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Background: Proton-induced nucleon knockout (p, pN ) reactions have been successfully used to study the
single-particle nature of stable nuclei in normal kinematics with the distorted-wave impulse approximation
(DWIA) framework. Recently, these reactions have been applied to rare-isotope beams at intermediate energies
in inverse kinematics to study the quenching of spectroscopic factors.
Purpose: Our goal is to investigate the effects of various corrections and uncertainties within the standard DWIA
formalism on the (p, pN ) cross sections. The consistency of the extracted reduction factors between DWIA and
other methods is also evaluated.
Method: We analyze the (p, 2p) and (p, pn) reaction data measured at the R3B-LAND setup at GSI for carbon,
nitrogen, and oxygen isotopes in the incident energy range of 300–450 MeV/u. Cross sections and reduction
factors are calculated by using the DWIA method. The transverse momentum distribution of the 12C(p, 2p)11B
reaction is also investigated.
Results: We have found that including the nonlocality corrections and the Møller factor affects the cross sections
considerably. The proton-neutron asymmetry dependence of reduction factors extracted by the DWIA calculation
is very weak and consistent with those given by other reaction methods and ab initio structure calculations.
Conclusions: The results found in this work provide a detailed investigation of the DWIA method for (p, pN )
reactions at intermediate energies. They also suggest that some higher-order effects, which is essential for an
accurate cross-section description at large recoil momentum, is missing in the current DWIA and other reaction
models.
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I. INTRODUCTION

In the last fifty years, nucleon knockout reactions induced
by intermediate-energy protons of the type (p, pN ) in normal
(forward) kinematics have been one of the most success-
ful tools for studying the single-particle nature of stable
nuclei [1–4]. These reactions are sometimes referred to as
quasifree scattering due to the dominance of scattering pro-
cesses between the proton and the knocked-out nucleon. The
most widely used theoretical approach to analyze these reac-
tions is the distorted-wave impulse approximation (DWIA)
method of Chant and Roos [5,6]. A detailed review of this
method including its uncertainties and applications to existing
forward-kinematics (p, pN ) data has been reported in Ref. [4].

With the availability of radioactive beams at energies up
to 450 MeV/u, there has been a renewed interest to elucidate
single-particle properties of unstable nuclei by using nucleon
knockout reactions on the hydrogen target in inverse kinemat-
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ics. The DWIA method has first been theoretically applied to
inverse kinematics (p, pN ) reactions with the scattering wave
functions treated with the eikonal approximation [7,8] and
later in (standard) partial-wave expansion form [9]. The latter
method was then successfully applied in several experimental
studies [10–14] carried out at RIKEN, Japan. However, an
extensive investigation of the sensitivity of calculated cross
sections to various choices of inputs and corrections (as in
Ref. [4]) was not done in these studies.

Besides DWIA, other theoretical methods such as
the three-body Faddeev equation in the Alt-Grassberger-
Sandhas formulation (FAGS) [15,16] and the transfer-to-the-
continuum (TC) method [17] have also been used to analyze
the (p, pN ) experimental data measured in inverse kinematics.
Although there is a good consistency between DWIA and
TC formalism for the specific 15C(p, pn)14C reaction [9],
a systematic comparison between the DWIA (eikonal and
partial-wave form), TC, and FAGS analyses on the actual
experimental data is essential to determine the range of ap-
plicability for (p, pN ) reactions.

Among the possible uses of proton-induced nucleon
knockout reactions, the study of quenching single-particle
strength and its proton-neutron asymmetry dependence is one
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of the most important subjects. A reduction of 30%–40%
with respect to the independent-particle model (IPM) limit in
spectroscopic factors (SFs) deduced from (e, e′ p) experiments
was observed at NIKHEF [18]. This quenching of the SF,
quantified as the reduction factor Rs, is due to the lack of
short-range (including tensor) and long-range correlations in
the IPM and standard shell model (SM) calculations [19–24].

