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Nonperturbative aspects of the quantum many-body problem are revisited, discussed and advanced in the
equation of motion framework. We compare the approach to the two-fermion response function truncated on
the two-body level by the cluster expansion of the dynamical interaction kernel to the approach known as
time blocking approximation. Such a comparison leads to an extended many-body theory with nonperturbative
treatment of high-order configurations. The present implementation of the advanced theory introduces a new
class of solutions for the response functions, which include explicitly beyond-mean-field correlations between
up to six fermions. The novel approach, which includes configurations with two quasiparticles coupled to
two phonons (2q ⊗ 2phonon), is discussed in detail for the particle-hole nuclear response and applied to
medium-mass nuclei. The proposed developments are implemented numerically on the basis of the relativistic
effective meson-nucleon Lagrangian and compared to the models confined by two-fermion and four-fermion
configurations, which are considered as state-of-the-art for the response theory in nuclear structure calculations.
The results obtained for the dipole response of 42,48Ca and 68Ni nuclei in comparison to available experimental
data show that the higher configurations are necessary for a successful description of both gross and fine details
of the spectra in both high-energy and low-energy sectors.
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I. INTRODUCTION

Response of many-body quantum systems to external per-
turbations encompasses a large class of problems actively
studied in various areas of quantum physics. The observed
characteristics of response are associated with quantum cor-
relation functions, which encode the complete information
about strongly coupled complex media. The general notion
of correlation functions forms the common underlying back-
ground connected across the fields of quantum chromody-
namics, dynamics of hadrons, astrophysics, condensed matter,
solid state, atomic, molecular, nuclear structure physics, and
formal aspects of quantum field theory (QFT). Thus, ad-
vancements toward an exact theory of correlations in strongly
coupled quantum systems have potentially a broad impact on
many fields of research.

Response of atomic nuclei to various external perturba-
tions represents a very rich playground to study correlation
functions due to the availability of numerous experimental
probes, which was further extended with the advent of rare
beam facilities [1,2]. It has a long history of theoretical studies
based on QFT. It was recognized rather early that the random
phase approximation (RPA) [3] appears as a good approach
to the gross features of nuclear spectra, such as the positions
and total strengths of collective excitations, however, the
response theory which, in principle, should provide the full
spectral composition has to be extended by configurations be-
yond one-particle–one-hole (1p–1h) ones considered in RPA.

The idea of coupling between single-particle and emergent
collective degrees of freedom in nuclei [4–9], which ex-
plained successfully many of the observed phenomena, was,
in fact, linked to the nonperturbative versions of QFT-based
and, in principle, exact, equations of motion for correlation
functions in nuclear medium [10]. Indeed, the equation of
motion method developed in Ref. [11] and further elaborated,
e.g., in Refs. [12–16], was shown to produce a hierarchy
of approximations to the dynamical kernels of the equa-
tions for one-fermion and two-time two-fermion propagators.
In particular, the nonperturbative versions of those kernels,
which include full resummations in the particle-hole and
particle-particle channels, can be mapped to the kernels of the
phenomenological nuclear field theories (NFT), where such
kernels are commonly referred to as particle-vibration cou-
pling (PVC) or quasiparticle-phonon models (QPM) [4–9].
This mapping, although it has to be corrected for the ac-
curate lowest-order limit, provides an understanding of the
emergent collective phenomena, explaining the mechanism
of their formation from the underlying strongly interact-
ing degrees of freedom. Moreover, the EOM method gives
clear insights into the relationship between the bare nucleon-
nucleon interaction and its modification in the strongly cou-
pled medium. It reveals, in particular, that the latter is not
reducible to static ‘potentials’, but splits into a static part
calculable from the bare interactions beyond the Hartree-Fock
approximation [16] and a well-defined dynamical component
[13,15].
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TABLE I. Table of symbols.

Symbol Name Equations and Figures

G11′ (t − t ′) One-fermion in-medium propagator Eqs. (1),(8)

G12,1′2′ (t − t ′), Gpp
12,1′2′ (ω) Two-time particle-particle in-medium propagator Eqs. (11),(15)

H Many-body Hamiltonian Eq. (4)

v1234, v̄1234 Nonsymmetrized and antisymmetrized two-fermion bare interaction Eq.(6)

R12,1′2′ (t − t ′), R12,1′2′ (ω) Two-time particle-hole in-medium propagator (response function) Eqs. (12),(13)

T11′ (t − t ′) One-fermion T -matrix Eq. (26)

�11′ (t − t ′), �11′ (ω) Irreducible one-fermion self-energy Eq. (30)

�
(0)
11′ Static part of the one-fermion self-energy Eq. (35)

�
(r)
11′ (t − t ′), � (r)

11′ (ω) Dynamical part of the one-fermion self-energy Eqs. (46),(50), Figs. 1,3

N121′2′ Two-fermion norm kernel Eq. (65)

R(0)
12,1′2′ (ω) Uncorrelated particle-hole propagator Eq. (68)

T12,1′2′ (t − t ′) Two-time particle-hole T -matrix Eq. (69)

K12,1′2′ (t − t ′) Irreducible two-time particle-hole interaction kernel Eqs. (72),(73)

K (0)
12,1′2′ Static part of the particle-hole interaction kernel Eqs. (74),(80), Fig. 4

K (r)
12,1′2′ (t − t ′) Dynamical part of the particle-hole interaction kernel Eqs. (74),(81)-(83), Figs. 5-8

Ṽ1234 Static effective two-fermion interaction Eq. (96)

V (e)(12,34) Energy-dependent effective two-fermion interaction Eq. (96)

�̃11′ Static part of the one-fermion self-energy in PVC approaches Eq. (97)

�
(e)
11′ (ω) Dynamical part of the one-fermion self-energy in PVC approaches Eq. (97)

�12,1′2′ (ω) Dynamical particle-hole interaction kernel in PVC-TBA Eq. (119), Fig. 10

�
(n)
12,1′2′ (ω) Dynamical particle-hole interaction kernel in EOM/R(Q)TBA(n) Eqs. (124),(129), Fig. 13

Although these aspects were widely ignored in the majority
of semiphenomenological PVC models based on effective
in-medium interactions over the years [8,17–27], these and
other approaches provided invaluable knowledge about the
importance of coupling between single-nucleon and collec-
tive degrees of freedom in nuclear structure. Lately, this
type of approaches was linked to the contemporary density
functional theories [28–35], advancing the PVC models to
self-consistent frameworks, and applied to experimental data
analyses [36–40].

However, very little progress has been made on the concep-
tual advancements of the many-body aspects of the nonpertur-
bative NFT’s. Some specific rare topics, such as PVC with
charge-exchange phonons [41,42] or PVC-induced ground
state correlations [23,24,43,44], have been addressed in the
time blocking approximation (TBA), however, relatively little
effort has been made on developments and numerical imple-
mentations of NFT’s beyond the two-particle–two-hole 2p–2h
level [45,46], although the phenomenological multiphonon
approach [9,25,47,48] indicates the possibility to meet the
shell-model standards in large model spaces. Also, the prob-
lem of consistent linking those approaches to the underlying
bare interactions remains unsolved.

The goal of the present work is to bring together the
past and recent developments of the EOM method and to
compare them to the PVC approach in the time blocking
approximation. As the EOM method starts from the bare
interaction between fermions, while the existing versions of
PVC models for atomic nuclei are based on the effective static
interactions, it only makes sense to compare the dynamical

kernels of the equations for the two-fermion propagators. We
will show that such a comparison allows one to recognize and
justify the use of cluster expansions truncated on the two-body
level in the PVC models and to substantiate their extensions
to higher-order configurations. We will also discuss another
important feature of the EOM method, namely its capability
of deriving the emergence of the long-range correlations
and the corresponding collective degrees of freedom from
the bare short-range correlations in a parameter-free way.
Eventually, by confronting the EOM method with the class of
approaches of the PVC type, we develop a non-perturbative,
consistent and systematically improvable theory for one- and
two-fermionic correlation functions, which is directly based
on the bare two-fermion interactions.

We want to keep the presentation sufficiently general to be
useful also in other than just the nuclear physics field. The
dynamical aspects of the in-medium fermionic correlations,
in particular, the PVC are surely also of prime importance
in electronic condensed matter systems where, e.g., we know
that particle-phonon coupling can even reverse the sign of
the repulsive Coulomb interaction to give rise to supercon-
ductivity [49,50]. Also, even though in atoms and molecules
collective features are not well born out, particle-hole correla-
tions are important in screening the Coulomb force [51–53].
Similar techniques as the one we outline here have indeed
been presented recently in the field of chemical physics [54].

In Secs. II–IV the EOM’s are reviewed following the
formalism of Refs. [12–16]. Section V discusses the PVC
model in the time blocking approximation (PVC-TBA) in
terms of Refs. [24,55] and its mapping to the EOM. Section VI
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is devoted to a nonperturbative advancement of the theory for
the particle-hole response beyond 2p-2h configurations, and
Sec. VII presents the first numerical implementations of the
extended theory. Finally, Sec. VIII provides conclusions and
outlook. In Table I we collect the most important symbols
used in the article with the references to the corresponding
equations and figures, where they are introduced and em-
ployed, to help navigate throughout the text.

II. ONE-FERMION AND TWO-FERMION PROPAGATORS
IN A CORRELATED MEDIUM

A convenient way of describing a strongly correlated
many-body system is calculating various correlation func-
tions, or propagators, which are directly linked to observables.
For instance, the one-fermion in-medium propagator, or Green
function, is defined as follows:

G(1, 1′) ≡ G11′ (t − t ′) = −i〈T ψ (1)ψ†(1′)〉, (1)

where T is the chronological ordering operator, ψ (1), ψ†(1)
are one-fermion (for instance, one-nucleon) fields

ψ (1) = eiHt1ψ1e−iHt1 , ψ†(1) = eiHt1ψ†
1e−iHt1 , (2)

and the subscript ‘1’ denotes the full set of the one-
fermion quantum numbers in an arbitrary representation. The
fermionic fields obey the usual anticommutation relations:

[ψ1, ψ
†

1′ ]+ ≡ ψ1ψ
†

1′ + ψ†
1′ψ1 = δ11′ ,

[ψ1, ψ1′ ]+ ≡ ψ1ψ1′ + ψ1′ψ1 = 0,

[ψ†
1, ψ

†
1′ ]+ ≡ ψ†

1ψ
†

1′ + ψ†
1′ψ†

1 = 0. (3)

The averaging in Eq. (1) 〈· · · 〉 is performed over the formally
exact ground state of the many-body system of N particles
described by the Hamiltonian H :

H = H (1) + V (2) + W (3) + . . . . (4)

Here, the operator H (1) is the one-body contribution to the
Hamiltonian

H (1) =
∑

12

t12ψ
†
1 ψ2 +

∑
12

v
(MF )
12 ψ

†
1 ψ2 ≡

∑
12

h12ψ
†
1 ψ2, (5)

whose matrix elements h12, in general, combine the kinetic
energy t and the mean-field v(MF ) part of the interaction. The
operator V (2) describes the two-body sector associated with
the two-fermion interaction

V (2) = 1

4

∑
1234

v̄1234ψ
†

1ψ
†

2ψ4ψ3, (6)

the operator V (3) generates the three-body forces

W (3) = 1

36

∑
123456

w̄123456ψ
†

1ψ
†

2ψ
†

3ψ6ψ5ψ4 (7)

with the antisymmetrized matrix elements v̄1234 and w̄123456,
respectively, and so on. We will make an explicit derivation
of the equations of motion assuming that the Hamiltonian
is confined by the two-body interaction, however, the theory
can be naturally extended to multiparticle forces. The inclu-
sion of a three body force, as may be necessary in nuclear

physics for an ab initio approach, can formally be handled
straightforwardly, but at the cost of inflating the amount of
formulas. Therefore, we will refrain from doing this here, but
may consider an extension to the case of the presence of the
three-body forces in a future work.

It is often convenient to work in the basis, which diago-
nalizes the one-body (also named single-particle) part of the
Hamiltonian (5), so that h12 = δ12ε1. We will use this basis
from the beginning, while on the way to the final equations
of motion it will be redefined as soon as the mean-field part
of the Hamiltonian will absorb additional contributions from
the two-body sector. Furthermore, for the case of self-bound
finite Fermi systems the common practice is to work with
intrinsic Hamiltonians which are obtained by isolating the
kinematics of the center of mass from the relative motion.
In this case the two-body part of the Hamiltonian absorbs
the kinetic energy of the relative motion, see for instance,
Ref. [56] and references therein for details.

The single-particle propagator (1) depends explicitly on a
single time difference τ = t − t ′, and the Fourier transform
with respect to τ to the energy domain leads to the spectral
(Lehmann) expansion

G11′ (ε) =
∑

n

ηn
1η

n∗
1′

ε − (
E (N+1)

n − E (N )
0

) + iδ

+
∑

m

χm
1 χm∗

1′

ε + (
E (N−1)

m − E (N )
0

) − iδ
. (8)

This expansion is a sum of simple poles with the residues
composed of matrix elements of the field operators between
the ground state |0(N )〉 of the N-particle system and states
|n(N+1)〉 and |m(N−1)〉 of the neighboring systems with N + 1
and N − 1 particles, respectively:

ηn
1 = 〈0(N )|ψ1|n(N+1)〉, χm

1 = 〈m(N−1)|ψ1|0(N )〉. (9)

By definition, these matrix elements give the weights of the
given single-particle (single-hole) configuration on top of the
ground state |0(N )〉 in the nth (mth) state of the (N + 1)-
particle [(N − 1)-particle] system, respectively. The residues
are associated with the observable occupancies of the corre-
sponding states, often called spectroscopic factors. The poles
are located at the energies E (N+1)

n − E (N )
0 and −(E (N−1)

m −
E (N )

0 ) of those systems, respectively, i.e., related to the ground
state of the N-particle system.

