transfer reactions, I have chosen to compute SWFCF
factors with the neutron-induced population distributions

FIG. 7. 239Pu neutron-induced compound nucleus partial cross
sections computed analytically with LNG. Legends are identical to
Fig. 4.
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FIG. 8. Comparison of the Wn, f , WII , Wn,γ , Wn,n, and Wn,n′ factors
involved for calculating average cross sections (superscript label
“xs”) according to the (239Pu +n) reaction. The inset image displays
the whole WFCF picture and shows the well-known strong elastic
enhancement.

[i.e., FA∗
surr (Ex, J, π ) ≡ FA∗

n (En, J, π )]. This guarantees a con-
sistent ground for the comparisons. To better understand in
terms of SWFCF, one must remember that I postulated no
in- and outgoing channel widths correlation but the channel
widths correlations between the many exit channels remain
preserved.

a. Fertile nuclides. I am now back to the 241Pu∗ case,
but with specialization to “neutron-induced” transfer reactions
(called “neutron-fed” in next sections). I will reinforce present
argumentation by showing the 241Pu∗ neutron-fed transfer re-
action decay probabilities are defined by Eq. (25). According
to the fertile nuclide category, one visualizes in Fig. 10 a
very low magnitude for the surrogate-reaction fission decay

FIG. 9. Sub-barrier tunneling estimates based on the Lynn and
Back [31] formulation of B f ,IS [Eq. (22)]. Right above Sn, the
maximum of sub-barrier effect recorded for the fissile target nucleus
(green solid curve) of about 15% is in contrast to the 80% strong
impact according to the fertile case (red dashed curve).

FIG. 10. 241Pu∗ neutron-fed transfer partial decay probabilities
computed analytically with LNG. Thick, medium-thick, and thin
solid curves correspond respectively to total neutron emission, ra-
diative, and fission decays.

probability until fission threshold is surpassed. Right below
1 MeV neutron energy, the radiative decay probability be-
comes negligible, whereas both the total neutron emission
and fission contribute each to half of total decay. In terms of
SWFCF, one recovers in Fig. 11 the customary high-energy
pattern since each SWFCF tends to unity when the total
number of channels involved becomes very large, in practice,
above (Sn + 1.8) MeV. The absence of elastic channels pre-
vents any classic elastic enhancement and one observes that
both radiative and fission decays now endorse the role of the
enhanced channels with maximum impact on the γ decay
channel, up to +110% of enhancement at (Sn + 200) keV.
By reciprocity, neutron emission channels are depreciated
accordingly to the total amount of reaction rate redistributed.
One notices the new role of the neutron emission with residual

FIG. 11. Comparison of the Wsurr, f , Wsurr,II , Wsurr,γ , Wsurr,nground ,
and Wsurr,n′ SWFCF patterns obtained for the 241Pu∗. For better
comparison, they are calculated with the neutron-incident excited
state population [(n − f ed) superscript].
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FIG. 12. 240Pu∗ neutron-induced transfer partial decay probabil-
ities computed analytically over neutron spectroscopy fluctuating
energy range. Thick, medium-thick and thin solid curves corre-
spond respectively to total neutron emission, γ and fission decay
probabilities.

nucleus in the ground state since this channel represents the
largest SWFCF flux contributor (Wsurr,nground curve on Fig. 11)
to the capture and fission channels.

b. Fissile nuclides. I refer logically to the 240Pu∗ case
for straightforward comparison with above neutron-incident
cross-section WFCF pattern. Once more, I support this argu-
mentation with corresponding computed neutron-fed transfer
reaction decay probabilities (Fig. 12). In contrast to 241Pu∗,
fission decay is now the dominant process above Sn whereas
capture decay, representing only one third of the total, drops
continuously and even more steeply above the neutron “in-
elastic” emission threshold energy (the capture cusp is well
visible around 8 keV). Regarding the SWFCF pattern as
function of excitation energy, one observes in Fig. 13 trends
similar to fertiles except in terms of magnitude, in which

FIG. 13. Comparison of the Wsurr, f , Wsurr,II , Wsurr,γ , Wsurr,n and
Wsurr,n′ patterns corresponding to the neutron-fed surrogate-reactions
decay probabilities according to the 240Pu∗.