Systematic analysis of nucleon removal reactions on light
composite targets (9Be and 12C) [25,26] suggests a strong
dependence on the proton-neutron asymmetry defined as
�S = Sp − Sn (�S = Sn − Sp) for proton (neutron) removal,
where Sp (Sn) is the proton (neutron) separation energies.
However, such strong dependence cannot be observed in sys-
tematic nucleon-transfer studies [27–31]. A weak dependence
of Rs on �S is also supported by ab initio coupled-cluster
(CC) [23] and self-consistent Green’s function (SCGF) [24]
calculations.

Very recently, a series of (p, pN ) measurements for
carbon-, nitrogen-, and oxygen-isotope beam with incident
energy range of 300–450 MeV/u in inverse kinematics was
performed at the R3B-LAND setup at GSI Helmholtzzentrum
für Schwerionenforschung in Darmstadt, Germany [32–35].
While the measurements in Ref. [32] are exclusive, those in
Refs. [33–35] provide the semi-inclusive cross sections and
momentum distributions, in which various bound states of the
residual nucleus are summed. The eikonal DWIA [32,33,35],
FAGS [34], and TC [36] methods were applied to these exper-
imental data and gave a generally similar conclusion that the
reduction factors depend very weakly on the proton-neutron
asymmetry, in contradiction with the much steeper asymmetry
found in nucleon removal analysis. However, as was noted
in Ref. [36], the (p, pN ) data analyzed by different reaction
models exhibit some discrepancies due to choices of inputs
and nonrelativistic treatments. These results also slightly un-
derestimate the magnitude of Rs given by ab initio calcu-
lations [23,24]. To clarify the inconsistencies between these
models and give a reliable evaluation of the experimental data,
it is of great interest to perform a careful DWIA analysis on
the reduction factors with the GSI (p, pN ) data [32–35].

The content of this paper is as follows: In Sec. II the
formulation of the standard partial-wave DWIA formalism is
given. In Sec. III the cross sections and reduction factors are
calculated for all published GSI data. The impact of several
corrections in the DWIA framework on these observables
are investigated. The transverse momentum distributions for
the specific 12C(p, 2p)11B case is also discussed. Finally, the
summary is given in Sec. IV.

II. FORMALISM

The A(p, pN )B knockout reaction is analyzed with the
same partial-wave DWIA framework as in Ref. [9]. Observ-
ables with superscript A are evaluated in the A-rest frame
while those without the superscript are in the three-body
center-of-mass (c.m.) frame, also called the G frame. The
transition amplitude for the A(p, pN )B reaction is given by

T nl jm
K0K1K2

= 〈
χ

(−)
1,K1

χ
(−)
2,K2

∣∣ tpN

∣∣χ (+)
0,K0

ϕnl jm
〉
, (1)

where χi,K i , (i = 0, 1, 2) are the distorted scattering wave
functions of the p-A, p-B, and N-B systems, respectively. K i is
the momentum of particle i in the G frame. As has been shown
in Eqs. (3.8)–(3.15) of Ref. [4], when the kinematic coupling
term in the exit channel Hamiltonian is approximated, the
three-body scattering wave function can be separated into
two two-body distorted-wave functions in Eq. (1), where K i

can now be interpreted as the relative momentum. The super-
scripts (+) and (−) specify the outgoing and the incoming
boundary conditions of these scattering waves, respectively.
The relative single-particle wave function of the N-B system
bound inside A is denoted as ϕnl jm where n, l , j, and m are
the principal quantum number, the orbital angular momen-
tum, the total angular momentum, and its third component,
respectively. tpN is a transition operator for the p-N scattering,
which is sometimes called an effective interaction [37]. The
absolute square of its matrix element is proportional to the
pN elastic-scattering cross section dσpN/d�pN .

Following the same theoretical treatment as in Ref. [9],
upon disregarding the spin-orbit distortion, the momentum
distribution (MD) is given by
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where

C0 ≡ EA
0

(h̄c)2KA
0

fpN

(2l + 1)

h̄4

(2π )3μ2
pN

. (3)

The factor fpN equals 1 for (p, pn) and 1/2 for (p, 2p)
reactions. Ei and EA

i are the total (relativistic) energies of
particle i in the G and A rest frames, respectively.

