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Enhanced deuterium-tritium fusion cross sections in the presence of strong electromagnetic fields
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We investigate deuterium-tritium (DT) fusion cross sections in the presence of electromagnetic fields with high
intensity and high frequency. With the help of the Kramers-Henneberger (KH) transformation, we show that the
corresponding Coulomb barrier penetrability increases significantly due to the depression of the time-averaged
potential barrier. As a result, we find that DT fusion cross sections can be enhanced depending effectively on a
dimensionless quantity nd, which equals the ratio of the quiver oscillation amplitude to the geometrical touching
radius of the deuterium and tritium nuclei. For nd = 9, we predict that the fusion cross section is almost five
times the value in the absence of electromagnetic fields, which implies that the famous Lawson criterion might
be relaxed to some extent.
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I. INTRODUCTION

Nuclear fusion is one of the most studied issues in the
fields of nuclear energy and fundamental nuclear physics
because of its potential applications as a clean, effective,
and sustainable energy source in the future [1]. However,
controllable nuclear fusions are frustrated even in laboratory
environments to achieve ignition through either magnetic
confinement fusion (MCF) [2–5] or inertial confinement fu-
sion (ICF) [6–10]. An intrinsic problem arises from the very
small nuclear cross sections that greatly increase the threshold
conditions of nuclear reactions and hinder the realization of
controllable nuclear fusions [11–13]. Thus, seeking a possible
way to increase the fusion cross section is of great interest.
In the past few years, some approaches have been suggested,
such as μ-meson-catalyzed [14] and spin-polarization [15,16]
schemes. Unfortunately, these schemes encounter difficulties
when implemented in real fusion systems. For instance, the
lifetime of a μ meson is 2.2 μs, which is too short compared
with the characteristic timescale of the steady fusion process
in MCF and leads to an essential difficulty in controlling the
injection time of a μ meson. On the other hand, the generation
of a large number of μ mesons requires costly high-energy
collision facilities. For the spin-polarization scheme, the main
difficulty arises from the depolarizing effect induced by the
frequent collisions between charged particles in fusion plas-
mas [17,18].

However, recent advantages in laser techniques provide
an alternative scheme to manipulate nuclear processes. Since
the first demonstration of laser emission from a ruby crystal
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(chromium-doped corundum) in 1960 [19], great improve-
ments have been made in laser techniques. Most importantly,
the advent of chirped pulse amplification (CPA) techniques
[20] has enabled laser intensities up to 1022 W/cm2. Laser
facilities with even higher intensities are under construction in
a program initiated by the European Union—namely, the Ex-
treme Light Infrastructure (ELI) [21,22]. X-ray free-electron
lasers (XFELs) are able to produce coherent light with an
intensity as high as 1020 W/cm2 with a wide frequency range.
For example, the Linac Coherent Light Source (LCLS) can
provide x-ray laser pulses with photon energies ranging from
280 eV to 11.2 keV.

Intense lasers can be applied to atomic ionization [23–25]
and charged-particle acceleration [26–28] and also provide a
new way for manipulating nuclear processes. It was found that
intense lasers can accelerate nuclear processes by inducing
resonance internal conversion [29] and increase α-decay rates
[30,31] by modifying the Coulomb potential barrier. In par-
ticular, since nuclear fusion processes are mainly associated
with light nuclei, we thus expect that laser manipulation will
be more effective because of the relatively large charge-mass
ratio compared with that in the heavy nuclei processes studied
previously.

In this paper, taking the deuterium-tritium (DT) reaction
as an example, we investigate nuclear fusion cross sections
in the presence of electromagnetic fields and find that the
DT fusion cross sections can indeed be effectively enhanced.
Our results are mainly analytic, and the Kramers-Henneberger
(KH) transformation [32] is exploited.

