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The evolution of spin-orbit splittings of neutron drops along with the neutron number and its connection
with the tensor-force strength have been investigated systematically for different external fields in the relativistic
Brueckner-Hartree-Fock (RBHF) and relativistic Hartree-Fock (RHF) theories. Based on the RHF functional
PKO1, it is found that a good consistency between the RBHF and RHF results for the total energies can be
obtained only for those neutron drops whose central densities are close to the saturation density of nuclear
matter. Nevertheless, by rescaling the density dependence of the RHF functional, the RBHF total energies of
neutron drops in different external fields can be well reproduced. The optimized tensor-force strength λ in the
RHF theory, which reproduces the microscopic RBHF spin-orbit splittings, is running with the strength of the
external fields of neutron drops. This provides an important guide for future determination of tensor forces in
nuclear energy density functionals based on microscopic ab initio calculations.
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I. INTRODUCTION

The covariant density functional theory (CDFT), with a
few parameters, has achieved great success in describing the
basic properties for most nuclei in the nuclear chart [1–7].
One of the frontiers in nuclear physics is to derive nuclear
density functionals from ab initio calculations in terms of the
nucleon-nucleon (NN) interactions [8,9]. Progress has been
made in Ref. [10] by fitting to the isovector effective mass
difference derived from the relativistic Brueckner-Hartree-
Fock (RBHF) theory for nuclear matter. From relativistic bare
NN interactions, fully self-consistent RBHF theory for finite
nuclei has been achieved [11,12], which provides an important
guide for future microscopic derivations of nuclear density
functionals. In particular, by applying RBHF theory to neutron
drops, i.e., finite number of neutrons confined in an external
field, a tensor-force effect on the evolution of spin-orbit (SO)
splittings is revealed clearly [13,14].

Tensor force is one of the most important ingredients of
NN interactions in nuclei, as manifested by the quadruple
moment of deuteron [15]. Over the past decades, the effects of
tensor force in exotic neutron-rich nuclei have also attracted
a lot of attention due to its essential role in the evolution of
shell structure [16–20]. Moreover, the tensor-force effects in
nuclear excitations have also been investigated extensively,
such as Gamow-Teller transitions [21], charge-exchange spin-
dipole excitations [22], non-charge-exchange multipole re-
sponses [23], the first 0− excitation energies [24], and mag-
netic excitations [25]. Lots of efforts have been devoted to
explore the impact of tensor forces in nonrelativistic Skyrme
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[26–38] and Gogny [18,24,39–42] density functional theories
(DFTs) as well as the relativistic ones [19,43–51].

However, the determination of the strength of tensor forces
in finite nuclei is very challenging because it is difficult to
find significant features in experimental data which are only
connected to tensor forces and therefore suitable for an ad-
justment of their parameters [13]. Therefore, much attention
has been paid to the metadata from microscopic ab initio
calculations for constraining the strength of tensor forces.

The neutron drop consisting of a certain number of neu-
trons confined in an external potential can be calculated
with both ab initio methods [52–59] and DFTs [60,61], due
to the simplicity of missing proton-neutron interactions. In
Ref. [61], strong linear correlations between the neutron drop
radii and the neutron skin thickness have been established, and
the linear correlations are used to constrain the three-neutron
forces.

In Ref. [13], the tensor-force effect in neutron drops has
been studied by the ab initio RBHF theory with the Bonn-A
interaction [62]. Moreover, it is suggested that the strength
of tensor force in the relativistic Hartree-Fock (RHF) density
functional PKO1 [43] could be determined by adjusting to the
RBHF results for the evolution of SO splittings in the neutron
drops from N = 8 to N = 50 confined in a harmonic trap with
the strength h̄ω = 10 MeV. This provides an interesting way
to determine the strength of tensor forces in nuclear density
functionals, and it has been implemented in recent works
[13,14,63].

In Refs. [13,14,63], the strength h̄ω for the external har-
monic oscillator (HO) field in neutron drops is fixed at h̄ω =
10 MeV. In Refs. [61] and [64], the nuclear matter properties
at saturation density and two times saturation density have
been investigated, by choosing the strength h̄ω = 10 and
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25 MeV, respectively. Therefore, it is important to investigate
the impact of the strength of external fields for neutron drops
on the tensor-force strength.