The G-frame pN scattering cross section in Eq. (2) is
related to the one in the two-nucleon c.m. frame, which we
term the t frame, through

dσpN

d�pN
= η2

dσ t
pN

d� t
pN

, (4)

where

η =
(

E t
1E t

2E t
0E t

N

E1E2E0EN

)1/2

(5)

is the Møller factor required for the transformation of tpN from
the t frame to the G frame in relativistic kinematics [38,39].
The total energy of the struck nucleon EN is determined by the
momentum conservation of the two colliding nucleons as [9]

EN = h̄2

2μNB

[
K1 + K2 − (A + 1)

A
K0

]2

. (6)

The reduced transition amplitude in Eq. (2) is given by

T̄ nl jm
K0K1K2

=
∫

dR χ
∗(−)
1,K1

(R) χ
∗(−)
2,K2

(R) χ
(+)
0,K0

(R)

× ϕnl jm(R)e−iK0·R/A. (7)

064604-2



TOWARD A RELIABLE DESCRIPTION OF (p, pN) … PHYSICAL REVIEW C 100, 064604 (2019)

For the bound-state wave function ϕnl jm generated by a local
potential, the effect of nonlocality is taken into accounted
in the interior region by multiplying ϕnl jm by the Perey
factor [40]

FPR(R) = CPR

[
1 − μNB

2h̄2 β2VNB(R)

]−1/2

, (8)

where the nonlocality range β = 0.85 fm for nucleons [41],
and VNB is the single-particle binding potential. The factor CPR

is chosen so that the modified bound-state wave function is
normalized to unity. Similarly, for a scattering wave function
obtained from a Dirac phenomenology optical potential (OP),
the relativistic velocity-dependent term modifies the wave
function by what we refer to as the Darwin factor [42,43]

FDW(R) =
[

Ei + US (R) − UV (R)

Ei

]1/2

, (9)

where US and UV are the scalar and vector potentials in the
Dirac equation, respectively. This Darwin factor is regarded as
a kind of nonlocality correction and has been well known to be
very important in order to fully take into account relativistic
effect in (e, e′ p) reactions [44].

The cylindrical transverse momentum distributions (TMD)
are obtained from the MD as

dσ

dKA
Bb

= 2π

∫
dKA

BzK
A
Bb

dσ

dKA
B

. (10)

The integrated single-particle cross section is then calculated
from the TMD as

σsp =
∫

dσ

dKA
Bb

dKA
Bb. (11)

III. RESULTS AND DISCUSSION

In this section, we applied the DWIA framework described
in the preceding section to the GSI (p, pN ) data [32–35]
to evaluate the single-particle cross section and deduce
the reduction factor. The impact of nonlocality corrections,
the Møller factor, and energy dependence of final-state OP on
the Rs are clarified.

A. Numerical inputs

We perform DWIA calculations for all 18 published
(p, pN ) cases of the R3B-LAND setup [32–35]. In addition,
we also perform calculations with several other choices of
inputs to estimate the theoretical uncertainty on reduction
factors. All calculations in this work adopt the relativistic
treatment of the kinematics, which is essential to reproduce
the correct MD [9]. The nonlocality correction is taken into
account in our calculation through the use of the Perey factor
for the single-particle bound state and Darwin factor for
distorted waves.

For the distorting potential of the p-A, p-B, and N-
B systems, we use the EDAD2 parameter set of the
Dirac phenomenology [45]. Calculations using the EDAD1,
EDAD3 [45], and the “democratic” EDAD [46] Dirac OP sets
give a difference of 10% at most, which is consistent with the
one observed in normal kinematics [4].