The paper is organized as follows: Section II presents
our model. Section III presents discussions on the Coulomb
barrier penetrability. Our main results on DT cross sec-
tions are provided in Sec. IV. Section V presents our
conclusion.
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II. MODEL

Nuclear fusion is commonly believed to consist of three
processes [7]. First, the wave packets of two nuclei collide
with each other at a probability depicted by a geometrical
cross section that depends on the de Broglie wavelength. Sec-
ond, the approaching nucleus tunnels through the Coulomb
potential barrier. Third, the nuclei come into contact and fuse,
which can be described by an astrophysical factor [33]. In
the presence of electromagnetic fields, a two-body spinless
model Hamiltonian of DT fusion in the velocity gauge is
introduced by

H = ( �p1 − q1 �A(t1, �r1))2

2m1
+ ( �p2 − q2 �A(t2, �r2))2

2m2

+V (�r1 − �r2), (1)

where m1 (m2) and q1 = e (q2 = e) are the nuclear masses
and electrical charges of deuterium (tritium) in the laboratory
frame and �r1 (�r2) and �p1 ( �p2) are the coordinate vectors and
canonical momenta, respectively. V (�r1 − �r2) is the two-body
interaction potential between the deuterium and tritium nuclei,
including the short-range attractive nuclear potential and long-
range repulsive Coulomb potential, which can be given by

V (�r1 − �r2) = −�

(
1 − |�r1 − �r2|

rn

)
U0

+�

( |�r1 − �r2|
rn

− 1

)
e2

4πε0|�r1 − �r2| , (2)

where the geometrical touching radius rn = 1.44(A
1
3
1 +

A
1
3
2 ) fm and U0 indicate the effective range and depth of the

nuclear potential, respectively. �(x) is the unit step function.
In the nonrelativistic dipole approximation, by neglecting

the coordinate dependence of the vector potential �A and
denoting t1 = t2 = t in the nonrelativistic limit, the two-
body Hamiltonian is divided into a center part Hc = [ �P −
Q �A(t )]2/2M and a relative part Hr = [ �p − q �A(t )]2/2m +
V (�r ) with vanishing coupling between each other [Hc, Hr] =
0, where �r = �r1 − �r2. The corresponding center motion
and relative motion charges are Q = 2e and q = (m2 −
m1)e/(m1 + m2), and M = m1 + m2 and m = m1m2/(m1 +
m2) are the total and reduced masses, respectively. This rel-
ative motion Hamiltonian can be reformed into

Hr = �p 2

2m
+ V (�r ) − q

m
�A(t ) · �p + q2

2m
�A 2

(t ), (3)

The corresponding wave function in the laboratory frame is
denoted �(t, �r ). By adopting the unitary KH transformation

�(t ) = exp

[
i

h̄

∫ t

−∞

(
− q

m
�A(τ ) · �p + q2

2m
�A 2

(τ )

)
dτ

]
,

(4)

The wave function under the KH framework, denoted
�kh = �(t )�, has the same total probability as �(t, �r )
due to �†(t )�(t ) = 1, and the relative motion reduces
to single-body motion in the time-dependent potential
Vkh(t, �rkh ) = �(t )V (�r )�†(t ). The momentum operator is
�pkh(t ) = �(t ) �p�†(t ) = �p, while the coordinate operator is

found to be �rkh(t ) = �(t )�r �†(t ) = �r − �re(t ), which main-
tains the commutation relation [ri

kh(t ), pj
kh(t )] = ih̄δi, j . �re(t )

is defined as êzre sin ωt with re = e
√

2cμ0I/5mω2. Supposing
that the external electromagnetic field is monochromatic and
linearly polarized along the z axis, i.e., �E (t ) = êzE0 sin ωt , the
time-dependent Schrödinger equation can be given by

ih̄
∂

∂t
�kh(t, �rkh ) =

(
�p 2

kh

2m
+ Vkh(t, �rkh )

