Estimation of the decay rate of ⁷Be and ⁷Be₂ encapsulated in C₇₀

A. V. Bibikov,¹ A. V. Nikolaev,^{1,2} and E. V. Tkalya^(3,4,5,*)

¹Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, Moscow, RU-119991, Russia

²Moscow Institute of Physics and Technology, RU-141700 Dolgoprudny, Russia

³P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, 53 Leninskiy pr., Moscow, Russia

⁴National Research Nuclear University MEPhI, Kashirskoe shosse 31, Moscow RU-115409, Russia

⁵Nuclear Safety Institute of RAS, Bol'shaya Tulskaya 52, Moscow RU-115191, Russia

(Received 24 April 2019; published 6 December 2019)

Electron capture (β -decay) rates of ⁷Be and ⁷Be₂ encapsulated in C₇₀ have been estimated by calculating the electron density $\rho(0)$ at the ⁷Be nucleus and comparing it with $\rho(0)$ and experimental β -decay rates of ⁷Be inside another fullerene—C₆₀. For that the endohedral fullerenes ⁷Be@C₇₀ and ⁷Be₂@C₇₀ have been examined by means of the *ab initio* approach using the Hartree-Fock method with the the second order Møller-Plesset perturbation theory accounting for the Van der Waals foces. Our calculations indicate that the ⁷Be₂@C₇₀ complex is stable with the binding energy of 1.3 eV and the ⁷Be dimer bond length 2.30 Å. It has been found that $\rho(0)$ is practically the same in ⁷Be@C₇₀ and ⁷Be₂@C₇₀, but larger than in an isolated ⁷Be atom. The increase of $\rho(0)$ however is smaller than in ⁷Be@C₆₀. We also discuss in detail the mechanism underlying the increase of $\rho(0)$ and consequently the decrease of the decay rate in ⁷Be@C₇₀ in comparison with the isolated ⁷Be atom.

DOI: 10.1103/PhysRevC.100.064603

I. INTRODUCTION

Measurements of the electron capture (or *K* capture) by the ⁷Be nucleus is a well-known method to study chemical bonding and the influence of chemical environment on atomic electron shells of beryllium [1,2]. The $(1s)^2(2s)^2$ electron shell of the Be atom is a very suitable choice for such research. That is because (1) the wave function amplitude of *s* states has its largest value at the nucleus, (2) the contribution from the 2*s* valence states of Be to the total electron density at nucleus, $\rho(0)$, is relatively large and amounts to 3.2%, and (3) the 2*s* electrons of Be participate in chemical bonding which affects the probability of the ⁷Be nuclear decay.

First measurements of the ⁷Be nuclear decay constant demonstrating its dependence on the chemical state of the ⁷Be atom have been performed in the middle of the last century in Refs. [1–7]. Today, dozens of studies (reviewed in Ref. [8]) on half-lives $T_{1/2}$ and decay constants $\lambda = \ln(2)/T_{1/2}$ for the ⁷Be nucleus in various chemical environments are available. On average, deviations of $T_{1/2}$ and λ for ⁷Be implanted in Cu, Al, Au, Al₂O₃, Pd, W, LiF, or participated in chemical compounds ⁷BeO, ⁷BeO₂, ⁷BeF₂, ⁷BeBr₂, etc. (see Ref. [8]) lie within 1%.

The first decade of 21st century is marked by the start of the research on the endohedral fullerene ⁷Be@C₆₀ [9–12]. It has been established experimentally that the ⁷Be half-life in the ⁷Be@C₆₀ molecule is appreciably decreased in comparison with the benchmark decay in metallic beryllium, and it is in fact the fastest decay of ⁷Be among all observed. Following experimental works theoretical models developed in [8,12–14] described the data for ⁷Be@C₆₀ not only qualitatively, but

2469-9985/2019/100(6)/064603(5)

064603-1

also quantitatively, and even predicted an inverse effect—a considerable increase of the ⁷Be half-life in the molecule $^{7}Be@C_{36}$ [8].

Endohedral fullerene complexes A@C₆₀ are also useful for studying other types of radioactive decay. Of particular importance is the decay of the low lying isomeric state of the ²²⁹Th nucleus in fullerenes. This decay proceeds through the channel of internal conversion, that is, through the $(6d)^2(7s)^2$ valence electron states of Th [15,16]. It is worth noting that these electron shells of Th are most affected by its interaction with the fullerene cage. Therefore, it is conceivable that this mechanism can also lead to a substantial change of the decay rate of the isomeric state of ²²⁹Th.