FIG. 14. Same as Fig. 13 but over the whole excitation energy
range. One remarks the opposite sign correction between Wsurr, f and
Wsurr,γ and the significant Wsurr,II correction below Sn.

the variation envelope remains limited [+30
−10%]. This indeed

contrasts with fertile isotopes in which fission barrier heights,
lying above neutron emission threshold, reduce strongly the
number of open fission channels and thus deliver a larger
amount of width fluctuation correction at low neutron energy
(cf. Fig. 11).

3. Overview of neutron subthreshold WFCF features

At this stage, it is interesting to recall that our main objec-
tive is high-quality simulation of surrogate-reaction probabil-
ities as the SRM does not impose width fluctuations and WII

corrections treatment. One realizes that digging under neutron
emission threshold requires an extension of Fig. 13 down to
low excitation energy. As far as one benchmarks SWFCF
results by feeding the calculations with the incident neutron
excited state population, one observes for Wsurr,II limited im-
pact over the range Sn to (Sn + 1 MeV) but increasing negative
correction as the excitation energy decreases (larger than 30%
on Fig. 14). Since the flux that can be redistributed from the
fission channel to the γ channel shrinks dramatically (Fig. 15),
the enhancement of radiative decay remains moderate and
constant (≈10%).

As conclusion to this paragraph, I have shed light on
SWFCF features as assumed in the WFCF extreme limit
[Eq. (13)] that one is not usually accustomed to dealing
with. I have shown that both radiative and fission decays
can now endorse the role of the enhanced channel with
positive enhancement as large as 100% (fertile nuclides) right
above Sn.

B. Low excitation energy reaction decay
Monte Carlo probabilities

Validity of the SRM hypotheses has been discussed quite
extensively in the past decade (see the review by Escher et al.
[9], the measurements by Kessedjian et al. [35], Boutoux
et al. [18], and Ducasse et al. [20], for instance). This section
aims to revisit this question with a view of the present robust
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FIG. 15. Same as Fig. 12 but over the whole excitation energy
range.

formalism. I now extend this thinking to the joined SWFCF
and subthreshold fission effects on calculated transfer reaction
probabilities. For this investigation, I keep studying our two
examples, namely 240Pu∗ and 241Pu∗, illustrating fissile and
fertile categories.

a. Fissile nuclides. The backdrop for fissile nuclides below
Sn is simpler since only fission and γ decays compete across
Eq. (27). As already specified, in the context of fundamental
fission barriers sitting below Sn, fission occurs mainly across
discrete Bohr transition states built solely from pure collective
excitations (assuming even-even fissioning nucleus) that were
carefully generated using the procedure described in Ref. [11].
Collective vibrations are of several kinds, beginning with the
zero-vibration ground state (of spin-parity projection on the
fissioning nucleus elongation axis Kπ = 0+), then involving
low excitation energy collective vibrations such that the γ -
axis vibration (Kπ = 2+), the mass-asymmetry (Kπ = 0−),
the bending (Kπ = 1−), and even the octupole vibration
(Kπ = 2−). All of them, combined or not, supply bandheads
for the rotational band structure under classical Jπ building
rules as noted below:

Jπ =

⎧⎪⎨
⎪⎩

Kπ , (K + 1)π , (K + 2)π , . . . for K �= 0

0+, 2+, 4+, . . . for K = 0+

1−, 3−, 5−, . . . for K = 0−.

(29)

240Pu∗ is very specific in the way that according to neutron-
incident s waves, two Jπ states can be excited: 0+ and
1+. Low neutron energy fission decay magnitude is then
correlated to the accessibility of Jπ = 0+ and 1+ transition
states. Unfortunately, although few Jπ = 0+ transition states
can contribute, the fission across 1+ transition states play
little role. The 1+ transition state building requires at least
combination of two collective phonons on top of the in-
ner saddle (viz., bending associated with mass asymmetry
in which the resulting energy is estimated to be 0.7 MeV
above Sn). 240Pu∗ peculiarity is properly told with Figs. 16
and 17, which display the surrogate-reaction individual Jπ

fission probabilities for positive-parity spins (respectively,
negative parities) that satisfy

∑
c= f ,γ ,n,n′ PJπ

c (Ex ) = 1. One

FIG. 16. Monte Carlo R-matrix double-barrier fission surrogate-
reaction probabilities of 240Pu∗ as a function of resonance spin
(positive parity) and excitation energy up to neutron kinetic energy of
2.1 MeV. The vertical bar at 6.53 MeV materializes neutron emission
threshold. This figure displays in particular the peculiar 1+ fission
barrier probability (orange thick solid curve) that creates an atypical
small contribution to the low neutron-incident energy fission cross
section. Note: for unbiased illustration, those decay probabilities
according to Eq. (27) are fed with an unitary population per Jπ .