The two-fermion, three-fermion, and, in general, n-fermion
propagators, or Green functions, are defined in analogy to
Eq. (1):

G(12, 1′2′) = (−i)2〈T ψ (1)ψ (2)ψ†(2′)ψ†(1′)〉, (10)

G(123, 1′2′3′)

= (−i)3〈T ψ (1)ψ (2)ψ (3)ψ†(3′)ψ†(2′)ψ†(1′)〉,
G(12 . . . n, 1′2′ . . . n′)

= (−i)n〈T ψ (1)ψ (2) . . . ψ (n)ψ†(n′) . . . ψ†(2′)ψ†(1′)〉.
(11)

The response of a many-body system to external pertur-
bations, which can be associated with one-body operators, is
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expressed via the two-time two-fermion particle-hole propa-
gator (response function):

R(12, 1′2′) ≡ R12,1′2′ (t − t ′) = −i〈T (ψ†
1 ψ2)(t )(ψ†

2′ψ1′ )(t ′)〉
= −i〈T ψ†(1)ψ (2)ψ†(2′)ψ (1′)〉, (12)

where we imply that t1 = t2 = t, t1′ = t2′ = t ′. The Fourier
transformation of Eq. (12) to the energy (frequency) domain
leads to the spectral expansion

R12,1′2′ (ω) =
∑
ν>0

[
ρν

21ρ
ν∗
2′1′

ω − ων + iδ
− ρν∗

12 ρν
1′2′

ω + ων − iδ

]
(13)

which, similarly to the one for the one-fermion propagator
(8), satisfies the general quantum field theory requirements
of locality and unitarity. The residues of this expansion are
products of the matrix elements

ρν
12 = 〈0|ψ†

2 ψ1|ν〉 (14)

called transition densities, which are properly normalized and
represent the weights of the pure particle-hole configurations
on top of the ground state |0〉 in the model (ideally, exact)
excited states |ν〉 of the same N-particle system. The poles are
the excitation energies ων = Eν − E0 relative to the ground
state.

The response to the probes with pair transfer is associated
with the two-time two-fermion Green function (10) whose
spectral expansion reads

iGpp
12,1′2′ (ω) =

∑
μ

α
μ
21α

μ∗
2′1′

ω − ω
(++)
μ + iδ

−
∑
κ

βκ∗
12 βκ

1′2′

ω + ω
(−−)
κ − iδ

,

(15)
where the residues are composed of the matrix elements

α
μ
12 = 〈0(N )|ψ2ψ1|μ(N+2)〉, βκ

12 = 〈0(N )|ψ†
2 ψ

†
1 |μ(N−2)〉

(16)

and the poles ω(++)
μ and ω(−−)

κ
are formally exact states

of the (N + 2)- and (N − 2)-particle systems, respectively.
The spectral expansions of Eqs. (8), (13), (15) are model
independent and valid for any physical approximations to
the many-body states |n〉, |m〉, |ν〉, |μ〉, and |κ〉. The sums
in Eqs. (8), (13), (15) are formally complete, i.e., run over
the discrete spectra and imply continuous integrals over the
continuum states.

Thus, one can see that, indeed, due to their direct links
to the observables, both one-fermion and two-fermion Green
functions as well as the particle-hole response function are
of high importance for the characterization of strongly cor-
related quantum many-body systems, in particular, of atomic
nuclei. In the next two sections we consider equations of mo-
tion for the one-fermion Green function G11′ (t − t ′) and for
the particle-hole response R12,1′2′ (t − t ′) and outline possible
strategies on the way to their accurate descriptions. As the
correlation functions provide, in principle, complete charac-
teristics of quantum many-body systems, essentially the same
theory is applicable to atomic physics, quantum chemistry,
condensed matter and other areas of physics dealing with
fermionic systems.

III. EQUATION OF MOTION FOR ONE-FERMION
PROPAGATOR

A. General formalism

Let us consider the time evolution of the one-fermion
propagator (1). Taking the derivative with respect to t , one
obtains

∂t G11′ (t − t ′) = −iδ(t − t ′)〈[ψ1(t ), ψ†
1′ (t ′)]+〉

+ 〈T [H, ψ1](t )ψ†
1′ (t ′)〉, (17)

where we defined

[H, ψ1](t ) = eiHt [H, ψ1]e−iHt . (18)

With the help of the commutator

[H, ψ1] = −ε1ψ1 + [V, ψ1], (19)

assuming that V ≡ V (2) and discarding the three-body inter-
action, Eq. (17) leads to

(i∂t − ε1)G11′ (t − t ′)=δ11′δ(t − t ′) + i〈T [V, ψ1(t )]ψ†
1′ (t ′)〉.

(20)
Let us introduce a function R11′ (t − t ′) corresponding to the
last term on the right-hand side of Eq. (20):

R11′ (t − t ′) = i〈T [V, ψ1](t )ψ†
1′ (t ′)〉. (21)

As we will see in the following, it is useful to determine the
equation of motion for this function with respect to t ′:

R11′ (t − t ′)
←−
∂t ′ = −iδ(t − t ′)〈[[V, ψ1](t ), ψ†

1′ (t ′)
]
+〉

− 〈T [V, ψ1](t )[H, ψ†
1′ ](t ′)〉. (22)

Using the commutator

[H, ψ†
1′] = ε1′ψ†

1′ + [V, ψ†
1′ ], (23)

one arrives at the EOM for R11′ (t − t ′):

R11′ (t − t ′)(−i
←−
∂t ′ −ε1′ ) = −δ(t − t ′)〈[[V, ψ1](t ), ψ†

1′ (t ′)]+〉
+ i〈T [V, ψ1](t )[V, ψ†

1′](t ′)〉. (24)

Combining it with the first EOM (20) and performing the
Fourier transformation to the energy (frequency) domain with
respect to the time difference t − t ′, we obtain

G11′ (ω) = G(0)
11′ (ω) +

∑
22′

G(0)
12 (ω)T22′ (ω)G(0)

2′1′ (ω), (25)

where we introduced the free (uncorrelated) one-fermion
propagator G(0)

11′ (ω) = δ11′/(ω − ε1) and the interaction kernel
(one-body T -matrix, not to be confused with the time ordering
operator):

T11′ (t − t ′) = T (0)
11′ (t − t ′) + T (r)

11′ (t − t ′),

T (0)
11′ (t − t ′) = −δ(t − t ′)〈[[V, ψ1](t ), ψ†

1′ (t ′)]+〉,
T (r)

11′ (t − t ′) = i〈T [V, ψ1](t )[V, ψ†
1′ ](t ′)〉. (26)

Here, and in the following, we use the superscript “(0)” to
denote the static parts of the interaction kernels and “(r)” for
their dynamical time-dependent parts, which are associated
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with retardation effects in our approach. The EOM (25)
which, in the operator form, is

G(ω) = G(0)(ω) + G(0)(ω)T (ω)G(0)(ω), (27)

can be transformed to the Dyson equation

G(ω) = G(0)(ω) + G(0)(ω)�(ω)G(ω) (28)

with the interaction kernel �(ω), such as

T (ω) = �(ω) + �(ω)G(0)(ω)T (ω), (29)

from which it follows that the operator � represents
the one-fermion self-energy (also called mass operator) as
the irreducible (with respect to one-fermion line) part of the
kernel T : � = T irr . Analogously to Eq. (26), the self-energy
is decomposed into the instantaneous mean-field part �(0) and
the energy-dependent dynamical part �(r)(ω):

�11′ (ω) = �
(0)
11′ + �

(r)
11′ (ω). (30)

Notice here that the decomposition of the kernels (26),(30)
into the static and time- (energy-) dependent, or dynamical,
parts is a generic feature and the direct consequence of the
time-independence of the bare interaction V of Eq. (6).

The first static (instantaneous) terms of both kernels coin-
cide and read

T (0)
11′ (t − t ′) = −δ(t − t ′)〈[[V, ψ1](t ), ψ†

1′ (t ′)]+〉
= −δ(t − t ′)〈[[V, ψ1], ψ†

1′]+〉. (31)

Here, we need first to evaluate the commutator [V, ψ1] which,
with help of the anticommutation relations (3), can be ob-
tained as

[V, ψ1] = 1

2

∑
ikl

v̄i1klψ
†

iψlψk, (32)

where the Latin indices have the same meaning as the number
indices and the definition of the antisymmetrized interaction
matrix elements v̄1234 = v1234 − v1243 was taken into account.
Evaluating the anticommutator

[ψ†
jψlψk, ψ

†
1′ ]+ = ψ†

jψlδ1′k − ψ†
jψkδ1′l , (33)

one gets

[[V, ψ1], ψ†
1′ ]+ = −

∑
il

v̄1i1′lψ
†
i ψl . (34)

Thus, the first (instantaneous) part �(0) of the mass operator
(30) is associated with the mean field contribution:

�
(0)
11′ = −〈[[V, ψ1], ψ†

1′ ]+〉 =
∑

il

v̄1i1′lρli, (35)

where ρli = 〈ψ†
iψl〉 is the ground-state one-body density and

we have applied the (anti)symmetry properties of the anti-
symmetrized interaction matrix elements: v̄1234 = −v̄1243 =
−v̄2134 = v̄2143.

The second (dynamical) part �(r)(ω) of the mass opera-
tor comprises all retardation effects induced by the nuclear
medium.

In order to understand the dynamical part �(r)(ω) of the
self-energy �(ω), let us first evaluate its reducible counterpart

T (r)
11′ (t − t ′). Here, we can use the result of Eq. (32) for the

commutator [V, ψ1], and the following result for the second
commutator:

[V, ψ
†
1′ ] = 1

2

∑
mnq

v̄mn1′qψ
†
mψ†

n ψq, (36)

so that

T (r)
11′ (t − t ′)

= − i

4

∑
ikl

∑
mnq

v̄i1kl〈T (ψ†
i ψlψk )(t )(ψ†

n ψ†
mψq)(t ′)〉v̄mn1′q

(37)

or, returning to the number indices,

T (r)
11′ (t − t ′) = − i

4

∑
2′3′4′

∑
234

v̄1234〈T ψ†(2)ψ (4)ψ (3)ψ†(3′)

×ψ†(4′)ψ (2′)〉v̄4′3′2′1′ , (38)

where we assume that t2 = t3 = t4 = t and t2′ = t3′ = t4′ = t ′,
as dictated by the instantaneous interaction. With the help of
of the three-fermion Green function Eq. (38) can be rewritten
as

T (r)
11′ (t − t ′) = −1

4

∑
2′3′4′

∑
234

v̄1234G(432′, 23′4′)v̄4′3′2′1′ . (39)

Here, we realize that, although the EOM for one-fermion
propagator G(ω) (28) is formally a closed equation, however,
its interaction kernel �(ω) = T irr (ω) is defined by Eqs. (26),
(35), and (39), where its time-dependent part contains the
three-fermion Green function G(432′, 23′4′). Up to here the
theory is exact, but, in order to calculate the three-body
propagator, one would need to generate a series of equa-
tions of motion for higher-rank propagators. However, with
a very good accuracy the problem can be truncated at the
two-body level. The three-fermion Green function, according
to Refs. [10,57–59], can be (approximately) decomposed as
follows [60]:

G(432′, 23′4′) = G(4, 4′)G(32′, 23′) + G(3, 3′)G(42′, 24′)

+ G(2′, 2)G(43, 3′4′) + G(4, 2)G(32′, 3′4′)

+ G(2′, 4′)G(43, 23′) − G(3, 2)G(42′, 3′4′)

− G(2′, 3′)G(43, 24′) − G(4, 3′)G(32′, 24′)

− G(3, 4′)G(42′, 23′) − 2G(0)(432′, 23′4′),

(40)

where

G(0)(432′, 23′4′)

= −G(4, 4′)G(3, 3′)G(2′, 2) + G(4, 3′)G(3, 4′)G(2′, 2)

+ G(4, 2)G(3, 3′)G(2′, 4′) + G(4, 4′)G(3, 2)G(2′, 3′)

− G(4, 2)G(3, 4′)G(2′, 3′) − G(4, 3′)G(3, 2)G(2′, 4′)

(41)

contains all uncorrelated three-body contributions. This kind
of truncation of the many-body EOM hierarchies is referred
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to as cluster-expansion approach in condensed matter physics
[61,62]. Both Eqs. (40) and (41) include terms with one-
fermion propagators connecting the same time moments, ei-
ther t or t ′. As these propagators form closed loops, obviously
such contributions are connected by one-fermion lines, i.e.,
are reducible. Thus, the irreducible part of the three-fermion
propagator of Eq. (40) reads

Girr (432′, 23′4′)

= G(4, 4′)G(32′, 23′) + G(3, 3′)G(42′, 24′)

+ G(2′, 2)G(43, 3′4′) − G(4, 3′)G(32′, 24′)

− G(3, 4′)G(42′, 23′) + 2(G(4, 4′)G(3, 3′)G(2′, 2)

− G(4, 3′)G(3, 4′)G(2′, 2)). (42)

The two-body propagators in Eq. (42), such as G(32′, 23′),
contain both uncorrelated and correlated terms. It is conve-
nient to introduce its connection to the response functions
R(12′, 21′) and to the fully correlated parts of the two-body
propagators R̄(12′, 21′):

Rpp(12′, 21′) = G(12′, 21′) − G(1, 2)G(2′, 1′),

R̄pp(12′, 21′) = G(12′, 21′)

− (G(1, 2)G(2′, 1′) − G(1, 1′)G(2′, 2)),

−iRph(12, 1′2′) = G(21′, 12′) − G(2, 1)G(1′, 2′),

−iR̄ph(12, 1′2′) = G(21′, 12′)

− (G(2, 1)G(1′, 2′) − G(1′, 1)G(2, 2′)),

(43)

thus related as follows:

Rpp(12′, 21′) = R̄pp(12′, 21′) − G(1, 1′)G(2′, 2),

−iRph(12, 1′2′) = −iR̄ph(12, 1′2′) − G(1′, 1)G(2, 2′).

(44)

Collecting the terms associated with R̄ components, one can
separate fully correlated and fully uncorrelated G(0) parts of
Girr (432′, 23′4′) according to

Girr (432′, 23′4′)

= G(2′, 2)R̄pp(43, 3′4′) − iG(4, 4′)R̄ph(23, 2′3′)

− iG(3, 3′)R̄ph(24, 2′4′) + iG(4, 3′)R̄ph(23, 2′4′)

+ iG(3, 4′)R̄ph(24, 2′3′) − G(4, 4′)G(3, 3′)G(2′, 2)

+ G(4, 3′)G(3, 4′)G(2′, 2). (45)

The corresponding dynamical part of the self-energy shown
diagrammatically in Fig. 1 is

�
(r)
11′ (t−t ′) = −1

4

∑
2342′3′4′

v̄1234Girr (432′, 23′4′)v̄4′3′2′1′

= −1

4

∑
2342′3′4′

v̄1234(G(2′, 2)R̄pp(43, 3′4′)

− iG(3, 3′)R̄ph(24, 2′4′)−iG(4, 4′)R̄ph(23, 2′3′)

+ iG(4, 3′)R̄ph(23, 2′4′)+iG(3, 4′)R̄ph(24, 2′3′)

− G(4, 4′)G(3, 3′)G(2′, 2)

+ G(4, 3′)G(3, 4′)G(2′, 2))v̄4′3′2′1′ . (46)
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FIG. 1. Diagrammatic representation of the dynamical self-
energy � (r) of Eq. (46) in terms of the uncorrelated one-fermion
(lines with arrows) and correlated two-fermion (boxes R̄ together
with long lines with arrows) intermediate propagators. Blocks v̄

stand for the bare two-fermion interaction.