The single-particle wave function of the struck nucleon
is obtained from a Woods-Saxon potential with central and
spin-orbit components defined in the same manner as in
Refs. [25,36]. For both components, a diffuseness a = 0.7 fm
is used for all the cases. The radius parameter is adjusted
following the prescription 〈r2〉 = [A/(A − 1)]〈r2〉HF, where
〈r2〉HF is the single-particle mean square radius of the Hartree-
Fock calculation with the Skyrme SkX interaction [47]. The
depth Vso = 6 MeV is fixed for the spin-orbit term while
the central one is adjusted to reproduce the experimental
separation energies. This choice of binding potential gives a
difference in the (p, pN ) cross section within 10% compared
with the one used in the (e, e′ p) analysis [4,48]. Based on this
result and the investigations of Refs. [25,36] on the ambiguity
of different effective nucleon-nucleon (NN) interactions used
in the Hartree-Fock calculation, we adopt an uncertainty of
10% for single-particle wave functions.

For the pN elementary cross section, we employ the one
generated by the t-matrix parametrization of Franey and
Love [37] with a final-energy prescription, which has been
suggested to be the best approximation for the half-off-shell
amplitude [49]. Different choices of the on-shell approxima-
tion such as initial-energy and average-energy prescriptions
give an uncertainty of 2% for (p, 2p) and 8% for (p, pn)
processes. The large discrepancies in neutron knockout pro-
cesses are due to the asymmetric shape of the pn scattering
angular distribution, which makes it more sensitive to the
choice of energy prescription. Note that other choices of the
NN cross section such as those from the Reid93 potential [50]
in TC [36], the CD-Bonn potential [51] in FAGS [34], or from
experimental database fitting [52] in the eikonal DWIA [7]
give essentially the same NN cross sections up to 350 MeV.

The theoretical spectroscopic factor for each state of the
bound residual core is the same as in Refs. [35,36], which is
computed by the standard SM with the WBT interaction [53]
and includes the c.m. correction [54]. Since many of the
considered nuclei are weakly bound, the use of SF calculated
from the SM, compared with the IPM limit, provides a more
proper description of single-particle-strength fragmentation
near the Fermi level.

B. Reduction factors

The results of our DWIA calculations are presented in
Table I. Because of the semi-inclusive nature of the data
concerned, the calculation results are the sum of the cross
sections corresponding to several bound-state configurations
of the residual nucleus. The beam energy in the middle of
the target is shown in the second column. The third column
indicates the theoretical cross sections σth = ∑

C2S × σsp,
where σsp is the single-particle cross section of a specific
configuration. The fourth column shows the experimental
cross section, with statistical (round brackets) and systematic
(square brackets) uncertainties corresponding to the beam of
10–12C [32,35], 13–21O [33], and 21N and 22,23O [34]. The
reduction factor Rs = σexpt/σth is given in the last column.

The reduction factors as a function of the proton-neutron
asymmetry �S is shown in Fig. 1. The value calculated from
the present DWIA analysis is indicated by red squares with
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TABLE I. Experimental cross sections σexpt [32–35], calculated
cross sections σth, and reduction factors Rs. See text for details.

Ebeam

Reaction (MeV/u) σth (mb) σexpt (mb) Rs

10C(p, pn)9C 386 12.95 16.3(22)[14] 1.26(29)
11C(p, 2p)10B 325 15.68 18.2(9)[10] 1.16(19)
11C(p, pn)10C 325 14.07 17.0(15)[21] 1.21(27)
12C(p, 2p)11B 398 22.04 19.2(18)[12] 0.87(16)
12C(p, pn)11C 398 27.43 30.0(32)[27] 1.09(23)
13O(p, 2p)12N 401 5.77 5.78(91)[37] 1.00(22)
14O(p, 2p)13N 351 13.28 10.23(80)[65] 0.77(13)
15O(p, 2p)14N 310 18.07 18.92(182)[120] 1.05(19)
16O(p, 2p)15N 451 27.78 26.84(90)[170] 0.97(15)
17O(p, 2p)16N 406 9.16 7.90(26)[50] 0.86(14)
18O(p, 2p)17N 368 20.01 17.80(104)[113] 0.89(15)
21O(p, 2p)20N 449 5.58 5.31(23)[34] 0.95(15)
21N(p, 2p)20C 417 3.25 2.27(34) 0.70(14)
21N(p, pn)20N 417 38.87 48.52(404) 1.25(23)
22O(p, 2p)21N 414 6.90 6.01(41) 0.87(14)
22O(p, pn)21O 414 36.24 39.24(234) 1.08(19)
23O(p, 2p)22N 445 4.97 4.93(96) 0.99(24)
23O(p, pn)22O 445 50.05 54.0(108) 1.08(28)