readily imagines that the decay probability spin-parity inde-
pendence (WE assumption) cannot be truly satisfied at low
excitation energy for this isotope since for positive parities
one observes three groups corresponding respectively to total
level spin sequences J = 0, 2, 4, 6, 8, J = 3, 5, 7, 9, and J =
1, whereas for negative parities this trend is restrained to two
groups with the first group merging all spins except zero spin.
The 0− peculiarity must be granted in the absence of 0−
states in the discrete transition state spectrum of even-even
compound nuclei since Eq. (29) prevents construction of any

FIG. 17. Same as Fig. 16 but for negative parity. The figure
shows the 0− probability [green-dotted (lowest) curve] which has
a singular low excitation energy range contribution solely due to
tunneling fission across continuum transition states.
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FIG. 18. Monte Carlo R-matrix γ -decay surrogate-reaction
probabilities of the 240Pu∗ as a function of the resonance spins of
positive parity and excitation energy up to the neutron kinetic energy
of 2.1 MeV. The vertical bar at 6.53 MeV draws the neutron emission
threshold.

of those quantum numbers below the nucleon pair breaking
energy.

In terms of γ -decay surrogate-reaction probabilities, to-
tal flux conservation imposes below Sn reciprocal response
to the fission. This statement can be verified on respective
positive (Fig. 18) and negative (Fig. 19) parity excited states
γ -decay probability plots where the three and two groups
of probability patterns are recovered. Above Sn, cusps in
γ - and fission decay probabilities due to neutron emission
opening (refer to Figs. 20 and 21) are well visible on
corresponding figures. Since the entrance population was
chosen unitarily, neutron emission probability magnitude and
energy threshold differences are solely due to l relative orbital
momentum dependency from one side and the competition
between fission and γ decay channels from the other side.
The former statement is ruled by Eq. (9) supplemented by
our hypothesis on Sl value even-odd dependence. The latter
statement explains the larger neutron emission probability

FIG. 19. Same as Fig. 18 but for negative-parity excited states.

FIG. 20. Same as Fig. 18 but for neutron emission from positive-
parity excited states.

magnitudes encountered both for 0− (Fig. 21) and 1+ (Fig. 20)
since competitive fission channel probabilities at Sn remain
much lower than other reaction probabilities. Finally, from
the pictures above, it is hard to conclude that the WE limit
is ever reached as excitation energy increases since fission
and neutron emission decay probabilities keep exhibiting
large spreading as far as the associated γ decay probabilities
collapse.

b. Fertile nuclides. Odd-neutron isotopes are characterized
by low excitation energy combination of single-quasi-neutron
states with collective vibrations. One expects fewer transition
state fission spectrum oddities because of the dissimilar nature
of quasiparticles as well as denser level density right above the
Fermi energy. Figure 22 illustrates combinatorial QPVR [11]
level densities simulated as a function of nucleus character,
which brings more arguments to the debate. As the low-
energy spectrum is denser (odd-odd nuclei), it should more
quickly tend toward the statistical regime where decay of
the nucleus is dominated by statistical level density. Within

FIG. 21. Same as Fig. 18 but for neutron emission from negative-
parity excited states.
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FIG. 22. Combinatorial quasiparticle-vibrational-rotational level
density predictions on top of inner barrier corresponding to even-
even (240Pu∗, red thick solid curve), even-odd (241Pu∗, green thin
solid curve), and odd-odd (242Am∗, blue dashed curve) nuclei.

such a regime, spin-parity probability dependency is likely
of less importance, because tens of fully opened transition
states for a given spin parity and fission barrier tunneling
strengths balance each other. More than 250 bandheads are
counted within the 0- to 1-MeV range on top of the inner
barrier, according to an even-odd fissioning nucleus. Rele-
vant fission decay probabilities across positive (Fig. 23) and
negative (Fig. 24) parity transition states show two groups
of curves associated respectively to discrete and contin-
uum (J > 6.5h̄) energy ranges. For full understanding, we
must explore also γ - and neutron-decay probabilities shape
patterns.

One remembers that the neutron emission width is related
to the reduced width amplitude such that 	1/2

n ≡ γn
√

2Pl with

FIG. 23. Monte Carlo R-matrix double-barrier fission surrogate-
reaction probabilities of the 241Pu∗ as a function of resonance spins
(of positive parity) and excitation energy up to the neutron kinetic
energy of 2.1 MeV. The vertical bar at 5.24 MeV sets the neutron
emission threshold.