Using the symmetry properties of the interaction v̄ and re-
naming the indices 3 ↔ 4, 3′ ↔ 4′ in the third term, 4′ ↔ 3′
in the fourth term, 4 ↔ 3 in the fifth term, and 4 ↔ 3 in the
last term, one obtains

�
(r)
11′ (t − t ′) = −1

4

∑
2342′3′4′

v̄1234(G(2′, 2)R̄pp(43, 3′4′)

− 4iG(3, 3′)R̄ph(24, 2′4′)

− 2G(3, 3′)G(2′, 2)G(4, 4′))v̄4′3′2′1′ (47)

This form of the self-energy allows for a direct reduction
to the second-order (with respect to the bare interaction v̄)
approach for the dynamical self-energy. Indeed, by dropping
the fully correlated terms with R̄ the lowest-order approach
takes the form

�
(r)0
11′ (t − t ′)

= 1

2

∑
234

∑
2′3′4′

v̄1234G(4, 4′)G(3, 3′)G(2′, 2)v̄4′3′2′1′ , (48)

which corresponds to the last two terms in Fig. 1. The re-
sponse theory built on this self-energy leads to an approach
called second random phase approximation (SRPA), which
has been implemented within the frameworks employing both
microscopic [63,64] and effective [65–67] interactions and
demonstrates a good ability of generating fragmentation ef-
fects on nuclear excitation spectra. Closely related are the
methods based on a stochastic one-body transport theory,
that distinguish and include in-medium nucleon-nucleon col-
lisions of both coherent and incoherent nature [68].

B. Emergent phonons and particle-vibration coupling

The prerequisites for calculating the self-energy beyond
the second-order perturbation theory are the correlation func-
tions R̄ in the particle-hole and particle-particle channels.
In practice, however, it is more convenient to deal with the
particle-particle Green function and particle-hole response
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v vR(ph)=

v v(pp)= G

FIG. 2. Diagrammatic mapping (definition) of the phonon ver-
tices (circles) and propagators (wavy lines and double lines) onto the
bare interaction and two-fermion correlation functions. Top: normal
(particle-hole) phonon, bottom: pairing (particle-particle) phonon, as
introduced in Eqs. (57), (53), respectively.

function which contain both correlated and uncorrelated con-
tributions (44). By isolating the particle-hole response func-
tion, the self-energy can be reorganized as follows:

�
(r)
11′ (t − t ′) = −

∑
2342′3′4′

v̄1234

(
1

4
G(2′, 2)Gpp(43, 3′4′)

− iG(3, 3′)Rph(24, 2′4′)

+ G(3, 3′)G(2′, 2)G(4, 4′)
)

v̄4′3′2′1′

= �
(r)pp
11′ (t − t ′) + �

(r)ph
11′ (t − t ′) + �

(r)0
11′ (t − t ′),

(49)

where we separate the terms with the particle-particle (pp)
and particle-hole (ph) Green functions coupled to one-hole
and one-particle ones, respectively, from the term with the
uncorrelated two-particle-one-hole propagator. This equation
can serve as foundation for microscopic approaches to the
single-particle self-energy, which refer to the phenomenon of
particle-vibration coupling, or PVC. The correlation functions
Gpp and Rph represent the emergent degrees of freedom,
phonons, which are the quasibound states of two fermions em-
bedded in the strongly-correlated medium. In nuclear physics
the phonons are associated with nuclear vibrations and, in
relatively large systems, such as medium-mass and heavy
nuclei, can acquire a collective character. They are often called
“vibrations” and attributed to the vibrational motion of the
nuclear surface, although, as we will see in this subsection,
in the formally exact theory they are more general objects.

The connection to the PVC can be seen more explicitly
if one identifies the correlation functions contracted with the
interaction matrix elements with the phonon propagators and
coupling vertices, as displayed diagrammatically in Fig. 2. For
this purpose it is convenient to work with the Fourier image
of �

(r)
11′ (t − t ′) in the energy domain

�
(r)
11′ (ω) =

∫ ∞

−∞
dτeiωτ�

(r)
11′ (τ ). (50)

The first term of Eq. (49) transforms as follows:

�
(r)pp
11′ (ω) =

∑
22′

[∑
μm

χm∗
2 γ

μ(+)
12 γ

μ(+)∗
1′2′ χm

2′

ω − ω
(++)
μ − ε

(−)
m + iδ

+
∑
κn

ηn∗
2 γ

κ(−)∗
21 γ

κ(−)
2′1′ ηn

2′

ω + ω
(−−)
κ + ε

(+)
n − iδ

]
, (51)

where we denoted the single-particle energies as ε(+)
n =

E (N+1)
n − E (N )

0 and ε(−)
m = E (N−1)

m − E (N )
0 , and defined the

pairing phonon vertex functions according to

γ
μ(+)
12 =

∑
34

v1234α
μ
34, γ

κ(−)
12 =

∑
34

βκ

34v3412. (52)

Then, introducing the amplitude �
pp
12,1′2′ (ω),

i�pp
12,1′2′ (ω) = i

∑
343′4′

v1234Gpp
43,3′4′ (ω)v4′3′2′1′

=
∑

μ,σ=±1

γ
μ(σ )
12 �(σ )

μ (ω)γ μ(σ )∗
1′2′ (53)

with the pairing phonon propagator

�(σ )
μ (ω) = σ

ω − σ
(
ω

(σσ )
μ − iδ

) , (54)

Eq. (51) can be alternatively obtained by the convolution

�
(r)pp
11′ (ω) = i

∑
22′

∫ ∞

−∞

dε

2π i
�

pp
12,1′2′ (ω + ε)G2′2(ε). (55)

Similarly, the Fourier image of the second term of Eq. (49)

�
(r)ph
11′ (ω) =

∑
33′

[∑
νn

ηn
3gν

13gν∗
1′3′η

n∗
3′

ω − ων − ε
(+)
n + iδ

+
∑
νm

χm
3 gν∗

31gν
3′1′χ

m∗
3′

ω + ων + ε
(−)
m − iδ

]
(56)

can be obtained either directly or by introducing the following
mapping:

�
ph
13′,1′3 =

∑
242′4′

v̄1234Rph
24,2′4′ (ω)v̄4′3′2′1′

=
∑

ν,σ=±1

gν(σ )
13 D(σ )

ν (ω)gν(σ )∗
1′3′ (57)

with the phonon vertices gν and propagators Dν (ω):

gν(σ )
13 = δσ,+1gν

13 + δσ,−1gν∗
31, gν

13 =
∑

34

v̄1234ρ
ν
42,

D(σ )
ν (ω) = σ

ω − σ (ων − iδ)
, ων = Eν − E0. (58)

Then it can be shown that

�
(r)ph
11′ (ω) = −

∑
33′

∫ ∞

−∞

dε

2π i
�

ph
13′,1′3(ω − ε)G33′ (ε). (59)

In Eqs. (51)–(59) the index σ = ±1 stands for the forward
(“particle”) and backward (“hole”) components of the phonon
propagators and vertices, and the spectral representations
(8),(15) along with the definitions (1),(10),(12) were ap-
plied. Finally, the last term of the self-energy (49) with only
uncorrelated single-particle Green functions transforms as
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FIG. 3. Diagrammatic representation of the dynamical part of the kernel �(r) of Eq. (49) in terms of the particle-vibration coupling.

follows:

�
(r)0
11′ (ω) = −

∑
2342′3′4′

v̄1234

[∑
mn′n′′

χm
2′ χ

m∗
2 ηn′

3 ηn′∗
3′ ηn′′

4 ηn′′∗
4′

ω − ε
(+)
n′ − ε

(+)
n′′ − ε

(−)
m + iδ

+
∑

nm′m′′

ηn
2′η

n∗
2 χm′

3 χm′∗
3′ χm′′

4 χm′′∗
4′

ω + ε
(+)
n + ε

(−)
m′ + ε

(−)
m′′ − iδ

]
v̄4′3′2′1′

= −
∑

2342′3′4′
v̄1234G̃(3)0

432′,23′4′ (ω)v̄4′3′2′1′ , (60)

G̃(3)0
432′,23′4′ (ω)

= −
∫ ∞

−∞

dεdε′

(2π i)2
G44′ (ω + ε′ − ε)G33′ (ε)G2′2(ε′). (61)

The complete dynamical part of the one-fermion self-
energy (49) is shown in Fig. 3 in the diagrammatic form in
terms of the particle-vibration coupling, where we neglected
the phase factors in front of each diagram. The first two
terms on the right-hand side are formed by the topologically
similar one-loop diagrams which are analogous to the electron
self-energy corrections in quantum electrodynamics, where
electron emits and reabsorbs a photon, or to the nucleonic self-
energy of quantum hadrodynamics where a single nucleon
emits and reabsorbs a meson. Here, they represent the effects
of a strongly correlated medium, where a single fermion emits
and reabsorbs a phonon of the particle-particle (first term)
and the particle-hole (second term) nature, in addition to the
emission and reabsorption of an uncorrelated two-particle-
one-hole configuration (third term). The mappings established
by Eqs. (53),(57) and illustrated diagrammatically in Fig. 2
explain the underlying mechanism of the induced in-medium
interaction, where the emergent composite bosons are formed
by quasibound fermionic pairs.

One may notice that the dynamical self-energy �(r) recast
in the form of Eq. (47) with the separation of fully corre-
lated and noncorrelated parts helps to relate the approach to
the lowest-order perturbation theory and to assess the role
of correlations. It is clear that in the case of weak cou-
pling the uncorrelated term(s) play the leading role and the
phonon-exchange interaction can be neglected, however, in
the strong-coupling regime the phonon coupling dominates
and the lowest-order uncorrelated term does not give the
leading contribution. Indeed, in the major applications to
nuclear systems only the first two terms are taken into account
and, furthermore, coupling to the pairing phonons was found
much less important than coupling to the normal particle-
hole phonons. These approximations, however, were shown
to be justified only within the methods based on the effective
nucleon-nucleon interactions. Such interactions are typically
obtained by fitting the bulk nuclear properties, such as their
masses and radii, on the mean-field level, i.e., assuming that
one-fermion self energy contains solely the static part (35)

with only the one-body density, which is implicitly coupled
to correlations in the dynamical part of the self-energy (49).
This coupling is essentially important as

ρ12 = −i lim
t2→t1+0

G(1, 2), (62)

which means that the one-fermion density matrix entering
Eq. (35) is the equal-times limit of the full solution of Eq. (28).
This fact is often expressed in terms of the density dependen-
cies of the effective interactions while these dependencies are
typically disconnected from a detailed analysis of Eq. (28)
with the complete kernel �(ω). Inevitably, existing versions
of the PVC model which add the dynamical part on top
of the effective interactions imply an additional subtraction
procedure to remove the double counting of PVC which is
contained in the static approximation in the parameters of the
phenomenological mean field [31]. Such a subtraction turned
out to be a very elegant way of avoiding the double counting,
instead of the complicated refitting of the parameters of the
mean field, and it is widely applied in calculations of two-
body Green functions, in particular, the particle-hole response
discussed below. However, an analogous procedure has not
been formulated for the case of the one-body propagator.

Regardless what kind of the two-body interaction is used
for calculations of the one-fermion Green function from
Eq. (28), for an accurate solution beyond the static approxima-
tion to the interaction kernel the knowledge about the particle-
hole response and particle-particle Green function is needed,
as follows from Eqs. (28),(30),(35),(49). As we discuss in the
next section following Refs. [15,54], it is possible to formulate
the equation of motion for these two-fermion Green functions
in a similar manner as for the one-fermion propagator and
to obtain non-perturbative approximations to its closed form.
Below we discuss the EOM approach to the particle-hole
response function, while the EOM for the particle-particle
response can be generated in complete analogy.

IV. EQUATION OF MOTION FOR THE PARTICLE-HOLE
RESPONSE

The equation of motion for the particle-hole response of
Eq. (12) can be generated by taking its time derivative with
respect to t :

∂t R12,1′2′ (t − t ′) = −iδ(t − t ′)〈[ψ†
1ψ2, ψ

†
2′ψ1′ ]〉

+ 〈T [H, ψ†
1ψ2](t )(ψ†

2′ψ1′ )(t ′)〉. (63)

After the evaluation of the first commutator and the commuta-
tor with the one-body part of the Hamiltonian, the EOM (63)
takes the form

(i∂t + ε12)R12,1′2′ (t − t ′)

= δ(t − t ′)N121′2′ + i〈T [V, ψ†
1ψ2](t )(ψ†

2′ψ1′ )(t ′)〉 (64)
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with the norm kernel N121′2′ ,

N121′2′ = 〈[ψ†
1 ψ2, ψ

†
2′ψ1′ ]〉 = δ22′ 〈ψ†

1 ψ1′ 〉 − δ11′ 〈ψ†
2′ψ2〉.

(65)

In the case when the one-body density matrix is diago-
nal, it takes the form N121′2′ = δ11′δ22′ (n1 − n2) ≡ δ11′δ22′N12,
where n1 = 〈ψ†

1ψ1〉 is the occupation number of the
fermionic state 1. In Eq. (64) and in the following ε12 =
ε1 − ε2 is the difference between the matrix elements of the
one-body Hamiltonian, or the single-particle energies, in the
same representation.