)
�kh(t, �rkh ), (5)

where the time-dependent potential is found to be

Vkh(t, �rkh ) = −�

(
1 − rkh(t )

rn

)
U0

+�

(
rkh(t )

rn
− 1

)
V0

rn

rkh(t )
, (6)

with the height of the Coulomb barrier e2/4πε0rn denoted V0.
For a DT collision, V0 and rn are approximately 0.37 MeV

and 3.89 fm, respectively, while U0 is approximately 30 to
40 MeV, i.e., two orders of magnitude larger than V0. Equation
(6) indicates that the time-dependent potential Vkh is just a
two-body potential with a time-dependent harmonic oscilla-
tion origin �re(t ) along the polarization direction êz with a
quiver oscillation amplitude re. In this case, the space can
be divided into two parts: the inner region denoted by a
cylindrical-like region swept by the nuclear potential well, i.e.,
Din = {�r |rkh(t ) � rn, ∃ t ∈ [0, 2π/ω)}, and the outer region
denoted by Dout = R3/Din. The ratio of re to rn determines
how external electromagnetic fields manipulate nuclei col-
lision processes. Let us introduce a dimensionless quantity
nd = re/rn = 4.89 × 10−6

√
I/(h̄ω)2, where the units of I

and h̄ω are W/cm2 and eV, respectively. For r/rn < nd, the
Coulomb potential can be expanded according to

Vkh(t, �r ) = V0

nd

re

r

∑
l

Pl (cos θ )

{
rl

e (t )
rl |re(t )| � r

rl+1

|re (t )|rl
e (t ) r < |re(t )|. (7)

For r/rn > nd, Vkh can be expanded as

Vkh(t, �r ) = V0

nd

re

r

∑
l

Pl (cos θ )
rl

e(t )

rl
, (8)

where θ is the inclination angle of �r. By noticing Eqs. (7) and
(8), the external fields can remarkably reduce the height of the
Coulomb barrier via the factor V0/nd and yield an enhanced
tunneling probability for nd > 1.

III. PENETRABILITY

In the nonrelativistic limit, the corresponding quiver
velocity of the incident nucleus should be much less than
the vacuum light speed, i.e., η = e

√
2cμ0I/5mωc � 1.

On the other hand, the laser intensity I is not allowed
to exceed the Schwinger limit I0 = m4

ec5/μ0e2h̄2 [34],
and the electromagnetic field frequency must be less than
ω∗ = mec2/h̄ to avoid the γ + γ ∗ → e + e+ process. All of
the above limitations are shown in the parameter diagram of
Fig. 1, in which we also plot the typical parameters of various
laser facilities at the present time.
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FIG. 1. Phase diagram for the laser parameters of currently
achievable lasers, e.g., a CO2 laser with a peak intensity of 1.30 ×
1014 W/cm2 and a frequency of 0.12 eV [35]; a Nd:glass laser
with a peak intensity of 2.00 × 1019 W/cm2 and a frequency of
1.18 eV [36]; a Ti:sapphire laser with a peak intensity of 1.00 ×
1022 W/cm2 and a frequency of 1.55 eV [37]; a dye laser with a
peak intensity of 5.00 × 1014 W/cm2 and a frequency of 2.12 eV
[38]; a KrF laser with a peak intensity of 1.00 × 1020 W/cm2 and
a frequency of 5.00 eV [39]; and XFELs with a peak intensity
of 1.00 × 1020 W/cm2 and variable frequencies from 280 eV to
11.2 keV [40,41]. The horizontal red dashed line and the vertical
red dashed line represent the Schwinger limit of the laser intensity,
4.6 × 1029 W/cm2, and the QED limit of the laser frequency, 0.51
MeV, respectively. The vertical dashed black line represents a laser
frequency of 1 keV, above which the field period is much smaller than
the characteristic nuclear collision time so that the time-averaged
scheme in the KH framework is expected to be valid. The solid
blue lines denote η = 10−2, 10−3, and 10−4. The solid pink lines
denote nd = 0.1, 1, and 10. The black points are three typical laser
parameters for our following detailed discussion: the corresponding
dimensionless parameters are nd = 3, 6, and 9, and the laser parame-
ters are 5.36 × 103 eV, 3.37 × 1027 W/cm2; 8.46 × 103 eV, 7.62 ×
1027 W/cm2; and 1.69 × 104 eV, 3.05 × 1028 W/cm2, respectively.