error bars propagated from the experimental uncertainties
reported in Refs. [32–35] and the theoretical uncertainties
estimated in Sec. II, which is about 14%–16%. The total
relative uncertainties for the extracted reduction factor are
ranging from 15% to 25%, which is similar to those reported
in the recent systematic (p, d ) analysis [31]. In general, a
trend of the reduction factor about 0.9–1.0 with a very weak
asymmetry dependence is observed. Properly taking the un-
certainties into account, the reduction factors Rs = 0.87(16)
for 12C and Rs = 0.97(15) for 16O are overestimated com-
pared with the (e, e′ p) [18] results of Rs = 0.57(6) and Rs =

FIG. 1. Reduction factors deduced from (p, pN ) reactions using
DWIA compared with the reduced SFs calculated from CC [23]
(black circles) and SCGF [24,33] with different interactions (blue
and green triangles). The black (red) texts in the header label the
isotope whose proton (neutron) is knocked out. See text for details.

FIG. 2. Same as Fig. 1 but compared with other (p, pN ) analysis
performed with the eikonal DWIA [33] (green triangles), FAGS [34]
(pink triangles), TC [36] (blue dashed line) for the GSI data, and
similar partial-wave DWIA for the RIKEN-RCNP data [14] (black
circles). The results from Refs. [14,36] are those performed with
Dirac OP. The blue shaded band indicates the trend observed in the
analysis of nucleon removal reactions with composite targets [25,26].

0.65(5), respectively. By performing a linear function fitting,
the �S dependence of Rs is obtained as Rs = 0.947(36) −
2.6(27) × 10−3�S with a reduced χ2/N of 0.74. As discussed
in Sec. III C, the close-to-unity reduction factor does not nec-
essarily mean that the quenching effect observed in (p, pN )
reactions is weak but rather indicates a fundamental problem
in current reaction models.

The reduction factors from DWIA are compared with the
reduced SFs, which is the ratio of the SF to the IPM limit, from
ab initio self-consistent Green’s function (SCGF) [24,33] and
coupled-cluster (CC) [23] models. We note that all of these
values are presented as a function of experimental �S. The
CC calculation [23] uses the chiral NN interaction at next-
to-next-to-next-to-leading order (N3LO) [55] with the cutoff
at �NN = 500 MeV while the SCGF of Ref. [24] uses the
same NN interaction in addition to an NNLO three-nucleon
force [56] with �3N = 400 MeV. We compare also with the
result of the more recent SCGF calculation in Ref. [33] based
on the NNLO-sat [57] for the NN interaction, which is more
optimized for the mass region in that study. The present
DWIA calculation shows a reasonable agreement with ab
initio results, especially about the weak dependence of the
trend on proton-neutron asymmetry.

C. Comparison with (e, e′ p) results and other reaction models

Figure 2 shows the reduction factors from the present
DWIA calculation in comparison with those analyzed by other
theoretical reaction models. The slope of the reduction factor
obtained by the present analysis is in excellent agreement with
the value deduced by TC model with fixed-energy EDAD2
OP [36]. It is also consistent (within the uncertainty range)
with the slopes observed in Refs. [30,33].
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The values of the reduction factor given by DWIA overes-
timate those reported by (e, e′ p) analysis [18] and other reac-
tion models such as TC [36] and the eikonal DWIA [33]. This
means the present DWIA calculation gives a smaller cross
section compared with these. However, the better agreement
between the (e, e′ p) results and those given by other (p, pN )
analyses of the same GSI data will be, in fact, caused by the
lack of several crucial corrections in the reaction models used
in these analyses. We will return to this point below.