The second EOM is generated by differentiating the last
term on the right-hand side of Eq. (64) with respect to t ′:

i〈T [V, ψ†
1ψ2](t )(ψ†

2′ψ1′ )(t ′)〉(−i
←−
∂t ′ − ε2′1′ )

= −δ(t − t ′)〈[[V, ψ†
1ψ2], ψ†

2′ψ1′ ]〉
+ i〈T [V, ψ†

1ψ2](t )[V, ψ†
2′ψ1′](t ′)〉. (66)

Combining it with the first EOM (64) and performing the
Fourier transformation to the energy domain, one obtains

R12,1′2′ (ω) = R(0)
12,1′2′ (ω) +

∑
343′4′

R(0)
12,34(ω)T34,3′4′ (ω)R(0)

3′4′,1′2′ (ω),

(67)

where the uncorrelated particle-hole response R(0)(ω) is de-
fined as

R(0)
12,1′2′ (ω) = N121′2′

ω − ε21
= δ11′δ22′

n1 − n2

ω − ε21
. (68)

The integral part is determined by the Fourier transform
T12,1′2′ (ω) of the interaction kernel T12,1′2′ (t − t ′) (not to be
confused with the time ordering operator)

T12,1′2′ (t − t ′) = N−1
12 [−δ(t − t ′)〈[[V, ψ†

1ψ2], ψ†
2′ψ1′]〉

+ i〈T [V, ψ†
1ψ2](t )[V, ψ†

2′ψ1′ ](t ′)〉]N−1
1′2′ ,

(69)

which splits naturally into the instantaneous T (0) and the time-
dependent T (r) parts

T12,1′2′ (t − t ′) = Ñ−1
121′2′

(
T (0)

12,1′2′δ(t − t ′) + T (r)
12,1′2′ (t − t ′)

)
,

T (0)
12,1′2′ = −〈[[V, ψ†

1ψ2], ψ†
2′ψ1′ ]〉,

T (r)
12,1′2′ (t − t ′) = i〈T [V, ψ†

1ψ2](t )[V, ψ†
2′ψ1′ ](t ′)〉 (70)

with the shorthand notation for the product of the diago-
nal norm kernels Ñ121′2′ = N12N1′2′ . In the operator form
Eq. (67) reads

R(ω) = R(0)(ω) + R(0)(ω)T (ω)R(0)(ω). (71)

The latter equation can be further transformed to a formally
closed equation for R(ω), similar to the Dyson equation for
one-fermion Green function. The kernel of this new equation
should be irreducible with respect to uncorrelated particle-
hole response R(0), which means that

R(ω) = R(0)(ω) + R(0)(ω)K (ω)R(ω), (72)

where

T (ω) = K (ω) + K (ω)R(0)(ω)T (ω) (73)

or K (ω) = T irr (ω), i.e., that K (ω) absorbs the irreducible
contributions of T (ω).

Obviously, the kernel K (ω) can be also decomposed into
the instantaneous (static) and time-dependent (frequency-
dependent) terms:

K (t − t ′) = Ñ−1(K (0)δ(t − t ′) + K (r)(t − t ′)),

K (0) = T (0)irr, K (r)(t − t ′) = T (r)irr (t − t ′). (74)

In a complete analogy to the case of one-fermion EOM,
the decomposition of the interaction kernel (70),(74) into
the static and time(energy)-dependent, or dynamical, parts
is a generic feature of the in-medium interaction in the
particle-hole channel and the direct consequence of the time-
independence of the bare interaction V of Eq. (6).

Evaluation of the static part of Eq. (69) with the help of the
following commutator:

[ψ†
i ψ

†
j ψlψk, ψ

†
1 ψ2] = −δ2iψ

†
1 ψ

†
j ψlψk + δ2 jψ

†
1 ψ

†
i ψlψk

− δ1lψ
†
i ψ

†
j ψkψ2 + δ1kψ

†
i ψ

†
j ψlψ2,

(75)

gives for the internal single commutator of T (0)

[V, ψ†
1ψ2]= 1

2

∑
jkl

v̄ j2klψ
†
1 ψ

†
j ψlψk + 1

2

∑
i jk

v̄i j1kψ
†
i ψ

†
j ψkψ2

(76)

and for the double commutator, using again the result of
Eq. (75),

[[V, ψ†
1ψ2], ψ†

2′ψ1′]

= 1

2

∑
jkl

v̄2 jkl (δ1′1ψ
†
2′ψ

†
j ψlψk − δ1′ jψ

†
2′ψ

†
1 ψlψk

+ δ2′lψ
†
1 ψ

†
j ψkψ1′ − δ2′kψ

†
1 ψ

†
j ψlψ1′ )

+
∑
i jk

v̄i jk1(δ1′iψ
†
2′ψ

†
j ψkψ2 − δ1′ jψ

†
2′ψ

†
i ψkψ2

+ δ2′kψ
†
i ψ

†
j ψ2ψ1′ − δ2′2ψ

†
i ψ

†
j ψkψ1′ ). (77)

Thus, the static part of Eq. (70) reads

T (0)
12,1′2′ =

∑
jk

v̄2 j2′kρ1′k,1 j +
∑

jk

v̄1′k1 jρ2 j,2′k

− 1

2
δ11′

∑
jkl

v̄2 jklρkl,2′ j − 1

2
δ22′

∑
i jk

v̄ ji1kρ1′k, ji

− 1

2

∑
i j

v̄i j2′1ρ1′2,i j − 1

2

∑
kl

v̄21′klρkl,12′ , (78)

where we introduced the two-fermion density ρi j,kl ,

ρi j,kl = 〈ψ†
k ψ

†
l ψ jψi〉 = ρikρ jl − ρilρ jk + σ

(2)
i j,kl , (79)
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FIG. 4. Diagrammatic representation of the static part of the kernel T (0)
12,1′2′ in terms of the two-body densities ρ as in Eq. (78).

so that σ
(2)
i j,kl represents its fully correlated part. After that, the

static kernel takes the form

K (0)
12,1′2′ = N12v̄21′12′N1′2′ +

∑
jk

v̄2 j2′kσ
(2)
1′k,1 j +

∑
jk

v̄1′k1 jσ
(2)
2 j,2′k

− 1

2
δ11′

∑
jkl

v̄2 jklσ
(2)
kl,2′ j − 1

2
δ22′

∑
i jk

v̄ ji1kσ
(2)
1′k, ji

− 1

2

∑
i j

v̄i j2′1σ
(2)
1′2,i j − 1

2

∑
kl

v̄21′klσ
(2)
kl,12′ , (80)

where the first term isolates the contribution from the bare
interaction and the norm factor will be compensated by its
inverse, according to Eq. (70). In transforming Eq. (78) to
Eq. (80), the remaining terms with the single-particle mean
field can be absorbed in the single-particle energies by re-
placing ε1 → ε̃1 = ε1 + �

(0)
11 in the uncorrelated response

function of Eq. (68) and redefining the working basis. From
Eq. (80) it becomes clear that, in the absence of correlations
contained in the quantities σ (2) and T (r), the EOM (72) takes
the form of the well-known random phase approximation. The
complete static part of the effective two-fermion interaction is
shown diagrammatically in Fig. 4 in terms of the full two-
body densities ρ represented by the rectangular blocks.

The time-dependent part T (r) of the kernel T can be
evaluated by making use of the commutator (76):

T (r)
12,1′2′ (t − t ′)

= i〈T [V, ψ†
1ψ2](t )[V, ψ†

2′ψ1′ ](t ′)〉

= i

4

〈
T

⎛
⎝∑

jkl

v̄2 jklψ
†
1 ψ

†
j ψlψk +

∑
i jk

v̄i jk1ψ
†
i ψ

†
j ψkψ2

⎞
⎠(t )

×
(∑

npq

v̄1′npqψ
†
2′ψ

†
n ψqψp +

∑
mnp

v̄mnp2′ψ†
mψ†

n ψpψ1′

)
(t ′)

〉

= T (r;11)
12,1′2′ (t − t ′) + T (r;12)

12,1′2′ (t − t ′)

+ T (r;21)
12,1′2′ (t − t ′) + T (r;22)

12,1′2′ (t − t ′), (81)

where we have decomposed the kernel T (r)
12,1′2′ (t − t ′) into the

four terms with different general structure:

T (r;11)
12,1′2′ (t − t ′) = − i

4

∑
jkl

v̄ j2kl〈T (ψ†
1 ψ

†
j ψlψk )(t )

×
∑
mnp

(ψ†
mψ†

n ψpψ1′ )(t ′)〉v̄nm2′ p,

T (r;12)
12,1′2′ (t − t ′) = i

4

∑
jkl

v̄ j2kl〈T (ψ†
1 ψ

†
j ψlψk )(t )

×
∑
npq

(ψ†
2′ψ

†
n ψqψp)(t ′)〉v̄n1′ pq,

T (r;21)
12,1′2′ (t − t ′) = i

4

∑
i jk

v̄ ji1k〈T (ψ†
i ψ

†
j ψkψ2)(t )

×
∑
mnp

(ψ†
mψ†

n ψpψ1′ )(t ′)〉v̄nm2′ p,

T (r;22)
12,1′2′ (t − t ′) = − i

4

∑
i jk

v̄ ji1k〈T (ψ†
i ψ

†
j ψkψ2)(t )

×
∑
npq

(ψ†
2′ψ

†
n ψqψp)(t ′)〉v̄n1′ pq, (82)

or, returning to the number indices,

T (r;11)
12,1′2′ (t − t ′) = − i

4

∑
345

v̄3245〈T (ψ†
1ψ

†
3 ψ5ψ4)(t )

×
∑
3′4′5′

(ψ†
4′ψ

†
5′ψ3′ψ1′ )(t ′)〉v̄5′4′2′3′

= − i

4

∑
345

∑
3′4′5′

v̄3245G(543′1′, 5′4′31)v̄5′4′2′3′ ,
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T (r;12)
12,1′2′ (t − t ′) = i

4

∑
345

v̄3245〈T (ψ†
1 ψ

†
3 ψ5ψ4)(t )

×
∑
3′4′5′

(ψ†
2′ψ

†
5′ψ4′ψ3′ )(t ′)〉v̄5′1′3′4′

= i

4

∑
345

∑
3′4′5′

v̄3245G(544′3′, 5′2′31)v̄5′1′3′4′ ,

T (r;21)
12,1′2′ (t − t ′) = i

4

∑
345

v̄4513〈T (ψ†
5 ψ

†
4 ψ3ψ2)(t )

×
∑
3′4′5′

(ψ†
3′ψ

†
5′ψ4′ψ1′ )(t ′)〉v̄5′3′2′4′

= i

4

∑
345

∑
3′4′5′

v̄4513G(324′1′, 5′3′45)v̄5′3′2′4′ ,

T (r;22)
12,1′2′ (t − t ′) = − i

4

∑
345

v̄4513〈T (ψ†
5 ψ

†
4 ψ3ψ2)(t )

×
∑
3′4′5′

(ψ†
2′ψ

†
3′ψ5′ψ4′ )(t ′)〉v̄3′1′4′5′

= − i

4

∑
345

∑
3′4′5′

v̄4513G(325′4′, 3′2′45)v̄3′1′4′5′ ,

(83)

where the two-time two-particle-two-hole (four-fermion)
Green function G(543′1′, 5′4′31) was introduced according to

G(543′1′, 5′4′31)

= 〈T (ψ†
1ψ

†
3ψ5ψ4)(t )(ψ†

4′ψ†
5′ψ3′ψ1′ )(t ′)〉. (84)

The components of the irreducible dynamical kernel
K (r)

12,1′2′ (t − t ′) = T (r)irr
12,1′2′ (t − t ′) are shown diagrammatically

in Fig. 5, where we have omitted the factors ±i/4 in front
of each diagram.

The general result of Eqs. (81)–(83) for the dynamical ker-
nel is known in the literature, see, for instance, Refs. [15,69].
One can see that the dynamical kernel of Eq. (72) requires the
knowledge about the two-time two-particle-two-hole (four-
body) propagator G of Eq. (84). An exact treatment of the
time-dependent kernel would require generating EOM’s for
the three-fermion or four-fermion propagators, thus building
a hierarchy of EOM’s which is equivalent to that known as
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierar-
chy. In this work we consider a truncation of this hierarchy on
the level of two-fermion correlation functions, as proposed, in
particular, in Refs. [16,54]. This approach avoids generating
EOM’s for the three-fermion and four-fermion propagators
and, as we will show below, leads to a closed system of
equations for the two-fermion correlation functions.

As all four components of T (r)(t − t ′) (83) contain the
same two-particle-two-hole propagator, it is sufficient to an-
alyze in detail one of them, then the other three can be
reconstructed straightforwardly. Let us consider K (r;11)(t −
t ′) as the reference component keeping only the irreducible
(with respect to the particle-hole uncorrelated propagator)
contributions to T (r)(t − t ′). The lowest-order approximation
is determined by the uncorrelated irreducible part G(0)irr of the

(r;12) v−
v−

2
2 ’4
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5
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1 ’
3 ’

5 ’
4 ’
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FIG. 5. Diagrammatic representation of the four components of
the dynamical kernel K (r)

12,1′2′ (t − t ′) = T (r)irr
12,1′2′ (t − t ′) of Eq. (83).

four-fermion propagator:

G(0)irr (543′1′, 5′4′31) = 〈T (ψ†
1ψ

†
3)(t )(ψ3′ψ1′ )(t ′)〉0

×〈T (ψ5ψ4)(t )(ψ†
4′ψ†

5′ )(t ′)〉0,

(85)

where

〈T (ψ†
1ψ

†
3)(t )(ψ3′ψ1′ )(t ′)〉0

= 〈T ψ†
1(t )ψ1′ (t ′)〉0〈T ψ†

3(t )ψ3′ (t ′)〉0

−〈T ψ†
1(t )ψ3′ (t ′)〉0〈T ψ†

3(t )ψ1′ (t ′)〉0. (86)

Thus, the lowest-order approximation requires only the one-
fermion (mean-field) Green functions

G(0)
11′ (t − t ′) = δ11′G(0)

1 (t − t ′) = −i〈T ψ1(t )ψ†
1′ (t ′)〉0 (87)

and their backward-going counterparts. The uncorrelated part
K (r;11)0(t − t ′) of the irreducible kernel K (r;11)(t − t ′) is given
diagrammatically in Fig. 6. Using the uncorrelated one-
fermion Green function

G(0)
11′ (t − t ′) = −iδ11′σ1θ (σ1t11′ )e−iε̃1t11′ (88)

with t11′ = t1 − t1′ and σ1 = ±1 for particle/hole states, the
Fourier transform of Eq. (85) can be calculated, so that

K (r;11)0
12,1′2′ (ω) = δ11′

2

∑
345

v̄3245v̄542′3

ω − ε̃4 − ε̃5 + ε̃1 + ε̃3 + iδ
− AS,

(89)

where δ → +0, the explicit term corresponds to the sum of
(a) and (c) contributions, and the antisymmetrized term ‘AS’
to the sum of (b) and (d) contributions shown in Fig. 6.