In this work, the neutron drops with even neutron number
from N = 8 to N = 50 confined in a harmonic trap with the
strength varying from h̄ω = 5 to h̄ω = 20 MeV are studied
with the RBHF theory and RHF theory. In particular, the im-
pact of tensor forces is investigated by analyzing the evolution
of SO splittings of neutron drops in different external fields.

This paper is organized as follows. In Sec. II, the theo-
retical framework of the RBHF and RHF theories is briefly
introduced. The numerical details are given in Sec. III. The
calculated results and the discussions are presented in Sec. IV.
Finally, the summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

Starting from a relativistic one-boson-exchange NN inter-
action [62], one can build the stationary many-body Hamilto-
nian,

H =
∫

d3rψ̄ (−iγ · ∇ + M )ψ

+ 1

2

∑
α

∫
d3r1d3r2ψ̄ (r1)�(1)

α ψ (r1)Dα (r1, r2)ψ̄ (r2)

×�(2)
α ψ (r2), (1)

where ψ denotes the nucleon field and M is the rest mass of
the nucleon. The index α is running over all types of mesons
to be exchanged in the NN interaction and the exchanged
photons in the Coulomb interaction. The interaction vertices
�(1)

α and �(2)
α correspond to the particles 1 and 2 with the

coordinates r1 and r2, respectively. The retardation effects are
ignored in the propagator Dα (r1, r2) for mesons and photons.
For the Bonn interactions, each vertex is attached with a form
factor of monopole type [62].

The nucleon field ψ (r) can be expanded with a given set of
Dirac spinors ψk (r):

ψ†(r) =
∑

k

ψ
†
k (r)b†

k, ψ (r) =
∑

k

ψk (r)bk, (2)

where b†
k and bk form a complete set of creation and annihi-

lation operators for nucleons in the state |k〉 with positive or
negative energies. Then, the Hamiltonian (1) can be rewritten
as

H =
∑

kl

〈k|T |l〉b†
kbl + 1

2

∑
α

∑
klmn

〈kl|Vα|mn〉b†
kb†

l bnbm, (3)

where the relativistic kinetic energy matrix element 〈k|T |l〉
and bare NN interaction matrix elements 〈kl|Vα|mn〉 are,
respectively, given by

〈k|T |l〉 =
∫

d3rψ̄k (r)(−iγ · ∇ + M )ψl (r), (4)

〈kl|Vα|mn〉 =
∫

d3r1d3r2ψ̄k (r1)�(1)
α ψm(r1)Dα (r1, r2)ψ̄l (r2)

×�(2)
α ψn(r2). (5)

Due to the strong repulsive core in the bare NN interaction,
a direct Hartree-Fock solution of the Hamiltonian (3) is not
accessible. The Brueckner theory [65,66] is, thus, adopted
to soften the bare interaction into an effective interaction in
the nuclear medium, i.e., the G matrix. It takes into account
the short-range correlations by summing up all the ladder
diagrams of the bare interaction and is deduced from the
Bethe-Goldstone equation [67]

〈ab|Ḡ(W )|a′b′〉 = 〈ab|V̄ |a′b′〉 + 1

2

∑
cd

〈ab|V̄ |cd〉

× Q(c, d )

W − εc − εd
〈cd|Ḡ(W )|a′b′〉, (6)

where 〈ab|V̄ |a′b′〉 = ∑
α〈ab|Vα|a′b′ − b′a′〉 is the antisym-

metrized two-body matrix element, and the summation of α is
only running over mesons. The starting energy is denoted by
W , and εc and εd represent the single-particle energies of the
|c〉 and |d〉, respectively. The Pauli operator Q(c, d ) allows the
intermediate states c and d in Eq. (6) to run over all the states
above the Fermi surface.

In the relativistic framework, the single-particle states are
obtained by solving the RHF equation(

T + U + 1

2
Mω2r2

)
|a〉 = ea|a〉, (7)

where ea = εa + M is the single-particle energy with the
rest mass of nucleon M. Here, the external field Uex =
1
2 Mω2r2 has been added explicitly for neutron drops. The
self-consistent single-particle potential U is defined by the G
matrix

〈a|U |b〉 =
A∑

c=1

〈ac|Ḡ(W )|bc〉, (8)

where the index c runs over all the occupied states in the
Fermi sea (no-sea approximation). The detailed choices of the
starting energy W can be found in Refs. [12,14].