Two theoretical methods have been applied to the study of the ${}^{7}Be@C_{60}$ endohedral fullerene—the density functional approach (DFT) [9,12] and the Hartree-Fock (HF) method [13]. The DFT method takes into account correlation effects, but needs a special treatment to take into account the weak dispersive forces. The Hartree-Fock method with the second order perturbation correction (HF+MP2) captures weak Van der Waals molecular forces between ⁷Be and the fullerene cage. In order to assess the electron density at the ⁷Be nucleus one uses numerical basis functions (DMol³) or a special set of narrow Gaussian *s*-basis functions [13]. Nevertheless, both methods lead to the same qualitative conclusions concerning the comparative study of the electron density at the ⁷Be nucleus in ${}^{7}Be@C_{60}$, the ${}^{7}Be$ metal and the isolated ${}^{7}Be$ atom, albeit the numerical values are slightly different. These discrepancies are very small lying within the numerical error associated with the method used. A thorough comparison between the numerical values of $\rho(0)$ in both approaches is given in the work [13].

^{*}tkalya_e@lebedev.ru

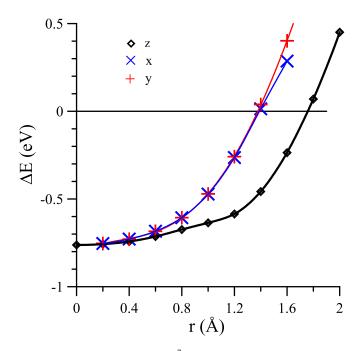
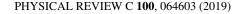



FIG. 1. HF+MP2 energy of ⁷Be@C₇₀ as a function of the displacement of the ⁷Be atom from the center of the C₇₀ fullerene. Energies for displacements along *x* and *y* axes practically coincide at r < 1.4 Å, but become noticeably different at larger *r*, when the ⁷Be atom is closer to the fullerene cage with different arrangement of neighboring C atoms.

In this paper we present a new work concerning the influence of endohedral fullerenes on the electron capture of the ⁷Be nucleus in the molecular complexes ⁷Be@C₇₀ and ⁷Be₂@C₇₀. It is organized as follows. In Sec. II we investigate the ⁷Be@C₇₀ molecule. Here we find the optimal position of the ⁷Be atom (Sec. II A), calculate the electron density at the ⁷Be nucleus (Sec. II B), and discuss in detail the mechanism of the increase of $\rho(0)$ (Sec. II C). Next, we consider the ⁷Be₂ dimer encapsulated in C₇₀, Sec. III. Our conclusions are summarized in Sec. IV.

II. SINGLE ⁷Be ATOM INSIDE THE C₇₀ FULLERENE

In comparison with the highly symmetric C_{60} molecule with the icosahedral group I_h , the symmetry of the C_{70} fullerene is low (D_{5h}) . The main symmetry operation is the fivefold rotational axis, with five symmetry independent C atoms giving rise to eight inequivalent C–C bond lengths, ranging from 1.38 to 1.48 Å [17]. The C_{70} cage can be viewed as composed of two halves of the C_{60} fullerene fused with a belt of ten C atoms in its equatorial plane. We consider the C_{70} molecule in its standard orientation with respect to a rectangular coordinate system. The molecule is centered at the origin, its fivefold axis is taken as the *z* axis, the (x, y)plane is a mirror plane.

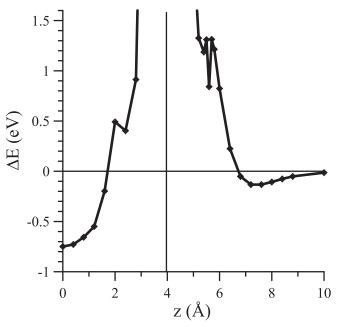


FIG. 2. The ground-state energy of the ⁷Be@C₇₀ complex as a function of the position of ⁷Be along the *z* axis (HF+MP2 calculation). The black vertical line at approximately 4 Å stands for the outermost pentagon C-ring of C₇₀.

6–31G^{**} molecular basis set [20]. In addition, the weak Van der Waals forces between the ⁷Be atom and the fullerene cage, constituting dispersion forces correlations have been included by taking into account the second order correction to the total energy within the Møller-Plesset perturbation theory (MP2) [21].