The next step in building the dynamical part of the kernel
is to include nonperturbative resummations between each
pair of fermionic lines. In this approximation, the correlated
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FIG. 6. Diagrammatic representation of the uncorrelated contributions of Eq. (85) to the dynamical kernel K (r;11)
12,1′2′ (t − t ′) irreducible with

respect to the particle-hole propagator.

contributions to Eq. (84) are represented by products of the two-body correlated and uncorrelated propagators

G(c)irr (543′1′, 5′4′31)

= 〈T (ψ†
1ψ

†
3)(t )(ψ3′ψ1′ )(t ′)〉〈T (ψ5ψ4)(t )(ψ†

4′ψ†
5′ )(t ′)〉0 + 〈T (ψ†

1ψ
†

3)(t )(ψ3′ψ1′ )(t ′)〉0〈T (ψ5ψ4)(t )(ψ†
4′ψ†

5′ )(t ′)〉
+ 〈T (ψ†

1ψ5)(t )(ψ†
5′ψ1′ )(t ′)〉〈T (ψ†

3ψ4)(t )(ψ†
4′ψ3′ )(t ′)〉0 + 〈T (ψ†

1ψ5)(t )(ψ†
5′ψ1′ )(t ′)〉0〈T (ψ†

3ψ4)(t )(ψ†
4′ψ3′ )(t ′)〉

+ 〈T (ψ†
3ψ5)(t )(ψ†

5′ψ3′ )(t ′)〉〈T (ψ†
1ψ4)(t )(ψ†

4′ψ1′ )(t ′)〉0

+〈T (ψ†
3ψ5)(t )(ψ†

5′ψ3′ )(t ′)〉0〈T (ψ†
1ψ4)(t )(ψ†

4′ψ1′ )(t ′)〉 − AS, (90)

where the term AS absorbs all possible antisymmetrizations and the index ‘0’ marks an uncorrelated ground state. In turn,
resummations within the remaining uncorrelated fermionic pairs lead to the terms with two two-body correlators

G(cc)irr (543′1′, 5′4′31)

= 〈T (ψ†
1ψ

†
3)(t )(ψ3′ψ1′ )(t ′)〉〈T (ψ5ψ4)(t )(ψ†

4′ψ†
5′ )(t ′)〉 + 〈T (ψ†

1ψ5)(t )(ψ†
5′ψ1′ )(t ′)〉〈T (ψ†

3ψ4)(t )(ψ†
4′ψ3′ )(t ′)〉

+ 〈T (ψ†
3ψ5)(t )(ψ†

5′ψ3′ )(t ′)〉〈T (ψ†
1ψ4)(t )(ψ†

4′ψ1′ )(t ′)〉 − AS. (91)

The latter approach to the dynamical kernel of Eq. (72)
is, thus, the most complete one within the concept of the
cluster-expansion truncation on the two-body level. The ap-
proximation of Eq. (91) only neglects the additional uncorre-
lated contribution, which should be not very important in the
strong-coupling regimes, as in the case of the one-fermionic
kernel (49), and the contributions with explicit correlation
functions of three and more fermions. One can see that the
nonperturbative approximations (90),(91) to the four-fermion
propagator (84) contain the particle-hole response functions
as well as the two-particle and two-hole Green functions.
The singly correlated contributions from G(c)irr to the kernel
K (r;11) are shown in Fig. 7, and the doubly correlated ones in
Fig. 8. At this stage it becomes clear that for the determination
of the dynamical part of the interaction kernel one needs
the knowledge about the two-body correlation functions of
the particle-hole and particle-particle (hole-hole) types, which
enter Eqs. (90),(91). To formalize this, we can complement
the particle-hole propagator considered above, by the particle-
particle and hole-hole ones. Thus, we can define

R̂ = {R(ph), R(pp), R(hh)},
R̂(0) = {R(0;ph), R(0;pp), R(0;hh)}. (92)

Then, the EOM for R̂(ω) can be written in a compact form:

R̂(ω) = R̂(0)(ω) + R̂(0)(ω)K[R̂(ω)]R̂(ω). (93)

Remarkably enough, all frequency (time) dependence of the
kernel originates from the internal two-fermion propagators
which are themselves the main variables. Such a closed
approach has been discussed, in particular, in the EOM
language for the two-fermion Green functions [13–15] and
time-dependent density matrices in Refs. [16,70]. A similar
approach to the nuclear response has been developed over the
years as the method of chronological decoupling of diagrams
or the time blocking approximation [23,24,29,55,71,72] which
has become self-consistent in its later implementations based
on meson-nucleon Lagrangians [29,41,42,46,55,73,74]. This
approach starts from the general Bethe-Salpeter equation for
a four-time two-fermion Green function, but after applying a
certain time projection technique reduces to the two-time or
single-frequency equation of motion of the Dyson type with
the kernel, which is topologically equivalent to selected com-
ponents of the EOM singly-correlated kernel. This model is
discussed in detail in the next section. Analogous approaches
of the nuclear field theory, although derived differently, also
lead to single-frequency EOM’s with frequency-dependent
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FIG. 7. Diagrammatic representation of the singly correlated approximation of Eq. (90) to the dynamical kernel K (r;11)
12,1′2′ (t − t ′) irreducible

with respect to the particle-hole propagator. “AS” includes the antisymmetrized contributions, similar to that of the uncorrelated part, Fig. 6.

kernels containing couplings between single-fermion and
phonon propagators [6–8,22,75]. All these methods are not
related explicitly to the bare nucleon-nucleon interactions and
based on phenomenological descriptions of the mean field,
instead of the static part of the kernel (78),(80), and effective
in-medium nucleon-nucleon interactions. The EOM method
for two-fermion response functions, taking into account both
static and dynamical parts of the interaction kernel, is now
being more applied in quantum chemistry [54].

It is not likely that Eq. (93) with the dynamical interaction
kernels of Eqs. (90),(91) can be solved analytically except
for some toy models [16,70]. In practice, its self-consistent
solution can be found iteratively. To initialize an iterative
algorithm, one would need a starting approximation to the
response functions contained in the kernel K[R̂(ω)]. In the
cases of phenomenological models discussed above and in
the next section, the starting-point response functions are
approximated by the solution of Eq. (93) keeping only the
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FIG. 8. Same as in Fig. 7, but for the doubly correlated approximation of Eq. (91).
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static term in the kernel, that corresponds to the random phase
approximation with effective interactions.

V. PARTICLE-VIBRATION COUPLING (PVC) MODEL
IN THE TIME BLOCKING APPROXIMATION (TBA)

In this section we revisit and investigate the physical
content of the approach to the particle-hole response function
of Eq. (72), known as particle-vibration coupling model, in
the context of the EOM method discussed above. In the
Green function language, the PVC model was formulated in
Refs. [23,24] within a method of chronological decoupling of
diagrams. It emerged as an extension of the Migdal’s theory
of finite Fermi systems [76] beyond the quasiparticle random
phase approximation (QRPA). The extended theory was gen-
eralized for the case of superfluid pairing in Refs. [71,72] and
received a relativistic formulation and a fully self-consistent
(parameter-free) implementation in Refs. [29,55,74,77]. In the
latter versions and numerous later developments and appli-
cations the method included the same idea of chronological
decoupling of diagrams and was renamed to time blocking
approximation (TBA).

The final expressions of the PVC-TBA approach for the
dynamical kernel of Eq. (72) turned out to be equivalent
to those of the NFT [8,22] obtained by making use of the
perturbation theory for the coupling between the quasipar-
ticles and collective doorway states. Both approaches were
based on the assumption about the dynamical part of the
nucleonic self-energy in the EOM form of Eq. (49), where the
bare interaction is replaced by the effective interaction, and
typically kept only the second term of it, which occurred to
be dominant. The intermediate fermionic line in this term was
approximated by the mean-field one-fermion Green function.
The conventional PVC-TBA and NFT response theories were
confined by the ph ⊗ phonon configurations following the
idea of a small parameter hidden in the effective PVC vertices.
Although PVC-TBA showed a considerable improvement of
the description of nuclear excited states compared to QRPA,
its unclear foundation and uncontrollable approximations re-
mained the drawbacks preventing this approach from further
development. Later, based on formal similarities with the
EOM kernels [12], the PVC-TBA method was generalized
to the case of two-phonon configurations [72] implemented
in the relativistic framework in Refs. [30,73]. Further ex-
tensions were discussed in Refs. [45,46], however, without
a comparison to the EOM method and without a detailed
analysis of the assumptions intuitively based on the EOM
derivation. Thus, the goals of this and subsequent sections are
(i) to explicitly compare the EOM with the dynamical kernel
discussed in Sec. IV with the PVC-TBA and, with the insights
of this comparison, (ii) develop a systematic approach to the
response functions with a nonperturbative treatment of higher
configurations in a strongly correlated medium.

Below we will follow the formalism and conventions of
Refs. [24,55], so that the index mapping will require the
replacement R(12, 34) → R(21, 43) in order to compare the
equations for the particle-hole response function with those
of the previous section. Note that in the PVC-TBA model,
one starts from the Bethe-Salpeter equation (BSE) for a more

general four-time response [23,24]:

R(12, 34) = G(1, 3)G(4, 2)

− i
∑
5678

G(1, 5)G(6, 2)V (56, 78)R(78, 34), (94)

where the summation over the number indices 1, 2, . . . im-
plies integration over the respective time variables, and V is
the interaction amplitude irreducible in the ph channel. This
amplitude is, in general, a variational derivative of the one-
fermion self-energy � with respect to the exact single-particle
Green function

V (12, 34) = i
δ�(1, 2)

δG(3, 4)
(95)

and a four-time analog of the kernel of Eq. (74). Similarly,
it is a sum of the static effective interaction Ṽ and the time-
dependent (energy-dependent) one V (e):

V (12, 34) = Ṽ (12, 34) + V (e)(12, 34),

Ṽ (12, 34) = Ṽ1234δ(t31)δ(t21)δ(t34), (96)

V (e)(12, 34) = i
δ�(e)(1, 2)

δG(3, 4)
,

where we implied that t12 = t1 − t2. Despite the fact that in
this approach one starts from the formally exact BSE (94)
and employs the decomposition (96) of the interaction kernel
derived by the EOM method, it does not imply a connection
with the underlying bare interaction. Instead, the static part of
the self-energy is adjusted to experimental data, for instance,
the data on nuclear binding energies and radii assuming
that they depend only on one-body density or fitted to repro-
duce the lowest single-particle excitations obtained in knock-
out or transfer reactions. Thus, in this theory,

�11′ (ε) = �̃11′ + �
(e)
11′ (ε),

�̃11′ =
∑
22′

Ṽ11′22′ρ
(0)
22′ , (97)

�
(e)
11′ (ε) =

∑
ν,2

gν(σ2 )
12 gν(σ2 )∗

1′2

ε − ε̃2 − σ2(�ν − iδ)
, δ → +0,

where the dynamical part of the self-energy is borrowed from
that of the EOM (49), neglecting the uncorrelated part, per-
forming the mapping (57),(58) with the replacement v̄ → Ṽ
and Fourier transformation to the energy domain. In Eq. (97)
ε̃1 are the eigenvalues of the phenomenological one-body part
of the Hamiltonian. Usually the PVC models do not include
coupling to pairing phonons, but in principle it can be added as
a term similar to the last line of Eq. (97). Notice that, although
both the self-energy (97) and the interaction kernel (96) are
again decomposed into the static and dynamical parts, in the
effective theory these parts are not equivalent to those in the
EOM starting from the bare interaction. However, we can call
them topologically equivalent as they have the same internal
propagator structure.

In terms of the free response, which is, in the time do-
main, a product of two one-fermion propagators R0(12, 34) =
G(1, 3)G(4, 2), the BSE (94) can be written in the operator
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RR = +

RR R++

+ R

FIG. 9. Bethe-Salpeter equation for the ph-response function
R corresponding to Eq. (103) with the interaction kernel defined
by Eqs. (104),(105) in graphical representation (not time-ordered).
Phonon vertices and propagators are defined in Fig. 2 and the small
black circle stands for the static part of the residual effective ph-
interaction Ṽ .

form as

R = R0 − iR0V R. (98)

Since the static mean-field part of the interaction kernel is
fixed by fitting the global characteristics of the many-body
system to data, it is convenient for further analysis to eliminate
the exact Green function G and rewrite it in terms of the mean
field Green function G̃, such as

G̃11′ (ε) = G(0)
11′ (ε) +

∑
22′

G(0)
12 (ε)�̃22′ (ε)G̃2′1′ (ε) (99)

with

G̃(1, 2) = −iσ1δ12θ (σ1τ )e−iε̃1τ , τ = t1 − t2, (100)

G̃12(ε) = δ12

ε − ε̃1 + iσ1δ
, σ1 = sign(ε̃1), (101)

where δ → +0. Using the connection between G̃ and G in the
Nambu form

G̃−1(1, 2) = G−1(1, 2) + �(e)(1, 2), (102)

one can rewrite Eq. (98) as follows:

R = R̃0 − iR̃0W R (103)

with the uncorrelated mean-field particle-hole response func-
tion R̃0(12, 34) = G̃(1, 3)G̃(4, 2) and W as a new interaction
kernel of the form

W = Ṽ + W (e), (104)

where

W (e)(12, 34) = V (e)(12, 34) + i�(e)(1, 3)G̃−1(4, 2)

+ iG̃−1(1, 3)�(e)(4, 2) − i�(e)(1, 3)�e(4, 2).

(105)

The BSE in this form is more convenient to consider since
the mean-field Green function G̃ is well defined. However, the
interaction kernel W in Eq. (104) becomes more complicated.
The graphical representation of the Eq. (103) with the inter-
action kernel defined by Eqs. (104),(105) is shown in Fig. 9.
Thus, one can see that the dynamical part of the kernel takes
the form, which is similar to the one obtained in the EOM, but
still depends on four times. The last term i�e(1, 3)�e(4, 2) of
Eq. (105) can be still related to one of the doubly correlated
contributions of the EOM, but in the present context it looks
very different from the others. As it is discussed in Ref. [24],

this term is of a higher order and compensates multiple
counting of the particle-phonon coupling arising from the
two previous terms, if the entire dynamical kernel is still
unrestricted by only particle-hole pairs of indices. Indeed,
terms with backward-going correlation functions in the dy-
namical kernel are also possible, but they require a special
consideration. They have been analyzed, in particular, within
a phenomenological approach and included in calculations
of nuclear neutral excitations in Refs. [23,24,43] as well as
more recently within a self-consistent relativistic framework
applied to charge-exchange excitations in Ref. [44].

In the leading resonant time blocking approximation,
which is discussed below, the possibility of having particle-
particle and hole-hole states as well as the connection between
particle-hole and hole-particle states in the dynamical kernel
is neglected. This corresponds to the absence of ground state
correlations more complex than the particle-hole ones. In
this case multiple counting does not take place and the term
i�e(1, 3)�e(4, 2) can be omitted.

Let us consider the Fourier transformation of the Eq. (103)
to the energy domain. The response function formally depends
on four time variables, but, in fact, on three time differences,
because of the time translational invariance. Thus, a triple
Fourier transform is needed to translate the BSE (103) into the
equation with respect to energy variables. In order to obtain
the spectral representation of the response, two of them have
to be integrated out. These operations lead to the following
equation:

R12,34(ω, ε)

= G̃13(ε + ω)G̃42(ε) +
∑
5678

G̃15(ε + ω)G̃62(ε)

×
∫ ∞

−∞

dε′

2π i
W56,78(ω, ε, ε′)R78,34(ω, ε′) (106)

with the subsequent integration over ε:

R12,34(ω) =
∫ ∞

−∞

dε

2π i
R12,34(ω, ε). (107)

One can notice, however, that both the solution of Eq. (106)
R and its kernel W are singular with respect to the energy
variables. This is related to the fact that Eq. (103) contains in-
tegrations over all time points of the intermediate states. This
means that many configurations which are actually more com-
plex than 1p1h ⊗ phonon are contained in the exact response
function. In Ref. [23] a special time-projection technique was
introduced to block the ph propagation through these complex
intermediate states. It has been shown that for this type of
response it is possible to reduce the integral equation (106)
to a relatively simple algebraic equation. Below we will see
that this approximation corresponds to retaining certain part of
the terms specified in Eq. (90) in the internal Green functions
propagators of the dynamical two-time kernel in the EOM
method.