In contrast to the RBHF theory, the starting point of the
RHF theory is an effective interaction, which is intermediated
by two isoscalar meson fields (σ and ω), two isovector meson
fields (π and ρ), and the photon field A, and is adjusted to the
properties of finite nuclei and nuclear matter [43]. The self-
consistent single-particle potential comes directly from this
effective interaction, rather than from G matrix in the RBHF
theory. Details can be found in Refs. [43,68].

III. NUMERICAL DETAILS

For the RBHF calculations, the Bonn-A [62] interaction is
used in this work. The initial single-particle basis is chosen
as a set of Dirac Woods-Saxon basis [69], and it is updated
self-consistently in each iteration of the RBHF calculations
[12]. The energy cut-off is 900 MeV for the positive-energy
states and −1700 MeV for the negative-energy ones, and the
single-particle orbital angular momentum cut-off is 25h̄. The
two-particle coupled total angular momentum cut-off is 10h̄.
Spherical symmetry is assumed in the calculations, and the
external HO fields with h̄ω = 5, 10, 15, and 20 MeV are
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FIG. 1. The evolution of the 1p and 1d spin-orbit splittings with the neutron number N for neutron drops in a HO trap with h̄ω = 5, 10,
15, 20 MeV calculated by RBHF theory using the Bonn-A [62] interaction, in comparison with the results obtained by RHF density functional
PKO1 [43] with different strength of πN coupling characterized by λ.

considered for neutron drops. The Dirac basis is solved in a
box with the size Rbox = 7 fm for h̄ω = 15 and 20 MeV, and
Rbox = 8 fm for h̄ω = 5 and 10 MeV.

For the RHF calculations, the effective interaction PKO1
is adopted [43]. The πN coupling constant fπ has an explicit
exponential density-dependent form

fπ (ρb) = fπ (0)e−aπ ξ , (9)

where ξ = ρb/ρ0 is the ratio of baryonic density ρb

over baryonic saturation density of nuclear matter ρ0 =
0.1520 fm−3 and aπ = 1.2320, fπ (0) = 1.0. In the following,
as in Ref. [13], a factor λ is introduced in front of fπ (0) as a
strength parameter.

IV. RESULTS AND DISCUSSION

In Fig. 1, the evolution of the 1p and 1d SO splittings
with the neutron number N for neutron drops in a HO trap
with h̄ω = 5, 10, 15, 20 MeV is depicted. As pointed out in
Ref. [13], the zigzag behavior of the SO splittings obtained
with the RBHF theory can be attributed to the tensor-force
mechanism proposed by Otsuka et al. [17], i.e., nucleons in
two SO aligned orbits or two SO antialigned orbits are repul-
sive, while nucleons in two orbits with opposite SO alignment
are attractive. For instance, neutrons are filling in the SO
aligned orbit 1 f7/2 from N = 20 to N = 28. This occupation
could shift upward the 1d5/2 orbit and downward the 1d3/2

one due to the tensor-force mechanism and, thus, reduce the
1d SO splittings. Above N = 28, the SO antialigned orbits
2p1/2 and 1 f5/2 are filled. This occupation shifts downward
the 1d5/2 orbit and upward the 1d3/2 one and, thus, leads to
the increase of the 1d SO splittings. Therefore, the RBHF
results for the SO splittings in neutron drops provide very
useful constraints for determining the tensor-force strength in
the phenomenological RHF calculations.

As compared to the RBHF SO splittings for the neutron
drops in a HO field with h̄ω = 10 MeV (see the upper
right panel of Fig. 1), the tensor-force effect is somewhat
too weak in the corresponding RHF calculations (λ = 1.0)
though similar behavior could be obtained. Therefore, it was
suggested in Ref. [13] that the strength parameter λ should
be enlarged. Here, for example, by adjusting λ to 1.5, the
zigzag behavior of the SO splittings obtained with RBHF can
be well reproduced. Note that although we present here the
results for λ = 1.5 rather than 1.3 as in Ref. [13], it does not
mean that λ = 1.5 must be a better choice than λ = 1.3. In
fact, what has been done currently is solely adjusting λ to
show the feasibility of determining tensor-force strength from
microscopic calculations and careful fitting work is needed to
get the precise values.