First, we displace the ⁷Be atom from the molecular center in all directions and calculate the change of the energy of the molecular complex. The results are shown in Fig. 1. We conclude that the displacement of the ⁷Be atom away from the z axis is unfavorable leading to a steep energy rise.

After that we have studied the (HF+MP2) energy dependence along the *z* axis, Fig. 2. As before, we have found that the displacement in the (*x*, *y*) plane is unfavorable. In fact the energy dependencies for these directions look very similar to that for C₆₀, because the distances from ⁷Be to nearest neighboring C atoms are as in ⁷Be@C₆₀.

From Fig. 2 we infer that there are four minima for the ⁷Be atom. The first global minimum is at -0.76 eV when ⁷Be is located inside C₇₀ at its molecular center. The second minimum at -0.13 eV corresponds to the ⁷Be atom situated outside the molecule at the distance of 3.3 Å from fullerene outermost pentagon facet. The ⁷Be atom there is bound to the fullerene cage by the Van der Waals force. Finally, two local minima are found at the distance of 1.7 Å on both sides of the fullerene facet. In the following we shall not consider them because their binding energy is ≈ 1 eV higher.

A. Optimal positions of ⁷Be in respect to the C₇₀ fullerene

We have carried out *ab initio* quantum-mechanical Hartree-Fock calculations [18,19] of the ${}^{7}Be@C_{70}$ energy using the

B. Electron density $\rho(0)$ at the ⁷Be nucleus

Next, we calculate the electron density $\rho(0)$ at the beryllium nucleus when the ⁷Be atom is located at the global

TABLE I. Calculated electron density (in a.u. $^{-3}$) at 7 Be nucleus in various environment.

	Orbitals				
	1 <i>s</i> (Be)	2s(Be)	Others	Total	
⁷ Be@C ₆₀	34.221	1.245	0.021	35.487	
$^{7}Be@C_{70}$	34.226	1.193	0.024	35.443	
⁷ Be atom	34.252	1.137	-	35.389	

minimum at the fullerene center. For that we have used an enlarged cc-pVTZ basis set developed earlier in [8]. In this method the cc-pVTZ basis set employed for accurate electron density calculations has been supplemented by a set of narrow *s*-functions $f_i = \exp(-\lambda_i r^2/2)$ with λ_i ranging from 0.1 to 10^8 a.u.^{-2} (a.u. here stands for the atomic unit of length). These additional basis functions are required to achieve a converged value for the electron density at the ⁷Be nucleus.

The results of these calculations together with the data for ⁷Be@C₆₀ and the isolated ⁷Be atom are given in Table I. Note that the electron density at ⁷Be inside C₇₀ is increased in comparison with the value of $\rho(0)$ for an isolated atom, that is $\Delta\rho(0) > 0$, but the effect is less pronounced than in the case of ⁷Be@C₆₀. From Table I we find that the amount of the increase for ⁷Be@C₆₀. From Table I we find that the amount of the increase for ⁷Be@C₆₀ the main contribution to $\Delta\rho(0)$ is due to the yield of the 2*s* orbital, 0.056 a.u.⁻³. The contribution to $\Delta\rho(0)$ from the 1*s* orbital is negative, $-0.026 a.u.^{-3}$, but it is almost fully compensated by the effect from the other molecular orbitals which are delocalized on the fullerene cage.

C. Mechanism of the increase of $\rho(0)$ in ⁷Be@C₇₀

Qualitatively the increase of the 2s electron density of ⁷Be at its nucleus can be understood as follows. The 2s-atomic orbital of the ⁷Be atom has a single node at 0.59 a.u. When ⁷Be is inside the C₇₀ molecule, the 2s orbital acquires additional minima at radii 5.7 and 7.8 a.u. due to the presence of the attractive potential of the fullerene nuclei, Fig. 3. These minima in fact correspond to two nodes of the 2s wave function of ⁷Be, but the node at 5.7 a.u. slightly suppressed by a small admixture of C₆₀ molecular orbitals. The 2s electron density around these additional minima is decreased, but the integral of the density keeps unchanged. Therefore, there must be a small increase of the 2s electron density in the region 0-5 a.u., and in particular around the ⁷Be nucleus. For the first time this mechanism was put forward in [13] for the explanation of the effect for the increase of $\rho(0)$ at the ⁷Be nucleus in the ${}^{7}Be@C_{60}$ complex. In ${}^{7}Be@C_{60}$ additional minima are found at 5 and 7 a.u. [13], situated around the C₆₀ radius (6.7 a.u.). In ⁷Be@C₇₀ the fullerene shape is elongated with carbon nuclei located at radii ranging from 6.7 to 7.9 a.u. As a result, the effective attraction is distributed smoothly in the same range and additional 2s minima are situated at 5.7 and 7.8 a.u., Fig. 3. In comparison with the C_{60} fullerene, these nodes are shifted to larger radii. Since at larger radii the 2s wave function is noticeably smaller, this effect becomes less pronounced in comparison with ⁷Be@C₆₀ [13].