Usually, the collision energies of a typical DT fusion
process are approximately tens of keV, and the correspond-
ing characteristic collision time T0 is approximately sev-
eral femtoseconds. When the characteristic collision time is
much longer than the field period, i.e., T0 
 2π/ω, the time-
dependent operator �rkh(t ) can be well approximated by its
time-averaged value �rkh(t ) = �r, indicating that the incident
nucleus feels a time-averaged potential Vkh(t, �r ) = Veff (�r ).
We choose 1 keV as the threshold of the laser frequency
beyond which the average scheme is valid.

In the region of Din, Veff can be approximated as −U0 due
to the fact V0/U0 ∼ 10−2. In the region of Dout, the odd-l
terms of the Coulomb potential cancel in the duration of an
oscillation, and only even-l terms remain. The time-averaged
potential can be given by

Veff (�r ) =
{ −U0, �r ∈ Din

V0
nd

∑
l∈even Pl (cos θ )Vl (r), �r ∈ Dout.

(9)
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FIG. 2. The effective potential has rotational symmetry with
respect to the z axis. (a)–(c) Contour plots on x-z section of the
effective potential for nd = 3, 6, and 9, respectively. The blue areas
represent the section (y = 0) of inner region Din where the potential
value is approximately −U0. Din consists of a cylindrical region
and two hemispheres at the top and bottom ends. The length of the
cylinder is 2re, and the radius of both the cylinder and the hemisphere
is rn. (d)–(f) Veff for different inclination angles θ with respect to
varied nd = re/rn.

The corresponding partial-wave potential Vl in the region of
Dout is found to be

Vl (r) = 1

π

l
2∑

i=1

[
−

(
r

re

)2i−l−2

+
(

r

re

)−2i+l
]

×
√

1 −
(

r

re

)2 �
(

l+1
2

)
�(i)

�
(

l
2 + 1

)
�

(
i + 1

2

)
+ 1

π

(
r

re

)−l−1 2�
(

l+1
2

)
√

π�
(

l
2 + 1

) arcsin
r

re

− 1

π

(
r

re

)l 2�
(

l+1
2

)
√

π�
(

l
2 + 1

) ln tan
arcsin r

re

2

(10)

for r/rn � nd, and

Vl (r) =
(

r

re

)−l−1 �
(

l+1
2

)
√

π�
(

l
2 + 1

) (11)

for r/rn > nd. The corresponding time-averaged potential Veff

for nd = 3, 6, and 9 is shown in Fig. 2.
Using the Wenzel-Kramers-Brillouin approximation [42],

the penetrability through the Coulomb barrier at the collision
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FIG. 3. (a) Angle-dependent penetrability for collision energy of
ε = 64 keV. (b) Average penetrability versus collision energy.

energy ε along the direction r̂ can be given by

P(θ ; ε, nd ) = exp

(
−2

h̄

∫ rout

rin

√
2m[Veff (�r ) − ε]dr

)
, (12)

where rin and rout are the inner and outer turning points,
respectively. Due to the symmetry of the Hamiltonian, the
penetrability is independent of the azimuth φ. The penetrabil-
ity depends explicitly on the incident energy, the inclination
angle θ , and the dimensionless parameter nd.

The angle-dependent penetrability can be readily obtained
by numerically calculating Eq. (12), and the results are plotted
in Fig. 3(a). The angle-dependent penetrabilities exhibit an
interesting double-hollow structure with some small oscil-
lations. This indicates that the penetrability can reach local
maxima in the directions parallel and perpendicular to the
laser polarization direction, i.e., θ = 0, π and θ = π/2. This
is due to the distortion of the effective potential in both its
peak and width in the presence of strong fields, as shown
in Fig. 2. Along the polarization direction êz of θ = 0, π ,
both the peak value and the barrier width are found to de-
crease significantly. At θ = π/2, the tunneling is along the
large potential gradient direction that can lead to the second
local maximum probability. The hollows correspond to the
minimum penetrability, and their positions are approximately
θ∗ and π − θ∗, with θ∗ = 2 arctan(rn/re ) = 2 arctan(1/nd ).
This can be understood by observing the geometric character
of the contour plots of the average potentials as shown in

Figs. 2(a)–2(c). The small oscillations arise from the high-
order Legendre terms.