On the other hand, to perform such a fitting work, it is very
necessary to study how the value of λ is influenced by the ex-
ternal fields of neutron drops. In the upper left panel of Fig. 1,
the RBHF and RHF SO splittings are compared for neutron
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FIG. 2. Renormalized total energies by h̄ωN4/3 for N-neutron drops in a HO trap (h̄ω = 5, 10, 15, 20 MeV) calculated by RBHF theory
using the interaction Bonn A in comparison with the results obtained by the RHF approach with PKO1.

drops in a HO field with h̄ω = 5 MeV. Generally speaking,
the RHF results with λ = 1.0 are in a better agreement with
the corresponding RBHF ones. Note that here the bumps of
1p and 1d SO splittings at N = 26 in RBHF calculations are
not caused by tensor forces but by the energy level inversion
of 2p3/2 and 1 f7/2.

The results for neutron drops in HO fields with h̄ω =
15 MeV and h̄ω = 20 MeV are presented in the lower left
and lower right panels of Fig. 1, respectively. In the case of
h̄ω = 15 MeV, the RHF SO splittings are in general larger
than the RBHF ones, and the corresponding zigzag tendency
is weaker as well. This indicates that the strength parameter
λ should be in general slightly larger than 1.5 to reproduce
the RBHF results for neutron drops with h̄ω = 15 MeV.
Several exceptions occur, however, in the drops with neutron
number 8 � N � 14, where the RHF results with λ = 1.5
can well reproduce the RBHF ones. Furthermore, in the case
of h̄ω = 20 MeV, it is clear that the RHF results with even
λ = 1.5 deviate significantly from the RBHF ones, and this
indicates that a much larger strength parameter λ is needed. It
becomes clear now that the value of the optimized λ in RHF is
running with the strength h̄ω of the external fields of neutron
drops.

Furthermore, other neutron drop properties are also inves-
tigated. In Fig. 2, the renormalized total energies by h̄ωN4/3

obtained with RBHF and RHF theories for neutron drops with
the neutron number N from 8 to 50 in a HO trap with h̄ω = 5,
10, 15, 20 MeV are depicted. For a given neutron drop, the
renormalized total energies obtained with the RBHF theory do
not depend on the variation of external fields considerably, but
the ones obtained with RHF exhibit a strong h̄ω dependence.
Specifically, the RHF energies become higher and higher with
the increasing strength of the external fields from h̄ω = 5 to
20 MeV. A good consistency between the RHF and RBHF
results can only be found in the case of h̄ω = 10 MeV for the
neutron number N > 14 as well as the case of h̄ω = 15 MeV
for 8 � N � 14. It should be noted that the strength of the
external fields in neutron drops essentially influences the
density of the system. Therefore, the varying discrepancies
between the RHF and RBHF results in different external
fields indicate that the phenomenological density-dependent
behavior of the effective interaction PKO1 is not compatible
with the G matrix derived from the realistic interaction Bonn
A in the ab initio RBHF theory.

By taking the neutron drops with neutron number N =
8, 20, 40 as examples, in Fig. 3, the renormalized density
distributions by saturation density ρ0 of nuclear matter are
depicted. Note that the saturation density ρ0 obtained in the
RBHF theory with Bonn A is 0.180 fm−3 [70], while it is
0.152 fm−3 [43] in the RHF calculations with PKO1.

For h̄ω = 5 MeV, in both RHF and RBHF calculations, the
central densities of all neutron drops considered here are much
lower than ρ0. Since the RHF density functional PKO1 is
mainly adjusted to the ground-state properties of several finite
nuclei, it is loosely constrained in the low- and high-density
regions. In the RBHF calculations, however, the G matrix
represents the NN interaction in nuclear medium and it is
derived microscopically from the realistic interaction Bonn
A determined by fitting to NN scattering data with a high
precision. Therefore, it is not surprising at all that the RHF
and RBHF total energies for h̄ω = 5 MeV differ dramatically,
as shown in Fig. 2(a).

For h̄ω = 10 MeV, the central densities of neutron drops
with N = 20 and 40 in both the RHF and RBHF calculations
are very close to ρ0, i.e., around 0.9ρ0. Since the RHF density
functional PKO1 is nicely determined around ρ0 by fitting to
nuclear ground-state properties, it is expected that the RHF
total energies for neutron drops with the central densities close
to ρ0 are consistent with the corresponding RBHF results;

FIG. 3. Renormalized density distributions by nuclear matter
saturation density ρ0 for N-neutron drops in a HO trap (h̄ω =
5, 10, 15, 20 MeV) calculated by RBHF theory using the interaction
Bonn A in comparison with the results obtained by the RHF approach
with PKO1. The gray dashed lines denote the position of ρ0.
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FIG. 4. Same as Fig. 2, but for a rescaled density dependence of the RHF density functional.

see Fig. 2(b). Note that the central densities of the neutron
drop with N = 8 are around 0.5ρ0 in both RHF and RBHF
calculations for h̄ω = 10 MeV. This value is still a little bit far
away from ρ0, and this may explain the discrepancies between
the RHF and RBHF total energies for 8 � N � 14 shown in
Fig. 2(b).