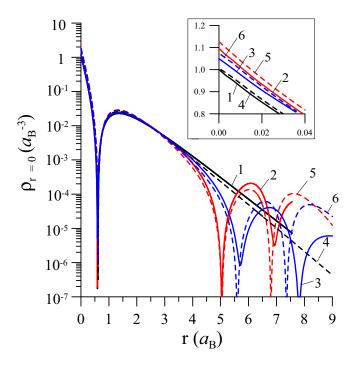


FIG. 3. The electron density $\rho_{2s}(r)$ of the 2*s* orbital of ⁷Be in various environment. Isolated ⁷Be atom: (1) HF, (4) model (see below); ⁷Be@C₆₀: (2) HF, (5) model; ⁷Be@C₇₀: (3) HF, (6) model. Here, "HF" stands for HF+MP2 *ab initio* calculations, while "model" for calculations with the model attractive potential simulating the attractive potential of the fullerene cage, see text for details. Inset: $\rho_{2s}(r)/\rho_{2s}^{Be}(0)$ at the vicinity of the ⁷Be nucleus. $\rho_{2s}^{Be}(0)$ is the 2*s* density of the isolated ⁷Be atom.

This scenario has been fully supported by our model calculations with a spherically symmetrical potential of the gaussian shape placed at an effective radius $R_{\rm eff}$ from the ⁷Be atom, Fig. 3. Earlier, this potential has been tested for the ⁷Be@C₆₀ endohedral fullerene [13]. The depth of the potential is $U_0 = 3$ Hartree and width w = 1 a.u. For the effective radius of the potential we took an average value of the distances between the carbon atoms of C₇₀ and the beryllium atom, $R_{\rm eff} = 7.25$ a.u. The results are presented in Fig. 3, where for comparison we also reproduce plots for the isolated ⁷Be atom and ⁷Be@C₆₀. The model attractive potential leads to the appearance of two nodes on both sides of $R_{\rm eff}$ and the increase of the 2*s* electron density at small radii $R \approx 0$ as shown in the inset of Fig. 3.

On the basis of our *ab initio* (HF+MP2) calculations supported by the model considerations we conclude that the total electron density $\rho(0)$ at the ⁷Be inside the C₇₀ fullerene becomes 0.16% larger and the half-life of the decay 0.16% smaller than $\rho(0)$ and $T_{1/2}$ for the isolated ⁷Be atom.

III. TWO ⁷Be ATOMS INSIDE THE C₇₀ FULLERENE

In this section we discuss two beryllium atoms put inside the same fullerene cage. This situation is encountered in some experiments and practical applications involving fullerene molecules.

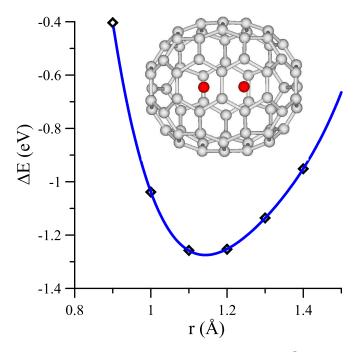


FIG. 4. Calculated (HF+MP2) energy change of the ⁷Be₂@C₇₀ complex, $\Delta E = E(^{7}Be_{2}@C_{70}) - E(C_{70}) - 2E(^{7}Be)$, as a function of *z*. Two Be atoms are located at *z* and -z (x = y = 0). The binding energy is $E_b = -\Delta E$.

Our estimations for the C_{60} molecule show that placing two ⁷Be atoms inside this fullerene is energetically unfavorable, resulting in a large increase of the total energy and a positive binding energy for the whole complex. The increase of the total energy however is smaller than the potential barrier of the fullerene cage. On the other hand, the fullerene complex is much more stable when only one ⁷Be atom is inside C_{60} while the other ⁷Be atom being outside is bound to the C_{60} cage by the Van der Waals force.