The overshooting of the (e, e′ p) results means that the
DWIA cross section is smaller than the observed value. This
indicates that some contributions from higher-order processes
such as multistep scattering or channel coupling are included
in the GSI data, especially in the large recoil momentum
region. In fact, a smaller reduction factor around 0.7 is ob-
served from the analysis of (p, 2p) data measured at RIKEN-
RCNP [14] using the same DWIA framework as in this study.
An important feature of the measurement at RIKEN-RCNP is
a very constrained kinematics corresponding to the quasifree
condition. This supports the conclusion that the lack of higher-
order effects will be the main reason for the underestimation
of the GSI data with the current DWIA calculation.

The discrepancies between the current DWIA results and
those using other reaction models can be explained by several
factors. First, the nonlocality corrections in the single-particle
and scattering wave functions are not presented in the TC
and eikonal DWIA models. Second, the TC calculation [36]
uses the energy-independent optical potentials evaluated at
Ebeam/2. On the other hand, the large discrepancy with the
FAGS method [34] is due to two reasons pointed out in
Ref. [36], the lack of relativistic kinematics in the FAGS
framework as shown in Ref. [9] and different choices of opti-
cal potentials used in Ref. [34]. The latter has been confirmed
by recent FAGS calculation with a more proper OP for the
energy range considered, where the cross section has been
reduced by almost 30% [16].

We further investigate the possible source of discrepancies
between different reaction models used in (p, pN ) studies.
Impacts of the lack of nonlocality corrections and energy-
dependent potentials on the reduction factors are illustrated
in Fig. 3. The relative difference �R is evaluated with re-
spect to the “reference” DWIA result shown in Sec. III B.
As seen from the lines in Fig. 3, these effects are strongly
associated with the separation energy and affect the reduction
factor though the cross section in the opposite ways. For
the weakly bound nucleus, the single-particle wave function
is more extended and since the nonlocality correction only
affects the interior of the wave function, its effect gets weaker
with decreasing separation energy. On the other hand, since
the energy-independent potentials of the outgoing nucleons
are evaluated at half the incident beam, the deviation from
energy-dependent OP is minimized for the small separation
energy, where the kinematics most resembles the quasifree
condition. Some deviations from both lines are because of the
cross section for each case is the sum of single-particle wave
functions with different orbitals. In general, by neglecting
both the nonlocality correction and the energy dependence
of the OP, DWIA calculations are expected to have a similar
magnitude to those from TC [9].

FIG. 3. The relative difference with respect to the reference
DWIA results as a function of knocked-out-nucleon separation en-
ergy. The red squares and black circles represent the DWIA cal-
culations with energy-dependent potentials and without nonlocality
corrections, respectively.

Finally, the effect of the Møller factor is presented in
Fig. 4. This factor, shown in Eq. (5), has a relativistic ori-
gin [38,39,44] and therefore is directly related to the incident
energy. For the considered energy range of 300–450 MeV, the
Møller factor can contribute about 18%–26% to the reduction
factor, which also explains the small magnitude of the nonrel-
ativistic FAGS model. We note that, although the TC model
does not explicitly include the Møller factor, its consistency
with the DWIA model as found in Ref. [9] suggests that
the Møller-factor effect has been implicitly included in the
relativistic treatment of TC [17].

Although the lack of nonlocality correction, energy de-
pendence in OP, and the Møller factor may cancel with the
lack of higher-order effects in some models and give a better
agreement with (e, e′ p) results, they also obscure the true
nature of the problem. As we have seen, the effects of these

FIG. 4. The relative difference between the reference DWIA
results and those without the Møller factor as a function of beam
energy.
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FIG. 5. Cylindrical transverse-momentum distribution of the
12C(p, 2p)11B reaction. The experimental data are taken from
Ref. [32]. The DWIA calculations with and without the nonlocality
corrections are presented as the black solid and red dashed lines, re-
spectively. The blue dotted line represents the result with nonlocality
corrections scaled down by a factor of 0.655.

corrections are highly dependent on the separation energy of
the single-particle wave function and beam energy, so more
proper inclusion of these corrections will be very essential for
future knockout studies.