The Bethe-Salpeter equation (103) can be solved in two
steps. First one can calculate the correlated particle-hole
response R(e), which describes the particle-hole propagation
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FIG. 10. Dynamical kernel (time-ordered) of the PVC-TBA equation for the particle-hole response function in the resonant approximation
of Eq. (119).

under the influence of the interaction W (e),

R(e) = R̃0 − iR̃0W (e)R(e) (108)

and contains all the effects of particle-phonon coupling and
all the singularities of the integral part of the main BSE (103).
Second, the remaining equation for the full response function
R,

R = R(e) − iR(e)Ṽ R, (109)

which contains only the static effective interaction Ṽ , can be
easily solved when R(e) is known. Thus, the main problem
to address singularities is to calculate the correlated particle-
hole response R(e). The latter can be represented as an infinite
series of graphs with uncorrelated ph propagators alternated
with single interaction events:

R(e) = R̃0 − iR̃0�(e)R̃0, (110)

�(e) = W (e) − iW (e)R̃0�(e), (111)

where �(e) is, thus, a reducible analog of W (e) containing
correlated two-particle-two-hole blocks connected by the un-
correlated ph-propagators. Then, to avoid higher-complexity
configurations, a time-projection operator

�(12, 34) = δσ1,−σ2δ13δ24θ (σ1t14)θ (σ1t23) (112)

with the Heaviside type functions θ (t ) is introduced into the
integral part of Eq. (111) [23] according to

R̃0(12, 34) → R̃0(12, 34)�(12, 34), (113)

so that

�(e)(12, 34) = W (e)(12, 34) − i
∑
5678

W (e)(12, 56)R̃0(56, 78)

×�(56, 78)�(e)(78, 34). (114)

After the Fourier transformation in time we restrict ourselves
to the two-time response function R12,34(ω), because it has
to be subsequently contracted with equal-times external field
operators,

R12,34(ω) = −i
∫ ∞

−∞
dt1dt2dt3dt4δ(t1 − t2)δ(t3 − t4)

× δ(t4)eiωt13 R(12, 34), (115)

which depends only on one energy variable ω. As a result, we
obtain an algebraic equation for the spectral representation of
the particle-hole response:

R12,34(ω) = R̃0
12,34(ω) +

∑
5678

R̃0
12,56(ω)(Ṽ56,78

+�56,78(ω))R78,34(ω), (116)

where

R̃0
12,34(ω) = R̃12(ω)δ13δ24, (117)

R̃12(ω) = n2 − n1

ω − ε̃12
, (118)

ε̃12 = ε̃1 − ε̃2, and �(ω) is the particle-phonon coupling am-
plitude with the following components: ph-ph matrix element
has the form

�
(ph,ph)
12,1′2′ (ω) =

∑
ν

[
δ22′

∑
1′′

gν
11′′gν∗

1′1′′

ω − ε̃1′′ + ε̃2 − �ν

+ δ11′
∑

2′′

gν
2′′2gν∗

2′′2′

ω − ε̃1 + ε̃2′′ − �ν

− gν
11′gν∗

22′

ω − ε̃1′ + ε̃2 − �ν

− gν∗
1′1gν

2′2

ω − ε̃1 + ε̃2′ − �ν

]
,

(119)

where {1, 1′, 1′′} are the particle states with ε̃1, ε̃1′ , ε̃1′′ > εF ,
{2, 2′, 2′′} are the hole states with ε̃2, ε̃2′ , ε̃2′′ � εF and εF is
the Fermi energy. The hp-hp matrix elements �

(hp,hp)
12,1′2′ (ω) are

obtained by Hermitian conjugation and time-reversal transfor-
mation ω → −ω. The diagrammatic representation of �(ω) is
shown in Fig. 10.

Thus, we have obtained the expression for the dynamical
interaction kernel which can be compared to the kernel of the
EOM method. Indeed, a complete matching can be revealed
by looking at the parts of the latter kernel associated with the
singly correlated terms and performing the mapping defined
by Eq. (58). The matching is illustrated in Figs. 11,12 and can
be additionally verified by taking the Fourier transform of the
dynamical kernel with the internal Green functions of the type
(90) [54]. One should be, however, aware of the differences
between v̄ of the ab initio theory and Ṽ used in effective
theories as well as of the double-counting removal correction
needed in the latter case. In the framework of an effective
theory, indeed, an important correction has to be done to
the Eq. (116). Being adjusted to experimental data, the static
interaction Ṽ contains, in principle, all beyond-mean-field
correlations, in particular, those which are explicitly included
into the dynamical kernel Ṽ (e), in the static approximation.
Therefore, a direct addition of the dynamical interaction leads
to a double counting of the static correlations contained in
�(ω). In order to avoid this, the dynamical kernel has to be
corrected as follows [31]:

�(ω) → δ�(ω) = �(ω) − �(0). (120)

The physical meaning of this subtraction is clear: the aver-
age value of the particle-vibration coupling amplitude � in
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FIG. 11. Diagrammatic mapping of the singly correlated terms
of K (r) containing R(ph) to the PVC kernel, according to Eq. (57).

the ground state is supposed to be contained already in the
residual effective interaction Ṽ , therefore, we should take into
account only the additional energy dependence, i.e., δ�(ω) =
�(ω) − �(0), on top of this effective interaction. Instead of
Eq. (116), we finally solve the following response equation:

R = R̃0 + R̃0[Ṽ + δ�]R. (121)

In early applications of PVC-TBA [23,24], the phonon
coupling vertices gν were calculated based on experimental
information about deformation parameters for the lowest col-
lective excitations. Their experimental energies were taken as
the �ν values. The common practice was to include only very

=

(pp)

4

2
3

5

2’

4’

3’

5’

Gv
−

v
−

1 1’

(hh)

4

2

3

5

2’

4’

3’

5’

Gv
−

v
−

1 1’

1 1’

2 2’

=

1 1’3 3’

2 2’

3 3’

FIG. 12. Diagrammatic mapping of the singly correlated terms of
K (r) containing G(pp) and G(hh) from K (r;11) (top) and K (r;22) (bottom),
respectively, to the PVC kernel, according to Eq. (53).

few collective phonons, to justify neglecting the uncorrelated
term in the dynamical kernel. In later applications, such as
in Refs. [29,30,33,55,71,73–75,78–80], the phonon spectra
were extracted from the RPA solutions, i.e., the solutions of
Eq. (116) without the dynamical kernel [more specifically,
keeping only the first term Ṽ in the interaction kernel of
Eq. (116)]. These works adopted larger phonon spaces and the
subtraction of Eq. (120) elaborated in detail in Ref. [31], thus,
representing an important step toward a closed calculation
scheme for the particle-hole response function containing
dynamical medium effects in nuclei.

The first fully self-consistent version of the PVC-TBA
was implemented in the relativistic framework based on the
effective meson-nucleon Lagrangian of quantum hadrody-
namics [55]. In this approach, the most important particle-
hole phonons again correspond to the solutions of the same
equation (116) without the dynamical kernel. In a more
complete version also particle-particle and hole-hole (pairing)
phonons should be included as well as the phonons appeared
in the form of proton-neutron (charge-exchange) correlated
pairs. Contribution of the charge-exchange phonons was in-
vestigated within the relativistic formalism in Refs. [41,42],
where their role was found somewhat smaller than that of
the regular like-particle ones, but sizable enough to modify
the single-particle structure [41] and spin-isospin strength
distributions [42]. The contribution of pairing vibrations to
the dynamical kernel of Eq. (72) is commonly neglected,
however, a systematic study of those effects is highly desirable
to properly assess their role.

But even without the inclusion of the pairing channels,
accurate solutions of Eqs. (72),(116) require an iterative
scheme, as discussed in Sec. IV. This was not realized in
the conventional PVC-TBA, however, the idea of iterative
solutions is straightforward and can be, in principle, imple-
mented numerically. In the calculations based on the effective
interaction derived from a reasonably good density functional
theory the most important phonons are described relatively
well already in RPA. Their characteristics do not change
significantly (except for acquiring fragmentation and larger
widths by the high-frequency and soft modes, which is ex-
pected to give second-order effects to the dynamical kernel)
in the calculations beyond RPA. This has been verified in
Ref. [45] by direct calculations, where the phonons obtained
as full solutions of Eq. (116) were recycled and reused in
the dynamical PVC-TBA kernel (116) to compute the dipole
response of some medium-mass and heavy nuclei, which
remained almost unaffected by these nonlinear effects. At the
same time, it follows from numerous studies performed with
this type of the dynamical kernel that there is a clear need
of extensions beyond its configuration complexity. Indeed,
as we have shown in Sec. II, the response function should
describe, in principle, the complete excitation spectrum of a
quantum many-body system, while in numerical applications
of the conventional PVC-TBA method with 1p1h ⊗ phonon
configurations the deficiency of the level density is quite
obvious after the comparison to data [36,40].

In this context it becomes interesting to look at the terms
which are missing in the conventional PVC-TBA, but present
in the EOM of Sec. IV. One can see after performing the
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matching shown in Fig. 11 that the singly correlated terms
of K (r;11), such as (b), (e), and (f) of Fig. 7 and their coun-
terparts from K (r;12), K (r;21), and K (r;22) as well as all doubly
correlated terms of Fig. 8 and their respective counterparts
are not included in the original PVC-TBA. A way to include
the terms of such structure to some extent was formulated
in [72] as a two-phonon version of the approach based on
the EOM [12], where both phonon correlation functions in
the dynamical kernel of the type Eq. (91) were taken in the
random phase approximation. Such a possibility has been also
discussed in the context of a formal comparison between the
models where the internal Green functions in the dynamical
kernel are confined by only the uncorrelated terms of the
Eq. (85) type, the singly correlated terms (90) and those of
Eq. (91) [54]. In the PVC-TBA framework, the two-phonon
approach was implemented numerically for the dipole nuclear
response and analyzed in Refs. [30,73]. In the latter work, a
quantitative comparison between the results obtained within
the approximations of Eqs. (119) (the kernel of Fig. 11) and
(91) with two coupled RPA phonons has been made, which
showed some improvements of the description of nuclear
strength functions, when the doubly correlated dynamical
kernel is used. However, the major deficiencies, which occur
because of the too small overall number of excited states
in the resulting response function (13) remained unsolved,
because this approach does not go beyond the correlated
2p-2h configurations.

VI. DOUBLY CORRELATED DYNAMICAL KERNEL
BEYOND 2p-2h CONFIGURATIONS

The direct way to overcome the latter problem is to cal-
culate the dynamical kernel beyond 2p-2h configurations.
Indeed, the Green function of Eq. (91) entering the dynamical
kernel consists of coupled two-fermion correlation functions,
however, it is not limited by any approximation to these cor-
relation functions. Ideally, they should provide a convergent
solution of Eq. (93) and contain, in principle, the entire exci-
tation spectrum. We have already mentioned two attempts to
go beyond the conventional PVC-TBA kernel of Eq. (119) and
Fig. 10, which were investigated in Refs. [30] and [45]. The
latter uses the phonons computed beyond RPA as solutions
of the full Eq. (116) and the former employs the kernel of
Eq. (91) with two RPA response functions. As mentioned
above, both models still left some room for improvement.

A different strategy has been outlined in Ref. [46] as a
generalized PVC-TBA, which proposes an iterative algorithm
for the solution of Eq. (116). After determining the RPA
phonons, like in the conventional PVC-TBA method, we
can solve the equation of motion (116) for the particle-hole

response function R(ω), which contains configurations of
the ph ⊗ phonon or two-quasiparticles coupled to phonon
(2q ⊗ phonon) type, for various multipolarities, and after that
reiterate the dynamical kernel as follows:

�
(3)η
12,34(ω) =

∑
56,5′6′ν

ζ
νη

12;56Rη

56,5′6′ (ω − η �ν )ζ νη∗
34;5′6′ , (122)

where the quantities ζ are the phonon vertex matrices

ζ
νη

12,56 = δ15 gν(η)
62 − gν(η)

15 δ62, (123)

so that the resulting four terms

�
(3)η
12,34(ω) =

∑
1′3′ν

gν(η)
11′ Rη

1′2,3′4(ω − η �ν )gν(η)∗
33′

+
∑
2′4′ν

gν(η)
2′2 Rη

12′,34′ (ω − η �ν )gν(η)∗
4′4

−
∑
1′4′ν

gν(η)
11′ Rη

1′2,34′ (ω − η �ν )gν(η)∗
4′4

−
∑
2′3′ν

gν(η)
2′2 Rη

12′,3′4(ω − η �ν )gν(η)∗
33′ (124)

correspond to the four diagrams in Fig. 13 with n = 2. The in-
dex η = ±1 denotes upper and lower components in the quasi-
particle space, see Refs. [46,72] for more details. Thus, the
amplitude �(3) contains the contributions of the graphs shown
in Fig. 14 in all orders with respect to the internal propagators.
However, the proposed procedure allows calculations of their
contribution without explicit evaluation of the diagrams of
Fig. 14. It is straightforward to see that these terms contain
2q ⊗ 2phonon configurations and thereby represent the next,
three-particle-three-hole (3p-3h), level of the configuration
complexity, as compared to the original PVC-TBA, which in
this implementation for superfluid systems in the relativistic
framework was named relativistic quasiparticle time blocking
approximation (RQTBA). Thus, we adopt EOM/R(Q)TBA3

as a working name for the approach of Eq. (124). The am-
plitude �(3) forms the dynamical interaction kernel for the
correlated particle-hole propagator R(e)(3) taking into account
3p-3h correlations (to be compared to R(e)(2) ≡ R(e) which
includes 2p-2h ones):

R(e)(3)η
12,34 (ω) = R̃(0)η

12 (ω)δ13δ24

+ R̃(0)η
12 (ω)

∑
56

�
(3)η
12,56(ω)R(e)(3)η

56,34 (ω). (125)

Analogously to the conventional PVC-TBA and RQTBA,
the remaining equation for the full response function is for-
mulated in terms of the correlated particle-hole propagator
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FIG. 13. Dynamical kernel of the generalized PVC-TBA, according to Eqs. (124),(129).
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FIG. 14. The simplest time-ordered 2q ⊗ 2phonon diagrams
taken into account in EOM/RQTBA3. The ellipsis stands for mul-
tiple PVC exchange and self-energy contributions as well as for the
correlated particle-hole configurations in the internal particle-hole
propagators.