The situation is very different for the C₇₀ fullerene. Having larger internal volume, it can easily accommodate two ⁷Be atoms inside. As for a single ⁷Be atom, we have found that the displacement along the x and y directions is unfavorable. For a fixed distance $d_{\text{Be-Be}}$ between two ⁷Be atoms, the minimum of energy corresponds to a symmetrical arrangement of ⁷Be atoms: first at z, second at -z ($z = d_{\text{Be-Be}}/2$). We then computed the energy change, $\triangle E = E(^7\text{Be}_2@\text{C}_{70}) =$ $E(C_{70}) - 2E(^{7}Be)$, as a function of z. The results are shown in Fig. 4 (HF+MP2 calculations with the 6-31G** basis set). From Fig. 4 we obtain that the binding energy of ${}^{7}\text{Be}_{2}@\text{C}_{70}$ is ≈ 1.3 eV with the ${}^{7}\text{Be}_{-}{}^{7}\text{Be}$ equilibrium bond length $d_{\text{Be-Be}} = 2.30$ Å. This value is 0.15 Å shorter than the experimentally found bond length (2.45 Å) of the beryllium dimer [22]. Apparently, the action of the C_{70} fullerene on the ${}^{7}\text{Be}_{2}$ molecule is equivalent to the external pressure effect.

Finally, we have performed the calculation of electron density $\rho(0)$ at ⁷Be nuclei following the procedure described in detail in the previous section. The result is $\rho(0) = 35.439 \text{ a.u.}^{-3}$ for ⁷Be₂@C₇₀ (for ⁷Be@C₇₀ we had $\rho(0) =$

35.443 a.u.⁻³). Thus within the accuracy of the calculations we have found that $\rho(0)$ for the ⁷Be₂@C₇₀ molecule coincides with the value for a single ⁷Be nucleus inside the C₇₀ fullerene given in Table I. Therefore, the decay half-life will be approximately the same as for ⁷Be@C₇₀.

IV. CONCLUSIONS

Summarizing, we have considered the molecular systems ⁷Be@C₇₀ and ⁷Be₂@C₇₀, where in the framework of the *ab initio* Hartree-Fock approach with the MP2 correction accounting for the Van der Waals forces, we have carried out accurate estimations of the electron density at ⁷Be nuclei and the relative probability of their β decay, Table I.

Within the accuracy of our calculations, the electron density and the probability of the electron capture by ⁷Be in the endohedral complexes ${}^{7}\text{Be}_{2}@\text{C}_{70}$ and ${}^{7}\text{Be}@\text{C}_{70}$ coincide. Similarly to ${}^{7}Be@C_{60}$, we have found an increase of the electron density at the ${}^{7}Be$ nucleus in ${}^{7}Be_{2}@C_{70}$, but the effect amounts to only 55% of that for ${}^{7}Be@C_{60}$. We have thoroughly discussed the mechanism of the increase of $\rho(0)$ performing a set of calculations with a model potential, Sec. IIC. Qualitatively, the effective can be explained by the appearance of additional nodes of the 2s wave function of Be, which slightly pushes the electron density away from the fullerene cage and thereby increases it around the nuclear region. The effect is less pronounced for C₇₀ since its effective size is larger. In the case of $^{7}Be@C_{36}$ the situation changes drastically [8]. All ⁷Be–C distances in ⁷Be@C₃₆ are relatively short and the C_{36} fullerene potential pulls the electron density from ⁷Be to its cage, causing a strong "oxidation" effect and effectively reducing the value of $\rho(0)$ at the ⁷Be nucleus.

Since the half-life $T_{1/2}$ (or the decay constant $\lambda = \ln 2/T_{1/2}$) is usually measured experimentally, we can use our results to predict the lifetime of the ⁷Be nucleus. Modern computer *ab initio* codes allow us to calculate the electron shell of atoms with high accuracy. Therefore, a comparison of theoretical and experimental data on the decay of the ⁷Be nucleus in an isolated atom could serve as an ideal basis for such a recount. In the absence of such experimental data we present in Table II the electron densities and the corresponding half-lives of ⁷Be based on the most accurate

TABLE II. The estimated ⁷Be nucleus half-life in various environment.