The emergence of the local maximum peak at θ = π/2 is
analogous to what occurs in the α-decay process discussed by
Delion and Ghinescu [30]. However, along the polarization
direction of θ = 0, π , their calculated probability is a local
minimum instead. In the α-decay model of Ref. [30], the
oscillations of the nuclear potential in the external fields are
ignored. This local maximum in the direction perpendicular to
the laser polarization does not emerge in the more recent work
for α decay [31], in which the validity of the time-average
scheme in the KH coordinate is questioned and instead the
length gauge is exploited.

The angle-averaged penetrability can be obtained by taking
an average over the 4π solid angle; that is,

Pave(ε; nd ) = 1

2

∫ π

0
P(θ ; ε, nd ) sin θdθ. (13)

The penetrability versus the collision energy for different
nd values is shown in Fig. 3(b), indicating that the penetra-
bility increases significantly with respect to the dimensionless
parameter nd.

IV. ENHANCED DEUTERIUM-TRITIUM
FUSION CROSS SECTIONS

As mentioned above, DT nuclear fusion consists of three
processes, and the nuclear fusion cross sections are usually
given in a phenomenological Gamow form as a product of
three terms:

σ (ε) = S(ε)

ε
exp

(
−

√
εG

ε

)
, (14)

where the term 1/ε is the geometrical cross section, which
is proportional to the square of the de Broglie wavelength
of therelative motion. In addition, the term exp(−√

εG/ε)
is the tunneling probability through the Coulomb potential
barrier, which holds as far as ε � εG. For DT fusion, the
Gamow energy factor is εG = (e2

√
2m/4h̄ε0)2 = 1.18 MeV,

so Eq. (14) can be used for collision energies of ε < 100 keV.
S, which is a weakly varying function of collision energy, is

0 20 40 60 80 100
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20
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nd=3
nd=6
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FIG. 4. Fusion cross sections versus collision energy for nd = 0,
3, 6, and 9.
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the so-called astrophysical factor that describes the nuclear
physics within the nuclear potential effective range. In the
absence of external electromagnetic fields, the S factor can
be given by a fitting function

S(ε) = a + b

π

d

4(ε − c)2 + d2
, (15)

where the parameters are found to be a = 118.8 keV barn, b =
8.647 × 105 keV2 barn, c = 45.05 keV, and d = 86.76 keV.

In the presence of external fields, the astrophysical S factor
can still be described by Eq. (15), and the probability of
a wave-packet collision 1/ε also remains unchanged, while
the Coulomb barrier penetrability should be replaced by Pave.
As shown in Fig. 4, the fusion cross sections σ have been
significantly enhanced with increasing nd, which indicates
that high-intensity and high-frequency electromagnetic fields
can effectively increase the DT fusion cross sections.

V. CONCLUSION

In summary, we show that DT fusion cross sections can
be enhanced depending on a dimensionless parameter nd

in the presence of high-intensity and high-frequency elec-
tromagnetic fields. For a collision energy of 64 keV and
when nd is equal to 9, the penetrability is approximately
4.92 times as large, and the fusion cross sections can be
enhanced to 25.7 barns, which is approximately 4.77 times
that of the field-free case. In this situation we approximately
estimate that the averaged fusion reactivity can be multiplied
approximately five times so that the Lawson criterion [43]
might be reduced to one fifth of the value in the absence
of electromagnetic fields. However, when calculating energy
balance, we ignore the power needed to create and maintain
the superstrong electromagnetic fields. This issue will be
discussed in detail in future work. On the other hand, this
work focuses on the high-frequency limit. Extending these
discussions to the situation of relatively low frequency is
ongoing.
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