R(e)(3)(ω) as a free term and the static effective interaction as
a kernel:

R(3)ηη′
12,34 (ω) = R(e)(3)η

12,34 (ω)δηη′ +
∑

56

R(e)(3)η
12,56 (ω)

×
∑
78η′′

[
Ṽ ηη′′

56,78 − �
(3)η
56,78(0)δηη′′]

R(3)η′′η′
78,34 (ω), (126)

where the superscript ‘(3)’ indicates that this response func-
tion takes into account 3p-3h configurations. Analogously
to the 2q ⊗ phonon RQTBA, the subtraction of the ampli-
tude �(3) at zero frequency from the effective interaction in
Eq. (126) eliminates the double counting of the static contri-
bution of the phonon coupling effects. It also improves con-
vergence of the sums in Eq. (124) with respect to the phonon
and quasiparticle energies of the intermediate complex con-
figurations [31]. Finally, the observed strength function is
a (model-independent) double convolution of the response
function with the external field operator:

S(E ) = − 1

2π
lim
�→0

Im
∑
1234

V (0)η
12 Rηη′

12,34(E + i�)V (0)η′∗
34 . (127)

The imaginary part � of the energy variable in Eq. (127)
is often used in the numerical calculations as a smearing
parameter. It provides a smooth envelope of the strength
distribution and averages over complex configurations which
are not taken into account explicitly. This parameter can also
mimic the experimental resolution of the data invoked for the
comparison.

Calculations presented below were performed within the
approach of Eqs. (116),(122)–(127), however, in principle,
the iteration procedure can be continued until convergence is
achieved. The initial steps are characterized as follows:

�
(1)
12,34(ω) = 0,

�
(2)
12,34(ω) = �12,34(ω),

R(e)(1)
12,34 (ω) = R̃(0)

12 (ω)δ31δ42,

R(e)(2)
12,34 (ω) = R(e)

12,34(ω),

R(1)
12,34(ω) = R̃(0)

12 (ω)δ31δ42,

R(2)
12,34(ω) = R12,34(ω). (128)

Then, the chain of operator equations for the correlated
particle-hole propagator R(e)(n), the phonon coupling ampli-
tude �(n), and the response function R(n) reads

R(e)(1)(ω) = R̃(0)(ω),

R(e)(n)(ω) = R̃(0)(ω) + R̃(0)(ω)�(n)(ω)R(e)(n)(ω),

�(n)(ω) =
∑

ν

ζ νR(n−1)(ω − �ν )ζ ν∗,

R(n)(ω) = R(e)(n)(ω) + R(e)(n)(ω)[Ṽ − �(n)(0)]R(n)(ω),

(129)

where the index ‘(n)’ with n � 2 indicates the iteration step.
The phonon vertex matrices ζ ν can be, in principle, recal-
culated on each step using the spectral representation of the
response function (13) while, as discussed above, the study of
Ref. [45] showed that the effect of such corrections may be
small. In the last equation (129), �(n)(0) is subtracted from
the static interaction kernel to avoid double counting effects
for the case of calculations based on effective interactions.
In ab initio calculations this subtraction is absent. The pro-
posed iterative method allows one to obtain the contributions
of the three, four, and higher PVC-loop diagrams without
calculating them explicitly. The generalized dynamical kernel
is illustrated diagrammatically in Fig. 13.

There are various factors which favor the convergence
of the iterative procedure with respect to the internal re-
sponse functions (129). In an analogy to Eliashberg theory for
electron-phonon interaction in solids [81], in finite nuclei a
certain smallness is contained in the phonon vertices which
enter the dynamical kernel, that serves as a foundation for the
phenomenological PVC approaches [5]. Indeed, in spherical
nuclei the PVC vertices enter the dynamical kernel in com-
binations ḡν

12 ∼ 〈1||gν ||2〉/(�ν

√
2 j1 + 1) [5,24,82]. Thus, on

each iteration, a factor of ∼|ḡν |2 � 1 suppresses higher-order
contributions. The equation for the response function is com-
monly solved for certain angular momentum and parity, which
correspond to those quantum numbers of the external field.
For this purpose, Eqs. (122)–(129) have been formulated in
the coupled form in Ref. [46], where it is shown that the
kernel �(n)(ω) contains a geometrical factor which enters
�(n)(ω) as a multiplier on each iteration. This factor shows
up as a product of two 6 j symbols that contains a smallness
originated from the coupling of the angular momentum of
the external channel with the angular momenta of the two
internal correlation functions. As it is shown below, in the
numerical calculations the fragmentation effects generated
by the 2q ⊗ phonon configurations on the two-quasiparticle
R(Q)RPA states are considerably stronger than those caused
by the subsequent addition of the 2q ⊗ 2phonon configura-
tions, that can serve as a clear indication of convergence.
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VII. NUMERICAL DETAILS AND RESULTS

The EOM/RQTBA3 model, which was originally pro-
posed in Ref. [46] and briefly revisited in the previous section,
has been implemented numerically and tested in calculations
of nuclear dipole response. This type of response is known to
dominate nuclear spectra and associated with the largest cor-
pus of available experimental data. The original as well as the
evaluated data on the giant dipole resonance (GDR), the high-
energy part of the dipole response, can be found in Ref. [83].
Typically the GDR above the particle emission threshold and
its low-energy counterpart are measured with different meth-
ods, although the newer techniques, such as inelastic proton
scattering [37,84], allow for unified high-quality measure-
ments. The knowledge about dipole strength distributions in
nuclei is crucial for many applications in nuclear sciences and
astrophysics, see more details in Refs. [85,86]. Overall, testing
both the high- and low-energy dipole strength distributions is
the best benchmark for newly-developed many-body models.

As in the base RQTBA model [29], we implement a
multistep parameter-free calculation scheme, but with a few
more steps now: (i) the closed set of the relativistic mean
field (RMF) Hartree-Bogoliubov equations [87–89] are solved
using the NL3 parametrization of Refs. [90,91] for the nonlin-
ear σ -meson model and monopole pairing forces adjusted to
reproduce empirical pairing gaps. The obtained single-particle
Dirac spinors and the corresponding single-nucleon energies,
being the eigenstates and eigenvalues of the relativistic mean-
field Hamiltonian, formed the working basis for subsequent
calculations of the response, where the same effective NL3
meson-exchange interaction Ṽ is also adopted. (ii) The rel-
ativistic quasiparticle random phase approximation (RQRPA)
equation [92], which is equivalent to Eq. (116) without the dy-
namical kernel, is solved to obtain the phonon vertices gν and
their frequencies �ν . The set of phonons with the Jπν

ν = 2+,
3−, 4+, 5−, 6+ and frequencies �ν � 15 MeV, together with
the RMF single-particle basis, forms the 2q ⊗ phonon con-
figurations for the particle-phonon coupling amplitude �(ω),
while the phonon space was additionally truncated according
to the values of the reduced transition probabilities of the
corresponding electromagnetic transitions: the modes with the
values of the reduced transition probabilities B(EL) less than
5% of the maximal one (for each Jπν

ν ) were neglected. These
are the common truncation criteria for the PVC models based
on the RMF, see, for instance [41], where a convergence study
was presented. (iii) Equation (116) for the response function
is solved in the truncated configuration space, which includes
excitations within the energy window of interest 0–25 MeV,
for spins and parities Jπ = 0±–6± (in this first application we,
however, neglected the static part of the kernel of Eq. (116),
just to study the power of the correlated internal particle-hole
propagator to induce additional fragmentation—in further
applications the full kernel will be taken into account). (iv)
The obtained response functions, together with the previously
obtained phonon characteristics, are used to compute the
dynamical kernel of Eq. (124). (v) The correlated particle-hole
propagator with Jπ = 1− is obtained according to Eq. (125) in
the same truncated configuration space. (vi) The full dipole
response function is computed by solving Eq. (126) in the

momentum space, as described in [29,55]. (vii) Finally, the
strength function is found according to Eq. (127) with the
external field operator of the electromagnetic dipole (EME1)
character

V (0)EM
1M = eN

A

Z∑
i=1

riY1M (r̂i ) − eZ

A

N∑
i=1

riY1M (r̂i ), (130)

where Z and N are the numbers of protons and neutrons,
respectively, A = N + Z , and e is the proton charge. The sums
in Eq. (130) are performed over the corresponding nucleonic
degrees of freedom. While the response to this operator is
often attributed to electromagnetic probes, hadronic probes
are associated predominantly [39] with the response to the
isoscalar dipole (ISE1) operator

V (0)IS
1M =

A∑
i=1

(
r3

i − ηri
)
Y1M (r̂i ), (131)

where η = 5〈r2〉/3 and the second term in the brackets elimi-
nates the spurious translational mode [93].

A sufficiently large quasiparticle basis in both Fermi (parti-
cle) and Dirac (antiparticle) sectors should be used in solving
Eqs. (116), (126). Although the dynamical kernels �(ω),
which induce fragmentation of two-quasiparticle configura-
tions, may be cut off outside a window confined by the
energy of interest, the static kernel Ṽ has to be included in
the complete or nearly complete two-quasiparticle space [29].
The latter kernel is responsible for the correct location of
the simple [R(Q)RPA] modes of the strength distribution and
associated mainly with the medium-range correlations, while
the former kernels introduce the long-range effects causing the
redistribution of the strength. Here, the completeness means
that the two-quasiparticle basis, in which Eqs. (116), (126) are
solved, should include all the single-quasiparticle states which
participate in the RMF self-consistent procedure. In our case
the basis spans the single-quasiparticle states with the angular
momenta up to 41/2 in both Fermi and Dirac sectors, the
same range where the parameters of the Lagrangian have been
fitted. The respective energy range of the two-quasiparticle ex-
citations is confined by ≈250 MeV in the Fermi sector and by
≈−1950 MeV in its Dirac counterpart. Keeping the complete
two-quasiparticle basis in Eqs. (116), (126) guarantees full
self-consistency, in particular, the proper decoupling of the
dipole translational mode from the intrinsic dipole excitations
in R(Q)RPA [10,92]. This fact can be verified numerically, for
instance, by calculating the isoscalar dipole strength distribu-
tion produced by the response to the operator of Eq. (131),
where the radial form factor is corrected for the center of mass
motion. Without this correction one typically sees a dominant
peak located at zero energy, as we show in the left panel of
Fig. 15 in comparison to the right panel, where the response
to the corrected isoscalar operator is displayed, for 48Ca. One
can see that in the latter case the zero-energy translational
mode is suppressed. Moreover, this property is kept in the
extended R(Q)TBA and EOM/R(Q)TBA3 models—indeed,
the subtraction procedure of Eqs. (120), (126) leads to the
purely R(Q)RPA kernel in the ω → 0 limit. This feature
is known since early implementations of the time blocking
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FIG. 15. The low-energy isoscalar dipole strength distributions
in 48Ca calculated in R(Q)RPA, R(Q)TBA, and EOM/R(Q)TBA3

with � = 200 keV for the uncorrected (left) and corrected (right) for
the spurious translational mode operators of Eq. (131).

method with the subtraction [71]. However, in R(Q)TBA and
EOM/R(Q)TBA3 the translational mode may be fragmented
because, like the physical states, it can be coupled to the
phonons. Although, due to the subtraction procedure, the main
peak of the translational mode remains at zero energy, its frag-
ments may spread around it. As the excited states calculated
with the uncorrected and corrected isoscalar dipole operators
look different in both the R(Q)TBA and EOM/R(Q)TBA3,
in the present implementations these models do not guarantee
complete decoupling of the spurious mode from the physical
states. A solution to this problem was proposed in Ref. [94]
in the form of a projection operator applied to the dynamical
kernel, that prevents the coupling of complex configurations
to the translational mode and, thus, removes its admixture to
the physical states. Performing this transformation is beyond
the scope of the present article, but will be considered in future
work. The sensitivity of our present implementation to the
two-quasiparticle basis incompleteness was inspected and re-
vealed that an energy cut-off of this basis by ≈100 MeV in the
Fermi sector and ≈−1800 MeV in its Dirac counterpart does
not introduce noticeable changes in the excitation spectra, that
can be used for more economical calculations.

The results of calculations for the electromagnetic dipole
response in 42,48Ca are displayed in Fig. 16. The strength dis-
tribution obtained within EOM/RQTBA3 (red solid curves)
is plotted against the results of RQRPA (black dot-dashed
curves) and RQTBA (blue dashed curves) and compared to
experimental data (green curves and circles) of Ref. [83] in
terms of the dipole photoabsorption cross section

σE1(E ) = 16π3e2

9h̄c
E SE1(E ), (132)

i.e., with an additional energy factor in front of the strength
distribution. These cross sections were investigated in the
RQTBA framework in Ref. [96] in order to establish the
role of the 2q ⊗ phonon configurations in the formation of
the spreading width of the GDR in the chain of calcium
isotopes. We found that these configurations indeed result in
the significant spreading width improving considerably the
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FIG. 16. Giant dipole resonance in 42,48Ca nuclei calculated
within R(Q)RPA, R(Q)TBA, and EOM/R(Q)TBA3 with � =
500 keV, in comparison to experimental data of Refs. [83,95].

agreement to data as compared to RQRPA, while the latter
approach provides a very good description of the GDR’s
position and the total strength. However, although we used
a fairly large model space of the 2q ⊗ phonon configurations,
the total width of the RQTBA dipole strength distribution still
underestimates its experimental value. Another major short-
coming was found on the high-energy shoulder of the GDR
above its centroid, where the cross sections were system-
atically underestimated. A similar situation was reported in
Ref. [33], where a systematic downshift of the nonrelativistic
QTBA strength distributions, as compared to the RPA ones,
was revealed in calculations with various Skyrme forces for
monopole, dipole and quadrupole resonances in both light
and heavy nuclei. Now, when EOM/RQTBA3 with more
complex 2q ⊗ 2phonon configurations becomes available, we
can see that it shows the potential of resolving those problems.
Indeed, Fig. 16 shows that the new configurations present in
EOM/RQTBA3 induce a stronger fragmentation of the GDR
and its additional spreading toward both higher and lower
energies. Another new effect is a relatively small, but a visible
shift of the main peak toward higher energies. These features
of changing the high-energy behavior of the strength distri-
butions can be directly related to the appearance of the new
higher-energy complex configurations and, consequently, the
higher-energy poles in the resulting response functions, that
has the power to rearrange the energy balance of the overall
strength distribution. This change is, however, modest enough
to conserve the energy-weighted sum rule (EWSR) which
varies quantitatively only within a few percent as compared
to the RQRPA and RQTBA ones in the investigated energy
region.