D. Transverse-momentum distribution

In inverse kinematics nucleon-knockout reactions, a com-
parison between the measured and calculated momentum
distribution of the residual nucleus can reveal a lot of infor-
mation about the reaction mechanism as well as the validity
of the theoretical model. We consider the cylindrical TMD of
12C(p, 2p)11B [32], which is some of the highest-resolution
data from the R3B-LAND experiments.

The possible absence of higher-order effects is pronounced
in the comparison between the DWIA result (black solid line)
and the experimental data [32] shown in Fig. 5. The calcula-
tion results are the sum of the theoretical TMD corresponding
to the bound states of the 11B core multiplied by the reduction
factor Rs of 0.87. One sees that the calculation result including
the nonlocality corrections underestimates the experimental
data in the momentum region about 150–300 MeV/c. We
note that this undershooting of theoretical prediction is also
observed in the FAGS calculation for the same data using OP
fit to elastic-scattering data at the proper energy range [16].
Moreover, a similar discrepancy with the data in the high-
momentum region found in the Cartesian TMD calculated
with TC [36] implies that some contributions are also not
properly accounted for in other reaction models. Because of
the success of the DWIA framework for the same system in
the quasifree condition [4], the discrepancies reinforce our
claim that they originate from the higher-order effects that
take place when the recoil momentum becomes high.

The red dashed line represents the DWIA result without
nonlocality correction, i.e., neglecting the Perey and Darwin
factors. The corresponding Rs is 0.77. Although this line
may seem to improve the result, we emphasize that such a

prescription is inappropriate and inconsistent with the known
properties of (p, pN ) scattering, as reviewed in Ref. [4].
The blue dotted line is the DWIA result with nonlocality
corrections multiplied by 0.66, which is the ratio of the Rs

in Table I to the one determined by (e, e′ p) [18]. If the
(e, e′ p) Rs is correct, the blue dotted line should agree with the
experimental data. Therefore, it is clear that some additional
contributions are necessary to reproduce the data.

IV. SUMMARY

We have performed an analysis on all the published data
to date for the (p, pN ) reaction in inverse kinematics by
the R3B collaboration by using the standard partial-wave
DWIA formalism. Our study focuses on evaluating the source
of ambiguity in DWIA calculations of the reduction factor
and investigating the discrepancies between various reac-
tion models currently used for inverse-kinematics (p, pN )
data.

Our study suggests a very weak dependence of the reduc-
tion factor on the proton-neutron asymmetry �S. This result
is consistent with previous analyses on (p, pN ) using TC,
eikonal, and partial-wave DWIA [14,33,35,36] and ab initio
calculations [23,24,33].

More importantly, the present study suggests that the lack
of a proper treatment of higher-order effects may considerably
affect the cross section at kinematics far from the quasifree
condition. That effect, which does not manifest in experiments
performed around the recoilless condition, becomes more
crucial in the semi-inclusive type of integrated cross-section
measurements like those carried out at the GSI R3B-LAND
setup. However, it is mostly hindered by the lack of essential
corrections such as nonlocality, relativistic, Møller factor,
and energy-dependent OP as well as the considerably large
uncertainty from various choices of distorting potentials and
single-particle wave functions. The proper inclusion of these
corrections in the future (p, pN )-reaction analyses will be
required. Furthermore, unless measurements with restricted
kinematics similar to that in Ref. [14] are performed, a reac-
tion model that takes into account higher-order processes will
be necessary.

Recently, a consistent description of the nonlocality in
bound and scattering wave functions for (e, e′ p) has been done
with the nonlocal dispersive optical model approach [58]. The
incorporation of such treatment in the DWIA framework for
proton-induced nucleon knockout reactions is in progress and
will be reported elsewhere.
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