FIG. 24. Same as Fig. 23 but for negative-parity excited states.

Pl , the relative orbital angular momentum-dependent centrifu-
gal penetrability. In compliance with Eq. (10), one addresses−→
J A+1 = −→

I A + (
−→
i n + −→

l n). Applied to even-even residual
nucleus (IA = 0), high JA+1 can be reached only when ln
increases. Since the centrifugal barrier penetrability decreases
as ln increases, neutron emission is blocked at low energy
for large ln values. This well-known allegation is verified in
Figs. 27 and 28. For high spin value, fission decay is negligible
below 6.5 MeV, restricting the question to a γ decay and
neutron emission dual competition. In this configuration, the
γ -decay probability is then exactly the reciprocal of the neu-
tron emission probability (clearly manifest when comparing
Figs. 25 and 27 and Figs. 26 and 28), which acts as the
driver of the γ -decay channels. When both neutron emission
and fission coexist, fission competes strongly with neutron
emission as illustrated by the Jπ = 9.5+ curves on Figs. 23
and 27. Indeed, neutron emission reaches its maximum when
continuum fission opens at 6.5 MeV while the γ drop is still
reinforced.

FIG. 25. Same as Fig. 23 but for γ decay from positive-parity
excited states.
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FIG. 26. Same as Fig. 23 but for γ decay from negative-parity
excited states.

Final γ decay is driven by fission and/or neutron emission;
this can be justified by the very low sensitivity of the γ

decay width to the initial-state spin parity. Indeed, at high
excitation energies (>5 MeV), level density for the nucleus
in the ground state is quite large and there is somehow an
equiprobability for γ cascade from any spin-parity state so
that the γ -decay probability is being adjusted to external
constrains. In contrast, at about Sn excitation energy, neutron
emission is absolutely ruled by the centrifugal barrier penetra-
bility while fission is driven essentially by barrier tunneling
at large nucleus deformation, following the Aage Bohr [16]
postulate.

C. Monte Carlo simulation of surrogate-reaction
measured probability

I remember from the analytical formulation of the prob-
ability [Eq. (25)] that three main ingredients have to be
weighted to evaluate the validity of the SRM [Eq. (6)]
for neutron-induced cross-section inference. In the sections

FIG. 27. Same as Fig. 23 but for neutron emission from positive-
parity excited states.

FIG. 28. Same as Fig. 23 but for neutron emission from negative-
parity excited states.

above, two out of three ingredients have been examined, leav-
ing the consequence of nonuniform excited nucleus state pop-
ulation across FA∗

surr (Ex, J, π ) to be assessed. I have recalled
in Sec. III A that neutron-induced and direct reactions carry
their own total angular momentum population distributions.
The former Jπ distribution profile is sharp and centered about
JA+1 ≈ IA (Fig. 1) at low neutron energy,7 whereas a direct
reaction population distribution is rather broad and centered
about a high total angular momentum value (Fig. 3) since the
transferred relative angular momentum is at least of 3 units.
From this general trend, I must distinguish the peculiar case
of (t, p) reactions on even-even target nuclei that verify rather
single parity per J given (Fig. 2). To estimate the bias carried
by the sensitive choice of the given population distribution
along the neutron cross-section inference on the ground of
Eq. (6), I have carried the surrogate-reaction probability sim-
ulation all the way following Eq. (27) for the three typical
spin-parity population distributions of Fig. 3 according to
240Pu∗ and a fourth distribution called uniform that is now
unitary on the grounds of Eq. (7). I expect the 240Pu∗ to
supply representative and maximum impact of the approxi-
mations involved since it covers the excitation energies below
Sn, preferentially the excited states reached with low-energy
neutrons (close to zero h̄) and also the discrete transition
state spectrum that is for this nucleus sparse and built solely
from collective degree-of-freedom motions. For best illustra-
tion, the results are benchmarked against the neutron-entrance
distribution entailed by the SRM. Although feeding neutron-
induced population fractions for excitation energies lower
than Sn is meaningless, calculations are made according to the
distribution at Sn for present demonstration. Figures 29 and
30 are respectively drawn according to fission and γ -decay