As it has been shown in Ref. [72], in the resonant time
blocking approximation, where the high-energy behavior of
the dynamical kernel is �(ω) ∼ 1/ω at ω → ∞, the EWSR
is exactly the same as in the (Q)RPA. In other words, the
presence of the dynamical kernel of Eq. (119) with such a
behavior does not violate the EWSR of RQRPA. It can be
seen from Eqs. (12),(124) that the iterations of the dynamical
kernel do not change its high-energy asymptotics as it is
determined by the internal particle-hole propagators satisfying
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the model-independent Eq. (12). The presence of subtraction
in Eq. (125), however, changes the static part of the kernel
and, thus, introduces a small violation of the EWSR as in the
conventional time blocking approximation of Eqs. (120),(121)
[29,55,71]. As it is known in the literature, in extended models
with the ground state correlations caused by PVC another
sum rule violation occurs, as well as its restoration [72,97].
The formalism of Ref. [98] proves that the self-consistent
RPA (SCRPA) and possibly also the second SCRPA keeps all
desirable qualities of the standard RPA intact, that includes
also the sum rules. The complex ground state correlations are
not included in the present work, but were recently addressed
in other developments [44].

The obtained change of the high-energy behavior of the
strength distributions in EOM/RQTBA3 may also provide
some new arguments to the discussion of fitting the nuclear
energy density functionals. In particular, using the position
of the GDR as one of the reference observables may become
difficult because of its model dependence.

The low-energy behavior of the dipole strength distribution
in nuclei has been a topic of an intense research during the
last couple of decades. A strong astrophysics connection of
this type of strength, in particular, to the r-process nucle-
osynthesis, attracted much of interest from both experimen-
tal and theoretical sides. In this context, both RQRPA and
RQTBA models were examined for their performance and for
their potential of describing the low-energy dipole strength
associated with the pygmy dipole resonance (PDR), or the
soft dipole mode [36,38,40,73,99–102]. Similarly to the GDR
case, RQTBA provided an improved description of the PDR
showing a considerably richer spectral structure because of
the fragmentation effects induced by the 2q ⊗ phonon and
2phonon configurations. However, in many cases it became
clear that even calculations with quite large model spaces
reveal a deficiency of configuration complexity that lead to too
low level density in the discrete and quasicontinuum energy
sectors below the particle emission threshold. Therefore, it is
interesting to examine the newly developed EOM/RQTBA3

for its performance in the low-energy regime.
Figure 17 illustrates the performance of R(Q)TBA and

EOM/R(Q)TBA3 in the description of the isoscalar (top)
and isovector (bottom) low-energy dipole response of 48Ca.
The experimental particle emission threshold of 48Ca is
≈9.95 MeV [83], so that the observed spectrum below this
energy has a discrete character. Two kinds of experiments,
namely the inelastic photon scattering (γ , γ ′) and (α, α′γ )
coincidence dominated by the strong interaction have been
performed and discussed in Refs. [103,104]. It was found,
in particular, that the subthreshold dipole response of 48Ca
does not show an isospin splitting as observed in heavier
neutron-rich nuclei [36], where the lowest-lying states are
mostly isoscalar in nature and the states at higher energy are
of the mixed isoscalar-isovector character. Here, we do not
intend to go into the details of the underlying structure of the
states, which can be essentially model dependent, but rather
look at the potential of our many-body models to reproduce
the experimental strength distribution. For this purpose, we
have extracted the reduced transition probabilities from the
computed strength distributions by making use the simple
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FIG. 17. The low-energy dipole strength of 48Ca nucleus cal-
culated within R(Q)RPA, R(Q)TBA, and EOM/R(Q)TBA3. The
reduced transition probabilities are shown for the isoscalar (top)
and electromagnetic (bottom) dipole operators in comparison to
experimental data of Ref. [103].

relationship: Bν = π�S(ων ), which follows from Eq. (127)
and which is valid for sufficiently small values of � (here,
we used � = 20 keV) in the vicinity of the peak ων . The
first observation here is that R(Q)RPA does not produce any
excited states in this energy region and gives its first solution
just above 10 MeV. The inclusion of the 2q ⊗ phonon con-
figurations in R(Q)TBA improves the picture considerably,
due to the fragmentation effects caused by the coupling of
the R(Q)RPA modes to these configurations some strength
comes down below the neutron threshold. The cumulative
EME1 strength below 10 MeV agrees with the experimental
data quite well as it was discussed in detail in Ref. [96],
however, the major fraction of the R(Q)TBA strength remains
in the threshold area. On the other hand, the ISE1 strength
distribution in R(Q)TBA shows the pattern which is rather
close to the experimental one (here, we plot the energy-
weighted values in order to compare with Ref. [103]). It can
be also seen that adding more complex configurations within
the EOM/R(Q)TBA3 further improves the description: it (i)
slightly rearranges the ISE1 strength bringing it even closer to
the observed one and (ii) gives two distinct EME1 states below
9 MeV, which can be approximately matched the experimental
ones, and brings more strength from the higher-energy region
to the threshold area, where also several experimental levels
are found at about the same energies. The experimentally
extracted BE1 values of the states in the threshold area may
strongly depend on the methods employed in the data analysis
[105], so that those BE1 values may not be a good benchmark
for the theory.

Another interesting case is the low-energy dipole response
of the unstable neutron-rich 68Ni, which has been investigated
both experimentally [106–108] and theoretically [30,73,109].
The results of our calculations for the low-energy dipole
response of 68Ni are displayed in Figs. 18, 19. As in the case
of calcium isotopes, we compare the results of the three mod-
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FIG. 18. The low-energy dipole spectrum S(E ) = dB(E )/dE
of 68Ni nucleus calculated within RQRPA, RQTBA, and
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els, RQRPA, RQTBA, and EOM/RQTBA3, with the same
curve- and color-coding as in Fig. 16. Figure 18 shows
the strength functions calculated with a small value of the
smearing parameter � = 20 keV, thus allowing for a clear
illustration of the fragmentation mechanism in a parameter-
free many-body theory with an effective static interaction. In
particular, one can see how the spectrum of RQTBA emerges
from a relatively poor one of RQRPA, which is essentially
the single strong and relatively collective state at 9.5 MeV.
The addition of 2q ⊗ phonon configurations of RQTBA re-
sults in the blue curve which is obviously the fragmented
major RQRPA state spread over a broader energy region.
Remarkably, the RQTBA strength no longer shows any clear
dominance of a single state, but is rather spread uniformly
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FIG. 19. The low-energy dipole spectrum of 68Ni nucleus cal-
culated within RQRPA, RQTBA, and EOM/RQTBA3 with � =
200 keV. Top: the isoscalar dipole strength distribution, bottom:
the electromagnetic dipole strength distribution in comparison to
experimental data of Ref. [108].

over the 7–15 MeV energy interval. Finally, when we add
the EOM/RQTBA3 strength distribution with an additional
higher configuration complexity 2q ⊗ 2phonon, the fragmen-
tation effect is reinforced again. One can notice, in particular,
the appearance of excited states at lower energies and the
overall even more uniform strength redistribution, compared
to RQTBA. Thus, the three models with the increasing com-
plexity of the dynamical kernel form a hierarchy which trans-
lates to the hierarchy of spectral functions with increasing
richness of their fine structure, as it was predicted in Ref. [46].
Now this purely theoretical conjecture is confirmed by direct
calculations.

The bottom panel of Fig. 19 displays the same strength
functions as Fig. 18, but computed with a larger smearing
parameter � = 200 keV, in order to confront them with the
experimental data of Ref. [108]. In contrast to the case of 48Ca,
the major part of the investigated strength below 15 MeV,
which is often associated with the pygmy dipole resonance
and the neutron skin oscillation, lies above the neutron emis-
sion threshold that is located experimentally at ≈7.8 MeV
[83]. Thus, this strength forms mostly a continuous spectrum.
It can be seen that RQRPA provides a too poor description
of the observed strength: it gives a distinct peak at about
9.5 MeV while the experimental strength of Ref. [108] shows
a nearly flat distribution with a slow growth toward higher
energies up to 13 MeV, where it relatively sharply increases by
a factor of two. The RQTBA approach produces a significant
improvement of the description of the strength: the main
RQRPA peak is fragmented and the overall strength distribu-
tion comes out much flatter following better the experimental
trend. The EOM/RQTBA3, in turn, smoothes the strength
distribution further improving the agreement with data. The
only remaining drawback is that the total strength between 6
and 10 MeV is somewhat overestimated. Further refinement
of the model should clarify whether more spreading toward
lower energies can be induced by more complex configura-
tions and the exact treatment of the continuum [71,110] or the
static effective interaction of the NL3 type, the minimal RMF
parametrization with only 6 parameters, employed for these
calculations is responsible for the remaining discrepancy.

In the top panel of Fig. 19 we show the ISE1 counterpart
of the low-energy dipole strength in 68Ni. Remarkably, the
coarse-grain pattern of the isoscalar dipole strength is very
similar to that of the electromagnetic one. A similar sharp
peak appears in RQRPA at about 9.5 MeV and similar frag-
mentation effects are induced by the 2q ⊗ phonon and 2q ⊗
2phonon configurations. In the final EOM/RQTBA3 calcu-
lation a relatively distinct peak at approximately 7.5 MeV
remains on the background of the flat isoscalar strength dis-
tribution, that is not the case for the EME1 strength. While
there is no experimental data for the ISE1 strength in 68Ni,
some theoretical studies are available. In particular, Ref. [109]
provides RPA and QRPA calculations of the isoscalar dipole
strength for a chain of nickel isotopes including 68Ni. In the
low-energy region both QRPA based on the Gogny D1S forces
and continuum RPA with the SLy4 Skyrme interaction give
a dominant peak around 10.5 MeV, that agrees reasonably
well with our RQRPA calculation. For the EME1 strength
the authors of Ref. [109] obtain a two-peak structure at the
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energies corresponding to the major and a minor peaks of their
ISE1 strength distribution. However, fragmentation effects, if
they were added beyond R(Q)RPA, would, probably, change
those patterns, as it typically occurs in various implementa-
tions of the PVC mechanism. The insights about the exact
continuum effects provided in this work are very important
and point out to the necessity of an accurate continuum
treatment.

Other types of interactions may be also considered in a fu-
ture work. Density-dependent parametrizations of the meson-
exchange interaction [111,112] or point-coupling [113,114]
should provide a better performance in the description of
the modes related to the symmetry energy as they imply
more careful fits of the isovector sector [115]. Ideally, the
realization of the presented approach should be based on
a microscopic interaction, in order to increase the predic-
tive power. Numerical implementations based on microscopic
interactions should provide a reasonable approximation to
the two-body density matrix at the starting point. There
can be various strategies, such as the similarity renormal-
ization group [56], Brückner G-matrix [116,117], or the
unitary correlation operator method [63,64] with subsequent
solution of the RPA equations and extracting the two-body
densities. The capabilities of various potentials describing
the nucleon-nucleon scattering data to successfully perform
within the presented approach will be also addressed by future
effort.

VIII. SUMMARY AND OUTLOOK

In this article we revisit, compare and advance nonpertur-
bative approaches to the quantum many-body problem. The
equation of motion method is reviewed for the one-fermion
and two-time two-fermion Green functions in a strongly-
correlated medium. The dynamical kernels of the final EOM’s
containing three- and four-body propagators are approximated
by the nonperturbative cluster expansions truncated on the
two-body level. The resulting EOM’s form a closed set of
equations for one- and two-fermion propagators, where the
latter include the particle-hole, particle-particle, and hole-hole
components.

This approach is confronted with another class of closely
related methods developed originally as extensions of the
Landau-Migdal Fermi-liquid theory by the particle-vibration
coupling and time blocking techniques, PVC-TBA. We
showed that, in fact, the latter methods employed the EOM’s
dynamical mass operator, whose structure can be mapped
to the coupling between the single-fermion and emergent
phonon degrees of freedom. These phonons are built from the
correlated fermionic pairs present in the EOM’s dynamical
kernels and, in the simplest nonperturbative random phase
approximation, acquire a character of harmonic vibrations.
To address the description of the particle-hole response the
PVC-TBA method starts, in contrast to the EOM, from the
general Bethe-Salpeter equation for the four-time particle-
hole propagator, however, the final PVC-TBA equation is
reduced to the two-time dependence by a time projection

method and, thereby, to the one-energy variable equation for
the spectral image. Eventually, the dynamical kernel of the
resonant PVC-TBA is found to be topologically equivalent
to a part of the EOM’s kernel containing terms with single
two-fermion correlation functions. However, while PVC-TBA
is based on the effective description of the static part of the
interaction kernel (which enters, in turn, its dynamical part),
the EOM method provides an accurate derivation of both the
static and dynamical kernels from the single underlying bare
interaction.

The insights revealed throughout this work allowed for
further developing the nuclear response theory beyond the
previous content and capabilities of the PVC-TBA. For this
purpose, we followed the opportunities offered by the EOM,
first of all, in advancing its dynamical interaction kernel
beyond the 2p-2h level and discussed a possible iterative
algorithm on the way to a highly accurate approach to the
two-fermion correlation functions. We performed a numerical
implementation of the approach with the 3p-3h dynamical
kernel and investigated the dipole response of medium-mass
nuclei 42,48Ca and 68Ni. The obtained results showed some
important refinements in both high- and low-energy sectors of
the dipole response and indicated that the approach is indeed
systematically improvable and converging. The possibility of
a continued iterative algorithm opens the way to a highly-
accurate nuclear many-body approach of the shell-model
quality, but without prohibitive limitations on the excitation
energy and mass.

An important aspect of the EOM method, which is not a
feature of the PVC-TBA, is its direct connection to the bare
interaction between fermions. In fact, the EOM derivation
of the response theory together with the theory for the one-
fermion propagator is based solely on the knowledge about
this interaction. In contrast, the existing PVC-TBA and its
nuclear field theory analogs imply an assumption about the
existence of the underlying energy density functional, which
provides information about the static part of the interaction
kernel. The parameters of this functional are fitted to data
for bulk nuclear properties and nuclear matter and, thus,
disconnected from the bare nucleon-nucleon interaction. This
feature occurs to be rather a drawback, because it lowers
the predictive power of the theory. Therefore, an approach
based on the bare interaction, which would also include higher
configurations in the dynamical kernel in a manner discussed
in this work, appears as a desirable solution. Such a theory
would further clarify the mechanisms of emergent collective
phenomena, superfluidity and other dynamical aspects of
strongly correlated many-body systems.
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