For h̄ω = 15 MeV, the central densities of the neutron drop
with N = 8 are getting larger as compared to the case with
h̄ω = 10 MeV. Accordingly, a better agreement between the
RHF and RBHF total energies for 8 � N � 14 is obtained, as
shown in Fig. 2(c). For the neutron drops with N = 20 and 40,
however, the central densities are evidently higher than ρ0 in
both RHF and RBHF calculations. Again, due to the fact that
the RHF density functional PKO1 is not well constrained in
the supradensity region, the discrepancies between the RHF
and RBHF total energies for N � 16 shown in Fig. 2(c) are
justified.

For h̄ω = 20 MeV, the central densities of the neutron
drops with N = 20 and 40 are significantly larger than ρ0, and
this is connected with the substantial differences between the
RHF and RBHF total energies observed in Fig. 2(d). While the
central densities of the neutron drop with N = 8 are around
ρ0, the agreement between the RHF and RBHF total energies
is less pronounced as shown in Fig. 2(d). This might be related
to the fact that the interior part of light nuclear systems usually
cannot be regarded as a fully saturated nuclear matter.

Therefore, it is clear that to perform a microscopic deriva-
tion of nuclear energy density functionals with tensor forces
via neutron drops without rescaling the density dependence
of functionals, it is crucial to assure the central densities of
neutron drops close to ρ0.

In addition, to investigate if the h̄ω dependence of λ is due
to the inconsistent density dependence between the effective
interaction PKO1 and the ab initio G matrix, the density
dependence of the RHF density functional is rescaled to the
equation of states of symmetric nuclear matter and pure neu-
tron matter calculated by the RBHF theory with Bonn A [71].
In Fig. 4, the renormalized total energies for neutron drops
obtained with the rescaled density-dependent RHF density
functional (labeled as PKO1*) are depicted. It is found that a
good consistency between the RHF and RBHF total energies
can be achieved in different external fields. Nevertheless, to
reproduce the RBHF SO splittings, one still needs to adjust
the tensor-force strength factor λ, and the optimized λ = 8,
10, 15, and 20 are obtained for h̄ω = 5, 10, 15, and 20 MeV,

respectively. Therefore, the optimized λ is still running with
the external fields, and this reflects the density-dependent
nature of the tensor-force strength λ.

Therefore, it could be also interesting, in the future, to
determine the density dependence of effective interactions
in nuclear energy density functionals by adjusting to the
inhomogeneous neutron drop properties in various external
fields extracted from ab initio calculations.

V. SUMMARY

In summary, the neutron drops with even neutron number
N from 8 to 50 confined in a harmonic oscillator trap with
h̄ω = 5, 10, 15, and 20 MeV are studied with the relativistic
Brueckner-Hartree-Fock and relativistic Hartree-Fock theo-
ries. The evolution of spin-orbit splittings along with the
neutron number has been investigated and its connection with
the tensor-force strength has been analyzed systematically for
different external fields of the neutron drops. For the RHF
density functional PKO1, the optimized tensor-force strength
λ in the RHF theory, which reproduces the microscopic
RBHF spin-orbit splittings, is running with the strength of
the external fields of neutron drops, and the total energies
calculated with the RBHF and RHF theories are consistent
only for certain neutron drops. To guarantee that the optimized
λ corresponds to the tensor-force effects for the evolution of
spin-orbit splittings in neutron drops, one has to determine a
reasonable external field to obtain the consistent RBHF and
RHF total energies. This could be useful to guide the future
microscopic derivations of nuclear energy density functionals
with tensor forces. A good choice could be to assure the
central densities of neutron drops close to nuclear matter
saturation density, for instance, h̄ω = 10 MeV for neutron
number N > 14 and h̄ω = 15 MeV for 8 � N � 14. On the
other hand, if one rescales the density dependence of the
RHF functional, a good consistency between the RBHF and
RHF results for the total energies of various neutron drops
can be achieved. Even so, the optimized tensor-force strength
λ is still running with the strength of the external fields of
neutron drops. This reflects the density-dependent nature of
the tensor-force strength λ.
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