7Low-energy neutron-induced distributions are centered about val-
ues of low spin (case of even-even targets) or values of high spin
when the intrinsic spin carried by the target is high (example of the
235U neutron target).
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FIG. 29. Biais estimation [%] on calculated fission decay prob-
abilities of the 240Pu∗ according to the choice of a given population
distribution by reference to the neutron-induced population as cal-
culated by the LNG code. The latter regarding excitation energies
lower than Sn corresponds to the one at Sn that supports mainly 0+

and 1+ excited levels by s waves (24% and 73% respectively of total
fraction). The (d, p) and (t, p) distributions information are extracted
from Refs. [22] and [3] respectively, whereas the uniform distribution
is set on the ground of Eq. (7).

probabilities. One immediately observes that the broadest
entrance distribution, (d, p), returns as expected, similar to
the uniform distribution. The peculiar (t, p) population dis-
tribution is the one that impacts most significantly the fission
probability with a deviation from the reference up to 180%
below Sn. It happens that using a (n, f ) population rather
than, for instance, the (d, p) population, generates errors of
opposite signs, with maxima of +120 % below Sn in terms
of fission and −60 % in terms of γ decay. However, above
Sn, swapping distributions generates smaller biases than one
could have ascribed according to this ingredient (<40%). One

FIG. 30. Same as Fig. 29 but according to the γ -decay reaction.

can notice that the latter bias goes the same way regardless of
whatever Pf or Pγ are considered.

V. SUMMARY AND PERSPECTIVES

In this paper, I have emphasized the actual possibility
of carrying out one-dimensional fission barrier extended R-
matrix Monte Carlo simulations of neutron-induced cross
sections jointly with surrogate-reaction decay probabilities. If
I omit the question of γ -decay probabilities, which are to be
discussed in a future publication, it is manifest that evaluating
simultaneously experimental neutron-induced cross sections
and fission decay probabilities will definitively help assess
nuclear parameters for fissile nuclides which have fission
thresholds not accessible by NS techniques and for target
material with unsuitable lifetimes or with high radio toxicity.
The latter statement has been frequently put forward in liter-
ature but also strongly questioned because of the technique
used (SRM) in analyzing surrogate-reaction data. The present
Monte Carlo approach does not suffer from such a historical
approach, which should be weeded out in next-generation
evaluations. However, I am aware of the need to pursue efforts
on direct reaction modeling, in which reliability remains a
genuine challenge.

Beyond the Monte Carlo approach, a simpler comparison
with the more conventional analytical formulation of decay
probabilities has quantified the main biases brought by the
SRM hypotheses as far as heavy isotopes are concerned,
namely on the excited nucleus spin-parity state population
distribution, on the in- and outgoing channel width fluctuation
correction factor, and finally on the shape of individual decay
probabilities. In terms of population distribution, replacement
of the peculiar (t, p) and (d, p) direct reaction distributions
by the neutron-incident distribution generates large biases,
especially below Sn for fissile isotopes, on calculated proba-
bilities. Impact of the SWFCF formulation, more appropriate
for surrogate-reaction treatment than classic WFCF equations,
can be quite significant on the inference process for neutron
cross-section prediction. It is worth noting that radiative and
fission decays have now endorsed the role of the enhanced
channels. Regarding WE, which suggests no spin and parity
BR dependency, this statement in terms of fission probability
is strongly correlated with the N-Z character of the fissioning
nucleus. This statement definitively fails for e-e fissioning
nuclei over the discrete transition states energy range. For
some peculiar cases such as 240Pu∗, one must guard against
the belief that SRM inference matches in terms of fission [35]
as good as it is poor in terms of capture reaction [18,20].
In conclusion, I can say that validity of the SRM relies on
the overall bias brought by the three main ingredients of
Eq. (25), which have a definitive impact that cannot be eval-
uated precisely for heavy isotopes by common decoupling,
as acknowledged from the analytical formula. This reinforces
the present surrogate-reaction decay simulated probabilities
based on efficient Monte Carlo sampling of nuclear structure
parameters fed by sound spin-parity excited state population
distributions.

The practical application of the present approach to the
Pu fissile isotope family over the 4- to 8-MeV excitation
energy range is the topic of a companion publication [36]. The
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latter includes, in particular, the modeling of the β-vibrational
resonances observed in the fission decay probabilities. In this
paper, I do not cope with observed γ -decay probabilities
because of the historical absence of such experimental data,
but new perspectives on that era have opened up recently [20].
Some partial feedback on this question was already unveiled
over preliminary analysis [37] of recent experiments [20]
collecting simultaneously γ - and fission-decay probabilities
according to the 238U(3He, 4He)237U∗ reaction. Additional
work is ongoing on that matter.
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