Molecular System	$T_{1/2}$, days	Electron density, a.u. ⁻³
⁷ Be@C ₆₀	52.47	35.487
7 Be@C ₇₀	52.54	35.443
$^{7}\text{Be}_{2}@\text{C}_{70}$	52.54	35.439
⁷ Be (atom)	52.62	35.389
⁷ BeO	53.52	34.791
⁷ Be (metal)	53.55	34.770
$^{7}Be@C_{36}$	53.90	34.544
$^{7}Be^{2+}$	54.19	34.360

experimental data on the half-lives of 7 Be in C₆₀ at low temperature [11].

Note that all obtained results can be tested experimentally, since the differences in the ⁷Be decay are accessible at the present level of experimental accuracy [9-11].

As a corollary of the calculations, we have predicted the stability of the ${}^{7}\text{Be}_{2}@C_{70}$ complex with the effective binding energy of $\approx 1.3 \text{ eV}$.

- [1] E. Segre, Phys. Rev. 71, 274 (1947).
- [2] R. Daudel, Revue Scientifique **85**, 162 (1947).
- [3] E. Segre and C. E. Wiegand, Phys. Rev. 75, 39 (1949).
- [4] R. F. Leininger, E. Segre, and C. Wiegand, Phys. Rev. 76, 897 (1949).
- [5] E. Segre and C. Wiegand, Phys. Rev. 81, 284 (1951).
- [6] R. F. Leininger, E. Segre, and C. Wiegand, Phys. Rev. 81, 280 (1951).
- [7] J. J. Kraushaar, E. D. Wilson, and K. T. Bainbridge, Phys. Rev. 90, 610 (1953).
- [8] E. V. Tkalya, A. V. Avdeenkov, A. V. Bibikov, I. V. Bodrenko, and A. V. Nikolaev, Phys. Rev. C 86, 014608 (2012).
- [9] T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi, and K. Ohno, Phys. Rev. Lett. 93, 112501 (2004).
- [10] A. Ray, P. Das, S. K. Saha, S. K. Das, J. J. Das, N. Madhavan, S. Nath, P. Sugathan, P. V. M. Rao, and A. Jhingan, Phys. Rev. C 73, 034323 (2006).
- [11] T. Ohtsuki, K. Ohno, T. Morisato, T. Mitsugashira, K. Hirose, H. Yuki, and J. Kasagi, Phys. Rev. Lett. 98, 252501 (2007).
- [12] T. Morisato, K. Ohno, T. Ohtsuki, K. Hirose, M. Sluiter, and Y. Kawazoe, Phys. Rev. B 78, 125416 (2008).
- [13] E. V. Tkalya, A. V. Bibikov, and I. V. Bodrenko, Phys. Rev. C 81, 024610 (2010).

ACKNOWLEDGMENTS

The authors are grateful to Prof. V. I. Kukulin for drawing our attention to the importance of the calculation of ${}^{7}\text{Be}_2@C_{70}$. This research was supported by a grant of the Russian Science Foundation (Project No. 19-72-30014). It was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [23].

- [14] A. V. Bibikov, A. V. Avdeenkov, I. V. Bodrenko, A. V. Nikolaev, and E. V. Tkalya, Phys. Rev. C 88, 034608 (2013).
- [15] V. F. Strizhov and E. V. Tkalya, Zh. Eksp. Teor. Fiz. 99, 697 (1991) [Sov. Phys. JETP 72, 387 (1991)].
- [16] E. V. Tkalya, Phys.-Usp. 46, 315 (2003).
- [17] A. V. Nikolaev, T. J. S. Dennis, K. Prassides, and A. K. Soper, Chem. Phys. Lett. 223, 143 (1994).
- [18] T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
- [19] A. Artemyev, A. Bibikov, V. Zayets, and I. Bodrenko, J. Chem. Phys. **123**, 024103 (2005).
- [20] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys. 77, 3654 (1982).
- [21] A. Szabo and N. S. Ostlund, *Modern Quantum Chemistry* (McGraw-Hill, Dover, 1989).
- [22] V. E. Bondybey, Science 227, 125 (1985).
- [23] V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, "Lomonosov": Supercomputing at Moscow State University in Contemporary High Performance Computing: From Petascale Toward Exascale (Chapman & Hall/CRC Computational Science, Boca Raton, USA, 2013), p. 283.